

Complex Eigenvalues

L19

Some matrices don't have any real eigenvalues.

But every matrix has a **complex** eigenvalue: any polynomial has a complex zero.

Diagonalization works great with complex eigenvalues!

→ You can still solve difference equations.

→ You can still get real-number solutions.

So complex eigenvalues allow us to apply diagonalization techniques to **more matrices**.

NB: Computers will do this by default! So you have to have some understanding of complex eigenvalues to interpret your computer's output.

Eg: $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ has no real eigenvalues

(this one was CCW rotation by 90° : see L16)

$$p(\lambda) = \lambda^2 - \text{Tr}(A)\lambda + \det(A) = \lambda^2 + 1 = (\lambda + i)(\lambda - i).$$

So the eigenvalues are i and $-i$.

We can compute eigenvectors using the $\begin{pmatrix} -b \\ a-s \end{pmatrix}$ trick:

$$i: \begin{pmatrix} 1 \\ -i \end{pmatrix} \quad -i: \begin{pmatrix} 1 \\ i \end{pmatrix}$$

Check that $A = CDC^{-1}$ for

$$C = \begin{pmatrix} 1 & 1 \\ -i & i \end{pmatrix} \quad D = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}.$$

In this example, the eigenvalues & eigenvectors were complex conjugates:

$$-i = \bar{i} \quad \begin{pmatrix} 1 \\ i \end{pmatrix} = \begin{pmatrix} 1 \\ \bar{i} \end{pmatrix}.$$

This is always the case.

Fact: The **complex** eigenvalues & eigenvectors of a real matrix come in **complex conjugate pairs**:

$$A_v = \lambda v \iff A_{\bar{v}} = \bar{\lambda} \bar{v}$$

Complex conjugation of vectors is done coordinate-wise:

$$v = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \quad \rightsquigarrow \quad \bar{v} = \begin{pmatrix} \bar{z}_1 \\ \vdots \\ \bar{z}_n \end{pmatrix}$$

Eg: Solve the difference equation

$$V_{k+1} = A V_k \quad A = \begin{pmatrix} 0 & -1 \\ 3 & -3 \end{pmatrix} \quad V_0 = \begin{pmatrix} 2 \\ 3+\sqrt{3} \end{pmatrix} \quad \text{No complex Hs in the statement!}$$

(i) Diagonalize:

$$p(\lambda) = \lambda^2 + 3\lambda + 3 \Rightarrow \lambda = \frac{1}{2}(-3 \pm \sqrt{9-12})$$

eigenvalues: $\lambda = \frac{1}{2}(-3+i\sqrt{3})$ $\bar{\lambda} = \frac{1}{2}(-3-i\sqrt{3})$

$$\text{Check: } Aw = \begin{pmatrix} 0 & -1 \\ 3 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ -\lambda \end{pmatrix} = \begin{pmatrix} \lambda \\ 3 + 3\lambda \end{pmatrix}$$

Wait - is this really λw ?

$$\lambda w = \lambda \begin{pmatrix} 1 \\ -\lambda \end{pmatrix} = \begin{pmatrix} \lambda \\ -\lambda^2 \end{pmatrix} \stackrel{?}{=} \begin{pmatrix} \lambda \\ 3+\lambda^2 \end{pmatrix}$$

$$\rightarrow \lambda^2 \stackrel{?}{=} 3+\lambda^2$$

$$0 \stackrel{?}{=} \lambda^2 + 3\lambda + 3$$

yes - this is $p(\lambda) = 0$ ✓

Upshot: it's hard to tell if two complex vectors are scalar multiples just by looking at them!

In any case, $\{w, \bar{w}\}$ is an **eigenbasis** (eigenvalues are different \Rightarrow they're LI).

(2) **Expand v_0 in the eigenbasis:**

We need to solve $x_1 w + x_2 \bar{w} = v_0$. Augmented matrix:

$$\left(\begin{array}{cc|c} 1 & 1 & 2 \\ -\lambda & -\bar{\lambda} & 3+\sqrt{3} \end{array} \right) \xrightarrow{R_2 + \lambda R_1} \left(\begin{array}{cc|c} 1 & 1 & 2 \\ 0 & \lambda - \bar{\lambda} & 3 + \sqrt{3} + 2\lambda \end{array} \right)$$

$$\lambda - \bar{\lambda} = \frac{1}{2}(-3+i\sqrt{3}) - \frac{1}{2}(-3-i\sqrt{3}) = i\sqrt{3}$$

