
Math 218D-1: Homework #6

due Wednesday, October 8, at 11:59pm

As always, you should use SymPy on the Sage cell to compute orthog-
onal projections and projection matrices once you are comfortable com-
puting them by hand. If your answers have fractions with large denom-
inators, it’s probably because I didn’t try very hard to make the numbers
work out nicely because I was expecting you to ask the computer to do the
computation—not because you did the problem wrong.

1. (Internalizing a Concept) For each subspace V , find the orthogonal decomposition
b = bV + bV⊥ of the vector b = (1,2,−1) with respect to V without doing any
computations.

a) V = Span

( 

1
2
2

!

,

 

1
2
−1

!)

b) V = Col

 

2 0
−1 1

0 2

!

c) V = R3 d) V = {0}

2. (Practicing a Procedure) For each vector v, compute the projection matrix onto
V = Span{v} using the formula PV = vvT/v · v.

a) v =

 

1
2
3

!

b) v =







3
0
4
−1






c) v =









1
1
...
1









(in Rn)

Check your answers for a) and b) with SymPy, as in:

v = Matrix([1, 2, 3])
pprint(v*v.T/v.dot(v))



3. (Practicing a Procedure) For each subspace V , compute the projection matrix PV .
Show your work!

a) V = Col

 

1 1
1 0
0 2

!

b) V = Col







1 2 1
−1 1 0

2 2 −1
4 3 0






c) V = Col

 

2 2 −1
−4 −5 5

6 1 12

!

Check your answers with SymPy, as in:

B = Matrix([[1, 1],
[1, 0],
[0, 2]])

PV = B*(B.T*B).inv()*B.T
pprint(PV)

Use SymPy to verify that P2
V = PV and PT

V = PV by computing PV*PV-PV and
PV.T-PV.

4. (Practicing a Procedure) For each subspace V , compute the projection matrix PV
by first computing PV⊥ .

a) V = Nul
�

1 1 1
�

b) V = Nul
�

1 2 2
0 2 0

�

5. For each subspace V , compute the projection matrix PV .

a)
�

(x , y,−x): x , y ∈ R
	

.

b) The subspace of all vectors in R3 whose coordinates sum to zero.

c) (Challenge) The intersection of the plane x − y + 2z = 0 with the plane
spanned by (1,1, 1) and (1, 2,−1).

6. (Driving a Point Home) Consider the matrix

A=







1 2
−1 1

2 2
4 3






,

and let V = Col(A).
a) Compute PV using the formula PV = A(AT A)−1AT .

b) Compute a basis {v1, v2} for V⊥ = Nul(AT ).

c) Let B be the matrix with columns v1, v2, and compute PV⊥ using the formula
B(BT B)−1BT .

d) Verify that your answers to a) and c) sum to I4.

This illustrates the fact that once you’ve computed PV , there’s no need to compute
PV⊥ separately. It’s a lot of extra work!



7. (Internalizing a Concept) A certain subspace V of R3 has the projection matrix

PV =
1

14

 

10 −6 −2
−6 5 −3
−2 −3 13

!

.

In this problem, do not do any computations whatsoever.
a) Find the orthogonal projection of (0, 1,0) onto V .

b) Find a basis for V , and determine dim(V ).

c) Find a basis for V⊥.

8. (Internalizing a Concept) Let V be a subspace of Rn, with orthogonal complement
V⊥. Show that PV PV⊥ = 0 in two ways:

a) Do matrix algebra, using PV⊥ = In − PV and P2
V = PV .

b) Think geometrically: where does PV PV⊥ send a vector b? How does this tell
you what PV PV⊥ is?

9. (Important Example) It is easy to compute the projection matrix onto coordinate
axes and coordinate planes.

a) Find the projection matrix onto the x-axis in R3.

b) Find the projection matrix onto the y-axis in R3.

c) Find the projection matrix onto the xz-plane in R3.

d) What do you think is the matrix for projection onto Span{e2, e4} in R4? Don’t
do any computations; just continue the pattern.



10. Let V be a subspace of Rn. The matrix for reflection over V is

RV = In − 2PV⊥ .

a) Suppose that V is the line in the picture. Draw the vectors RV x1, RV x2, RV x3,
and RV x4 as points in the plane. (Distribute the product (I2−2PV⊥)x i and draw
the summands.)

x1

x2 x3

x4

b) In general, show that RT
V = RV and that R2

V = In. (Do matrix algebra.)

11. (Examples Problem) In each part, find an example or explain why no such example
exists.

a) A 3× 3 projection matrix of rank 3.

b) A 3×2 matrix A of rank 2 such that the orthogonal projection of (1, 1,1) onto
Col(A) is zero.

c) A 4× 4 projection matrix whose null space is equal to its column space.

d) A 4× 4 projection matrix whose row space is equal to its column space.

e) Nonzero vectors v and w in R3 such that PV PW = 0, where V = Span{v} and
W = Span{w}.

f) A plane V in R3 such that rank(PV ) = 1.



