

# Orthogonal Bases

L13

Last time: we found the best approximate solution(s) of  $Ax=b$  (in the sense of least squares) by solving  $A^T A \hat{x} = A^T b$ .

Now we turn to **computational** considerations. The goal is the **QR** decomposition. This plays the role of an **LU** decomposition for least squares (among other things):

LU makes solving  $Ax=b$  fast

QR makes least- $\|b\|_2$  solving  $Ax=b$  fast

("fast" means: only substitution /  $O(n^2)$  flops)

Idea: **projections** are much easier to compute in the presence of a basis of **orthogonal vectors**.

Recall: two vectors  $v, w$  are orthogonal if  $v \cdot w = 0$ .

Here's what it means for more vectors to be orthogonal.

Def: A set of **nonzero** vectors  $\{u_1, u_2, \dots, u_n\}$  is:

- (1) **orthogonal** if  $u_i \cdot u_j = 0$  for  $i \neq j$  (pairwise orthogonal)
- (2) **orthonormal** if they're orthogonal and  $u_i \cdot u_i = 1$  for all  $i$  (unit vectors)

So **orthonormal** means  $u_i \cdot u_j = \begin{cases} 1 & \text{if } i=j \\ 0 & \text{if } i \neq j \end{cases}$

Matrix version: let  $Q = \begin{pmatrix} u_1 & \cdots & u_n \end{pmatrix} \Rightarrow Q^T Q = \begin{pmatrix} u_1 \cdot u_1 & u_1 \cdot u_2 & \cdots \\ u_2 \cdot u_1 & u_2 \cdot u_2 & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$

(1)  $\{u_1, u_2, \dots, u_n\}$  is **orthogonal**

$\Leftrightarrow Q^T Q$  is **diagonal** & invertible

(the diagonal entries  $u_i \cdot u_i$  are all nonzero)

(2)  $\{u_1, u_2, \dots, u_n\}$  is **orthonormal**  $\Leftrightarrow Q^T Q = I_n$

Q: Wait! Doesn't  $Q^T Q = I_n$  mean  $Q^T = Q^{-1}$ ?

$\rightarrow$  Only if  $Q$  is **square**.

Eg:  $u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad u_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \quad u_3 = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$  (nonzero vectors)

(1)  $u_1 \cdot u_2 = 0 \quad u_1 \cdot u_3 = 0 \quad u_2 \cdot u_3 = 0$

$\Rightarrow \{u_1, u_2, u_3\}$  is **orthogonal**

(2)  $u_1 \cdot u_1 = 4 \quad u_2 \cdot u_2 = 4 \quad u_3 \cdot u_3 = 4$

$\Rightarrow \{u_1, u_2, u_3\}$  is **not orthonormal**

Matrix version:

$Q = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & -1 \end{pmatrix} \Rightarrow Q^T Q = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}$  **diagonal** but  $\neq I_3$

NB: If  $\{u_1, u_2, \dots, u_n\}$  is orthogonal then you can make it orthonormal by dividing by the lengths:

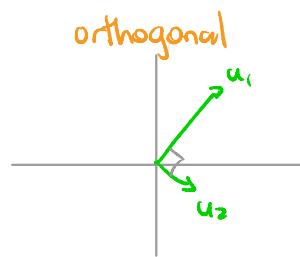
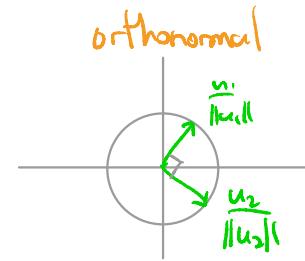
$\left\{ \frac{u_1}{\|u_1\|}, \frac{u_2}{\|u_2\|}, \dots, \frac{u_n}{\|u_n\|} \right\}$  is **orthonormal**

$$\text{Eg: } \left\| \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\| = 2 \quad \left\| \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\| = 2 \quad \left\| \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\| = 2$$

$\rightsquigarrow \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$  is orthonormal

$$Q = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \rightsquigarrow Q^T Q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Picture in  $\mathbb{R}^2$ :



Fact: If  $\{u_1, u_2, \dots, u_n\}$  is orthogonal then it is LI.

$\rightsquigarrow$  so it's a basis for  $\text{Span}\{u_1, u_2, \dots, u_n\}$ .

We will use the following trick several times.

Proof: Suppose  $x_1 u_1 + x_2 u_2 + \dots + x_n u_n = 0$ . We need to show  $x_1 = x_2 = \dots = x_n = 0$  (trivial solution).

