

The Big Picture

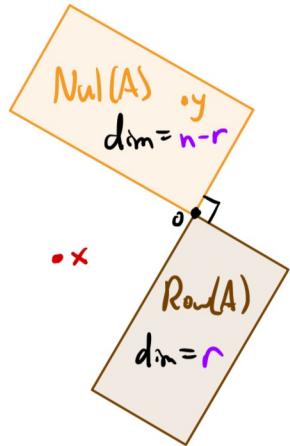
L10

Last time: we discussed orthogonality of the 4 subspaces
Here is a cartoon summary:

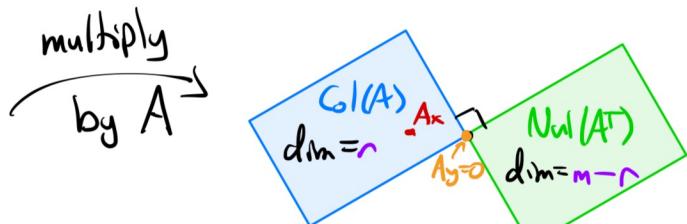
The Big Picture

$A: m \times n$ matrix of rank r

Row Picture (\mathbb{R}^n)



Column Picture (\mathbb{R}^m)



NB: The dimensions match up with $\dim V + \dim V^\perp$:

- $\dim \text{Nul}(A) + \dim \text{Row}(A) = (n-r) + r = n$
- $\dim \text{Col}(A) + \dim \text{Nul}(A^T) = r + (m-r) = m$

The Matrix $A^T A$

Recall: $A^T A$ is the matrix of column dot products.

Its (i,j) entry is $(\text{col } i) \cdot (\text{col } j)$. It is symmetric.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ v_1 & v_2 & v_3 \end{pmatrix} \Rightarrow A^T A = \begin{pmatrix} -v_1^T & - \\ -v_2^T & - \\ -v_3^T & - \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ v_1 & v_2 & v_3 \end{pmatrix} = \begin{pmatrix} v_1 \cdot v_1 & v_1 \cdot v_2 & v_1 \cdot v_3 \\ v_2 \cdot v_1 & v_2 \cdot v_2 & v_2 \cdot v_3 \\ v_3 \cdot v_1 & v_3 \cdot v_2 & v_3 \cdot v_3 \end{pmatrix}$$

equal
 $(3,1)$ entry

Important Fact that will keep coming up:

$$\text{Nul}(A^T A) = \text{Nul}(A)$$

We can prove this using orthogonality of the 4 subspaces.

Proof: Showing $\text{Nul}(A^T A) = \text{Nul}(A)$ means showing that every vector in $\text{Nul}(A^T A)$ is also in $\text{Nul}(A)$, & vice-versa.

- $\text{Nul}(A)$ is contained in $\text{Nul}(A^T A)$:

$$\begin{aligned} \text{if } x \in \text{Nul}(A) \text{ then } Ax = 0 \Rightarrow A^T A x = A^T 0 = 0 \\ \Rightarrow x \in \text{Nul}(A^T A) \end{aligned}$$

(You showed on the HW that $\text{Nul}(A)$ is in $\text{Nul}(BA)$.)

- $\text{Nul}(A^T A)$ is contained in $\text{Nul}(A)$:

$$\begin{aligned} \text{if } x \in \text{Nul}(A^T A) \text{ then } A^T A x = 0 \Rightarrow A^T(Ax) = 0 \\ \Rightarrow Ax \in \text{Nul}(A^T) = \text{Col}(A)^\perp. \text{ But } Ax \in \text{Col}(A) \text{ too, so} \\ Ax \in \text{Col}(A) \text{ & } \text{Col}(A)^\perp \Rightarrow Ax = 0 \Rightarrow x \in \text{Nul}(A) \end{aligned}$$

//

Orthogonal Projections

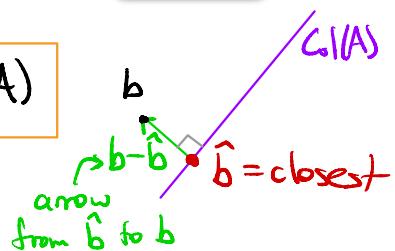
Recall: To find the best approximate solution of $Ax = b$, we need to find the closest vector \hat{b} to b in $\text{Col}(A) = \{Ax : x \in \mathbb{R}^n\}$.

This vector is characterized by the property that

[DEMO]

$b - \hat{b}$ is perpendicular to $\text{Col}(A)$

or $b - \hat{b} \in \text{Col}(A)^\perp$.



Now we give this closest vector a name, with $\text{Col}(A)$ replaced by any subspace.