12. (Practicing a Procedure) Find all least-squares solutions bx of each of the following
systems of equations Ax = b. Then compute the projection bV = Abx of b onto
V = Col(A) and the error ∥b− Abx∥. Show your work.

a)

 

1 1
1 0
0 2

!

x =

 

1
4
3

!

b)







1 2 1
−1 1 0

2 2 −1
4 3 0






x =







−1
−1
−1

7







c)

 

2 2 −1
−4 −5 5

6 1 12

!

x =

 −6
−24
−3

!

d)

 

3 0
1 −2
3 1

!

x =

 

9
7
7

!

Check your answers with the Sage cell, as in:

A = Matrix([[1, 1],
[1, 0],
[0, 2]])

b = Matrix([1, 4, 3])
# If A has FCR, this will work:

pprint((A.T*A).solve(A.T*b))
# Otherwise, this will find the parametric form:

pprint((A.T*A).gauss_jordan_solve(A.T*b))
# Or, you can form the augmented matrix (ATA | ATb):

B = (A.T*A).row_join(A.T*b)
pprint(B.rref(pivots=False))



13. (Practicing a Procedure) Consider the data points

p1 =
�

1
2

�

p2 =
�

2
−1

�

p3 =
�

3
0

�

p4 =
�

4
5

�

.

a) Find the best-fit line y = C x + D (in the sense of least squares) through these
four points, and draw it on the grid below.

b) For each data point pi = (ai, bi), draw the error bar from (ai, y(ai)) to (ai, bi).

c) What is the minimum value of
∑4

i=1(bi − y(ai))2? How do you know?

d) Verify that the vector
�

2− y(1), −1− y(2), 0− y(3), 5− y(4)
�

is orthogonal to (1,2, 3,4) and (1, 1,1, 1), and explain why this is necessary.

e) Find the best-fit horizontal line y = D through these four points. Verify that D
is the average of the y-values of the data points p1, p2, p3, p4.

14. (Practicing a Procedure) Consider the following data points:

p1 =

 

1
1
1

!

p2 =

 

1
−1
−2

!

p3 =

 −1
1
3

!

p4 =

 −1
−1

1

!

.

a) Find the best-fit plane z = C x + D y + E through these four points.

b) Interpret the minimized quantity in the situation of this problem.



15. (Practicing a Procedure) Consider the data points

p1 =
�

−2
3

�

p2 =
�

−1
−1

�

p3 =
�

1
1

�

p4 =
�

2
3

�

.

a) Find the best-fit parabola y = C x2 + Dx + E through these four points, and
draw it on the grid below.

b) For each data point pi = (ai, bi), draw the error bar from (ai, y(ai)) to (ai, bi).

c) What geometric quantity did you minimize?

16. (Practicing a Procedure) Consider the data points p1, . . . , p8:
�

1
3

�

,
�

3
1.5

�

,
�

2.5
0

�

,
�

1
−1

�

,
�

−.5
−1

�

,
�

−2
0

�

,
�

−2.5
2

�

,
�

−1.5
3.5

�

.

a) Find the best-fit ellipse

x2 + B y2 + C x y + Dx + E y + F = 0

through these data points.

b) Interpret the minimized quantity in the situation of this problem.
[Hint: you can’t see it on the graph above, but you can see it on this demo.]

You’ll definitely want to use SymPy to do this problem. Decimal answers are okay.

Remark: Carl Friedrich Gauss (1777–1865), arguably the greatest mathematician
since antiquity, kept food on the table by doing astronomical calculations. He in-
vented much of the linear algebra you are learning in order to compute the trajec-
tories of celestial bodies. Essentially performing the calculations in this problem,
he correctly predicted the (elliptical) orbit of the asteroid Ceres as it passed behind
the sun in 1801.

17. (Internalizing a Concept) Suppose that bx is a vector such that Abx = (1, 1,−1,−1).
Explain why bx is not a least-squares solution of Ax = (1, 1,1, 1).

https://services.math.duke.edu/~jdr/ila/demos/bestfit-implicit.html?func=x%5E2+A*y%5E2+B*x*y+C*x+D*y+EE&v1=1,3&v2=3,1.5&v3=2.5,0&v4=1,-1&v5=-.5,-1&v6=-2,0&v7=-2.5,2&v8=-1.5,3.5&range=5&rangez=25&camera1=-2.14,.814,1.69&vers=9aac2a


18. (Picture Problem) The column space of a certain 2× 3 matrix A is drawn below,
along with a vector b ∈ R2. Draw the set of all vectors b′ such that Ax = b and
Ax = b′ have the same least squares solutions.

Co
l(A
)

b

19. (Examples Problem) In each case, find an example or explain why none exists.

a) A 2× 2 matrix A and a vector b ∈ R2 such that Ax = b has exactly one least-
squares solution.

b) A 2 × 2 matrix A and a vector b ∈ R2 such that Ax = b has infinitely many
least-squares solutions.

c) A 2×2 matrix A and a vector b ∈ R2 such that Ax = b does not have any least
squares solutions.

d) A 2× 2 matrix A and a vector b ∈ R2 such that every x ∈ R2 is a least-squares
solution of Ax = b.

e) A 2×2 matrix A and a vector b ∈ R2 such that Ax = b has no ordinary solutions
and has exactly one least-squares solution.

f) A 2×2 matrix A and a vector b ∈ R2 such that Nul(A) = Span
��1

1

�	

and the set
of least squares solutions of Ax = b is

�1
0

�

+ Span
�� 1
−1

�	

.


