

The Method of Least Squares

This is an important **application** of the orthogonality material to data analysis / modeling.

Setup: Suppose you have a matrix equation $Ax=b$ that is (probably) inconsistent. What is the **best approximate solution?**
 What does that even mean?

Def: \hat{x} is a **least squares solution** of $Ax=b$ if $\|b-A\hat{x}\|$ is minimized over all vectors \hat{x} . This minimal value of $\|b-A\hat{x}\|$ is called the **error**.

In other words, \hat{x} is a least squares solution $\Leftrightarrow A\hat{x}$ is as **close as possible** to b .

Let's set $\hat{b}=A\hat{x}$ for the moment. We know $A\hat{x}=\hat{b}$ has a solution $\Leftrightarrow \hat{b} \in \text{Col}(A)$.

Since $\hat{b}=A\hat{x}$ is as close as possible to b , this means that \hat{b} is the **closest vector to b in $\text{Col}(A)$** . We have a name for that!

\hat{b} = the **orthogonal projection** of b onto $\text{Col}(A)$.

So a least-squares solution of $Ax=b$ is a solution of the consistent matrix equation $A\hat{x}=b_V$, $V=Col(A)$.

How do we compute \hat{x} ?

→ Maybe we should compute b_V first? We could do this by solving the normal equation

$$A^T A \hat{x} = A^T b$$

Then $b_V = A\hat{x}$ for any solution \hat{x} .

But that just means \hat{x} is a solution of $A\hat{x}=b_V$, which is a least-squares solution of $Ax=b$!

Summary: These three things are the same:

$$\boxed{\begin{array}{l} \text{Least-squares} \\ \text{solutions of} \\ Ax=b \end{array}} = \boxed{\begin{array}{l} \text{Solutions} \\ \text{of } A\hat{x}=b_V \\ V=Col(A) \end{array}} = \boxed{\begin{array}{l} \text{Solutions of} \\ A^T A \hat{x} = A^T b \end{array}}$$

How to Find the Least-Squares Solutions of $Ax=b$:

(1) Solve the normal equation $A^T A \hat{x} = A^T b$.

Any solution \hat{x} is a least-squares solution, and $b_V = A\hat{x}$ ($V=Col(A)$).

The error is the length of $b - Ax = b - b_{\text{rel}} = b_{\text{rel}}$:

$$\text{error} = \|b_{\text{rel}}\|$$

the b-
vector we
wanted

the b-
vector we
got

NB: Minimizing $\|b_{\text{rel}}\| \equiv$ minimizing $\|b_{\text{rel}}\|^2$

So saying that $A\hat{x}$ is as close as possible to b means:

The least-squares solution(s) minimize $\|b_{\text{rel}}\|^2$

If $b_{\text{rel}} = (a, b, c)$ then $\|b_{\text{rel}}\|^2 = a^2 + b^2 + c^2$: these are the "squares" in "least squares".

Eg: Find the least-squares solution & error of $Ax=b$ for

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \quad b = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}$$

We have to solve $A^T A \hat{x} = A^T b$.

$$A^T A = \begin{pmatrix} \text{Column} \\ \text{dot} \\ \text{products} \end{pmatrix} = \begin{pmatrix} 5 & 3 \\ 3 & 3 \end{pmatrix} \quad A^T b = \begin{pmatrix} 0 \\ 6 \end{pmatrix}$$

$$\begin{pmatrix} 5 & 3 & | & 0 \\ 3 & 3 & | & 6 \end{pmatrix} \xrightarrow{\text{ref}} \begin{pmatrix} 1 & 0 & | & -3 \\ 0 & 1 & | & 5 \end{pmatrix} \rightsquigarrow \hat{x} = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$$

$$b_{\text{rel}} = b - A\hat{x} = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

$$\text{error}^2 = \|b_{\text{rel}}\|^2 = 1^2 + (-2)^2 + 1^2 = 6$$

[DEMO]

Eg: Find the least-squares solutions & error of $Ax=b$ for

$$A = \begin{pmatrix} 1 & -1 & -1 \\ 2 & 1 & 4 \\ 1 & -1 & -1 \end{pmatrix} \quad b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

