

Symmetric Matrices & the Spectral Theorem L21

Recall: S is **symmetric** if $S = S^T$

(in particular, it is square)

Primary Example: the matrix of column dot products

$$S = A^T A \text{ for any matrix } A$$

Diagonalization works out very nicely for symmetric matrices; this is summed up in the **spectral theorem**, our main topic for today. The spectral theorem is the main ingredient in the SVD also.

$$\text{Eg: } S = \frac{1}{9} \begin{pmatrix} 5 & -8 & 10 \\ -8 & 11 & 2 \\ 10 & 2 & 2 \end{pmatrix}$$

[DEMO]

What do you notice about the eigenspaces?

Fact ①: Let S be an $n \times n$ symmetric matrix & $u, v \in \mathbb{R}^n$.

$$\text{Then } v \cdot (S_w) = (Sv) \cdot w.$$

$$\begin{aligned} \text{Proof: } v \cdot (S_w) &= v^T (S_w) = (v^T S) w = (S^T v)^T w \stackrel{S=S^T}{=} (Sv)^T w \\ &= (Sv) \cdot w \end{aligned}$$

Fact ②: Eigenvectors of S with different eigenvalues are **orthogonal**.

Proof: Say $Sv_1 = \lambda_1 v_1$, $Sv_2 = \lambda_2 v_2$, $\lambda_1 \neq \lambda_2$. Then

$$v_1 \cdot (Sv_2) = v_1 \cdot (\lambda_2 v_2) = \lambda_2 (v_1 \cdot v_2)$$

① //

$$(Sv_1) \cdot v_2 = (\lambda_1 v_1) \cdot v_2 = \lambda_1 (v_1 \cdot v_2)$$

$$\text{So } \lambda_1 (v_1 \cdot v_2) = \lambda_2 (v_1 \cdot v_2) \Rightarrow (\lambda_1 - \lambda_2)(v_1 \cdot v_2) = 0$$

$$\xrightarrow{\lambda_1 \neq \lambda_2} v_1 \cdot v_2 = 0, \text{ which means } v_1 \perp v_2. //$$

Fact ③: All eigenvalues of S are **real numbers**.

Proof: Say $Sv = \lambda v$, $v \neq 0$, and λ is not real, so $\lambda \neq \bar{\lambda}$ ($a+ib \neq a-ib$ when $b \neq 0$). We know $S\bar{v} = \bar{\lambda}\bar{v}$, so ② $\Rightarrow v \cdot \bar{v} = 0$ (they are eigenvectors with different eigenvalues). But

$$v = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \Rightarrow \bar{v} = \begin{pmatrix} \bar{z}_1 \\ \vdots \\ \bar{z}_n \end{pmatrix}$$

$$\begin{aligned} \Rightarrow v \cdot \bar{v} &= z_1 \bar{z}_1 + z_2 \bar{z}_2 + \dots + z_n \bar{z}_n \\ &= |z_1|^2 + |z_2|^2 + \dots + |z_n|^2, \end{aligned}$$

which is > 0 because $v \neq 0$. So no such non-real eigenvalue can exist. //

Fact ④: If S is symmetric and λ is an eigenvalue of S , then $AM(\lambda) = GM(\lambda)$.

(I can't prove this without ideas from abstract vector spaces.)

Consequence of 2 3 4:

Any symmetric matrix S is diagonalizable over \mathbb{R} .
Moreover, it has an orthonormal eigenbasis.

Eg: $S = \frac{1}{9} \begin{pmatrix} 5 & -8 & 10 \\ -8 & 11 & 2 \\ 10 & 2 & 2 \end{pmatrix}$ $p(\lambda) = -(\lambda-1)(\lambda+1)(\lambda-2)$

Compute eigenvectors:

$$\begin{array}{lll} \lambda = 1 & \lambda = -1 & \lambda = 2 \\ w_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} & w_2 = \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix} & w_3 = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} \end{array}$$

Check orthogonality:

$$w_1 \cdot w_2 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix} = 0 \quad w_1 \cdot w_3 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = 0 \quad w_2 \cdot w_3 = \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = 0$$

✓

Orthonormal Eigenbasis:

This shows $\{w_1, w_2, w_3\}$ is an orthogonal eigenbasis. To make it orthonormal, we divide by the lengths:

$$\|w_1\| = \sqrt{9} = 3 \quad \|w_2\| = \sqrt{3} \quad \|w_3\| = \sqrt{3}$$

$$\Rightarrow \left\{ \frac{1}{3} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \frac{1}{\sqrt{3}} \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}, \frac{1}{\sqrt{3}} \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} \right\}$$

is an orthonormal eigenbasis.

Matrix form:

orthogonal matrix

$$S = QDQ^{-1} = QDQ^T \quad \text{for } Q = \frac{1}{3} \begin{pmatrix} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{pmatrix} \quad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Recall: A square matrix Q with orthonormal columns is called orthogonal. This means

$$QQ^T = I_n \quad \text{so} \quad Q^T = Q^{-1}$$

To summarize:

Spectral Theorem: A real symmetric matrix S has an orthonormal basis of real eigenvectors:

$$S = QDQ^T$$

for Q orthogonal and D diagonal.