Trick: take the dot product of both sides with  $u_i$ :

$$u_i \cdot (x_1 u_1 + x_2 u_2 + \dots + x_n u_n)$$

$$= x_1 (u_i \cdot u_1) + x_2 (u_i \cdot u_2) + \dots + x_n (u_i \cdot u_n) = u_i \cdot 0$$

$$\xrightarrow{\text{nonzero}} x_i (u_i \cdot u_i) = 0 \Rightarrow x_i = 0.$$

Now take  $u_2 \cdot \langle - \rangle$ , etc.

//

## Geometric Facts About Matrices with Orthonormal Columns:

Suppose that  $Q$  has orthonormal columns, so  $Q^T Q = I_n$ .

$$(1) (Qx) \cdot (Qy) = x \cdot y \text{ for all } x, y \in \mathbb{R}^n$$

$$(2) \|Qx\| = \|x\| \text{ for all } x \in \mathbb{R}^n$$

This says that multiplication by  $Q$  does not change **lengths** or **angles**:

$$\begin{pmatrix} \text{angle from } x \text{ to } y \\ \text{from } Qx \text{ to } Qy \end{pmatrix} = \cos^{-1} \left( \frac{x \cdot y}{\|x\| \|y\|} \right) = \cos^{-1} \left( \frac{(Qx) \cdot (Qy)}{\|Qx\| \|Qy\|} \right) = \begin{pmatrix} \text{angle from } Qx \text{ to } Qy \\ \text{from } x \text{ to } y \end{pmatrix}$$

Proof: (1)  $(Qx) \cdot (Qy) \stackrel{vw=v^T w}{=} (Qx)^T (Qy) = x^T Q^T Q y = x^T I_n y = x^T y = x \cdot y$  ✓

(2)  $\|Qx\| = \sqrt{(Qx) \cdot (Qx)} \stackrel{(1)}{=} \sqrt{x \cdot x} = \|x\|$  ✓

Def: A square matrix with orthonormal columns is called **orthogonal**.



Beware the strange terminology!

Eg:  $\frac{1}{2} \begin{pmatrix} 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix}$  is orthogonal

Eg:  $\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & -1 \end{pmatrix}$  is not orthogonal

# The Projection Formula

Thm: Let  $\{u_1, u_2, \dots, u_n\}$  be **orthogonal** and let  $V = \text{Span}\{u_1, u_2, \dots, u_n\}$ . For any vector  $b$ ,

**Projection Formula:**

$$b_V = \frac{b \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{b \cdot u_2}{u_2 \cdot u_2} u_2 + \dots + \frac{b \cdot u_n}{u_n \cdot u_n} u_n$$

NB: You're only taking dot products - no elimination needed!

If you have an orthogonal basis for  $V$ , the projection formula is way faster than solving  $A^T A \hat{x} = A^T b$ !

NB: If  $n=1$  this says  $b_V = \frac{b \cdot u_1}{u_1 \cdot u_1} u_1$ , which recovers the formula for projection onto a line.

NB: If  $\{u_1, u_2, \dots, u_n\}$  is **orthonormal** then  $u_i \cdot u_i = 1$ , so the projection formula becomes

$$b_V = (b \cdot u_1) u_1 + (b \cdot u_2) u_2 + \dots + (b \cdot u_n) u_n.$$

NB: The projection formula only works if your basis is **orthogonal**! Otherwise you just don't get  $b_V$ .

**Proof:** Let  $b' = \frac{b \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{b \cdot u_2}{u_2 \cdot u_2} u_2 + \dots + \frac{b \cdot u_n}{u_n \cdot u_n} u_n$ . We want to show that  $b' = b_v$ . Recall that  $b_v$  is characterized by  $b - b_v \in V^\perp$ . So we need to show  $b - b' \in V^\perp$  (then  $b' = b_v$ ). Since  $V$  is the span of  $u_1, u_2, \dots, u_n$ , we need to prove  $u_i \cdot (b - b') = 0$  for each  $i$ . This uses the **trick** from before:

$$i=1: u_1 \cdot (b - b') = u_1 \cdot b - u_1 \cdot b'$$

$$= u_1 \cdot b - u_1 \cdot \left( \frac{b \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{b \cdot u_2}{u_2 \cdot u_2} u_2 + \dots + \frac{b \cdot u_n}{u_n \cdot u_n} u_n \right)$$

$$= u_1 \cdot b - \frac{b \cdot u_1}{u_1 \cdot u_1} u_1 \cdot u_1 - \frac{b \cdot u_2}{u_2 \cdot u_2} u_1 \cdot u_2 - \dots - \frac{b \cdot u_n}{u_n \cdot u_n} u_1 \cdot u_n$$

$$= u_1 \cdot b - b \cdot u_1 = 0 \quad \checkmark$$

The same works for  $u_2, u_3, \dots, u_n$ . //

**Eg:** Compute  $b_v$  for  $V = \text{Span} \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$   $b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