Def: Let V be a subspace of \mathbb{R}^n and let $b \in \mathbb{R}^n$.

The **orthogonal projection** of b onto V is

the closest vector to b in V .

Notation: b_V

This vector is characterized by the property

$b - b_V \in V^\perp$ "the arrow from b_V to b is orthogonal to V "

If $b_{V^\perp} = b - b_V$ then $b_{V^\perp} \in V^\perp$ and

$$b - b_{V^\perp} = b - (b - b_V) = b_V \in V = (V^\perp)^\perp.$$

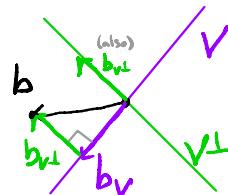
It follows that $b_{V^\perp} = b - b_V$ is the orthogonal projection of b onto V^\perp .

Def: The orthogonal decomposition of b relative to V is

$$b = b_V + b_{V^\perp}$$

orthogonal
projection
onto V

orthogonal
projection
onto V^\perp



[DEMO 1]

[DEMO 2]

[DEMO 3]

So, like subspaces, orthogonal projections come in complementary pairs. This symmetry is very useful — for instance, sometimes b_{V^\perp} will be easier to compute than b_V !

How to compute b_V ?

First you have to express V as a column space or a null space (as always).

NB: The orthogonal projection b_V is the same, no matter how you choose to describe V ! Different descriptions have to give you the same answer $b_V = \text{closest vector in } V$. Maybe some descriptions are more convenient! (Just like when we computed V^\perp .)

How to Compute b_V when $V = \text{Col}(A)$:

- (1) Solve the equation $A^T A \hat{x} = A^T b$
- (2) $b_V = A \hat{x}$ for any solution $\hat{x} \in \mathbb{R}^n$ Why \hat{x} & not x ?
Convention.

Then $b_{V^\perp} = b - b_V$ and the orthogonal decomposition is $b = b_V + b_{V^\perp}$.

NB: The **distance** from b to V is $\|b - b_V\| = \|b_{V^\perp}\|$.

We went through a lot of material to understand why this works (among many other reasons).

Why this works:

If \hat{x} solves $A^T A \hat{x} = A^T b$ then

$$A \hat{x} \in \text{Col}(A) = V \quad \text{and} \quad A^T(b - A \hat{x}) = A^T b - A^T A \hat{x} = 0.$$

This means $b - A \hat{x} \in \text{Nul}(A^T) = \text{Col}(A)^\perp = V^\perp$, so $A \hat{x} = b_V$ because $b - b_V \in V^\perp$ characterizes b_V .

Eg: Find b_V for $b = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $V = \text{Col}(A)$, $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.

We have to solve $A^T A \hat{x} = A^T b$.

$$A^T A = \begin{pmatrix} \text{column dot products} \\ \text{row} \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix} \quad A^T b = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\text{Solve } \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 \\ 0 & 1/2 \end{pmatrix} \rightsquigarrow \hat{x} = \begin{pmatrix} 0 \\ 1/2 \end{pmatrix}$$

$$\Rightarrow b_V = A \hat{x} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1/2 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$$

[DEMO]

$$\text{Check: } b_{v\perp} = b - b_v = \begin{pmatrix} 1 \\ 8 \end{pmatrix} - \begin{pmatrix} 1/2 \\ 5/2 \end{pmatrix} = \begin{pmatrix} 1/2 \\ -1/2 \end{pmatrix}$$

Is this \perp the columns of A ?

$$\begin{pmatrix} 1/2 \\ -1/2 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 0 \quad \begin{pmatrix} 1/2 \\ -1/2 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 0 \Rightarrow b_{v2} \in \text{Col}(A)^\perp$$

1st col 2nd col ✓

✓

Orthogonal Decomposition:

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 0 \end{pmatrix} + \begin{pmatrix} 1/2 \\ -1/2 \\ 0 \\ 0 \end{pmatrix}$$

$$\text{Distance to } V: \|b_{n+1}\| = \frac{1}{2} \|(-1, -1, 0)\| = \frac{\sqrt{2}}{2}$$

NB: Finding b_r for $V = \mathcal{G}_1(A)$ means solving the matrix equation $A^T A \hat{x} = A^T b$, not $Ax = b$!

Def: $A^T A \hat{x} = A^T b$ is the **normal equation** of $Ax = b$.