Fast-Forward: Apply the spectral theorem to $S = A^T A$ and you get 90% of the SVD for A .

NB: Conversely, if $S = QDQ^T$ for D diagonal then S must be symmetric, because

$$S^T = (QDQ^T)^T = Q^T D^T Q^T = QDQ^T = S.$$

In other words, if S has an orthonormal eigenbasis then S is necessarily symmetric! More on HW.

$$\text{Ex: } S = \begin{pmatrix} -1 & 1 & 2 \\ 1 & -1 & 2 \\ 2 & 2 & 2 \end{pmatrix} \quad p(\lambda) = -(\lambda - 4)(\lambda + 2)^2$$

Eigenspace Bases:

$$\lambda = 4: \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

$$\lambda = -2: \left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

NB: Since $A\mathbf{M}(-2) = 2$, we must get 2 vectors here.

Check orthogonality:

$$\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = 0 \quad \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} = 0 \quad \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} = 2 \quad \text{??} \neq 0$$

Doesn't this contradict Fact ②?

\rightarrow -eigenspace

No! These eigenvectors have the same eigenvalue $\lambda = -2$. In fact, since the (-2) -eigenspace is a plane, there will be plenty of non-orthogonal (-2) -eigenvectors.

[DEMO]

Ok, so how do we produce an orthonormal eigenbasis?

Gram-Schmidt to the rescue!

$$w_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

$$w_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

$$w_3 = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} - \frac{\begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}}{\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$

(We only had to do G-S on $\left\{ \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} \right\}$ because they're already \perp w_1 .)

Check orthogonality (again):

$$\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = 0 \quad \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = 0 \quad \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = 0 \quad \checkmark$$

So $S = Q D Q^T$ for

$$Q = \begin{pmatrix} 1/\sqrt{6} & -1/\sqrt{2} & -1/\sqrt{3} \\ \sqrt{6} & 1/\sqrt{2} & -1/\sqrt{3} \\ 2/\sqrt{6} & 0 & 1/\sqrt{3} \end{pmatrix}$$

$\|w_1\|$ $\|w_2\|$ $\|w_3\|$

$$D = \begin{pmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

How to Orthogonally Diagonalize a Real, Symmetric

(1) Diagonalize S . (it is necessarily diagonalizable) Matrix:

(2) Run Gram-Schmidt on eigenspace bases with multiplicity ≥ 2 .

(3) Divide by lengths.

The result is an orthonormal eigenbasis.

$$\text{Eq: } S = \frac{1}{2} \begin{pmatrix} 5 & -1 \\ -1 & 5 \end{pmatrix} \quad p(\lambda) = \lambda^2 - 5\lambda + 6 = (\lambda-2)(\lambda-3)$$

$$\lambda_1 = 2 \quad w_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \lambda_2 = 3 \quad w_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\text{So } S = QDQ^T \text{ for}$$

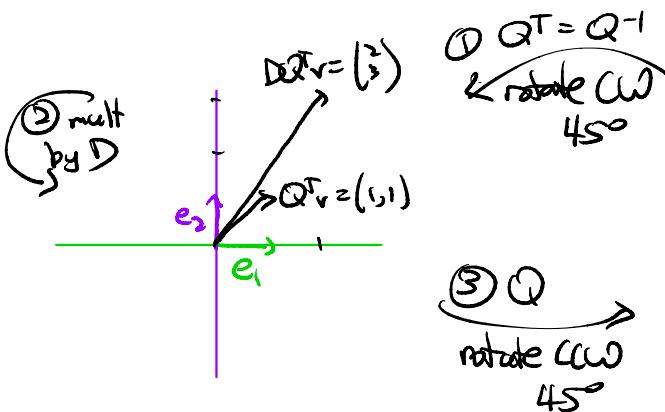
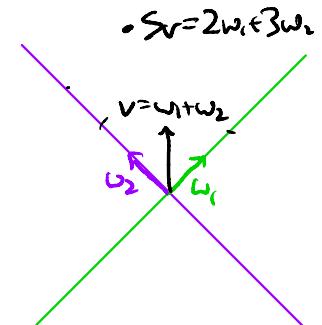
$$Q = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \quad D = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$

Let's draw a picture of this.

$$Q e_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$Q e_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

} Q rotates CCW by 45°



[DEMO]

This is the same picture as before, except that it's much easier to visualize multiplication by Q and $Q^{-1} = Q^T$.

Think: Q preserves **lengths** and **angles**.

Multiplication by an orthogonal matrix is basically a **rotation** or a **reflection**.

More on this when we do the SVD.