The spanning vectors are **orthogonal**, so we use the **projection formula**:

$$b_v = \frac{\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}}{\begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \frac{\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix}}{\begin{pmatrix} 1 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \frac{\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \end{pmatrix}}{\begin{pmatrix} -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \end{pmatrix}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$= \frac{8}{4} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \frac{-2}{4} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \frac{0}{4} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3/2 \\ 3/2 \\ 5/2 \end{pmatrix}$$

easy ✓

Here's a version of the projection formula that computes the projection matrix:

Thm: Let  $\{u_1, u_2, \dots, u_n\}$  be **orthogonal** and let

$V = \text{Span}\{u_1, u_2, \dots, u_n\}$ . The projection matrix onto  $V$  is

**Outer Product Formula**

$$P_V = \frac{u_1 u_1^T}{u_1 \cdot u_1} + \frac{u_2 u_2^T}{u_2 \cdot u_2} + \dots + \frac{u_n u_n^T}{u_n \cdot u_n}$$

NB: If  $n=1$  this says  $P_V = \frac{u_1 u_1^T}{u_1 \cdot u_1}$ , which recovers the formula for the projection matrix onto a line.

NB: If  $\{u_1, u_2, \dots, u_n\}$  is **orthonormal** then  $u_i \cdot u_i = 1$ , so the outer product formula becomes

$$P_V = u_1 u_1^T + u_2 u_2^T + \dots + u_n u_n^T.$$

Fast-forward: this is the SVD of  $P_V$ .

Proof: The projection matrix is defined by  $P_V b = b_V$  for all vectors  $b$ . So let's check:

$$\begin{aligned} & \left( \frac{u_1 u_1^T}{u_1 \cdot u_1} + \frac{u_2 u_2^T}{u_2 \cdot u_2} + \dots + \frac{u_n u_n^T}{u_n \cdot u_n} \right) b \\ &= \frac{u_1 (u_1^T b)}{u_1 \cdot u_1} + \frac{u_2 (u_2^T b)}{u_2 \cdot u_2} + \dots + \frac{u_n (u_n^T b)}{u_n \cdot u_n} \\ &= \frac{u_1 \cdot b}{u_1 \cdot u_1} u_1 + \frac{u_2 \cdot b}{u_2 \cdot u_2} u_2 + \dots + \frac{u_n \cdot b}{u_n \cdot u_n} u_n \xrightarrow{\text{projection formula}} b_V // \end{aligned}$$

Eg: Compute  $P_V$  for  $V = \text{Span}\left\{\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}\right\}$ .

$$\begin{aligned}
 P_V &= \frac{1}{\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \end{pmatrix}} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} + \frac{1}{\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \end{pmatrix}} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \end{pmatrix} + \frac{1}{\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & -1 \end{pmatrix}} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & -1 \end{pmatrix} \\
 &= \frac{1}{4} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 1 & 1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 \end{pmatrix} \\
 &= \frac{1}{4} \begin{pmatrix} 3 & 1 & 1 & -1 \\ 1 & 3 & -1 & 1 \\ 1 & -1 & 3 & 1 \\ -1 & 1 & 1 & 3 \end{pmatrix}
 \end{aligned}$$

The outer product formula has this matrix version:

Thm: Suppose that  $Q$  has orthonormal columns. Set  $V = \text{Col}(Q)$ . (In other words, the columns of  $Q$  are an orthonormal basis for  $V$ .) Then

$$P_V = Q Q^T$$

This comes from the outer product form of matrix mult:

$$Q Q^T = \begin{pmatrix} u_1 & \dots & u_n \end{pmatrix} \begin{pmatrix} -u_1^T \\ \vdots \\ -u_n^T \end{pmatrix} = u_1 u_1^T + \dots + u_n u_n^T = P_V.$$

NB: Orthonormal columns means  $Q^T Q = I_n$ .

Eg: If  $Q$  is square then  $Q^T Q = I_n \Rightarrow Q^T = Q^{-1}$   
 $\Rightarrow Q Q^T = I_n$ .