The procedure given above wouldn't work if $A^T A \hat{x} = A^T b$ were inconsistent, so thankfully:

Fact: For any matrix A & any vector $b \in \mathbb{R}^m$,
 the normal equation $A^T A \hat{x} = A^T b$ is consistent.

$$\begin{aligned}
 \text{Proof: } \text{Col}(A^T) &= \text{Row}(A) = \text{Nul}(A)^\perp \stackrel{\downarrow}{=} \text{Nul}(A^T A)^\perp \\
 &= \text{Row}(A^T A) = \text{Col}((A^T A)^T) = \text{Col}(A^T A) \\
 &\quad \text{A}^T A \text{ is symmetric}
 \end{aligned}$$

Since $A^T b \in \text{Col}(A^T)$ this shows $A^T b \in \text{Col}(A^T A)$, which means $A^T A \hat{x} = A^T b$ is consistent. //

Eg: Compute b_V for $b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $V = \text{Col}(A)$, $A = \begin{pmatrix} 1 & -1 & -1 \\ 2 & 1 & 4 \\ 1 & -1 & -1 \end{pmatrix}$
We have to solve $A^T A \hat{x} = A^T b$.

$$A^T A = \begin{pmatrix} \text{column} \\ \text{dot} \\ \text{products} \end{pmatrix} = \begin{pmatrix} 6 & 0 & 6 \\ 0 & 3 & 6 \\ 6 & 6 & 18 \end{pmatrix} \quad A^T b = \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix}$$

Solve:
$$\left| \begin{array}{ccc|c} 6 & 0 & 6 & 4 \\ 0 & 3 & 6 & -1 \\ 6 & 6 & 18 & 2 \end{array} \right| \xrightarrow{\text{ref}} \left| \begin{array}{ccc|c} 1 & 0 & 1 & 2/3 \\ 0 & 1 & 2 & -1/3 \\ 0 & 0 & 0 & 0 \end{array} \right|$$

$\xrightarrow{\text{PVF}} \hat{x} = \begin{pmatrix} 2/3 \\ -1/3 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$

Which solution do we use?

" $b_V = A \hat{x}$ for any solution \hat{x} "

Ok, so let's take $x_3 = 0$

$$\Rightarrow \hat{x} = \begin{pmatrix} 2/3 \\ -1/3 \\ 0 \end{pmatrix} \Rightarrow b_V = A \hat{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

NB: $b_V = b$. What does that mean?

★ b is already in V ★

More on this later.

In this case, $b_{V^+} = b - b_V = 0$.

What happens if we try a different solution \hat{x} ?

Try $x_3 = y_3$:

$$\Rightarrow \hat{x} = \begin{pmatrix} 1/3 \\ -1 \\ 1/3 \end{pmatrix} \rightarrow b_V = A\hat{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ again!}$$

This always works.

Fact: If \hat{x}_1 and \hat{x}_2 both solve $A^T A \hat{x} = A^T b$, then
 $A \hat{x}_1 = A \hat{x}_2 (= b_V)$

Proof: $A^T A \hat{x}_1 = A^T b = A^T A \hat{x}_2$

$$\Rightarrow 0 = A^T A \hat{x}_1 - A^T A \hat{x}_2 = A^T A (\hat{x}_1 - \hat{x}_2)$$

$$\Rightarrow \hat{x}_1 - \hat{x}_2 \in \text{Nul}(A^T A) \stackrel{\text{FACT}}{=} \text{Nul}(A)$$

$$\Rightarrow 0 = A(\hat{x}_1 - \hat{x}_2) = A\hat{x}_1 - A\hat{x}_2$$

$$\Rightarrow A\hat{x}_1 = A\hat{x}_2$$

//

Now we know how to compute b_V for $V = \text{Col}(A)$.

What about when $V = \text{Nul}(A)$?

→ You could first compute a basis for $\text{Nul}(A)$ (PVF)

This expresses V as a column space: $V = \text{Col}(B)$
(cols of B = vectors in PVF)

Then proceed as above: solve $B^T B \hat{x} = B^T b$.

But then you have to eliminate twice!

Here's a better way that takes advantage of the symmetry in $b = b_V + b_{V^\perp}$.

How to Compute b_V when $V = \text{Null}(A)$:

(1) Compute $b_{V^\perp} = \text{projection onto } V^\perp = \text{Row}(A) = \text{Col}(A^T)$
by solving $A A^T \hat{x} = A b$ (i.e. $A^T A^T \hat{x} = A^T b$)

(2) $b_V = b - b_{V^\perp}$.

