
Math 218D-1: Homework #2

due Wednesday, September 10, at 11:59pm

Once you are comfortable doing the Gauss–Jordan elimination algo-
rithm(s) by hand, please start using SymPy on the Sage cell on the course
webpage to do the computations! Just write “used SymPy” so that you
don’t confuse the graders. This class is about formulating linear algebra
problems that a computer can solve, not mastering computations that a
computer can do better than you. (You will still need to do computations
by hand on exams.)

Sage cell tips:
# Specify a matrix

A = Matrix([[1, 1, 0],
[1, 2, 1],
[0, 1, 2]])

# Shorthand for specifying a column vector
b = Matrix([1, 2, 3])

# Solve Ax=b (only works when there’s a unique solution)
pprint(A.solve(b))

# Or, augment [A|b] and find the rref:
pprint(A.row_join(b).rref(pivots=False))



1. Find values of a and b such that the following system has a) zero, b) exactly one,
and c) infinitely many solutions.

2x + a y = 4
x − y = b

[Find the relevant criterion involving pivots in the notes.]

2. Give examples of matrices A in reduced row echelon form for which the number of
solutions of Ax = b is:

a) 0 or 1, depending on b

b) ∞ for every b

c) 0 or∞, depending on b

d) 1 for every b.

Is there a square matrix satisfying b)? Why or why not?

3. (Practicing a Procedure) For each matrix A and vector b, decide if the system
Ax = b is consistent. If so, find the parametric vector form of the general solution
of Ax = b. For instance,
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Also answer the following questions (for the systems that have solutions): Which
variables are free? How many solutions does the system have? What is the dimen-
sion of the solution set?

a) A=
�

2 1 1 4
4 2 1 7

�

b =
�

1
1

�

b) A=

 

2 2 −1
−4 −5 5

6 1 12

!

b =

 

3
2

49

!

c) A=

 

2 2 −1
−4 −5 5

6 1 12

!

b =

 

3
2

48

!

d) A=







1 2 3 −1 1
−2 −4 −5 4 1

1 2 2 −3 −1
−3 −6 −7 7 6






b =







2
4
−6
10







e) A=

 

1 1 0
1 2 1
0 1 2

!

b =

 

2
5
4

!

You can check your work again using SymPy. When Ax = b has infinitely many
solutions, A.solve(b) will throw an error; instead, try this:



A = Matrix([[2, 1, 1, 4],
[4, 2, 1, 7]])

b = Matrix([1, 1])
# Find the parametric form (free variables are labelled
# tau0, tau1, ...)

pprint(A.gauss_jordan_solve(b))
# Or, form the augmented matrix (A|b) and find its rref,
# then do the rest by hand:

pprint(A.row_join(b).rref(pivots=False))

4. Is

 

3
3
3

!

a linear combination of

 

1
2
3

!

,

 

4
5
6

!

,

 

7
8
9

!

? If so, what are the weights?

[Translate the problem into a linear algebra problem that you can solve.]

5. (Foreshadowing) Find the parametric vector form of the solution sets of the fol-
lowing systems of equations:

§

2x1 + x2 + x3 = 0
4x1 + 2x2 + x3 = 0

§

2x1 + x2 + x3 = 1
4x1 + 2x2 + x3 = 1

How are the solution sets related to each other geometrically?

6. Find a 2× 3 matrix A in RREF and a vector b such that the solution set of Ax = b
consists of all vectors of the form

 

1+ t
2− t

t

!

t ∈ R.

7. Suppose that A is a 3×3 matrix and b is a vector such that the solution set of Ax = b
is a line in R3. How many pivots does A have?

8. (Examples Problem) In each part, find an example of a matrix with the stated
property, or explain why no such matrix exists.

a) A 3× 3 matrix with one free variable.

b) An invertible 3× 3 matrix with one free variable.

c) A 2× 3 matrix with 3 pivots.

d) A 2× 3 matrix with no free variables.

e) A 3× 2 matrix A such that Ax = (1,1, 1) has infinitely many solutions.

f) An invertible 2× 2 matrix A such that A3 is not invertible.



