

Math 218D-1: Homework #11

due Wednesday, November 12, at 11:59pm

1. (Internalizing a Definition) For each matrix, decide if it is stochastic, positive stochastic, or not stochastic.

a) $\begin{pmatrix} .3 & .1 & .2 \\ .4 & .4 & .4 \\ .3 & .5 & .4 \end{pmatrix}$ b) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ c) $\begin{pmatrix} .3 & .4 \\ .4 & .3 \\ .3 & .3 \end{pmatrix}$

d) $\frac{1}{4} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$ e) $\begin{pmatrix} .3 & -.1 & .2 \\ .4 & .6 & .4 \\ .3 & .5 & .4 \end{pmatrix}$ f) $\begin{pmatrix} .3 & 0 & .2 \\ .4 & 0 & .4 \\ .3 & 0 & .4 \end{pmatrix}$

2. (Practicing a Procedure) For each positive stochastic matrix A and each vector v_0 ,
a) find the steady state vector w of A , and b) compute $\lim_{k \rightarrow \infty} A^k v_0$ (this requires no additional work).

a) $A = \begin{pmatrix} .64 & .54 \\ .36 & .46 \end{pmatrix}$, $v_0 = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ b) $A = \frac{1}{40} \begin{pmatrix} 13 & 11 & 8 \\ 5 & 19 & 8 \\ 22 & 10 & 24 \end{pmatrix}$, $v_0 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

c) $A = \frac{1}{150} \begin{pmatrix} 38 & 6 & 9 & 34 \\ 54 & 78 & 57 & 42 \\ 23 & 21 & 54 & 4 \\ 35 & 45 & 30 & 70 \end{pmatrix}$, $v_0 = \begin{pmatrix} 3 \\ -1 \\ -1 \\ -2 \end{pmatrix}$

3. (Practicing a Procedure) Pretend that there are four car rental agencies in Durham. Suppose that a customer renting a car from agency i will return the car the next day to agency j , with the following probabilities:

		Renting from agency			
		1	2	3	4
Returning to agency	1	22.8%	9.2%	2.4%	0.4%
	2	19.6%	44.4%	16.8%	22.8%
	3	8.4%	7.6%	27.2%	11.2%
	4	49.2%	38.8%	53.6%	65.6%

For instance, a customer renting from agency 3 has a 53.6% probability of returning it to agency 4.

If there are 100 cars available for rental, how many cars will be at each agency after a long time?

4. Evaluate

$$\lim_{k \rightarrow \infty} \begin{pmatrix} .3 & .1 & .2 \\ .4 & .4 & .4 \\ .3 & .5 & .4 \end{pmatrix}^k \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix} =$$

without doing any computations.

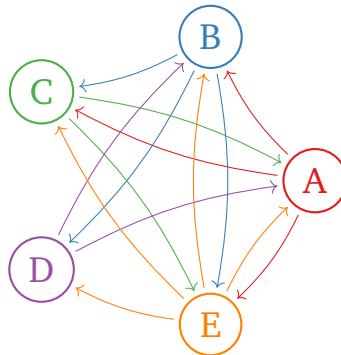
5. (Examples Problem) In each part, find an example or explain why no such example exists.

- a) A 2×2 stochastic matrix whose 1-eigenspace is a plane.
- b) A 2×2 stochastic matrix with eigenvalue -1 .
- c) A 3×3 positive stochastic matrix with eigenvalue -1 .

6. (True-False) Decide if each statement is true or false, and explain why.

- a) A positive stochastic matrix has a 1-eigenvector whose coordinates are all *negative*.
- b) The 1-eigenspace of a positive stochastic matrix can be a plane.
- c) If $\lambda \neq 1$ is an eigenvalue of a positive stochastic matrix, then $|\lambda| < 1$.
- d) If $\lambda \neq 1$ is an eigenvalue of a positive stochastic matrix and v is a λ -eigenvector, then the coordinates of v sum to zero.
- e) A positive stochastic matrix is diagonalizable.

7. (Practicing a Procedure) Consider the following Internet with five pages:



- a) Compute the importance matrix A .
- b) Compute the Google matrix G with damping factor $p = 0.15$.
- c) Find the PageRank vector (with the help of a computer). Which page is the most important?

8. (Practicing a Procedure) For each symmetric matrix S , find an orthogonal matrix Q and a diagonal matrix D such that $S = QDQ^T$.

a) $\begin{pmatrix} 1 & -3 \\ -3 & 1 \end{pmatrix}$ b) $\begin{pmatrix} 1 & -3 \\ -3 & 9 \end{pmatrix}$ c) $\begin{pmatrix} 14 & 2 \\ 2 & 11 \end{pmatrix}$

d) $\begin{pmatrix} 7 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 5 \end{pmatrix}$ e) $\begin{pmatrix} 1 & -8 & 4 \\ -8 & 1 & 4 \\ 4 & 4 & 7 \end{pmatrix}$

SymPy does not (yet) have a method for orthogonally diagonalizing a symmetric matrix. You can use `S.diagonalize(normalize=True)` to produce unit eigenvectors, but eigenvectors with the same eigenvalue need not be orthogonal, so you'll still have to do Gram–Schmidt. Still, this will produce an orthogonal diagonalization when S has distinct eigenvalues.