This makes sense: if  $Q$  is invertible then  $V = \text{Col}(Q) = \mathbb{R}^n$ , so  $P_V = P_{\mathbb{R}^n} = I_n$ . ✓

# The Gram-Schmidt Procedure

We like orthogonal bases because they make orthogonal projections easier. How do we produce one?

Idea: Start with some basis  $\{v_1, v_2, \dots, v_n\}$  for  $V$ .

- Force  $v_2$  to be  $\perp v_1$  by replacing it with

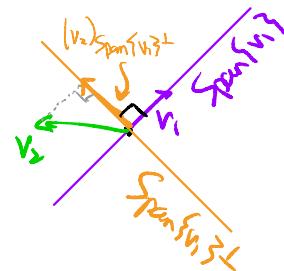
$$(v_2)_{\text{Span}\{v_1\}^\perp} = \text{projection onto } \text{Span}\{v_1\}^\perp$$

- Force  $v_3$  to be  $\perp v_1, v_2$  by replacing it with  $(v_3)_{\text{Span}\{v_1, v_2\}^\perp}$ .

→ Since  $\{v_1, v_2\}$  is now orthogonal, you can compute this easily with the projection formula!

- etc.

So this "straightens out" the basis vectors, one at a time.



Gram-Schmidt Procedure: Let  $\{v_1, v_2, \dots, v_n\}$  be LI.

$$(1) u_1 = v_1$$

$$(2) u_2 = v_2 - \frac{u_1 \cdot v_2}{u_1 \cdot u_1} u_1$$

$$(3) u_3 = v_3 - \frac{u_1 \cdot v_3}{u_1 \cdot u_1} u_1 - \frac{u_2 \cdot v_3}{u_2 \cdot u_2} u_2$$

⋮

$$(n) u_n = v_n - \frac{u_1 \cdot v_n}{u_1 \cdot u_1} u_1 - \frac{u_2 \cdot v_n}{u_2 \cdot u_2} u_2 - \dots - \frac{u_{n-1} \cdot v_n}{u_{n-1} \cdot u_{n-1}} u_{n-1}$$

$\left(v_2\right) \text{Span}\{u_1\}$

$u_2 = \left(v_2\right) \text{Span}\{u_1\}^\perp$

$u_3 = \left(v_3\right) \text{Span}\{u_1, u_2\}^\perp$

$\left(v_3\right) \text{Span}\{u_1, u_2\}$

Result:  $\{u_1, u_2, \dots, u_n\}$  is orthogonal, and for  $i = 1, 2, \dots, n$  we have

$$\text{Span}\{u_1, u_2, \dots, u_i\} = \text{Span}\{v_1, v_2, \dots, v_i\}$$

In particular, if  $\{v_1, v_2, \dots, v_n\}$  is a basis for a subspace  $V$ , then  $\{u_1, u_2, \dots, u_n\}$  is an orthogonal basis for  $V$ : it's a way to describe  $V$  as the Span of an orthogonal set of vectors.

basis  
for  $V$

GRAM  
SCHMIDT

orthogonal  
basis for  
 $V$

$$\text{Eg: } v_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \quad v_2 = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} \quad v_3 = \begin{pmatrix} 3 \\ -3 \\ 3 \end{pmatrix}$$

$$(1) \quad u_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

$$(2) \quad u_2 = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} - \frac{\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}}{\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$$

$$(3) \quad u_3 = \begin{pmatrix} 3 \\ -3 \\ 3 \end{pmatrix} - \frac{\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -3 \\ 3 \end{pmatrix}}{\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} - \frac{\begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -3 \\ 3 \end{pmatrix}}{\begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}} \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} \\ = \begin{pmatrix} 3 \\ -3 \\ 3 \end{pmatrix} - \frac{6}{2} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} - \frac{-6}{6} \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\text{check: } \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} = 0 \quad \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 0 \quad \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 0 \quad \checkmark$$

Q: What happens if you start with vectors that are LD?

Eventually you'll have

$$v_{i+1} \in \text{Span}\{v_1, v_2, \dots, v_i\} = \text{Span}\{u_1, u_2, \dots, u_i\}$$

$$\Rightarrow v_{i+1} = (v_{i+1})_{\text{Span}\{v_1, v_2, \dots, v_i\}^\perp} = 0$$

Gram-Schmidt detected that  $v_{i+1} \in \text{Span}\{v_1, v_2, \dots, v_i\}$ .

