

Math 218D-1: Homework #13
 due **Tuesday, November 25, at 10:29pm**

1. (Practicing a Procedure) For each matrix A , find the singular value decomposition in the outer product form

$$A = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \cdots + \sigma_r u_r v_r^T.$$

a) $\begin{pmatrix} 8 & 4 \\ 1 & 13 \end{pmatrix}$ b) $\begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix}$ c) $\begin{pmatrix} -3 & 11 \\ 10 & -2 \\ 1 & 5 \\ -4 & 6 \end{pmatrix}$
 d) $\begin{pmatrix} 9 & 7 & 10 & 8 \\ -13 & 1 & 5 & -6 \end{pmatrix}$ e) $\begin{pmatrix} 3 & 7 & 1 & 5 \\ 3 & 1 & 7 & 5 \\ 6 & 2 & 2 & -2 \end{pmatrix}$

Check your answers using SymPy:

```
A = Matrix([[8, 4],
           [1, 13]])
pprint(A.singular_value_decomposition())
```

The output is a triple of matrices (U, Σ, V) , where the columns of U are the u_i , the diagonal entries of Σ are the σ_i , and the columns of V are the v_i . (This is essentially the matrix form of the SVD.) Note that SymPy may produce a slightly different SVD than you: see Problem 2.

2. (Internalizing a Concept) Consider the matrix

$$A = \begin{pmatrix} 8 & 4 \\ 1 & 13 \end{pmatrix}$$

of Problem 1(a). Let σ_1, σ_2 be the singular values of A . Find *all* singular value decompositions $A = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T$. How many are there?

3. (Internalizing a Concept) Let A be a matrix with nonzero *orthogonal* columns w_1, \dots, w_n of lengths $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_n$, respectively. Find the SVD of A in outer product form.

4. (Internalizing a Concept) Let $u_1, u_2, \dots, u_r \in \mathbf{R}^m$ and $v_1, v_2, \dots, v_r \in \mathbf{R}^n$ be any vectors, and let $\sigma_1, \sigma_2, \dots, \sigma_r \in \mathbf{R}$ be any scalars. Consider the matrix

$$A = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \cdots + \sigma_r u_r v_r^T.$$

a) Show that $\text{Col}(A)$ is contained in $\text{Span}\{u_1, u_2, \dots, u_r\}$.

b) Explain why $\text{rank}(A) \leq r$.

(You're not meant to use the SVD to answer these questions.)

5. (Internalizing a Concept) Let S be a symmetric matrix with eigenvalues $\lambda_1, \dots, \lambda_n$ (counted with multiplicity). Order the eigenvalues so that $|\lambda_1| \geq |\lambda_2| \geq \dots \geq |\lambda_r| > 0 = \lambda_{r+1} = \dots = \lambda_n$. Let $\{v_1, \dots, v_n\}$ be an orthonormal eigenbasis, where v_i has eigenvalue λ_i .

- a) Show that the singular values of S are $|\lambda_1|, \dots, |\lambda_r|$. In particular, $\text{rank}(S) = r$.
- b) Find the singular value decomposition of S in outer product form, in terms of the λ_i and the v_i .

6. (Synthesizing New and Old Concepts)

- a) Show that all singular values of an orthogonal matrix are equal to 1.
- b) Let A be an $m \times n$ matrix, let Q_1 be an $m \times m$ orthogonal matrix, and let Q_2 be an $n \times n$ orthogonal matrix. Show that A has the *same singular values* as Q_1AQ_2 .
[Hint: Use HW10#6.]

Remark: This fact is heavily exploited when numerically computing the SVD: a complicated matrix is simplified by multiplying on the left and right by **simple orthogonal matrices**.

7. (Synthesizing New and Old Concepts) Let A be a matrix of full column rank and let $A = QR$ be the QR decomposition of A .

- a) Show that A and R have the same singular values $\sigma_1, \dots, \sigma_r$ and the same right singular vectors v_1, \dots, v_r .
- b) What is the relationship between the left singular vectors of A and R ?

8. Recall that the *matrix norm* of a matrix A is the maximum value of $\|Ax\|$ subject to $\|x\| = 1$, and is denoted $\|A\|$.

- a) Show that $\|Ax\|$ is maximized at the first right singular vector v_1 of A (subject to $\|x\| = 1$), and that the maximum value of $\|Ax\|$ is the first singular value σ_1 .
- b) Show that the maximum value of $\|Ax\|$, subject to $\|x\| = 1$ and $x \perp v_1$, is attained at the second right singular vector v_2 , and that the second-largest value of $\|Ax\|$ is the second singular value σ_2 .
- c) Suppose now that A is square and λ is an eigenvalue of A . Use a) to show that $|\lambda| \leq \sigma_1$. (You may assume λ is real, although it is also true for complex eigenvalues.)
[Hint: Compute $\|Av\|$, where v is a unit λ -eigenvector.]

