
Math 218D-1: Homework #5

due Wednesday, October 1, at 11:59pm

I know these are long homework assignments. There is a lot of material,
and I want to make sure you’ve had a chance to work through it all before
seeing it on an exam—I won’t test you on anything you haven’t already seen
on the homework. Try to articulate what is the point of each problem—
there is very little overlap between problems. And as always, your primary
reference should be the course notes.



1. (Internalizing Definitions) Consider the following vectors:

u=
�

.8

.6

�

v =
�

3
−4

�

w=
�

1
1

�

.

a) Compute the lengths ∥u∥,∥v∥, and ∥w∥.

b) Use your answers in a) to compute the lengths ∥2u∥,∥ − v∥, and ∥3w∥.

c) Find the unit vectors in the directions of u, v, and w.

d) Check the Schwartz inequalities |u · v| ≤ ∥u∥∥v∥ and |v ·w| ≤ ∥v∥∥w∥.

e) Find the angles between u and v and between v and w.

f) Find the distance from v to w.
Show your work! Check your answers using SymPy, as in:

# Vectors
u = Matrix([.6, .8])
v = Matrix([3, -4])

# Dot product
pprint(u.dot(v))

# Length
pprint(u.norm())

2. (Practice with Dot Product Algebra) If ∥v∥= 8 and ∥w∥= 5, what are the smallest
and largest possible values of ∥v−w∥? Justify your answer using the algebra of dot
products and by drawing a picture.

3. (Foreshadowing) If v is a nonzero vector in R3, give a geometric description of the
set S of all vectors w ∈ R3 such that v ·w≤ 0. (If the dot product is negative, what
does that say about the angle between the vectors?)

4. (Practicing a Procedure) Compute a basis for the orthogonal complement of each
of the following spans.

a) Span

( 

1
2
−1

!)

b) Span

( 

1
2
3

!

,

 

4
5
6

!)

c) Span

( 

1
2
3

!

,

 

4
5
6

!

,

 

7
8
9

!)

d) Span

( 

0
1
1

!

,

 

1
0
1

!

,

 

1
1
0

!)

e) Span{} f) Span

















1
1
−1
−1






,







1
−1

1
−1

















To solve b) in SymPy, you could do something like:

A = Matrix([[1, 2, 3],
[4, 5, 6]])

pprint(A.nullspace())



5. (Practicing a Procedure) Compute a basis for the orthogonal complement of each
the following subspaces.

a) Col

 

1 4 7
2 5 8
3 6 9

!

b) Nul

 

1 4 7
2 5 8
3 6 9

!

c) Row

 

1 4 7
2 5 8
3 6 9

!

d) Nul

 

1 2 3
4 5 6
7 8 9

!

e) Col

 

3 0
1 −2
3 1

!

f) Col
�

1 2 0
2 1 0

�

g)







x ∈ R3 :





0 6 8
1
2 0 0
0 1

2 0



 x = 2x







h)
�

(x , y,−x): x , y ∈ R
	

[Hint: solving a)–d) requires only one Gauss-Jordan elimination, and f) doesn’t
require any work.]

6. (Important Example) The orthogonal complement of each subspace on the left is
equal to one of the subspaces on the right. Which one?

a) The x-axis in R3.

b) The y-axis in R3.

c) The x y-plane in R3.

d) The yz-plane in R3.

a) The x-axis in R3.

b) The z-axis in R3.

c) The xz-plane in R3.

d) The yz-plane in R3.

Do not perform any computations.

7. (Internalizing a Concept) We say that subspaces V, W are orthogonal if every vec-
tor in V is orthogonal to every vector in W .

a) If two lines in Rn are orthogonal complements, then what is n and why? (Find
the big red box .)

b) Give an example of two lines in Rn (for some n) that are orthogonal to each
other but are not orthogonal complements.

8. (A Useful Shortcut) If (a, b, c) ̸= (0, 0,0) then the subspace

V =
�

(x , y, z) ∈ R3 : ax + b y + cz = 0
	

is a plane in R3.

a) How do you know a priori that V⊥ is a line, without doing any computations?

b) Explain why
�

(a, b, c)
	

is a basis for V⊥ without doing any elimination.

The upshot is that (a, b, c) is a normal vector to the plane ax + b y + cz = 0.



9. (Driving a Point Home) Compute a basis for the orthogonal complement of the
plane

V =
�

(x , y, z) ∈ R3 : x + 3y − 2z = 0
	

in two different ways:

a) Express V as a null space, and take the row space.

b) Compute a basis for V , express V as a column space, then find a basis for the
left null space.

Verify that your answers to a) and b) are bases for the same subspace (namely, V⊥).
Which was easier to compute?

The point here is that the subspace V⊥ does not depend on your choice of de-
scription of V , and that some descriptions are more convenient for computations
than others.

10. (Examples Problem) Construct a matrix A with each of the following properties,
or explain why no such matrix exists.

a) The column space contains (0,2, 1), and the null space contains (1,−1, 2) and
(−1,3, 2).

b) The row space contains (0,2, 1), and the null space contains (1,−1,2) and
(−1,3, 2).

c) Ax = (1,2, 3) is consistent, and AT (−1,−1,2) = 0.

d) A nonzero 2×2 matrix A such that every row of A is orthogonal to every column.

e) The sum of the columns of A is (0, 0,0), and the sum of the rows of A is (1,1, 1).

