

MATH 218D-1
PRACTICE MIDTERM EXAMINATION 2

Name		Duke Email	
-------------	--	-------------------	--

usually `first.last@duke.edu`

Please **read all instructions** carefully before beginning.

- Do not open this test booklet until you are directed to do so.
- You have 75 minutes to complete this exam.
- If you finish early, go back and check your work.
- The graders will only see the work on the **printed pages** (front and back). You may use other scratch paper, but the graders will not see anything written there.
- You may use a **simple calculator** for doing arithmetic, but you should not need one. You may bring a **3 × 5-inch note card** covered with anything you want. All other materials and aids are strictly prohibited.
- For full credit you must **show your work** so that your reasoning is clear, unless otherwise indicated.
- Do not spend too much time on any one problem. Read them all through first and attack them in an order that allows you to make the most progress.
- Good luck!

This is a practice exam. It is meant to be similar in format, length, and difficulty to the real exam. It is **not** meant as a comprehensive list of study problems. I recommend completing the practice exam in 75 minutes, without notes or distractions.

Problem 1.

[10 points]

a) Compute the $A = QR$ decomposition of the matrix

$$A = \begin{pmatrix} 1 & 3 & 1 \\ 3 & 7 & -7 \\ 2 & 2 & 3 \end{pmatrix}.$$
$$Q = \begin{pmatrix} 1/\sqrt{14} & 1/\sqrt{6} & 4/\sqrt{21} \\ 3/\sqrt{14} & 1/\sqrt{6} & -2/\sqrt{21} \\ 2/\sqrt{14} & -2/\sqrt{6} & 1/\sqrt{21} \end{pmatrix} \quad R = \begin{pmatrix} \sqrt{14} & 2\sqrt{14} & -\sqrt{14} \\ 0 & \sqrt{6} & -2\sqrt{6} \\ 0 & 0 & \sqrt{21} \end{pmatrix}$$

b) Briefly explain how a QR decomposition makes it possible to quickly compute the least-squares solution of $Ax = b$.

Solving $A^T A \hat{x} = A^T b$ is the same as solving $R \hat{x} = Q^T b$, which only requires substitution because R is in row echelon form.

Problem 2.

[20 points]

Consider the subspace

$$V = \text{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix} \right\}.$$

a) Find a basis for V^\perp .

$$\left\{ \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

We have to compute a basis for $\text{Nul} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & -1 & 1 \end{pmatrix}$.

b) Compute the projection matrix P_V .

$$P_V = \frac{1}{11} \begin{pmatrix} 5 & 2 & -1 & 5 \\ 2 & 3 & 4 & 2 \\ -1 & 4 & 9 & -1 \\ 5 & 2 & -1 & 5 \end{pmatrix}$$

The easiest thing is to use the Horrible Formula.

c) Find the orthogonal projection of the vector $b = (1, 3, 0, 0)$ onto V .

$$b_V = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

Just multiply b by your answer to b).

d) Find an invertible matrix C and a diagonal matrix D such that $P_V = CDC^{-1}$.

$$C = \begin{pmatrix} 1 & 1 & 1 & -1 \\ 1 & 0 & -2 & 0 \\ 1 & -1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} \quad D = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

You're given a basis for V (the 1-eigenspace), and you computed a basis for V^\perp (the 0-eigenspace) in a).

Problem 3.

[10 points]

Consider the matrix

$$A = \begin{pmatrix} 1 & -6 & -18 \\ -2 & 3 & 14 \\ 1 & -1 & -6 \end{pmatrix}.$$

a) Compute the characteristic polynomial of A .

$$p(\lambda) = -\lambda^3 - 2\lambda^2 + \lambda + 2$$

b) Which of the following numbers is an eigenvalue of A ?

-4 -2 0 2 4

Substitute each value into $p(\lambda)$ and check if you get zero.

c) Find any eigenvector of A .

$$v = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$

Find a vector in $\text{Nul}(A + 2I_3)$.

Problem 4.

[10 points]

Consider the difference equation

$$v_k = A^k v_0 \quad A = \begin{pmatrix} 0 & 2 \\ -1 & 3 \end{pmatrix} \quad v_0 = \begin{pmatrix} -4 \\ -3 \end{pmatrix}.$$

a) Find an expression for v_k that does not involve matrix multiplication.

First we compute the characteristic polynomial:

$$p(\lambda) = \lambda^2 - 3\lambda + 2 = (\lambda - 1)(\lambda - 2)$$

Then we compute eigenvectors:

$$w_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \quad w_2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}.$$

Now we expand in the eigenbasis:

$$v_0 = x_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + x_2 \begin{pmatrix} 2 \\ 2 \end{pmatrix} \implies x_1 = -1, x_2 = -1.$$

Finally, we multiply by A^k :

$$v_k = A^k v_0 = - \begin{pmatrix} 2 \\ 1 \end{pmatrix} - 2^k \begin{pmatrix} 2 \\ 2 \end{pmatrix}.$$

