

Eigenvalues & Eigenvectors

This is a **core concept** in linear algebra.

It's used to study, among other things:

- Difference equations
- Stochastic processes
- Graphs & networks
- Differential equations

We'll focus on difference equations & stochastic processes as applications. Eigenvalues also play a large role in the SVD.

This is also one of the most **subtle concepts** in the class.

Running (Hopping?) Example:

In a population of rabbits,

[DEMO]

- $\frac{1}{4}$ survive their 1st year
- $\frac{1}{2}$ survive their 2nd year
- Max lifespan is 3 years
- 1-year-old rabbits have an average of 13 babies
- 2-year-old rabbits have an average of 12 babies

This year there are

- 16 babies
- 6 1-year-olds
- 1 2-year-old

Problem: Describe the long-term behavior of the system, both qualitatively & quantitatively.

Let's give names to the state of the system in year k :

$$\begin{aligned} x_k &= \# \text{babies} \\ y_k &= \# 1\text{-year-olds} \\ z_k &= \# 2\text{-year-olds} \end{aligned} \quad \left. \begin{array}{c} \\ \\ \end{array} \right\} \text{in year } k \quad \xrightarrow{\text{vector}} \quad \mathbf{v}_k = \begin{pmatrix} x_k \\ y_k \\ z_k \end{pmatrix}$$

The rules say:

$$\begin{aligned} x_{k+1} &= 13y_k + 12z_k \\ y_{k+1} &= \frac{1}{4}x_k \\ z_{k+1} &= \frac{1}{2}y_k \end{aligned}$$

state change

$$\begin{aligned} x_0 &= 16 \\ y_0 &= 6 \\ z_0 &= 1 \end{aligned}$$

initial state

Write as a matrix equation:

$$\mathbf{v}_{k+1} = \underbrace{\begin{pmatrix} 0 & 13 & 12 \\ \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix}}_A \mathbf{v}_k \quad \mathbf{v}_0 = \begin{pmatrix} 16 \\ 6 \\ 1 \end{pmatrix}$$

What happens in 100 years?

$$\mathbf{v}_{100} = A \cdot \mathbf{v}_{99} = A(A \mathbf{v}_{98}) = \dots = A^{100} \mathbf{v}_0$$

Great! Are we done? No!

- Computing $A \mathbf{v}_k$ 100 times is a lot of work / flops!
- We get no qualitative understanding that way!

We want to extract the "32:4:1" ratio directly from the matrix A .

Def: A **difference equation** is a matrix equation of the form

$$v_{k+1} = Av_k \quad \text{with } v_0 \text{ fixed}$$

where:

- $v_k \in \mathbb{R}^n$ is the **state** of the system at time k
- $v_0 \in \mathbb{R}^n$ is the **initial state**
- A is an $n \times n$ matrix called the **state change matrix**

As above,

$$v_k = A^k v_0$$

So a difference equation models a system that "changes state in a linear way".

|| Solving a difference equation means **computing** and **describing** $v_k = A^k v_0$ as $k \rightarrow \infty$.

Running Example: Note that if

$$v_0 = \begin{pmatrix} 32 \\ 4 \\ 1 \end{pmatrix} \rightsquigarrow v_1 = Av_0 = \begin{pmatrix} 0 & 13 & 12 \\ 1/4 & 0 & 0 \\ 0 & 1/2 & 0 \end{pmatrix} \begin{pmatrix} 32 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 64 \\ 8 \\ 2 \end{pmatrix} = 2v_0$$

$$\rightsquigarrow v_2 = Av_1 = A(2v_0) = 2(Av_0) = 2(2v_0) = 4v_0$$

$$\rightsquigarrow v_3 = Av_2 = A(4v_0) = 4(Av_0) = 4(2v_0) = 8v_0$$

⋮

$$v_k = Av_{k-1} = \dots = 2^k v_0$$

In this case, it's easy to compute and describe v_k : the population exactly doubles each year!

|| If $Av = \lambda v$ for some scalar λ , then

$$A^k v = \lambda^k v \text{ for all } k$$

Of course, in our running example, $v_0 = (16, 6, 1)$ and $Av_0 \neq \lambda v_0$, so how does this help?

