

LDL^T and Cholesky Decompositions

L22

This amounts to an LU decomposition of a symmetric, positive-definite matrix that is twice as fast to compute!

Thm: A positive-definite, symmetric matrix S can be uniquely decomposed as

$$S = LDL^T \quad \text{and} \quad S = L_1 L_1^T \quad \text{Cholesky}$$

where:

- D is diagonal with positive diagonal entries
- L is lower-unitriangular
- L_1 is lower-triangular with positive diagonal entries

See the **supplement** for a proof - it's basically Gram-Schmidt, with $x \cdot y$ replaced by $x^T S y$.

NB: L_1 has full column rank so $S = L_1 L_1^T$ is necessarily positive-definite and symmetric! (L21)

NB: Let $U = DLT$.

(scale the rows of L^T by the diagonal entries of D)

Then U is upper-triangular with positive diagonal entries, so U is in REF, so

$$S = L(DLT) = LU \text{ is the LU decomposition.}$$

This tells us how to compute the LDL^T decomposition.

How to Compute $S = LDL^T$:

Let S be a symmetric matrix.

(1) Compute the LU decomposition $S = LU$.

→ If you have to do a row swap then **stop**:
 S is not positive-definite.

→ If the diagonal entries of U are not all positive then **stop**: S is not positive-definite.

(2) Let D = the matrix of diagonal entries of U .

(Set the off-diagonal entries to zero.) Then

$U = DLT$ (**magic!**) and $S = LDL^T$.

NB: This is the wrong procedure — it doesn't take advantage of the fact that S is symmetric. If you're more clever, you can compute $S = LDL^T$ in $\frac{1}{3}n^3$ time, as opposed to $\frac{2}{3}n^3$ for LU . See the supplement if you want to know how.

NB: This is still an LU decomposition, so it lets you solve $Sx = b$ in $O(n^2)$ time.

NB: $S = QDQ^T$ and $S = LDL^T$ are both "diagonalizations" in the sense of quadratic forms — more on the HW.

Eg: Find the $S = LDL^T$ decomposition of

$$S = \begin{pmatrix} 2 & 4 & -2 \\ 4 & 9 & -1 \\ -2 & -1 & 14 \end{pmatrix}$$

We use the 2-column method:

	L	U
	$\begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}$	$\begin{pmatrix} 2 & 4 & -2 \\ 4 & 9 & -1 \\ -2 & -1 & 14 \end{pmatrix}$
$\underbrace{R_2 - 2R_1}_{R_2 \leftarrow R_2 - 2R_1}$	$\begin{pmatrix} 2 & & \\ -1 & & \\ & & \end{pmatrix}$	$\begin{pmatrix} 2 & 4 & -2 \\ 0 & 1 & 3 \\ 0 & 3 & 12 \end{pmatrix}$
$\underbrace{R_3 + R_2}_{R_3 \leftarrow R_3 + R_2}$	$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 3 & 1 \end{pmatrix}$	$\begin{pmatrix} 2 & 4 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 3 \end{pmatrix}$

So $S = LDL^T$ for

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 3 & 1 \end{pmatrix} \quad D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Check:

$$DL^T = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 4 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 3 \end{pmatrix} \stackrel{\text{(match!)}}{=} U$$

Cholesky from LDL^T :

If S is positive definite then $S = LDL^T$ where D is diagonal with positive diagonal entries.

$$\text{If } D = \begin{pmatrix} d_1 & & 0 \\ & \ddots & \\ 0 & & d_n \end{pmatrix} \text{ set } \sqrt{D} = \begin{pmatrix} \sqrt{d_1} & & 0 \\ & \ddots & \\ 0 & & \sqrt{d_n} \end{pmatrix}$$

Then $\sqrt{D} \cdot \sqrt{D}^T = D$ and $\sqrt{D}^T = \sqrt{D}$, so

$$LDL^T = L\sqrt{D}\sqrt{D}^T L^T = (L\sqrt{D})(L\sqrt{D})^T$$

So just set

$$L_1 = L\sqrt{D} \Rightarrow S = L_1 L_1^T$$

Strong: " $S = A^T A$ is how a positive-definite symmetric matrix is put together."

$S = L_1 L_1^T$ is how you pull it apart."