We have to solve $A^T A \hat{x} = A^T b$.

$$A^T A = \begin{pmatrix} \text{column} \\ \text{dot} \\ \text{products} \end{pmatrix} = \begin{pmatrix} 6 & 0 & 6 \\ 0 & 3 & 6 \\ 6 & 6 & 18 \end{pmatrix} \quad A^T b = \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix}$$

$$\left(\begin{array}{ccc|c} 6 & 0 & 6 & 4 \\ 0 & 3 & 6 & -1 \\ 6 & 6 & 18 & 2 \end{array} \right) \xrightarrow{\text{ref}} \left(\begin{array}{ccc|c} 1 & 0 & 1 & 2/3 \\ 0 & 1 & 2 & -1/3 \\ 0 & 0 & 0 & 0 \end{array} \right) \xrightarrow{\text{PrF}} \hat{x} = \begin{pmatrix} 2/3 \\ -1/3 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$$

In this case there are **infinitely many** least-squares solutions.

Error: $b_{\text{ref}} = b - A\hat{x}$ for any solution \hat{x} .

Let's take $\hat{x} = \begin{pmatrix} 2/3 \\ -1/3 \\ 0 \end{pmatrix} \Rightarrow A\hat{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \Rightarrow b_{\text{ref}} = 0$

So the error is zero — that means $A\hat{x} = b$,
i.e. $Ax=b$ was **consistent** after all!

Observation 1:

$Ax=b$ has a **unique** least-squares solution $\iff A$ has FCR

That's because least-squares solutions are just normal solutions of $Ax=b_{\text{ref}}$.

Otherwise $Ax=b$ has **infinitely many** least-squares solutions \hat{x} . This means $\|b-A\hat{x}\|$ is minimized for any such \hat{x} , since

$$b_v = A\hat{x} \text{ for any least-squares solution } \hat{x}.$$

Of course, there can't be **zero** least-squares solutions!
 $A\hat{x}=b_v$ is always consistent.

Observation 2:

If $Ax=b$ is consistent then	
(least-squares solutions of $Ax=b$)	= (ordinary solutions of $Ax=b$)

If $Ax=b$ is consistent then $b \in V = \text{Col}(A)$, so
 $b = b_v$ (it's the closest vector to itself in V), so

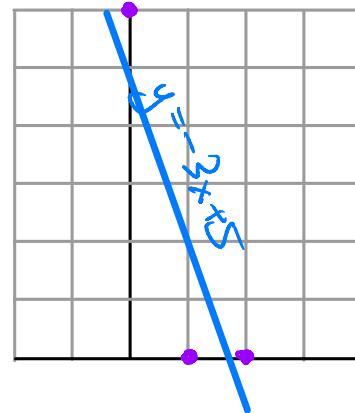
(solutions of $A\hat{x}=b_v$)	= (solutions of $Ax=b$)
---	---

Least Squares and Data Modeling

Eg (linear regression):

Find the best-fit line $y = Cx + D$ through the data points $\begin{pmatrix} 0 \\ 6 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \end{pmatrix}$

If $\begin{pmatrix} 0 \\ 6 \end{pmatrix}$ lies on $y = Cx + D$
then substituting $x=0, y=6$
would give $6 = 0 \cdot C + D$.
Likewise for the other data points.



So we want to solve:

$$\begin{pmatrix} 0 \\ 6 \end{pmatrix}: 6 = C \cdot 0 + D$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}: 0 = C \cdot 1 + D$$

$$\begin{pmatrix} 2 \\ 0 \end{pmatrix}: 0 = C \cdot 2 + D$$

in the
unknowns

C & D .

Matrix equation: $Ax = b$ for

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix} \quad b = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} \quad x = \begin{pmatrix} C \\ D \end{pmatrix}$$

NB: the data points are not collinear, so there is no exact solution! (perhaps measurement error...)

We found the least-squares solution a few pages ago:

$$\hat{x} = \begin{pmatrix} -3 \\ 5 \end{pmatrix} = \begin{pmatrix} C \\ D \end{pmatrix} \rightarrow \text{best-fit line } y = -3x + 5$$

[DEMO]

Important question: What exactly did we minimize?

