
L10L13Orthogonal Bases

Last time: we found the best approximate solution(s) of
Ax=b In the sense of least squares) by solving
AAx =Ab

.

Now we turn to computational considerations. The goal is the
QR decomposition. This plays the role of an LU decomposition
for least squares(among other things) :

LU makes solving QR makes least-1s
Ax =b fast solving Ax=b fast

("fast" means: only substitution/ On't flops)

Idea: projections are much easier to compute in the

presence of a basis of orthogonal rectors.

Recall : two rectorsw are orthogonal if vw=0.

Here's what it means for more rectors to be orthogonal.

Def: A set of nonzero vectors [ Uz
, ...,
un] is :

(1) orthogonal if Kiuj =0 for it] (pairwise orthogonal)
(2) Orthonormal if they're orthogonal and vivi= /

for all : lunit rectors)

So othonomal means :us =So



Matrix version : let Q= (4) -un) QTQ = (iniu &
(1) [4 Uz

, ...,
un is orthogonal
E QTQ is diagonal & invertible<

(the diagonal entries niu: are all nonzero)

(2) [u Uz
, ...,
un5 is orthonormal E QTQ : In

Q : Wait! Doesn't QTQ = In mean &T=Qi ?
-> Only if Q is square.

Eg : u= (i) un= (_) us = (1) (nonzero vectors

(1) UUz= 0 Mills =0 UzUn= 0

=Suyuz,
233 is orthogonal

(2) him = 4 u2Uz= 4 UsUs=1

=>Suyu2,
133 is not othonormal

Matrix version :

=/ atadig
NB : If En U2

, ...,
unE is orthogonal then you can make

it othonomal by dividing by the lengths :

&l , till-is orthonormal



Eg
:(l(i) / = 2 (l)I =2 Ill)) =2

-> St(i), () , (i)} is outhonomal

a) aa = (i)
orthogonal orthonomal

Picture in IR" :

en Mill
&
su su

Iuzl

Fact : If En U2
, ...,
unt is orthogonal then it is LI.

-> so it's a basis for Spandus U2
y ...,

un3.

We will use the following trick several times.

Proof : Suppose XIU+XaUn+
- +Xuln= 0. We need to show

X= Xz=
=

Xn=0 Itrivial solution).

Trick : take the dot product of both sides with U:
U: (X ,U+XaUn+. .+XnUn)

- Xi(nm)+xi)++Xin = u:0

nonzero

=> Xilnin) = 0 => X
,
=0

.

Now take us . 1-)
,
etc. I



Geometric Facts About Matrices with Orthonomal Columns :

Suppose that Q has orthonormal columns ,
so Q =In

.

(1) (Qx) · (Qy) = xy for all X,yeR2
(2) llQxIl = Axl) for all xell

Thissays
that multiplication by Q does not change legta

langle) = cos(iii) =cost) = Langex
Proof : (1) (QX) · (Qy)=(QX)T(Qy) = XTQTQy

= x Iny = XTy = xy -

(2) /IQX =JTQ =M

Def: A square matrix with orthonormal columns is
called orthogonal.
- Beware the strange terminology!!

Eg:) is orthogonal

Eg : (ii) is not orthogonal



The Projection Formula

Thm: Let Suuz, ...,
un be orthogonal and let

V=Span(usuz, ...,
un5 . For any rector b,

Projection Formula :

bu= bu+Uzbe
-

NB : You're only taking dot products- no elimination needed !

If you have an orthogonal basis for V
the projection formula is way faster than

solung ATA =Atb !

NB : If n= 1 this says bu = bu,
which recovers

the formula for projection onto a line.

NB : If Su, Uz
, ...,
un5 is othonormal then uui = Is so

the projection formula becomes

bu = (b . u. ) u. + (b .uz)uz+...+ +b.un)un

NB : The projection formula only works if your basis
is orthogonal ! Otherwise you just don't get br.



Proof : Let b =bu+Uz+bWe
-

want to show that b= br. Recall that by is
characterized by b-breVt .

Sowe need to

show b-D'EV (then b =br)
.

Since V is the

Span of UUz....Un, we need to prove uilb-bl =0

for each i . This uses the trick from before:

i 21 : ni(b-b) = uib-uib

= nib-uilbu +Duruzb
-

=nib-bum-bu-b
= nib-bui= 0 -

The same works for Us, Us, ..., Un. II

Eg : Compute br for V=Span(i) , (1) · (i)) b = (2)
The spanning rectors are orthogonals so we use the

projection formula:

bu =)+ G +H
= i) +)+ )) =easy



Here's a version of the projection formula that computes
the projection matrix :

Thm: Let Suuz, ...,
un be orthogonal and let

V= Spansusuz, ...,
un5 . The projection matrix into Vis

Outer Product Formula

Pr=U+M

NB : If n
= 1 this says Pr=t

,
which recovers the

formula for the projection matrix onto a line.

NB : If Su, Uz
, ...,
un5 is othonormal then uui = Is so

the outer product formula becomes

Pr= nu+ Que+ -
- + UnUT

Fast-forward : this is the SVD of Pr.

Proof : The projection matrix is defined by Prb=br for all
rectors b

.

So let's check :

IntUnUn
=upuub+...u
Intbubb +Ubuntua/



Eg : Compute Pr for V-Span(i) , () , (i)?
Pr=ii)(i) . ... (i)() ... - +)()- . .

--I

=
The outer product formula has this matrix version :

Thm : Suppose that Q has orthonormal columns . Set
V = ColIQ) . (In other words, the columns of Q are

an orthonormal basis for V. ) Then

P = QQT

This comes from the outer product form of matrix mult :

QQT= (i .. un)[ = u uu = Pr
.