Eg: $\begin{pmatrix} 2 & 4 & -2 \\ 4 & 9 & -1 \\ -2 & -1 & 14 \end{pmatrix} = L_1 L_1^T$ for

$$L_1 = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 3 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & \sqrt{5} & 0 \\ 0 & 0 & \sqrt{3} \end{pmatrix} = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 2\sqrt{2} & 1 & 0 \\ -\sqrt{2} & 3 & \sqrt{3} \end{pmatrix}$$

Diagonalizing Quadratic Forms

In the PCA we will be interested in minimizing/maximizing the following kind of function.

Def: A quadratic form in n variables is a function

$$q(x_1, x_2, \dots, x_n) = \text{sum of terms of the form } a_{ij}x_i x_j.$$

Eg: $q(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2 - 5x_1 x_2$

Non-Eg: $q(x_1, x_2) = x_1^2 + x_2^2 + x_1 + x_2$ is not quadratic -
 x_1, x_2 are linear terms

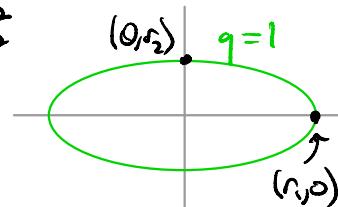
NB: Thinking of $x = (x_1, x_2, \dots, x_n)$ as a vector in \mathbb{R}^n , for any scalar c ,

$$\begin{aligned} q(cx) &= q(cx_1, \dots, cx_n) = \sum a_{ij}(cx_i)(cx_j) \\ &= c^2 \sum a_{ij}x_i x_j = c^2 q(x) \end{aligned}$$

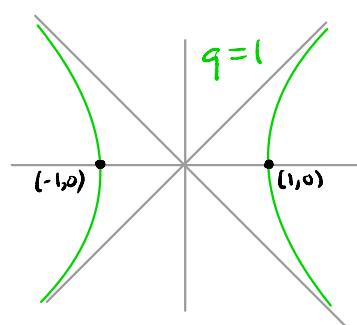
$$q(cx) = c^2 q(x)$$

Eg: $q(x_1, x_2) = \left(\frac{x_1}{r_1}\right)^2 + \left(\frac{x_2}{r_2}\right)^2 = \frac{1}{r_1^2}x_1^2 + \frac{1}{r_2^2}x_2^2$

is a quadratic form and $q(x_1, x_2) = 1$ defines an ellipse centered at the origin with radii r_1 & r_2 .



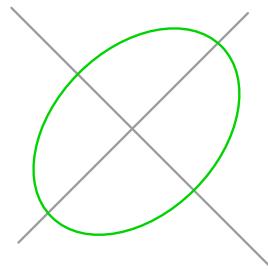
Eg: $q(x_1, x_2) = x_1^2 - x_2^2$ is a quadratic form and $q(x_1, x_2) = 1$ defines a hyperbola. Indeed, you can factor $x_1^2 - x_2^2 = (x_1 - x_2)(x_1 + x_2) = 1$, so this is $xy = 1$ for $x = x_1 - x_2$, $y = x_1 + x_2$ (change of variables)



Eg: $q(x_1, x_2) = \frac{5}{3}x_1^2 + \frac{5}{3}x_2^2 - x_1x_2 = 1$

also defines a conic section.

Is it an ellipse or a hyperbola?
What are the axes & radii?



This example is a lot harder because the quadratic form had a **cross-term**:

$$q(x_1, x_2) = \frac{5}{3}x_1^2 + \frac{5}{3}x_2^2 - x_1x_2$$

The quadratic forms with no cross-terms are the easiest to understand.

Def: A quadratic form is **diagonal** if it has no cross-terms. In other words, it has the form

$$q(x_1, \dots, x_n) = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \dots + \lambda_n x_n^2.$$