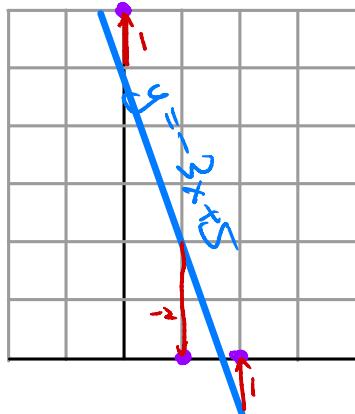
The answer is always $\|b - Ax\|^2 = \|b_{\perp}\|^2$, but where can I see that in the context of the original problem?

$$b = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \text{y-values of the data points} \\ \text{(the y-values we wanted)} \end{pmatrix}$$

$$Ax = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} -3 \\ 5 \end{pmatrix} = \begin{pmatrix} -3 \cdot 0 + 5 \\ -3 \cdot 1 + 5 \\ -3 \cdot 2 + 5 \end{pmatrix} = \begin{pmatrix} \text{y-values of } y = -3x + 5 \\ \text{evaluated at the x-values} \\ \text{of the data points} \\ \text{(the y-values we got)} \end{pmatrix}$$

$$b_{\perp} = b - Ax = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

$$\begin{aligned} &= \begin{pmatrix} \text{vertical distances} \\ \text{from } y = -3x + 5 \text{ to} \\ \text{the data points} \end{pmatrix} \\ &= \begin{pmatrix} \text{differences between} \\ \text{expected and} \\ \text{observed values} \end{pmatrix} \end{aligned}$$



We minimized the sum of the squares of the vertical distances (= the error²).

What if our data aren't supposed to lie on a line?

Eg (best-fit parabola):

Find the best-fit parabola $y = Bx^2 + Cx + D$ through the data points

$$\begin{pmatrix} -1 \\ 1/2 \end{pmatrix} \quad \begin{pmatrix} 1 \\ -1 \end{pmatrix} \quad \begin{pmatrix} 2 \\ -1/2 \end{pmatrix} \quad \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

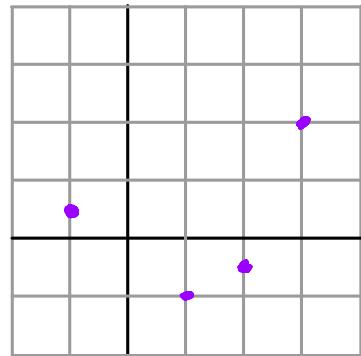
As before, we substitute the x & y-values of our data points into our equation:

$$\begin{pmatrix} -1 \\ 1/2 \end{pmatrix}: \quad \frac{1}{2} = B(-1)^2 + C(-1) + D$$

$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}: \quad -1 = B(1)^2 + C(1) + D$$

$$\begin{pmatrix} 2 \\ -1/2 \end{pmatrix}: \quad -\frac{1}{2} = B(2)^2 + C(2) + D$$

$$\begin{pmatrix} 3 \\ 2 \end{pmatrix}: \quad 2 = B(3)^2 + C(3) + D$$



Matrix equation: $Ax = b$ for

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 4 & 2 & 1 \\ 9 & 3 & 1 \end{pmatrix} \quad b = \begin{pmatrix} 1/2 \\ -1 \\ -1/2 \\ 2 \end{pmatrix} \quad x = \begin{pmatrix} B \\ C \\ D \end{pmatrix}$$

Let's find the least-squares solution.

$$A^T A = \begin{pmatrix} 99 & 35 & 15 \\ 35 & 15 & 5 \\ 15 & 5 & 4 \end{pmatrix} \quad A^T b = \begin{pmatrix} 31/2 \\ 7/2 \\ 1 \end{pmatrix}$$

$$\left(\begin{array}{ccc|c} 99 & 35 & 15 & 31/2 \\ 35 & 15 & 5 & 7/2 \\ 15 & 5 & 4 & 1 \end{array} \right) \xrightarrow{\text{rref}} \left(\begin{array}{ccc|c} 1 & 0 & 0 & 53/88 \\ 0 & 1 & 0 & -379/440 \\ 0 & 0 & 1 & -41/44 \end{array} \right)$$

$$\hat{x} = \begin{pmatrix} 53/88 \\ -379/440 \\ -41/44 \end{pmatrix} = \begin{pmatrix} B \\ C \\ D \end{pmatrix} \Rightarrow y = \frac{53}{88}x^2 - \frac{379}{440}x - \frac{41}{44}$$

