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Symmetric Matrices & the Spectral Theorem

Recall : S is symmetric if SIST
lin particular, it is square

Primary Example : the matrix of column dot products
S =ATA for any matrix A

Diagonalization works out very nicely for symmetric matrices;
this is summed up in the spectral theorem

,
our main

topic for today, The spectral theorem is the main
ingredient in the SVD also.

Eg: S=(
What do you notice about the eigenspaces?

Fact 1 : Let S be an un symmetric matrix & nvEIR?.
Then v

. /Su) = (Sv) · w.
Proof : r(Sw) = vi(Su) = (vtS) w = (Stv)+y (Sv)Tw

= (su)of
Fact 2 : Eigenvectors of S with different eigenvalues

are orthogonal-
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Proof : Say Su = Xir. Suzidara X.**2. Then

Y (Svr) = vi
: (xav) = Xa(vivz)

111

(Sri) . ve = (iv) .v = Xilviva)

So Alviu) = Xalviva) => (xi- (2) (riv)=0

* vVz=O , which means v.tu. II

Fact 3 : All eigenvalues of S are real numbers.

Proof : Say Sv =Xv, vtO, and X is not real
,
so X**

latib-ib when b0 . We know Si=Ji,
so 2 => vv=0 (they are eigenvectors with
different eigenvalues). But

=() v=(
=> v= zitziert - - - +ZrEn

= (z)"+ 1zzk +- .. + 1znk
which is >0 because v8O. So no such non-
real eigenvalue can exist. If

Fact 4 : If S is symmetric and X is can eigenvalue
of S

,
then AMIX) =GM(X).

IF can't prove this without ideas from abstract rector spaces)



Consequence of 23 4 :

Any symmetric matrix S is diagonalizable over R.
Moreover, it has an orthenormal eigenbasis.

Eg: S= (=-(-((
Compute eigenvectors :

X= 1 X =- I X=2

wi
=(2) =(2) wi=( )

Check orthogonality :

wiwz= (2) .( =0 wirs= (2)(20 was=(2)
Orthonomal Eigenbasis :
This shows(Wyw2

,
was is an orthogonal

eigenbasis. To make it orthonomal , we divide

by the lengths :

Will Wall=3 llwall=3

=> [5)(), (i)
is an Orthonomal eigenbasis-

onthogonal matrix
Matrix form :

S =QDQQDQT for Q) D=(



Recall : A square matrix Q with orthenoral columns
is called orthogonal. This means

QQT In so QT =Q

To summarize :

Spectral Theorem : A real symmetric matrix S has an
outhonormal basis of real eigenvectors :

S = QDQT

for Q Orthogonal and D diagonal.

Fast-Forward : Apply the spectral theorem to S=ATA and
you get 90% of the SVD for A.

NB : Conversely , if S= QDQT for D diagonal then
S must be symmetric, because

S= (QDQT)T = QTTDTQT = QDQT =S .

In other words
,
ifS has an orthonomal eigenbasis

then S is necessarily symmetric! More on HW.

Eg: S=) p(x) =- (x-4)(x+2)2

Eigenspace Bases :

x=4 = &(2) x=-2: [() . (i)3r2
NB: Since AM(-2)=2 , we must get 2 rectors here.
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Check orthogonality : ???

()(5) =0 (2) () =0 (i) (a) =20

egenspace
Doesn't this contradict Fact 2 ?

<y No ! These eigenvectors have the same eigenvalue
X= -2. In fact

,
since the (-2)-eigenspace is

a plane, there will be plenty of non-orthogonal
(-2)- eigenvectors)
Ok
, so how do we produce an orthenormal eigenbasis?

Grom-Schmidt to the rescue !
wi = (2)

Wi= (g)-) = (i)
wa= (g)

(We only had to do G-S on 5) , [13 because

they're alreadyI wil
Check orthogonality lagain) :

(i) =0 (2) =0 (i) (i) =o

So S=QDQT for

Q =LiD=
250 %

(
will waliwall waiwall
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How to Orthogonally Dragonalize a Real, Symmetric
(1) Diagonalize S . (it is necessarily diagonalizable) Matrix :

(2) Run Gran-Schmidt on eigenspace bases with
multiplicity 2.

(3) Divide by lengths.
The result is an orthonomal eigenbasis.