→ Answer: **diagonalization** (next time)

Def: An **eigenvector** of a square matrix A is a **nonzero** vector v such that

$$Av = \lambda v \text{ for a scalar } \lambda$$

The scalar λ is the **eigenvalue**.

We also say that v is a λ -eigenvector.

🎵 eigenvector song 🎵

Upshot so far: If v is a λ -eigenvector of A then $A^k v = \lambda^k v$ is easy to compute.

$$\text{Eg: } \begin{pmatrix} 0 & 13 & 12 \\ \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} 32 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 64 \\ 8 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} 32 \\ 4 \\ 1 \end{pmatrix}$$

This says $\begin{pmatrix} 32 \\ 4 \\ 1 \end{pmatrix}$ is an eigenvector with eigenvalue 2

Eg: If $Ar = v$ then v is a 1-eigenvector: $Ar = 1v$.
 $\xrightarrow{(v \neq 0)}$
 So the nonzero vectors that A **doesn't move** are the 1-eigenvectors.

Eg: If $Ar = 0$ then v is a 0-eigenvector: $Ar = 0v$.
 $\rightarrow 0$ is a valid eigenvalue, not a valid eigenvector.

So the nonzero vectors in $\text{Null}(A)$ are the 0-eigenvectors

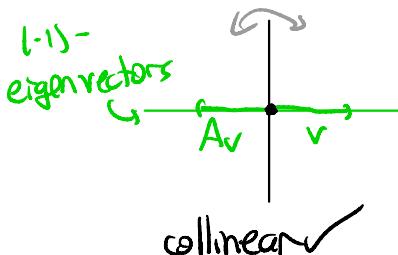
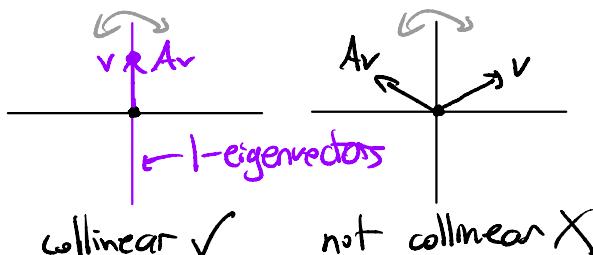
NB: If we allowed 0 to be an eigenvector then every number would be its eigenvalue: $AO = \lambda O$ for any $\lambda \in \mathbb{R}$.

Geometrically, " $Ar = \lambda v$ " means " v and Ar are **collinear**".

A rotates **eigenvectors** by
 0° or 180°

Eg: $A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ $A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}$: flip over the y-axis.

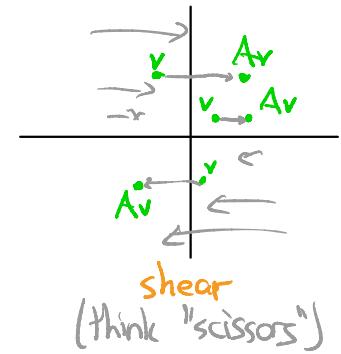
Where are the eigenvectors?



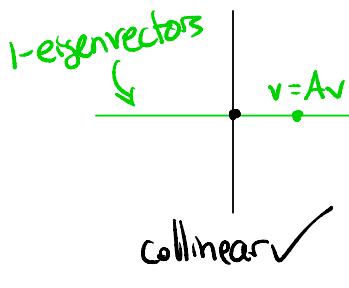
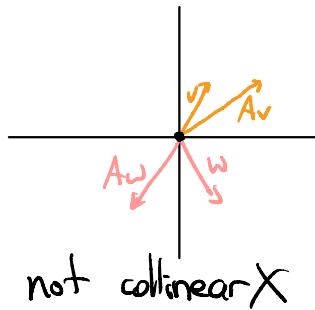
[DEMO]

Eg: $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is called a **shear**:

$A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ y \end{pmatrix}$ so vectors above the x-axis move right & the vectors below move left.