$$3 + \sqrt{3} + 2\lambda = 3 + \sqrt{3} - 3 + i\sqrt{3} = \sqrt{3}(1+i)$$

$$= \left(\begin{array}{cc|c} 1 & 1 & 2 \\ 0 & i\sqrt{3} & \sqrt{3}(1+i) \end{array} \right) \xrightarrow{R_2 \div i\sqrt{3}} \left(\begin{array}{cc|c} 1 & 1 & 2 \\ 0 & 1 & 1+i \end{array} \right)$$

$$\frac{1+i}{i} = \frac{1}{i} + 1 = 1-i$$

$$= \left(\begin{array}{cc|c} 1 & 1 & 2 \\ 0 & 1 & 1-i \end{array} \right) \xrightarrow{R_1 - R_2} \left(\begin{array}{cc|c} 1 & 0 & 1+i \\ 0 & 1 & 1-i \end{array} \right)$$

So $x_1 = 1+i$ and $x_2 = 1-i = \bar{x}_1$, so

$$v_0 = (1+i)w + (1-i)\bar{w}$$

(3) Answer 1:

$$v_k = A^k v_0 = \lambda^k (1+i) \omega + \bar{\lambda}^k (1-i) \bar{\omega}$$

So far this is exactly the same as solving a difference equation with real eigenvalues!

But this isn't a very good answer. We know that

$$v_k = A^k v_0 = (\text{real matrix}) \cdot (\text{real vector})$$

has real coordinates, but our answer has complex numbers all over! How do we eliminate the i 's?

Recall: The **real part** of $z = a+bi$ is

$$\text{Re}(z) = a = \frac{1}{2}((a+bi) + (a-bi)) = \frac{1}{2}(z + \bar{z}).$$

(4) Group complex conjugates to get real numbers.

Our two summands in

$$v_k = \lambda^k (1+i) \omega + \bar{\lambda}^k (1-i) \bar{\omega}$$

are complex conjugates:

$$\overline{\lambda^k (1+i) \omega} = \bar{\lambda}^k \overline{(1+i)} \bar{\omega} = \bar{\lambda}^k (1-i) \bar{\omega}.$$

$$\text{Hence } v_k = \lambda^k (1+i) \omega + \overline{\lambda^k (1+i) \omega} = 2 \text{Re} \{ \lambda^k (1+i) \omega \}.$$

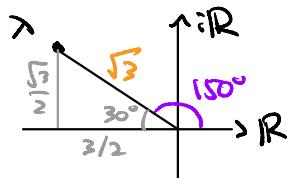
Ok, so how do we compute this?

Recall: z^k is easy to compute if $z = r e^{i\theta}$ is in polar form: $z^k = r^k e^{ik\theta}$.

$$\lambda = \frac{1}{2}(-3 + i\sqrt{3}) = re^{i\theta}$$

$$r = |\lambda| = \frac{1}{2}\sqrt{9+3} = \sqrt{3}$$

$$\theta = 150^\circ = \frac{5\pi}{6}$$



$$\text{So } \lambda = 3^{1/2} e^{5\pi i/6}$$

$$\Rightarrow \lambda^k = 3^{k/2} e^{5\pi k i/6}$$

draw a picture!

$$(\text{Euler's Formula}) = 3^{k/2} \left(\cos \frac{5k\pi}{6} + i \sin \frac{5k\pi}{6} \right)$$

Now we can compute $V_k = 2\operatorname{Re}[\lambda^k (1+i)\omega]$.

$$\lambda^k (1+i)\omega$$

$$= 3^{k/2} \left(\cos \frac{5k\pi}{6} + i \sin \frac{5k\pi}{6} \right) (1+i) \begin{pmatrix} 1 \\ -\lambda \end{pmatrix}$$

↑ multiply

$$= 3^{k/2} \left[\cos \frac{5k\pi}{6} - \sin \frac{5k\pi}{6} + i \left(\cos \frac{5k\pi}{6} + \sin \frac{5k\pi}{6} \right) \right] \begin{pmatrix} 1 \\ \frac{1}{2}(3-i\sqrt{3}) \end{pmatrix}$$