Question: What did we minimize? Where can we see the error^2 ? We always minimize $\|b - Ax\|^2$. [DEMO]

$$b = \begin{pmatrix} 1/2 \\ -1 \\ -1/2 \\ 2 \end{pmatrix} = \begin{pmatrix} \text{y-values of the data points} \\ (\text{the y-values we wanted}) \end{pmatrix}$$

$$Ax = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 4 & 2 & 1 \\ 9 & 3 & 1 \end{pmatrix} \begin{pmatrix} 53/88 \\ -379/440 \\ -41/44 \end{pmatrix} = \begin{pmatrix} \frac{53}{88}(-1)^2 - \frac{379}{440}(-1) - \frac{41}{44} \\ \frac{53}{88}(1)^2 - \frac{379}{440}(1) - \frac{41}{44} \\ \frac{53}{88}(2)^2 - \frac{379}{440}(2) - \frac{41}{44} \\ \frac{53}{88}(3)^2 - \frac{379}{440}(3) - \frac{41}{44} \end{pmatrix}$$

$$= \begin{pmatrix} \text{y-values of } y = \frac{53}{88}x^2 - \frac{379}{440}x - \frac{41}{44} \\ \text{evaluated at the x-values} \\ \text{of the data points} \\ (\text{the y-values we got}) \end{pmatrix}$$

$$b_{\text{res}} = b - Ax = \begin{pmatrix} \text{vertical distances} \\ \text{from the graph to} \\ \text{the data points} \end{pmatrix}$$

The error^2 has the same interpretation as in the previous example.

The previous two examples were very similar. In fact, if you want to find a best-fit function of the form

$$y = Af(x) + Bg(x) + Ch(x) + \dots$$

where A, B, C, \dots are unknowns and f, g, h, \dots are any functions, then you do the same thing: plug in the x - and y -values of your data points \rightarrow linear equations in A, B, C, \dots

Eg (best-fit trigonometric function):

[DEMO]

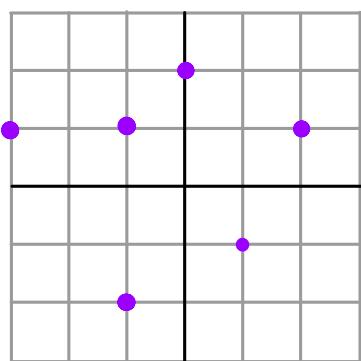
[ILA]

This "based-on-a-true-story" example of Gauss was in L1. It has a somewhat different character.

Eg (best-fit ellipse):

An asteroid has been observed at these coordinates:

(0) (2) (-1) (-2) (-3) (-1)



Question: What is the most likely orbit? Will the asteroid crash into Earth?

Fact (Kepler): The orbit is an ellipse.

Equation for an Ellipse:

$$x^2 + B y^2 + C x y + D x + E y + F = 0$$

Substitute our x - & y -values of my data points:

$$\begin{aligned} (0) &: (0)^2 + (2)^2 B + (0)(2)C + (0)D + (2)E + F = 0 \\ (2) &: (2)^2 + (-1)^2 B + (2)(-1)C + (-2)D + (-1)E + F = 0 \\ (1) &: (-1)^2 + (-1)^2 B + (-1)(-1)C + (-1)D + (-1)E + F = 0 \\ (-1) &: (-1)^2 + (-2)^2 B + (-1)(-2)C + (-1)D + (-2)E + F = 0 \\ (-2) &: (-3)^2 + (-1)^2 B + (-3)(-1)C + (-3)D + (-1)E + F = 0 \\ (-3) &: (-1)^2 + (-1)^2 B + (-1)(-1)C + (-1)D + (-1)E + F = 0 \end{aligned}$$

$\underbrace{\qquad\qquad\qquad}_{\leftarrow}$

the x^2 summands are **constants!**

Move them to the right of the $=$ sign.