This shows that *the largest singular value is at least as big as the largest eigenvalue*.

9. (Exploration Problem)

a) Find the eigenvalues and singular values of

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

b) Find the (real and complex) eigenvalues and singular values of

$$A' = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0.0001 & 0 & 0 & 0 \end{pmatrix}.$$

c) Note that A is very close to A' numerically. Were the eigenvalues of A close to the eigenvalues of A' ? What about the singular values?

This problem is meant to illustrate the fact that *eigenvalues are numerically unstable* but *singular values are numerically stable*. This is another advantage of the SVD.

10. (Foreshadowing) Let A be a matrix with singular values $\sigma_1, \sigma_2, \dots, \sigma_r$. Show that the following four quantities are equal:

$$\begin{aligned} \sigma_1^2 + \sigma_2^2 + \dots + \sigma_r^2 &= \text{Tr}(A^T A) = \text{Tr}(A A^T) \\ &= (\text{the sum of the squares of the entries of } A). \end{aligned}$$

[**Hint:** Use HW10#21(b) for the first two equalities. For the last one, write out $\text{Tr}(A^T A)$.]

11. (Examples Problem) In each case, find an example or explain why none exists.

- a) A nonzero 3×2 matrix A such that $A^T A$ and $A A^T$ have the same eigenvalues.
- b) A nonzero 3×3 matrix A having a right singular vector contained in $\text{Nul}(A)$.
- c) A nonzero 3×3 matrix whose singular values are its eigenvalues.
- d) A nonzero 3×3 matrix with singular value 0.
- e) A nonzero 3×3 matrix that is a linear combination of three rank-1 matrices.
- f) A nonzero 2×2 matrix with infinitely many different singular value decompositions.

12. (Practicing a Procedure) For each matrix A of Problem 1:

$$\mathbf{a)} \begin{pmatrix} 8 & 4 \\ 1 & 13 \end{pmatrix} \quad \mathbf{b)} \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix} \quad \mathbf{c)} \begin{pmatrix} -3 & 11 \\ 10 & -2 \\ 1 & 5 \\ -4 & 6 \end{pmatrix}$$

$$\mathbf{d)} \begin{pmatrix} 9 & 7 & 10 & 8 \\ -13 & 1 & 5 & -6 \end{pmatrix} \quad \mathbf{e)} \begin{pmatrix} 3 & 7 & 1 & 5 \\ 3 & 1 & 7 & 5 \\ 6 & 2 & 2 & -2 \end{pmatrix}$$

find the singular value decomposition in the matrix form

$$A = U\Sigma V^T.$$

13. (Internalizing a Concept) The matrix

$$A = \begin{pmatrix} 3 & -1 & 2 \\ -1 & -3 & 2 \\ 1 & -2 & 2 \end{pmatrix}$$

has singular value decomposition $A = U\Sigma V^T$ where

$$U = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 0 & -2/\sqrt{6} \end{pmatrix} \quad V = \begin{pmatrix} 1/3 & 2/\sqrt{5} & -2/3\sqrt{5} \\ -2/3 & 1/\sqrt{5} & 4/3\sqrt{5} \\ 2/3 & 0 & 5/3\sqrt{5} \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} 3\sqrt{3} & 0 & 0 \\ 0 & \sqrt{10} & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

- a) Find the rank of A .
- b) Write an orthonormal basis of each of the four subspaces of A .
- c) Orthogonally diagonalize the matrices $A^T A$ and AA^T .
- d) Orthogonally diagonalize the projection matrices P_W for $W = \text{Col}(A)$ and $W = \text{Row}(A)$.¹

(Orthogonally diagonalizing S means finding a decomposition $S = QDQ^T$ for an orthogonal matrix Q and a diagonal matrix D .) You can extract all of the information you need for this problem from $A = U\Sigma V^T$; do not do any additional computation!

¹I'm not using P_V because the letter V is already taken.

14. (Internalizing a Concept)

a) Let A be an invertible $n \times n$ matrix. Show that the product of the singular values of A equals the absolute value of the product of the (real and complex) eigenvalues of A (counted with algebraic multiplicity).

[Hint: Both equal $|\det(A)|$. What is $\det(A^T A)$?]

b) Find an example of a 2×2 matrix A with distinct positive eigenvalues that are not equal to any of the singular values of A .