Eg : S = I(j) p(x) =X-5x+6 = (x -2)(x -3)
X=2 w=(i) Xn=3 wili)
So S =QDQT for

a ==(ii) D = (3)
Let's draw a picture of this.

Q= (i) Ge=(i) 3 &rotateo-T ↑ us To
450

Dav= (5) QT · Su=2w+zw,

-awe all
450 ·
&

450
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This is the same picture as before, except that it's
much easier to visualize multiplication by Q and

Q =QT.

Think :Q preserves lengths and angles

Multiplication by an orthogonal matrix is basically
a rotation or a reflection.

More on this when we do the SVD-

Exercise (outer product form) :
If Yupus -...,un3 is an orthonomal eigenbasis of S
and Sui = Xini

,
so S=QIDQT for

Q= (4 ...un)D =( ..a)
then

S = X, n.u + XzUzuaT+ - - - + XnUnUnT
.

This isalmost the SVD of A.

Compare : IfI is the projection matrix onto a subspace
V
, theunit unet+ --+unuet
if Sucus...un] is an orthonomal basis of V.

In fact, this is a special case of the exercise above:
V is the 1-eigenspace , and the other eigenvalue is 0.
(Recall that Pr is symmetric)



Positive- Definite Symmetric Matrices

Recall : S=ATA is a very important example of a
symmetric matrix !

Observation : If v is an eigenvector of S with
eigenvalue X, then
v(Sul= v = (xv) = X (v -v)= XNv/2

S=ATA

and v (Sr) = vTSv = vTAAr = (rJT(Av)
= (Av) . (Av) = lAulk

So : XIvI= /Aul

Consequences:
· If X is an eigenvalue of S=ATA then X20.

If X =0 then veMulA) =O-eigenspace, so :
· If A has full column rank then /30.

Hence ATA only has positive eigenvalues when A has
FCR.

This condition is very important, so it has a name.



Def: A symmetric matrix S is called : Example
· positive- definite (tre-def) Q()QT
if its eigenvalues are all positive.

· positive-semidefinite (eve-semidet)
if its eigenvalues are all nonnegative. Q(2%)QT

(this allows 1=0 as well)
· indefinite
if it has positive and negative Q(QT
eigenvalues .

· negative-definite, etc .

NB : A positive-definite matrix is also positive- semidefinite
because 30= 170.

Amazingly, it is possible to check positive
-definiteness

without computing any eigenvalues, thanks to the following
incredible theorem.



Criteria for Positive- Definiteness :

Let S be a symmetric matrix.
The Following Are Equivalent :
(1) S is positive- definite
(2)(Positive Energy Criterion]

XTSX0 for all X*0.

(3) [Determinant Criterion] The determinants of all n

upper-left submatrices are positive :

S = (3) vodet >0

det (3) 0
det(7) >0

(4) (Cholesky Decomposition]
SIATA for a matrix A with full column rank.

(5) LDLT Decomposition]s has an LU decomposition where U has

positive diagonal entries.
(no now swaps needed!)

15) is fastest : it's just an elimination problem !



Remarks :
(2) In physics, xTSX = (x1 + IX) sometimes

measures the energy of a system.

(2=>1) If X is an eigenvalue with eigenvector ~
then
O<+Su = v . (Sv)= v. (Xv) = X 1ub
= X0 ~

(12) Let xIRY X#0. We can outhogonally
diagonalize : S=QDQT where

D = (x) X:>0

Since Nul(QT) -O we have y=QTX#0.

Then

XSX= XQDQT = (AIT D(QTX)

= yTDy = (y)ye)(X)(
= Nyizys+-+Ay30r

(3) This is proved in the LDLT supplement (L22).

141) We did this above.

(l =4) We'll discuss the Cholesky Decomposition
next time.

(5) We'll discuss the LDLT Decomposition next time.



There are analogous
Criteria for Positive- Semidefiniteness :
Let S be a symmetric matrix.
The Following Are Equivalent :

(1) S is positive- semidefinite
(2) x+SX =0 for all XO
(3) The determinants of all n upper-left submatrices
are nonnegative.

(4) S=ATA for a matrixAfull column rank.

Recap : If A is any matrix, then

S = ATA has nonnegative eigenvalues,
so it is positive-semidefinite.