↑ multiply

$$\left[\cos \frac{5k\pi}{6} - \sin \frac{5k\pi}{6} + i \left(\cos \frac{5k\pi}{6} + \sin \frac{5k\pi}{6} \right) \right] \cdot \frac{1}{2}(3-i\sqrt{3})$$

$$= \frac{1}{2} \left[3 \cos \frac{5k\pi}{6} - 3 \sin \frac{5k\pi}{6} + \sqrt{3} \cos \frac{5k\pi}{6} + \sqrt{3} \sin \frac{5k\pi}{6} + i(\text{don't care}) \right]$$

$$= 3^{k/2} \left(\frac{3+\sqrt{3}}{2} \cos \frac{5k\pi}{6} - \frac{\sqrt{3}-3}{2} \sin \frac{5k\pi}{6} + i(\text{don't care}) \right)$$

$$\Rightarrow V_k = 2\operatorname{Re}(\text{this}) = 3^{k/2} \left(\frac{2 \cos \frac{5k\pi}{6} - 2 \sin \frac{5k\pi}{6}}{(\sqrt{3}+3) \cos \frac{5k\pi}{6} + (\sqrt{3}-3) \sin \frac{5k\pi}{6}} \right)$$

Now our answer has only real numbers
(and trig functions - weird)

but we needed complex numbers to get it!

NB: We didn't have to compute the complex part of $\lambda^k(1+i)w$, hence the ;(don't care) terms.
But we can only do that after multiplying all the complex numbers together!

$$\operatorname{Re}(zw) \neq \operatorname{Re}(z)\operatorname{Re}(w)$$

How to Solve a Difference Equation with \mathbb{C} -eigenvalues:

(1-3) Diagonalize A , expand in eigenbasis, solve as before. You'll get something like this:

$$V_k = A^k v_0 = \underbrace{\lambda_1^k x_i w_i}_{\text{complex conjugate pairs}} + \underbrace{\bar{\lambda}_1^k \bar{x}_i \bar{w}_i}_{\text{real eigenvalues}} + \dots + \underbrace{\lambda_j^k x_j w_j}_{\text{real eigenvalues}} + \dots$$

(4) Group complex conjugate terms:

$$\lambda^k x w + \bar{\lambda}^k \bar{x} \bar{w} = 2\operatorname{Re}(\lambda^k x w)$$

Write each λ in polar form and use Euler's formula:

$$\lambda = r e^{i\theta} \Rightarrow \lambda^k = r^k e^{ik\theta} = r^k (\cos k\theta + i \sin k\theta)$$

Multiply this by x and w and take the real part.

Now the answer has trig functions instead of i 's.

Algebraic and Geometric Multiplicity

Last, we discuss what happens when an $n \times n$ matrix has fewer than n eigenvalues. When is it diagonalizable?

Def: If λ is a zero of a polynomial $p(x)$, its **multiplicity** m is the largest power of $(x-\lambda)$ dividing $p(x)$:

$$p(x) = (x-\lambda)^m \cdot h(x) \quad h(\lambda) \neq 0$$

Eg: $p(\lambda) = -\lambda^3 + 3\lambda^2 - 4 = -(\lambda-2)^2(\lambda+1)$

→ $\lambda=2$ has multiplicity 2

→ $\lambda=-1$ has multiplicity 1

Def: Let A be a matrix with eigenvalue λ .

(1) The **algebraic multiplicity (AM)** of λ is its multiplicity as a root of the characteristic polynomial $p(\lambda) = \det(A - \lambda I_n)$.

(2) The **geometric multiplicity (GM)** of λ is the dimension of the λ -eigenspace:

$$GM(\lambda) = \dim \text{Nul}(A - \lambda I_n)$$

= # free variables in $A - \lambda I_n$

= # linearly independent λ -eigenvectors

Eg: $A = \begin{pmatrix} -7 & 3 & 5 \\ -10 & 5 & 6 \\ -9 & 3 & 7 \end{pmatrix}$ $p(\lambda) = -(\lambda-2)^2(\lambda-1)$

The eigenvalues are 1 & 2.

- $\lambda=1: AM=1$

$\text{Null}(A - I_3)$ has basis $\left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$

This is a line, so $GM=1$

- $\lambda=2: AM=2$

$\text{Null}(A - 2I_3)$ has basis $\left\{ \begin{pmatrix} 3 \\ 4 \\ 3 \end{pmatrix} \right\}$

This is a line, so $GM=1$

This matrix is **not diagonalizable**; only 2 LI eigenvectors.

[DEMO]

Eg: $B = \begin{pmatrix} -4 & 3 & 2 \\ -6 & 5 & 2 \\ -6 & 3 & 4 \end{pmatrix}$ $p(\lambda) = -(\lambda-2)^2(\lambda-1)$

The eigenvalues are 1 & 2.

- $\lambda=1: AM=1$

$\text{Null}(B - I_3)$ has basis $\left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$

This is a line, so $GM=1$

- $\lambda=2: AM=2$

$\text{Null}(B - 2I_3)$ has basis $\left\{ \begin{pmatrix} 3 \\ 4 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \right\}$

[DEMO]

This is a plane, so $GM=2$.