This is a matrix equation $Ax = b$ for

$$A = \begin{pmatrix} 4 & 0 & 0 & 2 & 1 \\ 1 & 2 & 2 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 \\ 4 & 2 & -1 & -2 & 1 \\ 1 & -3 & -3 & 1 & 1 \\ 1 & -1 & -1 & 1 & 1 \end{pmatrix} \quad b = \begin{pmatrix} 0 \\ 4 \\ 1 \\ 1 \\ 9 \\ 1 \end{pmatrix} \quad x = \begin{pmatrix} B \\ C \\ D \\ E \\ F \end{pmatrix}$$

The least-squares solution is

$$\hat{x} = \left(\frac{405}{266}, -\frac{89}{133}, \frac{201}{133}, -\frac{123}{266}, -\frac{687}{133} \right)$$

$$\rightarrow x^2 + \frac{405}{266}y^2 - \frac{89}{133}xy + \frac{201}{133}x - \frac{123}{266}y - \frac{687}{133} = 0$$

[DEMO]

Question: What did we minimize this time?

Always $\|b - Ax\|^2$, or $\|-b + Ax\|^2$.

$$-b + Ax = \begin{pmatrix} 0^2 \\ 2^2 \\ 1^2 \\ (-1)^2 \\ (-3)^2 \\ (-1)^2 \end{pmatrix} + \begin{pmatrix} 4 & 0 & 0 & 2 & 1 \\ 1 & 2 & 2 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 \\ 4 & 2 & -1 & -2 & 1 \\ 1 & -3 & -3 & 1 & 1 \\ 1 & -1 & -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 405/266 \\ -89/133 \\ 201/133 \\ -123/266 \\ -687/133 \end{pmatrix}$$

$$= \begin{pmatrix} (0)^2 + \frac{405}{266}(2)^2 - \frac{89}{133}(0)(2) + \frac{201}{133}(0) - \frac{123}{266}(2) - \frac{687}{133} \\ (2)^2 + \frac{405}{266}(1)^2 - \frac{89}{133}(2)(1) + \frac{201}{133}(2) - \frac{123}{266}(1) - \frac{687}{133} \\ (1)^2 + \frac{405}{266}(-1)^2 - \frac{89}{133}(1)(-1) + \frac{201}{133}(1) - \frac{123}{266}(-1) - \frac{687}{133} \\ (-1)^2 + \frac{405}{266}(-2)^2 - \frac{89}{133}(-1)(-2) + \frac{201}{133}(-1) - \frac{123}{266}(-2) - \frac{687}{133} \\ (-3)^2 + \frac{405}{266}(1)^2 - \frac{89}{133}(-3)(1) + \frac{201}{133}(-3) - \frac{123}{266}(1) - \frac{687}{133} \\ (-1)^2 + \frac{405}{266}(1)^2 - \frac{89}{133}(-1)(1) + \frac{201}{133}(-1) - \frac{123}{266}(1) - \frac{687}{133} \end{pmatrix}$$

$$= \begin{pmatrix} \text{what you get by substituting the } x\text{- and } y\text{-values of the data points into} \\ x^2 + \frac{405}{266}y^2 - \frac{89}{133}xy + \frac{201}{133}x - \frac{123}{266}y - \frac{687}{133} \end{pmatrix}$$

We wanted our data points to satisfy

$$x^2 + \frac{405}{266}y^2 - \frac{89}{133}xy + \frac{201}{133}x - \frac{123}{266}y - \frac{687}{133} = 0$$

So in this case we're minimizing the distance from 0.

Alternatively, we're trying to fit the data points

$$\begin{pmatrix} 0 \\ 2 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} -1 \\ -2 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

to the equation

$$z = x^2 + B y^2 + C x y + D x + E y + F$$

so we're minimizing the sum[†] of the squares of the vertical distances from the graph to the data points again.

[DEMO]

Upshot: Least squares always minimizes $\|b - Ax\|^2$; it's up to you to interpret what that means in the context of the problem you're trying to solve.