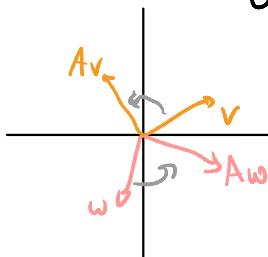
Where are the eigenvectors?



[DEMO]

Eg: $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ $A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix}$: this is CCW rotation by 90° .

Where are the eigenvectors?



This matrix has
no (real) eigenvectors!

[DEMO]

Eigenspaces

Given an eigenvalue λ , how to compute all λ -eigenvectors?

$$\begin{aligned} Av = \lambda v &\iff Av - \lambda v = 0 \\ &\iff Av - \lambda I_n v = 0 \\ &\iff (A - \lambda I_n)v = 0 \\ &\iff v \in \text{Null}(A - \lambda I_n) \end{aligned}$$

Summary: given λ ,

$$\text{solving } Av = \lambda v \iff \text{solving } (A - \lambda I_n)v = 0$$

Def: Let λ be an eigenvalue of an $n \times n$ matrix A .

The λ -eigenspace of A is

$$\begin{aligned} \text{Null}(A - \lambda I_n) &= \{ \text{all solutions of } Av = \lambda v \} \\ &= \{ \text{all } \lambda\text{-eigenvectors and } 0 \} \end{aligned}$$

Eg: $A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

1-eigenspace
(-1)-eigenspace

Eg: $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

1-eigenspace

NB: An eigenvalue has **infinitely many eigenvectors** - a whole (nonzero) subspace worth of them!

NB: If $\text{Nul}(A - \lambda I_n) = \{0\}$ then the only solution of $Av = \lambda v$ is 0 — so λ is not an eigenvalue.

Eg: Find the $\lambda=2$ -eigenspace of $A = \begin{pmatrix} 0 & 13 & 12 \\ \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix}$.
We have to solve $(A - 2I_3)x = 0$.

$$A - 2I_3 = \begin{pmatrix} -2 & 13 & 12 \\ \frac{1}{4} & -2 & 0 \\ 0 & \frac{1}{2} & -2 \end{pmatrix} \xrightarrow{\text{ref}} \begin{pmatrix} 1 & 0 & -32 \\ 0 & 1 & -4 \\ 0 & 0 & 0 \end{pmatrix}$$

PREF $\xrightarrow{\text{ref}} x = x_3 \begin{pmatrix} 32 \\ 4 \\ 1 \end{pmatrix}$

So the 2-eigenspace is

$$\text{Nul}(A - 2I_3) = \text{Span} \left\{ \begin{pmatrix} 32 \\ 4 \\ 1 \end{pmatrix} \right\}.$$

Hence all 2-eigenvectors of the rabbit population matrix are scalar multiples of $(32, 4, 1)$.

[DEMO]

Eg: Find the $\lambda=(-1)$ -eigenspace of $A = \begin{pmatrix} -1 & 0 & 0 \\ -1 & 0 & 2 \\ -1 & 1 & 1 \end{pmatrix}$

We have to solve $(A + I_3)x = 0$.

$$A + I_3 = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 1 & 2 \\ -1 & 1 & 2 \end{pmatrix} \xrightarrow{\text{ref}} \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

PREF $\xrightarrow{\text{ref}} x = x_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$

[DEMO]

So the (-1) -eigenspace is the plane $\text{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \right\}$.

Eg: Find the $\lambda=0$ -eigenspace of $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$

We have to solve $(A - 0I_3)x = 0$, ie, $Ax = 0$.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \Rightarrow \text{Nul}(A) = \text{Span} \left\{ \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \right\}$$

↑ This is the 0-eigenspace!