Eg: Compute b_V for $b = \begin{pmatrix} 7 \\ 3 \\ 11 \end{pmatrix}$, $V = \text{Null}(A)$ $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$

We'll compute $b_{V^\perp} = \text{projection onto } \text{Col}(A^T) = \text{Col} \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$. keep track of which 3×1 & which is A^T

We need to solve $A A^T \hat{x} = A b$.

$$A A^T = \begin{pmatrix} \text{row} \\ \text{dot} \\ \text{product} \end{pmatrix} = \begin{pmatrix} 14 & 32 \\ 32 & 77 \end{pmatrix} \quad A b = \begin{pmatrix} 46 \\ 109 \end{pmatrix}$$

$$\text{Solve: } \begin{pmatrix} 14 & 32 & | & 46 \\ 32 & 77 & | & 109 \end{pmatrix} \xrightarrow{\text{ref}} \begin{pmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & 1 \end{pmatrix} \rightarrow \hat{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\rightarrow b_{V^\perp} = A^T \hat{x} = \begin{pmatrix} 5 \\ 7 \\ 9 \end{pmatrix} \rightarrow b_V = b - b_{V^\perp} = \begin{pmatrix} 2 \\ -4 \\ 2 \end{pmatrix}$$

Check: b_V should be \perp the rows of A :

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -4 \\ 2 \end{pmatrix} = 0 \quad \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -4 \\ 2 \end{pmatrix} = 0$$

We only had to do elimination once!

When $V = \text{Span}\{v\}$ is a line, projection is easier:

$V = \text{Col}(A)$ where $A = v$ (matrix with one column).

$A^T A = v^T v = v \cdot v$ is a 1×1 matrix (number)

$$A^T b = v^T b = v \cdot b$$

So the normal equation is

$$(v \cdot v) \hat{x} = v \cdot b \xrightarrow{\text{Solve}} \hat{x} = \frac{v \cdot b}{v \cdot v} \quad (\text{a number})$$

$$\Rightarrow b_V = A \hat{x} = \frac{v \cdot b}{v \cdot v} v$$

No elimination necessary! Just two dot products.

How to Compute b_V when $V = \text{Span}\{v\}$ is a line:

$$b_V = \frac{v \cdot b}{v \cdot v} v$$

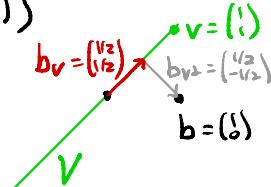
Eg: Compute b_V for $b = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $V = \text{Span}\{\begin{pmatrix} 1 \\ 1 \end{pmatrix}\}$

$$b_V = \frac{\begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}}{\begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\Rightarrow b_{V^\perp} = b - b_V = \frac{1}{2} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

Orthogonal decomposition: $\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix} + \begin{pmatrix} 1/2 \\ -1/2 \end{pmatrix}$

[DEMO]



Eg: Compute b_V for $b = \begin{pmatrix} 7 \\ 3 \\ 11 \end{pmatrix}$, $V = \text{Nul}(A)$, $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$

Clearly A has rank 2 \Rightarrow 1 free variable, so $\text{Nul}(A)$ is a line. Let's find a basis for $\text{Nul}(A)$ and use projection onto a line.

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \xrightarrow{\text{ref}} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix} \text{ PUF basis: } \left\{ \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \right\}$$

OK so $V = \text{Span} \left\{ \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \right\}$ and

$$b_V = \frac{\left(\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 7 \\ 3 \\ 11 \end{pmatrix} \right)}{\left(\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} } \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \frac{12}{6} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ 2 \end{pmatrix} \quad \checkmark$$

[DEMO]

NB: We computed b_V for $b = \begin{pmatrix} 7 \\ 3 \\ 11 \end{pmatrix}$, $V = \text{Nul} \left(\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \right)$ in 2 different ways using 2 different descriptions of V :

- $V = \text{Nul}(A) \rightsquigarrow$ compute $b_{V^{\perp}}$ \rightsquigarrow solve $A A^T x = A b$

$$\rightsquigarrow b_{V^{\perp}} = \begin{pmatrix} 5 \\ 7 \\ 9 \end{pmatrix} \rightsquigarrow b_V = \begin{pmatrix} 2 \\ -4 \\ 2 \end{pmatrix}$$

$$\bullet V = \text{Span} \left\{ v \right\} \rightsquigarrow b_V = \frac{v \cdot b}{v \cdot v} v = \begin{pmatrix} 2 \\ -4 \\ 2 \end{pmatrix}$$

We got the same answer because the definition $b_V = (\text{closest vector to } b \text{ in } V)$

has nothing to do with how we chose to describe V .

Upshot: You have several ways of computing orthogonal projections. Ask yourself: which is easiest?

- Is it easier to compute b_{V^\perp} ?
- Should I find a better description of V first?
- Is V or V^\perp a line?

Warning: These are good ways to compute orthogonal projections, but they're terrible ways to understand/reason about them!

Orthogonal projection is a geometric construction. It should be understood geometrically, as in:

$$b_V = (\text{closest vector to } b \text{ in } V)$$

or

$$b - b_V \text{ is orthogonal to } V.$$

↑
the arrow
from b_V to b