This matrix is **diagonalizable** = eigenbasis $\left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \right\}$

Both matrices have the same characteristic polynomial $p(\lambda) = -(\lambda-2)^2(\lambda-1)$ \Rightarrow same eigenvalues and AM's.

The difference was that B had $AM(2) = GM(2) = 2$
 \rightsquigarrow 2 LI 2-eigenvectors, where A had $GM(2) = 1$
 \rightsquigarrow 1 LI 2-eigenvector.

It turns out that these are the only possibilities.

Thm (AM \geq GM): For any eigenvalue λ of A,
(algebraic multiplicity of λ)

$$\geq (\text{geometric multiplicity of } \lambda) \geq 1$$

See the **supplement** for a proof.

NB: $GM \geq 1$ just says that λ has an eigenvector —
the λ -eigenspace can't be $\{0\}$, so its dimension
is ≥ 1 .

Upshot: If $p(\lambda) = -(\lambda-2)^2(\lambda-1)$ then

- the 1-eigenspace is necessarily a **line**:
 $1 = AM(1) \geq GM(1) \geq 1 \Rightarrow GM(1) = 1$.
- the 2-eigenspace is a **line** or a **plane**:
 $2 = AM(2) \geq GM(2) \geq 1 \Rightarrow GM(2) = 1 \text{ or } 2$
- the matrix is diagonalizable $\Leftrightarrow GM(2) = 2$: then
you have $1+2=3$ LI eigenvectors.

NB: What is not possible is for the 1-eigenspace to be a plane: then $AM(1) = 1 \leq 2 = GM(1)$. So if the matrix is diagonalizable, you have to find 2 eigenvectors with eigenvalue 2.

Thm (AM/GM Criterion for Diagonalizability):

Let A be an $n \times n$ matrix.

- A is diagonalizable over the complex numbers
 $\iff AM(\lambda) = GM(\lambda)$ for every eigenvalue λ .
- A is diagonalizable over the real numbers
 $\iff AM(\lambda) = GM(\lambda)$ for every eigenvalue λ and A has all real eigenvalues.

Eg: $A = \begin{pmatrix} -7 & 3 & 5 \\ -10 & 5 & 6 \\ -9 & 3 & 7 \end{pmatrix}$ is not diagonalizable because $AM(2) = 2 \neq 1 = GM(2)$

Corollary (again): If A has n (different) eigenvalues then A is diagonalizable.

Proof: In this case, $p(\lambda) = \det(A - \lambda I_n)$ factors into distinct linear factors:

$$p(\lambda) = (-1)^n (\lambda - \lambda_1) \cdots (\lambda - \lambda_n) \quad \lambda_1, \lambda_2, \dots, \lambda_n \text{ distinct}$$

$$\text{So } 1 = AM(\lambda_i) \geq GM(\lambda_i) \geq 1 \implies AM(\lambda_i) = GM(\lambda_i) \text{ for every } i.$$

//

This is what usually happens: a "random" matrix will have n distinct (complex) eigenvalues.

Eg: Any 2×2 real matrix with a complex eigenvalue is diagonalizable over \mathbb{C} : it has 2 eigenvalues $\lambda \neq \bar{\lambda}$.

Proof of the Criterion:

By the fundamental theorem of algebra, the characteristic polynomial factors (over \mathbb{C}) into linear terms:

$$p(\lambda) = (-1)^n (\lambda - \lambda_1)^{m_1} \cdots (\lambda - \lambda_r)^{m_r} = (-1)^n \lambda^n + \cdots$$

Here $m_i = \text{AM}(\lambda_i)$, so $n = \deg(p) = m_1 + m_2 + \dots + m_r$.
Hence

Hence

$$n = AM(\lambda_1) + AM(\lambda_2) + \dots + AM(\lambda_r) \quad (\text{the } AM's \text{ add to } n)$$

For each i we have $AM(\lambda_i) \geq GM(\lambda_i)$, so

$$n = AM(\lambda_1) + AM(\lambda_2) + \dots + AM(\lambda_r)$$

$$GM(\lambda_1) + GM(\lambda_2) + \dots + GM(\lambda_r) = \underset{\text{WI eigenvectors.}}{\text{total \#}}$$

If any of these is a strict inequality then you have $< n$ LI eigenvectors, so A is diagonalizable ($\Leftrightarrow A\mathbf{M}(\lambda_i) = \mathbf{G}\mathbf{M}(\lambda_i)$ for each i).

11