Remember, $Ax = 0x$ means $Ax = 0$, so

$\text{Nul}(A)$ is the 0-eigenspace

Recall: A square matrix A is invertible $\iff \text{Nul}(A) = \{0\}$.

This just means $Ax = 0x$ has no nonzero solutions.

A is invertible $\iff 0$ is not an eigenvalue

Eg: Find the $\lambda=3$ -eigenspace of $A = 3I_n$.

In this case, $A - 3I_n = 0$! That means

$$\text{Nul}(A - 3I_n) = \mathbb{R}^n$$

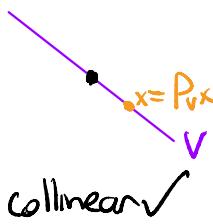
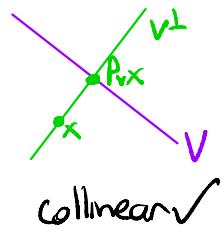
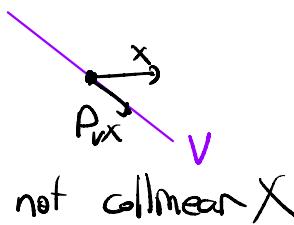
But of course every nonzero vector is a 3-eigenvector of A :

$$(3I_n)v = 3I_nv = 3v \text{ for any } v$$

Eg: Let V be a subspace of \mathbb{R}^n . Find the eigenvectors of the projection matrix P_V .

Recall: $x \in V \iff P_V x = 1x$

$x \in V^\perp \iff P_V x = 0x$



The 1-eigenspace of P_V is V
The 0-eigenspace of P_V is V^\perp

[DEMO]

The Characteristic Polynomial

or: the reason we covered determinants

Given an eigenvalue λ , we know how to find the λ -eigenvectors: $\text{Null}(A - \lambda I_n)$. How do we find the eigenvalues though?

λ is an eigenvalue of A

$\iff A\mathbf{v} = \lambda\mathbf{v}$ has a nonzero solution

$\iff (A - \lambda I_n)\mathbf{v} = \mathbf{0}$ has a nonzero solution

$\iff \text{Null}(A - \lambda I_n) \neq \{\mathbf{0}\}$

$\iff A - \lambda I_n$ is not invertible

$\iff \det(A - \lambda I_n) = 0$

This is an equation in λ whose solutions are the eigenvalues!

Eg: Find all eigenvalues of $A = \begin{pmatrix} 0 & 13 & 12 \\ 1/4 & 0 & 0 \\ 0 & 1/2 & 0 \end{pmatrix}$.

We have to solve $\det(A - \lambda I_3) = 0$.

$$\det(A - \lambda I_3) = \det \begin{pmatrix} -\lambda & 13 & 12 \\ 1/4 & -\lambda & 0 \\ 0 & 1/2 & -\lambda \end{pmatrix}$$

$$\begin{array}{l} \text{expand} \\ \text{by factors of } -\lambda \end{array} -\lambda \det \begin{pmatrix} 0 & 13 \\ 1/2 & -\lambda \end{pmatrix} + \frac{1}{4}(-1) \det \begin{pmatrix} 13 & 12 \\ 1/2 & -\lambda \end{pmatrix} = \dots$$

$$= -\lambda^3 + \frac{13}{4}\lambda + \frac{3}{2}$$

So what are the solutions of $p(\lambda) = -\lambda^3 + \frac{13}{4}\lambda + \frac{3}{2} = 0$?

Ask a computer:

$$-\lambda^3 + \frac{13}{4}\lambda + \frac{3}{2} = -(\lambda-2)(\lambda+\frac{1}{2})(\lambda+\frac{3}{2})$$

So the eigenvalues are $\lambda = 2, -\frac{1}{2}, -\frac{3}{2}$.

Def: The characteristic polynomial of A is

$$p(\lambda) = \det(A - \lambda I_n).$$

The upshot is

$$\lambda \text{ is an eigenvalue of } A \iff p(\lambda) = 0$$