Nis : Orthonomal columns means QTQ=In
.

Eg : If Q is square then QTQ=E= QEQT

=QQTIn
.

This makes sense: if Q is invertible then V=Col(Q)=RY
so Pr = Pu = In.



The Gram-Schmidt Procedure

We like orthogonal bases because they make orthogonal
projections easier. How do we produce one?

Idea: Start with some basis [vDvs--yUn3 for V-
· Force v to be +v

, by
replacing it with

(vi)Spanqvist = Projection a
onto Spanqvist Stausk3x

· Force us to be trivs by
replacing it with (vs)Span[vr23%.

-> Since Erk] is now orthogonal, you can

compute this easily with the projection formula !
· etc.

So this "straightens out" the basis vectors
,

one at a time.



Gram-Schmidt Procedure : Let Every...3 be LI·

(1) u ,
= v,

UiVz
~ (v2)Spandwis

(2)kz = Va-- U uz= (va)SpannistUiW,

Us= (vs)Span(usunst(3) Us =- Ursu , -US (Vs)SpansuuzS
Un-1Va
-(n) Un = ve - Minu,-U.- Un-1 Un-

Un

Result : Su ,Us ..., and is orthogonal, and for
i= 1, 2, ... ,

n we have

Spanduisua ...,ui] = Spansvara, --- vis

En particular, if Every...3 is a basis for a

subspace V
,
then Su , us .... and is an orthogonal basis

for V : it's a way to describe V as the Span
of an orthogonal set of rectors.

basis
GRAM orthogonal
My basis for

for V SCHMIDT V



Eg : v= () v= (2) vi = (*)
(1) u= (t)

-

(2) u2 = (2) _ [() = (2) - E() = (2)
- -(3) u = (3)-) f)

= (3) - 5() - -(:2) = (i)
check: (0) (2) = 0 (t) . (i) = 0 (h)(i) =0

Q : What happens if you start with rectors that are LD?

Eventually you'll have
Viti-Span & Vyvs ...,ViT = SponSuyus , ...,Mi]

=> Wit = (Vit)SpanEvyvs ...,vip
+= 0

Gram-Schmidt detected that Vitie Span Vyva ...,
ViT.

So you can discardViti & keep going!



QR Decomposition
This "keeps track" of the dot products in the Gram-
Schmidt procedure in the same way that LU "keeps track"
of the now operations you performed.

Procedure: Run Gram-Schmidt on Erika ..
,Un] :

ErVs ...,] E Sm, u2s - --Un]

Solve for the vis in terms of the is :

V
,
= UI

U:V
V=ill

U,+ Uz

V=U +UV Us

Un=MUNT

Express these 4 equations as equalities of the
columns of two matrices :

(i) = (uuuu)
0 0 o I

This is almost the QR decomposition
,
but we have to

scale the us to be unit vectors.



We can divide the columns of the first matrix by their
lengths ,

but then we have to multiply the rows of the
second matrix by the same thing so we don't change the
product :

cancels!-

I & (n
A = Q

This is the QR decomposition.

QR Decomposition :

Let A be an mxn matrix with FCR (LI columns).
Then

A = QR
where

Q is an mxn matrix with outhonormal columns
R is an upper-triangular non matrix with

positive diagonal entries.

The Procedure is explained above . It says :



Q : The columns form an orthonormal basis for ColLA).
They are the rectors you get by applying GS
to the columns of A & dividing by lengths.

R : This is filled with the dot products & lengths you
computed when running G-S & rescaling

.

Analogy to LU Decompositions :
in A= LU,

U :
a REF of A

L : now operations to get to REF

NB : Since Q has orthonormal columns - QTQ = In

So A=QREQTA= QTQR = ER= R

R= QTA

But you'd never compute this way. You never
(

have to "compute R-finding Ris just bookkeeping
+ Gram-Schmidt.



Eg:

A =(3) v= (0) v= (2) vi = ( =)
We did Gran-Schmidt before :

u= (%) Iwill=E
-

=E InThe

-

= (3) - 5() - -(:2) = (i) llusi=5

a =(ii) =(R=
QR decompositions have many important applications.
Here is how to use it to speed up least-squares.

Suppose that A has FCR . Finding the least-squares
solution of Ax=b means solving AAx: Ab . If we

have a QR decomposition then we substitute A=QR :

AAx = (QRITIQR)= RIQTQRY = RTIcRX = RER

Ab = (QR)+b = RTQTb

Now R is invertible (it's in REF& it hasa pivots),
so RT is invertible too.



So we can multiply both sides of RTRX= RTQT by
(RT)+:

AFAx =Ab> PRx = RTQTb

(RT)"RTRE = (RT)" RTQTb

E R =QTb
.

But Ris in REF
, so you can solve this by

substitution!

How to Solve Ax=b by Least Squares Using A=QR :

Solve R* = QTb by substitution .

Computational Complexity:

Computing A=QR takes In flops if A is nx

lusing a much more clever algorithm).
Then you needIn flops to find the least-squares
solution of Ax=b for any number of values of b
(multiply QTb then substitute R* =QTb).
So it's the same speed-up as an LU decomposition.

Wait! Why not just compute a PA=LU decomposition for
AA instead?

-> It turns out QR is usually more accurate (less
rounding error).



Eg : Find the least-squares solution of Ax=b for

A=()b = (j)

Using A=QR
, Q2)R=

We need to solve RE=QTb

QTb = /(0)(-) = (xi)
(R(QTb) =( RE(2%)
ME(E)B(()

=>= (i)