So you can **discard**  $v_{i+1}$  & keep going!

# QR Decomposition

This "keeps track" of the dot products in the Gram-Schmidt procedure in the same way that  $LU$  "keeps track" of the row operations you performed.

Procedure: Run Gram-Schmidt on  $\{v_1, v_2, \dots, v_n\}$  =  $\{v_1, v_2, \dots, v_n\} \xrightarrow{G-S} \{u_1, u_2, \dots, u_n\}$

Solve for the  $v$ 's in terms of the  $u$ 's:

$$v_1 = u_1$$

$$v_2 = \frac{u_1 \cdot v_2}{u_1 \cdot u_1} u_1 + u_2$$

$$v_3 = \frac{u_1 \cdot v_3}{u_1 \cdot u_1} u_1 + \frac{u_2 \cdot v_3}{u_2 \cdot u_2} u_2 + u_3$$

$$v_4 = \frac{u_1 \cdot v_4}{u_1 \cdot u_1} u_1 + \frac{u_2 \cdot v_4}{u_2 \cdot u_2} u_2 + \frac{u_3 \cdot v_4}{u_3 \cdot u_3} u_3 + u_4$$

Express these 4 equations as equalities of the columns of two matrices:

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ v_1 & v_2 & v_3 & v_4 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ u_1 & u_2 & u_3 & u_4 \end{pmatrix} \begin{pmatrix} 1 & \frac{u_1 \cdot v_2}{u_1 \cdot u_1} & \frac{u_1 \cdot v_3}{u_1 \cdot u_1} & \frac{u_1 \cdot v_4}{u_1 \cdot u_1} \\ 0 & 1 & \frac{u_2 \cdot v_3}{u_2 \cdot u_2} & \frac{u_2 \cdot v_4}{u_2 \cdot u_2} \\ 0 & 0 & 1 & \frac{u_3 \cdot v_4}{u_3 \cdot u_3} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

This is almost the QR decomposition, but we have to scale the  $u$ 's to be unit vectors.

We can divide the **columns** of the first matrix by their lengths, but then we have to **multiply** the **rows** of the second matrix by the same thing so we don't change the product:

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ v_1 & v_2 & v_3 & v_4 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \frac{u_1}{\|u_1\|} & \frac{u_2}{\|u_2\|} & \frac{u_3}{\|u_3\|} & \frac{u_4}{\|u_4\|} \end{pmatrix} \begin{pmatrix} \|u_1\| & \frac{u_1 \cdot v_2}{\|u_1\| \|u_2\|} & \frac{u_1 \cdot v_3}{\|u_1\| \|u_3\|} & \frac{u_1 \cdot v_4}{\|u_1\| \|u_4\|} \\ 0 & \|u_2\| & \frac{u_2 \cdot v_3}{\|u_2\| \|u_3\|} & \frac{u_2 \cdot v_4}{\|u_2\| \|u_4\|} \\ 0 & 0 & \|u_3\| & \frac{u_3 \cdot v_4}{\|u_3\| \|u_4\|} \\ 0 & 0 & 0 & \|u_4\| \end{pmatrix}$$

$\uparrow$   $\uparrow$   $\uparrow$   
 $A$   $=$   $Q$   $R$

cancel!

This is the QR decomposition.

## QR Decomposition:

Let  $A$  be an  $m \times n$  matrix with FCR (LI columns).  
 Then

$$A = Q R$$

where

$Q$  is an  $m \times n$  matrix with orthonormal columns

$R$  is an upper-triangular  $n \times n$  matrix with positive diagonal entries.

The Procedure is explained above. It says:

Q: The columns form an **orthonormal basis** for  $\text{Col}(A)$ .  
They are the vectors you get by applying G-S to the columns of  $A$  & dividing by lengths.

R: This is filled with the dot products & lengths you computed when running G-S & rescaling.

Analogy to LU Decompositions: in  $A = LU$ ,

U: a REF of  $A$

L: row operations to get to REF

NB: Since  $Q$  has orthonormal columns  $\Rightarrow Q^T Q = I_n$ .