11. (Practicing a Procedure) Express the plane

V = Span

















1
1
−1
−1






,







2
1
1
−1

















.

as the solution set of a system of linear equations. What is the smallest number of
equations you need, and why?

12. (Familiarity with AT A) Explain why A has full column rank if and only if AT A is
invertible. (Find the big red box relating A and AT A.)



13. (Familiarity with AT A / Foreshadowing) Let Q be an n× n (square) matrix such
that QTQ = In. Since Q is square, this means QT =Q−1.

a) Show that the columns of Q are unit vectors.

b) Show that the columns of Q are orthogonal to each other.

c) Show that QQT = In.

d) Use a), b), and c) to show that the rows of Q are also orthogonal unit vectors.

e) Find all 2×2 matrices Q such that QTQ = I2. (In other words, find all pairs of
orthogonal unit vectors in R2.)

Such a matrix Q is called orthogonal.1

14. (Practicing a Procedure) For each line L and vector b, compute the orthogonal
projection bL of b onto L using the formula for projection onto a line.

a) L = Span

( 

2
3
4

!)

b =

 

5
4
9

!

b) L = Span

















−1
0
1
−1

















b =







4
2
2
1







Check your answers in SymPy, as in:

v = Matrix([2, 3, 4])
b = Matrix([5, 4, 9])
bV = b.dot(v)/v.dot(v)*v
pprint(bV)

1I am not responsible for this terminology.



15. (Practicing a Procedure) For each subspace V and vector b, compute the orthog-
onal projection bV of b onto V by solving a normal equation AT Ax = AT b. Then
compute the orthogonal decomposition b = bV + bV⊥ , and find the distance from b
to V .

a) V = Col

 

1 1
1 0
0 2

!

b =

 

1
4
3

!

b) V = Col







1 2 1
−1 1 0

2 2 −1
4 3 0






b =







−1
−1
−1

7







c) V = Col

 

2 2 −1
−4 −5 5

6 1 12

!

b =

 −6
−24
−3

!

Compute AT A by hand, but remember that you’re just computing column dot prod-
ucts! Check your answers using SymPy, as in:

A = Matrix([[1, 1],
[1, 0],
[0, 2]])

b = Matrix([1, 4, 3])
# This will only work when A has FCR!

x = (A.T*A).solve(A.T*b)
bV = A*x
bVperp = b - bV
pprint(bV)
pprint(bVperp)
pprint(bVperp.norm())

16. (Practicing a Procedure) For each subspace V and vector b, compute the orthog-
onal projection bV of b onto V by first computing bV⊥ .

a) V = Nul
�

1 −1 4
2 0 1

�

b =

 

1
−9

5

!

b) V = Nul
�

1 2 2 −1
2 1 0 1

�

b =







5
2
5
3







17. (Internalizing a Concept) Let A be a matrix with n columns and let b be a vector
in Rn. Explain why b can be expressed as the sum of a vector in Nul(A) and a vector
in Row(A). How would you compute these vectors?



18. (Picture Problem) In each case, draw the orthogonal projections bL and bL⊥ with-
out doing any computations.

a)
L

b

b)
Lb

c)

L

b

d)

L

b

19. (Driving a Point Home) Consider the line

L = Nul
�

1 −1 1
2 1 −2

�

.

Compute the orthogonal projection of b = (1, 6,9) onto L in two different ways, as
follows:

a) by first computing bL⊥ (solving a normal equation);

b) by finding a basis for L and using projection onto a line.

The point is that these two different descriptions of L must give the same answer for
the projection bL.



20. (Important Example) It is easy to project onto coordinate axes and coordinate
planes.

a) Find the orthogonal projection of (a, b, c) onto the x-axis.

b) Find the orthogonal projection of (a, b, c) onto the y-axis.

c) Find the orthogonal projection of (a, b, c) onto the x y-plane.

d) Find the orthogonal projection of (a, b, c) onto the yz-plane.

In each case, explain your answer, but do not do any computations. Instead, eyeball
a vector x on the subspace such that (a, b, c) − x is orthogonal to the subspace.
See Problem 6.

21. (Exploration Problem)

a) Let v, w ∈ Rn. Show that

∥v +w∥2 = ∥v∥2 + ∥w∥2

if v ⊥ w. (Do dot product algebra.)

b) Let V be a subspace of Rn, let b ∈ Rn, and let v ∈ V . Explain why b − bV is
orthogonal to bV − v, then apply a) to the sum b− v = (b− bV ) + (bV − v) to
show that

∥b− v∥2 = ∥b− bV∥2 + ∥bV − v∥2.
Use this to prove that

∥b− v∥2 ≥ ∥b− bV∥2,

i.e., that bV really is the closest vector in V to b.

c) Let V be a subspace of Rn and let b ∈ Rn. Apply a) to the orthogonal decom-
position of b to show that ∥bV∥ ≤ ∥b∥, with equality if and only if b ∈ V .

In other words, orthogonal projection can only make a vector shorter.