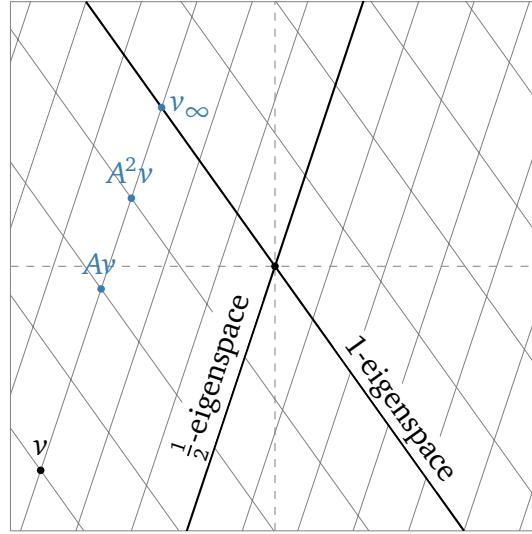
b) If $v_k = \begin{pmatrix} x_k \\ y_k \end{pmatrix}$, the ratio x_k/y_k approaches 1 as $k \rightarrow \infty$.

Problem 5.

[10 points]

The eigenspaces of a certain matrix A are drawn below.

- A vector v is drawn as a point in the plane. Draw and label the vectors Av and A^2v as points in the plane.
- Draw and label $v_\infty = \lim_{k \rightarrow \infty} A^k v$ as a point in the plane.



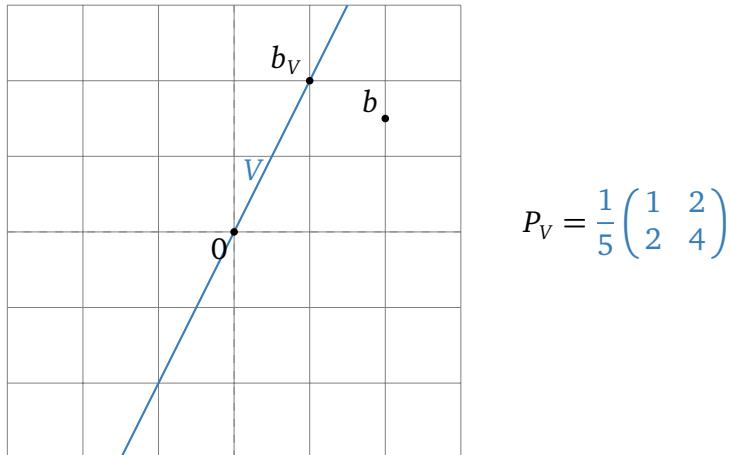
Problem 6.

[10 points]

For a certain subspace V of \mathbb{R}^2 , a vector b and its orthogonal projection b_V are drawn below.

- Draw the subspace V .
- Find the projection matrix P_V .

(Grid marks are one unit apart.)



Problem 7.

[15 points]

Short-answer questions: no justification is necessary.

a) A certain plane V in \mathbb{R}^3 has projection matrix

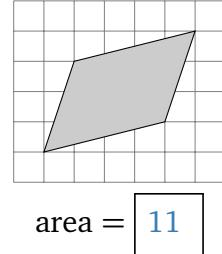
$$P_V = \frac{1}{3} \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}.$$

Find i) a basis for V and ii) a basis for V^\perp .

$$V: \left\{ \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} \right\} \quad V^\perp: \left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \right\}$$

For V , take any two columns of P_V . For V^\perp , take the cross product of those two vectors. (I divided my answer by -3 .)

b) Compute the area of the parallelogram in the picture.
(Grid marks are one unit apart.)



$$\text{area} = \boxed{11}$$

c) A certain $n \times n$ matrix has characteristic polynomial

$$p(\lambda) = \lambda^4 - 10\lambda^3 + 35\lambda^2 - 50\lambda + 24 = (\lambda - 1)(\lambda - 2)(\lambda - 3)(\lambda - 4).$$

Which of the following can you determine from this information?

- The number n .
- The eigenvectors of A .
- The trace of A .
- Whether A is invertible.
- The determinant of A .
- Whether A is diagonalizable.
- The eigenvalues of A .

d) If A is a 2×2 matrix that is neither diagonalizable nor invertible, then its characteristic polynomial is $p(\lambda) = \boxed{\lambda^2}$.

Problem 8.

[15 points]

In each part, provide an example or explain why no example exists. All matrices have *real entries*.

a) A non-diagonalizable 2×2 matrix with characteristic polynomial $p(\lambda) = \lambda^2 - \lambda$.

No such matrix exists: it has two distinct eigenvalues, 0 and 1.

b) A non-invertible 2×2 matrix with a complex (non-real) eigenvalue.

No such matrix exists: it has two distinct eigenvalues, λ and $\bar{\lambda}$, so its determinant is $|\lambda|^2 \neq 0$.

c) A matrix Q with *orthonormal columns* such that $\text{rank}(QQ^T) = 2$.

Any matrix with two orthonormal columns will do, since QQ^T is the projection matrix onto $\text{Col}(A)$. For example,

$$Q = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

d) A nonzero matrix A such that $b_V = 0$, where $b = (1, 1, 1)$ and $V = \text{Col}(A)$.

This means that $b \in \text{Col}(A)^\perp$, so we just have to find some vectors orthogonal to b . For instance,

$$A = \begin{pmatrix} 1 & 1 \\ -1 & 0 \\ 0 & -1 \end{pmatrix}.$$