So  $A = QR \Leftrightarrow Q^T A = Q^T Q R = I_n R = R$

$$R = Q^T A$$

But you'd never compute  $R$  this way. You never have to "compute"  $R$  — finding  $R$  is just bookkeeping + Gram-Schmidt.

$$\text{Eg: } A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & -3 \\ 0 & -2 & 3 \end{pmatrix} \rightsquigarrow v_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \quad v_2 = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} \quad v_3 = \begin{pmatrix} 3 \\ -3 \\ 3 \end{pmatrix}$$

We did Gram-Schmidt before:

$$u_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

$$u_2 = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} - \frac{\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}}{\|u_1\|^2} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} - \frac{3}{2} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$$

$$\|u_1\| = \sqrt{2}$$

$$\|u_2\| = \sqrt{6}$$

$$u_3 = \begin{pmatrix} 3 \\ -3 \\ 3 \end{pmatrix} - \frac{\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -3 \\ 3 \end{pmatrix}}{\|u_1\|^2} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} - \frac{\begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -3 \\ 3 \end{pmatrix}}{\|u_2\|^2} \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 3 \\ -3 \\ 3 \end{pmatrix} - \frac{6}{2} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} - \frac{-6}{6} \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\|u_3\| = \sqrt{3}$$

$$Q = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix} \quad R = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & \sqrt{6} & 0 \\ 0 & 0 & \sqrt{3} \end{pmatrix}$$

QR decompositions have many important applications.  
Here is how to use it to speed up least-squares.

Suppose that  $A$  has FCR. Finding the least-squares solution of  $Ax=b$  means solving  $A^T A \hat{x} = A^T b$ . If we have a QR decomposition then we substitute  $A=QR$ :

$$A^T A \hat{x} = (QR)^T (QR) \hat{x} = R^T Q^T Q R \hat{x} = R^T I_n R \hat{x} = R^T R \hat{x}$$

$$A^T b = (QR)^T b = R^T Q^T b$$

Now  $R$  is invertible (it's in REF & it has  $n$  pivots)  
so  $R^T$  is invertible too.

So we can multiply both sides of  $R^T R \hat{x} = R^T Q^T b$  by  $(R^T)^{-1}$ :

$$A^T A \hat{x} = A^T b \Leftrightarrow R^T R \hat{x} = R^T Q^T b$$

$$\Leftrightarrow (R^T)^{-1} R^T R \hat{x} = (R^T)^{-1} R^T Q^T b$$

$$\Leftrightarrow R \hat{x} = Q^T b$$

But  $R$  is in REF, so you can solve this by substitution!

How to Solve  $Ax=b$  by Least Squares Using  $A=QR$ :

Solve  $R \hat{x} = Q^T b$  by substitution.

Computational Complexity:

Computing  $A=QR$  takes  $\approx \frac{4}{3}n^3$  flops if  $A$  is  $n \times n$  (using a much more clever algorithm).

Then you need  $\approx 2n^2$  flops to find the least-squares solution of  $Ax=b$  for any number of values of  $b$  (multiply  $Q^T b$  then substitute  $R \hat{x} = Q^T b$ ).

So it's the same speed-up as an  $LU$  decomposition.

Wait! Why not just compute a  $PA=LU$  decomposition for  $A^T A$  instead?

→ It turns out  $QR$  is usually more accurate (less rounding error).

Eg: Find the least-squares solution of  $Ax=b$  for

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \quad b = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

using  $A=QR$ ,  $Q = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{6} \\ -1/\sqrt{2} & 1/\sqrt{6} \\ 0 & -2/\sqrt{6} \end{pmatrix}$   $R = \begin{pmatrix} \sqrt{2} & \sqrt{2} \\ 0 & \sqrt{6} \end{pmatrix}$ .

We need to solve  $R\hat{x}=Q^T b$ .

$$Q^T b = \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 1/\sqrt{6} & 1/\sqrt{6} & -2/\sqrt{6} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 4/\sqrt{6} \end{pmatrix}$$

$$(R \mid Q^T b) = \left( \begin{array}{cc|c} \sqrt{2} & \sqrt{2} & 0 \\ 0 & \sqrt{6} & 4/\sqrt{6} \end{array} \right) \xrightarrow{R_2 \div \sqrt{6}} \left( \begin{array}{cc|c} \sqrt{2} & \sqrt{2} & 0 \\ 0 & 1 & 2/3 \end{array} \right)$$

$$\xrightarrow{R_1 - \sqrt{2}R_2} \left( \begin{array}{cc|c} \sqrt{2} & 0 & -2\sqrt{2}/3 \\ 0 & 1 & 2/3 \end{array} \right) \xrightarrow{R_1 \div \sqrt{2}} \left( \begin{array}{cc|c} 1 & 0 & -2/3 \\ 0 & 1 & 2/3 \end{array} \right)$$

$$\Rightarrow \hat{x} = \frac{2}{3} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$