[Hint: One of the matrices in Problem 1 works.]

15. (Internalizing a Concept) Let A be a square, invertible matrix with singular values $\sigma_1, \dots, \sigma_n$.

a) Show that A^{-1} has the same singular vectors as A^T , with singular values $\sigma_n^{-1} \geq \dots \geq \sigma_1^{-1}$. [Hint: invert $A = U\Sigma V^T$.]

b) Let λ be an eigenvalue of A . Use Problem 8(b) and a) to show that $\sigma_n \leq |\lambda|$.

It follows that the absolute values of all eigenvalues of A are contained in the interval $[\sigma_n, \sigma_1]$. Compare Problem 14.

16. (Exploration Problem) Let A be an invertible $n \times n$ matrix. The *condition number* of A is defined to be

$$\kappa(A) = \|A\| \|A^{-1}\|,$$

where $\|\cdot\|$ denotes the matrix norm (see Problem 8).

a) If x is any nonzero vector, show that $\|Ax\|/\|x\| \leq \|A\|$.

[Hint: Pull the $1/\|x\|$ into $\|Ax\|$.]

b) Use Problem 8 and Problem 15 to show that $\kappa(A) = \sigma_1/\sigma_n$, where $\sigma_1, \sigma_2, \dots, \sigma_n$ are the singular values of A .

c) Use b) to show that $\kappa(A) \geq 1$.

Suppose that you have measured a vector b_0 to within an error of $\varepsilon > 0$ —in other words, you have found a vector $b = b_0 + e$ for $\|e\| < \varepsilon$. If you want to solve $Ax_0 = b_0$, then you end up solving $Ax = b$; the actual solution is $x_0 = A^{-1}b_0$, but the solution that you obtain is

$$x = A^{-1}b = A^{-1}(b_0 + e) = A^{-1}b_0 + A^{-1}e = x_0 + A^{-1}e.$$

In other words, the error in the solution you obtained is $A^{-1}e$.

d) Use a) to show that

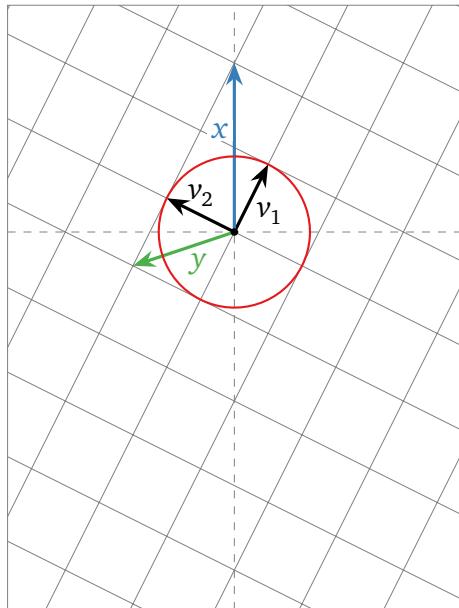
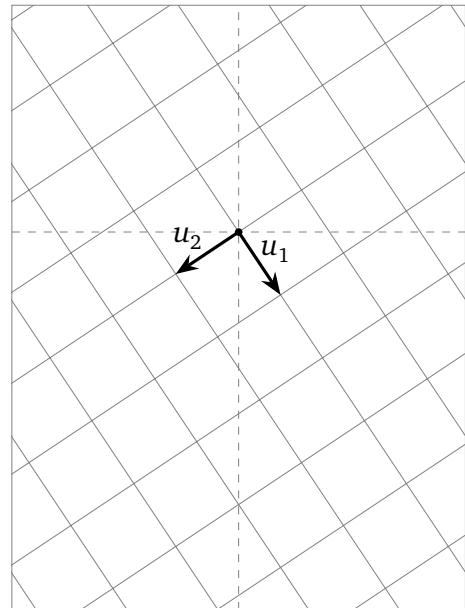
$$\frac{\|A^{-1}e\|}{\|x_0\|} \leq \kappa(A) \frac{\|e\|}{\|b_0\|}.$$

You should interpret $\|A^{-1}e\|/\|x_0\|$ as the amount of error in the solution of $Ax = b$ relative to the length of the solution x_0 , and $\|e\|/\|b_0\|$ as the amount of error in the measurement of b_0 relative to the length of b_0 —both measure the number of *digits of precision*. The inequality above says that if A is *ill-conditioned*, which means that $\kappa(A)$ is large, then *small errors in b lead to large errors in x* . Said differently, if you

want to solve $Ax = b$ to a certain number of decimal places in x , then you have to know b to a much higher level of precision. This is why the condition number is a very important numerical invariant of A .