9. (Practicing a Procedure) Consider the matrix

$$S = \begin{pmatrix} 7 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 5 \end{pmatrix}$$

of Problem 8(d). Write S in the form $\lambda_1 u_1 u_1^T + \lambda_2 u_2 u_2^T + \lambda_3 u_3 u_3^T$ for numbers $\lambda_1, \lambda_2, \lambda_3$ and orthonormal vectors u_1, u_2, u_3 .

10. (Internalizing a Concept) Find *all possible* orthogonal diagonalizations

$$\frac{1}{5} \begin{pmatrix} 41 & 12 \\ 12 & 34 \end{pmatrix} = QDQ^T.$$

How many are there?

11. (Internalizing a Concept)

a) Let S be a matrix that has a (real) orthonormal eigenbasis. Prove that S is symmetric.

[Hint: This is explained briefly in the lecture notes.]

b) Let S be a matrix that can be written in the form

$$S = \lambda_1 q_1 q_1^T + \lambda_2 q_2 q_2^T + \cdots + \lambda_n q_n q_n^T$$

for some vectors q_1, q_2, \dots, q_n . Prove that S is symmetric.

[Hint: Do matrix algebra: symmetric means $S = S^T$.]

c) Let V be a subspace of \mathbf{R}^n , and let P_V be the projection matrix onto V . Use a) or b) to prove that P_V is symmetric.

[Hint: The eigenspaces of P_V are orthogonal—why?]

12. (Practicing a Procedure) Which of the following symmetric matrices are positive definite?

$$\begin{array}{ll}
 \text{a) } \begin{pmatrix} 1 & 2 & -1 \\ 2 & 6 & -8 \\ -1 & -8 & 22 \end{pmatrix} & \text{b) } \begin{pmatrix} 1 & 2 & -1 \\ 2 & 6 & -8 \\ -1 & -8 & 16 \end{pmatrix} \\
 \text{c) } \begin{pmatrix} 2 & -4 & 0 & 0 \\ -4 & 11 & 0 & -9 \\ 0 & 0 & 9 & 0 \\ 0 & -9 & 0 & 29 \end{pmatrix} & \text{d) } \begin{pmatrix} 0 & -4 & 0 & 0 \\ -4 & 11 & 0 & -9 \\ 0 & 0 & 4 & 0 \\ 0 & -9 & 0 & 25 \end{pmatrix}
 \end{array}$$

13. (Practicing a Procedure) For which values of h is the matrix

$$S = \begin{pmatrix} 1 & 3 \\ 3 & h \end{pmatrix}$$

positive-definite?

14. (Exploration Problem) Let S be a symmetric orthogonal 2×2 matrix.

a) Show that $S = \pm I_2$ if it has only one eigenvalue.

[Hint: See HW9#7.]

b) Suppose that S has two eigenvalues. Show that S is the matrix for the reflection over a line L in \mathbb{R}^2 . (Recall that the reflection over a line L is given by $R_L = I_2 - 2P_{L^\perp}$.)

[Hint: Write S as $\lambda_1 u_1 u_1^T + \lambda_2 u_2 u_2^T$, and use the projection formula to write I_2 and P_{L^\perp} in this form as well. What is L ?]

15. (Internalizing a Concept) For which matrices A is $S = A^T A$ positive-definite? If S is not positive-definite, find a vector x such that $x^T S x = 0$. In any case, do not compute S !

$$\begin{array}{lll}
 \text{a) } \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 0 & 3 \end{pmatrix} & \text{b) } \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 3 \end{pmatrix} & \text{c) } \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}.
 \end{array}$$

16. (Internalizing a Concept)

a) If S is positive-definite and C is invertible, show that CSC^T is positive-definite.

b) If S and T are positive-definite, show that $S + T$ is positive-definite.

c) If S is positive-definite, show that S is invertible and that S^{-1} is positive-definite.

[Hint: For a) and b) use the positive-energy characterization of positive-definiteness; for c) use the positive-eigenvalue characterization.]

17. (Exploration Problem) Let S be a positive-definite matrix.

a) Show that the diagonal entries of S are positive.

[Hint: Compute $e_i^T S e_i$ and use the positive-energy criterion.]

b) Show that $S - aI_n$ is positive-definite if and only if a is smaller than the smallest eigenvalue of S .

[Hint: What are the eigenvalues of $S - aI_n$? Compare HW9#3(b).]

c) Show that the diagonal entries of S are all greater than or equal to the smallest eigenvalue of S .

[Hint: If not, apply a) and b) to $S - aI_n$ for a diagonal entry a that is smaller than all eigenvalues.]

18. (Examples Problem) In each part, find an example of a matrix with the stated property, or explain why no such matrix exists. All matrices must have *real entries*.

a) A symmetric matrix with eigenvalue $1 + i$.

b) A symmetric matrix that is not positive-definite but has positive determinant.

c) A symmetric matrix S satisfying

$$S \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \quad \text{and} \quad S \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = 0.$$

d) A positive-definite projection matrix.