Exercise (outer product form):

If $\{u_1, u_2, \dots, u_n\}$ is an orthonormal eigenbasis of S and $Su_i = \lambda_i u_i$, so $S = QDQ^T$ for

$$Q = (u_1 \dots u_n) \quad D = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

then

$$S = \lambda_1 u_1 u_1^T + \lambda_2 u_2 u_2^T + \dots + \lambda_n u_n u_n^T.$$

This is almost the SVD of A .

Compare: If P_V is the projection matrix onto a subspace V , then

$$P_V = u_1 u_1^T + u_2 u_2^T + \dots + u_d u_d^T$$

If $\{u_1, u_2, \dots, u_d\}$ is an orthonormal basis of V .

In fact, this is a special case of the exercise above: V is the 1-eigenspace, and the other eigenvalue is 0. (Recall that P_V is symmetric.)

Positive-Definite Symmetric Matrices

Recall: $S = A^T A$ is a **very important example** of a symmetric matrix!

Observation: If v is an eigenvector of S with eigenvalue λ , then

$$v \cdot (Sv) = v \cdot (\lambda r) = \lambda (r \cdot v) = \lambda \|v\|^2$$

$$\text{and } v \cdot (Sr) = v^T Sr = v^T A^T A v = (Av)^T (Av) \\ = (Av) \cdot (Av) = \|Av\|^2.$$

So:
$$\lambda \|v\|^2 = \|Av\|^2$$

Consequences:

- If λ is an eigenvalue of $S = A^T A$ then $\lambda \geq 0$.

If $\lambda = 0$ then $v \in \text{Null}(A) = 0\text{-eigenspace}$, so:

- If A has **full column rank** then $\lambda > 0$.

Hence $A^T A$ only has **positive eigenvalues** when A has **FCR**.

This condition is very important, so it has a name.

Def: A symmetric matrix S is called:

Example

- **positive-definite (pre-def)**
if its eigenvalues are all **positive**. $Q \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} Q^T$
- **positive-semidefinite (pre-semidef)**
if its eigenvalues are all **nonnegative**.
(this allows $\lambda=0$ as well) $Q \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} Q^T$
- **indefinite**
if it has **positive and negative eigenvalues**. $Q \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{pmatrix} Q^T$
- negative-definite, etc.

NB: A positive-definite matrix is also positive-semidefinite because $\lambda > 0 \Rightarrow \lambda \geq 0$.

Amazingly, it is possible to check positive-definiteness without computing any eigenvalues, thanks to the following incredible theorem.

Criteria for Positive-Definiteness:

Let S be a symmetric matrix.

The Following Are Equivalent:

(1) S is positive-definite

(2) [Positive Energy Criterion]

$$x^T S x > 0 \text{ for all } x \neq 0.$$

(3) [Determinant Criterion] The determinants of all n upper-left submatrices are positive:

$$S = \begin{pmatrix} 7 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 5 \end{pmatrix} \Rightarrow \det \begin{pmatrix} 7 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 5 \end{pmatrix} > 0$$

$$\det \begin{pmatrix} 7 & 2 \\ 2 & 6 \end{pmatrix} > 0$$

$$\det(7) > 0$$

(4) [Cholesky Decomposition]

$S = A^T A$ for a matrix A with full column rank.

(5) [LDL^T Decomposition]

S has an LU decomposition where U has positive diagonal entries.

(no row swaps needed!)

(5) is fastest: it's just an elimination problem!

Remarks:

(2) In physics, $x^T S x = \langle x | T | x \rangle$ sometimes measures the **energy** of a system.

(2 \Rightarrow 1) If λ is an eigenvalue with eigenvector v then

$$0 < v^T S v = v \cdot (Sv) = v \cdot (\lambda v) = \lambda \|v\|^2$$
$$\Rightarrow \lambda > 0 \quad \checkmark$$

(1 \Rightarrow 2) Let $x \in \mathbb{R}^n$, $x \neq 0$. We can orthogonally diagonalize: $S = Q D Q^T$ where

$$D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{pmatrix} \quad \lambda_i > 0$$

Since $\text{Null}(Q^T) = 0$ we have $y = Q^T x \neq 0$.

Then

$$\begin{aligned} x^T S x &= x^T Q D Q^T x = (Q^T x)^T D (Q^T x) \\ &= y^T D y = (y_1, \dots, y_n) \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \\ &= \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2 \geq 0 \quad \checkmark \end{aligned}$$

(3) This is proved in the LDL^T supplement (L22).

(4 \Rightarrow 1) We did this above.

(1 \Rightarrow 4) We'll discuss the **Cholesky Decomposition** next time.

(5) We'll discuss the **LDL^T Decomposition** next time.

There are analogous

Criteria for Positive-Semidefiniteness:

Let S be a symmetric matrix.

The Following Are Equivalent:

(1) S is positive-semidefinite

(2) $x^T S x \geq 0$ for all $x \neq 0$

(3) The determinants of all n upper-left submatrices
are nonnegative.

(4) $S = A^T A$ for a matrix A with full column rank.

Recap: If A is any matrix, then

$S = A^T A$ has nonnegative eigenvalues,
so it is positive-semidefinite.