17. **(Picture Problem)** A certain 2×2 matrix A has singular values $\sigma_1 = 2$ and $\sigma_2 = 1.5$. The right-singular vectors v_1, v_2 and the left-singular vectors u_1, u_2 are shown in the pictures below.

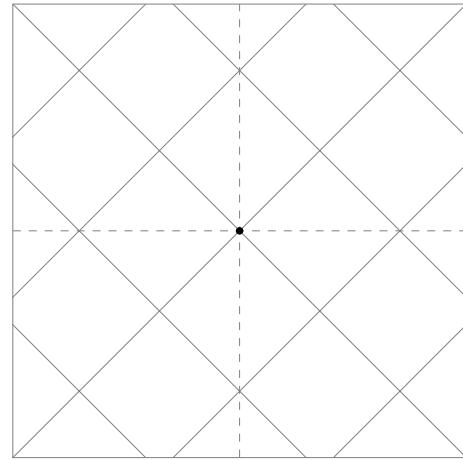
- Draw Ax and Ay in the picture on the right.
- Draw $\{Ax : \|x\| = 1\}$ (what you get by multiplying all vectors on the unit circle by A) in the picture on the right.



18. (Picture Problem) Consider the following 3×2 matrix A and its SVD:

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \\ 2/\sqrt{6} & 0 & -1/\sqrt{3} \\ 1/\sqrt{6} & -1/\sqrt{2} & 1/\sqrt{3} \end{pmatrix}^T.$$

Draw $\{Ax : \|x\| = 1\}$ (what you get by multiplying all vectors on the unit sphere by A) in the picture on the right.

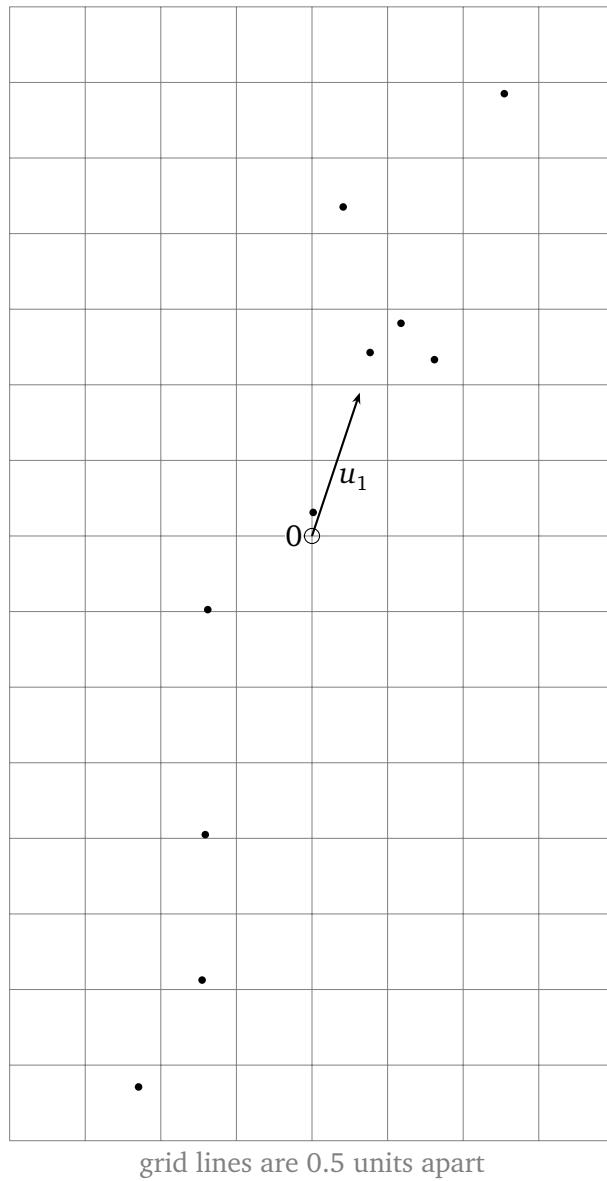


19. (Picture Problem) A certain matrix A has 2 rows and 10 columns. Its SVD has the form

$$A = 7u_1v_1^T + 0.9u_2v_2^T,$$

where u_1, u_2 and v_1, v_2 are the singular vectors. The columns of A and the first left singular vector u_1 are drawn below. *Draw and label:*

- a) the span of u_1 ;
- b) the columns of $7u_1v_1^T$ (drawn as dots);
- c) the columns of $0.9u_2v_2^T$ (drawn as arrows).



grid lines are 0.5 units apart