9. (Practicing a Procedure) Use the formula for the 2 × 2 inverse to compute the
inverses of the following matrices. If the matrix is not invertible, explain why.

a)
�

1 2
3 4

�

b)
�

3 7
2 4

�

c)
�

1 2
2 4

�

10. (Practicing a Procedure) Compute the inverses of the following matrices by Gauss–
Jordan elimination. If the matrix is not invertible, explain why. You’re welcome to
use Rabinoff’s Reliable Row Reducer, but write out all row operations you perform.

a)

 

1 1 0
1 2 1
0 1 2

!

b)

 

1 0 −2
2 −3 4
−3 1 4

!

c)

 

1 2 3
4 5 6
7 8 9

!

d)







6 −4 −7 −1
7 0 1 3
−1 2 3 1

2 0 1 1







Check your answers in SymPy, as in:

A = Matrix([[1, 1, 0],
[1, 2, 1],
[0, 1, 2]])

pprint(A.inv())

11. Consider the linear system

x1 + x2 = b1

x1 + 2x2 + x3 = b2

x2 + 2x3 = b3.

Use the Problem 10(a) to solve for x1, x2, x3 in terms of b1, b2, b3. Do not use
Gauss–Jordan elimination!
[Find the relevant big red box in the notes.]

12. Suppose that

A

 

1
2
4

!

=

 

1
0
0

!

A

 −1
3
2

!

=

 

0
1
0

!

A

 

2
−1

3

!

=

 

0
0
1

!

.

What is A−1?
[Hint: multiply both sides by A−1. This requires no computations.]

13. Suppose that A, B, and C are invertible 3× 3 matrices. Simplify the following ex-
pressions (write them without parentheses or unnecessary identity matrices):

a) (ABC)−1 b) C(A− 2I3)C
−1 c) AT (A−1)T d) A3(A−1)2

https://services.math.duke.edu/~jdr/ila/demos/rrinter.html


14. (Internalizing a Definition) Write the elementary matrices that perform the fol-
lowing row operations on a 3× 4 matrix:

a) R2 += 2R1 b) R1 −=
1
2R3 c) R3 ×= 2

d) R3 ÷= 2 e) R1←→ R3 f) R1←→ R2

15. (Internalizing a Definition) Write the row operations that the following elemen-
tary matrices perform:

a)

 

1 3 0
0 1 0
0 0 1

!

b)

 

1 0 0
0 3 0
0 0 1

!

c)

 

1 0 0
0 1 0
0 −3 1

!

d)

 

1 0 0
0 0 1
0 1 0

!

e)





1
4 0 0
0 1 0
0 0 1





16. For each elementary matrix in Problem 15, write the row operation that un-does
that row operation, and write its elementary matrix. Verify that this elementary
matrix is the inverse of the matrix you started with. For instance:
 

1 0 0
1 1 0
0 0 1

!

row op
R2 += R1

undo
R2 −= R1

matrix
 

1 0 0
−1 1 0

0 0 1

!

 

1 0 0
1 1 0
0 0 1

!

·

 

1 0 0
−1 1 0

0 0 1

!

=

 

1 0 0
0 1 0
0 0 1

!

.

17. (Internalizing a Definition) Decide if each matrix is upper-triangular, upper-uni-
triangular, lower-triangular, lower-unitriangular, diagonal, not triangular, or some
combination of these. (For instance, any upper-unitriangular matrix is also upper-
triangular.)

a)

 

1 3 2 7
0 1 2 1
0 0 1 −1

!

b)

 

1 0 0
3 −1 0
2 −1 1

!

c)







1 0 0
0 1 0
0 0 1
0 0 0







d)

 

0 2 4 3
0 1 0 2
0 0 1 1

!

e)

 

1 0 2 4
0 2 1 3
1 0 0 4

!

f)
�

0 0 0
0 0 0

�

g)
�

2 0
0 3

�



18. Consider the matrix

A=

 

1 2 0
1 3 2
1 3 1

!

.

a) Explain how to reduce A to a matrix U in REF using three row replacements.

b) Let E1, E2, E3 be the elementary matrices for these row operations, in order.
Fill in the blank with a product involving the Ei:

U = A.

c) Fill in the blank with a product involving the E−1
i :

A= U

d) Evaluate that product to produce a lower-unitriangular matrix L such that A=
LU .
When multiplying elementary matrices, just perform row operations!

e) Explain how to reduce U to the 3 × 3 identity matrix using three more row
operations E4, E5, E6.

f) Fill in the blank with a product involving the Ei:

A−1 = .

19. (Practicing a Procedure) Compute the A = LU decomposition of the following
matrices using the 2-column method. Check your answers by multiplying LU .

a)

 

2 3 4
−2 0 −2
−6 −15 −17

!

b)

 

3 0 2 −1
−6 −1 1 3

6 −4 26 5

!

c)







2 3 1 4
−6 −11 −4 −7
−4 −4 −4 −4

4 12 −1 13







Check your work again in SymPy. For instance, in a) you would do something like:

A = Matrix([[ 2, 3, 4],
[-2, 0, -2],
[-6, -15, -17]])

L, U, _ = A.LUdecomposition()
pprint(L)
pprint(U)



20. (Practicing a Procedure) Solve the following matrix equations by substitution,
using the provided LU decomposition. Check your answers by evaluating Ax . Show
your work.

 

3 2 7
−6 −5 −10
−3 0 −13

!

x =

 

14
−26
−16

!

a)

 

3 2 7
−6 −5 −10
−3 0 −13

!

=

 

1 0 0
−2 1 0
−1 −2 1

! 

3 2 7
0 −1 4
0 0 2

!







2 4 −3 2
−2 −7 7 −7

4 17 −17 19
2 4 −5 1






x =







3
−4
10

0






b)







2 4 −3 2
−2 −7 7 −7

4 17 −17 19
2 4 −5 1






=







1 0 0 0
−1 1 0 0

2 −3 1 0
1 0 −2 1













2 4 −3 2
0 −3 4 −5
0 0 1 0
0 0 0 −1







 

2 3 −1
4 4 3
6 1 16

!

x =

 

2
−3
−21

!

c)

 

2 3 −1
4 4 3
6 1 16

!

=

 

1 0 0
2 1 0
3 4 1

! 

2 3 −1
0 −2 5
0 0 −1

!

You can also check your answers in SymPy, as in:

L = Matrix([[ 1, 0, 0],
[-2, 1, 0],
[-1, -2, 1]])

U = Matrix([[3, 2, 7],
[0, -1, 4],
[0, 0, 2]])

b = Matrix([14, -26, -16])
y = L.lower_triangular_solve(b)
pprint(y)
x = U.upper_triangular_solve(y)
pprint(x)



21. (Practicing a Procedure) Compute a PA= LU decomposition for each of the fol-
lowing matrices, using the 3-column method and performing maximal partial piv-
oting. Check your answers by multiplying PA and LU .

a)

 

0 1 2
1 0 3
−1 1 1

!

b)







1 2 5 0
1 2 4 2
0 −1 0 8
−1 −3 −1 −1







22. (Exploration Problem) Recall that a permutation matrix is a product of elementary
matrices for row swaps.

a) Let E be the n×n elementary matrix for the row swap Ri ←→ R j. Which entries
of E are different from In?

b) If E is the n× n elementary matrix for a row swap, explain why E = E−1 and
why E = ET (E is symmetric).

c) If P is any permutation matrix, show that P−1 = PT .
[Hint: write P = E1E2 · · · Er for elementary row swaps Ei and take transposes.]

d) Is P = PT for a general permutation matrix? Explain why, or give a counter-
example.



23. (Practicing a Procedure) Solve the following matrix equations by substitution,
using the provided PA= LU decomposition. Check your answers by evaluating Ax .

 

20 −19 −5
−20 19 0
−5 4 0

!

x =

 

54
−59
−14

!

a)

 

0 0 1
0 1 0
1 0 0

! 

20 −19 −5
−20 19 0
−5 4 0

!

=

 

1 0 0
4 1 0
−4 −1 1

! −5 4 0
0 3 0
0 0 −5

!







0 8 −17 28
1 −2 −2 −1
−1 0 5 1

3 0 −14 −8






x =







12
4
0
−5






b)







0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0













0 8 −17 28
1 −2 −2 −1
−1 0 5 1

3 0 −14 −8






=







1 0 0 0
−1 1 0 0

3 −3 1 0
0 −4 −5 1













1 −2 −2 −1
0 −2 3 0
0 0 1 −5
0 0 0 3







You can also check your answers in SymPy, as in:

L = Matrix([[ 1, 0, 0],
[ 4, 1, 0],
[-4, -1, 1]])

U = Matrix([[-5, 4, 0],
[ 0, 3, 0],
[ 0, 0, -5]])

# This is the permutation matrix whose rows are:
# 1. the last row of the identity (index 2),
# 2. the middle row of the identity (index 1),
# 3. the first row of the identity (index 0)

P = eye(3).perm([2, 1, 0])
b = Matrix([54, -59, -14])
y = L.lower_triangular_solve(P*b)
pprint(y)
x = U.upper_triangular_solve(y)
pprint(x)

24. (Driving a Point Home) Suppose that A is a one million by one million matrix,
and that you have to solve Ax = b for one million values of b. About how many
times faster can your computer solve this problem using LU decompositions than
by doing elimination one million times?