Eg: We can make a **linear change of variables** to eliminate the cross term in

$$q(x_1, x_2) = \frac{5}{2}x_1^2 + \frac{5}{2}x_2^2 - x_1x_2.$$

Set $x_1 = \frac{1}{\sqrt{2}}(y_1 + y_2)$, $x_2 = \frac{1}{\sqrt{2}}(y_1 - y_2)$. Then

$$q(x_1, x_2) = q\left(\frac{1}{\sqrt{2}}(y_1 + y_2), \frac{1}{\sqrt{2}}(y_1 - y_2)\right)$$

$$= \frac{5}{2} \cdot \frac{1}{2}(y_1 + y_2)^2 + \frac{5}{2} \cdot \frac{1}{2}(y_1 - y_2)^2 - \frac{1}{2}(y_1 + y_2)(y_1 - y_2)$$

$$= \frac{5}{4}(y_1^2 + y_2^2 + 2y_1y_2) + \frac{5}{4}(y_1^2 + y_2^2 - 2y_1y_2) - \frac{1}{2}(y_1^2 - y_2^2)$$

$$= \frac{5}{2}(y_1^2 + y_2^2) - \frac{1}{2}(y_1^2 - y_2^2)$$

$$= 2y_1^2 + 3y_2^2$$

This is diagonal!

How did I know to change coordinates like this?
Here's how to turn it into a question about symmetric matrices.

Fact: Every quadratic form can be written

$$q(x) = x^T S x$$

for a symmetric matrix S .

NB: $x^T S x = x \cdot (Sx)$ is a scalar.

$$\text{Eg: } S = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}$$

$$\begin{aligned}
 x^T S x &= (x_1 \ x_2 \ x_3) \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \\
 &= (x_1 \ x_2 \ x_3) \begin{pmatrix} 1x_1 + 2x_2 + 3x_3 \\ 2x_1 + 4x_2 + 5x_3 \\ 3x_1 + 5x_2 + 6x_3 \end{pmatrix} \\
 &= 1x_1^2 + 2x_1x_2 + 3x_1x_3 \\
 &\quad + 2x_2x_1 + 4x_2^2 + 5x_2x_3 \\
 &\quad + 3x_3x_1 + 5x_3x_2 + 6x_3^2 \\
 &= 1x_1^2 + 4x_2^2 + 6x_3^2 + 4x_1x_2 + 6x_1x_3 + 10x_2x_3
 \end{aligned}$$

NB: The (1,2) and (2,1) entries both contribute to the x_1x_2 coefficient, but only the (1,1) entry contributes to the x_1^2 coefficient.

How to get S from q ?

The x_i^2 coefficients go on the diagonal, and half of the $x_i x_j$ coefficient goes in each of the (i,j) and (j,i) entries:

$$q = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 + a_{12}x_1x_2 + a_{13}x_1x_3 + a_{23}x_2x_3 \implies S = \begin{pmatrix} a_{11} & a_{12}/2 & a_{13}/2 \\ a_{12}/2 & a_{22} & a_{23}/2 \\ a_{13}/2 & a_{23}/2 & a_{33} \end{pmatrix}$$

NB: q is diagonal $\Leftrightarrow S$ is diagonal: the a_{ij} 's are the coefficients of the cross terms. So:

$$x^T \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \ddots & & 0 \\ \vdots & & \ddots & 0 \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} x = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \cdots + \lambda_n x_n^2$$

Key Idea: let's orthogonally diagonalize S :

$$S = QDQ^T \quad D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \ddots & & 0 \\ \vdots & & \ddots & 0 \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Let $x = Qy$: this is a linear change of variables.

Then

$$\begin{aligned} q(x) &= x^T S x = x^T Q D Q^T x \stackrel{x=Qy}{=} (Qy)^T Q D Q^T (Qy) \\ &= y^T Q^T Q D Q^T Q y \stackrel{Q^T Q = I_n}{=} y^T D y \\ &= \lambda_1 y_1^2 + \lambda_2 y_2^2 + \cdots + \lambda_n y_n^2. \end{aligned}$$

This is diagonal!

How to Diagonalize a Quadratic Form q :

(1) Write $q(x) = x^T S x$ for a symmetric matrix S

(hard part) (2) Orthogonally diagonalize $S = QDQ^T$

(3) Change variables $x = Qy$.

Then $q = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \cdots + \lambda_n y_n^2$, where

$\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigenvalues of S .

$$\text{Eg: } q(x_1, x_2) = \frac{5}{2}x_1^2 + \frac{5}{3}x_2^2 - x_1x_2$$

$$(1) q(x) = x^T S x \text{ for } S = \begin{pmatrix} 5/2 & -1/2 \\ -1/2 & 5/3 \end{pmatrix}$$

$$(2) S = Q D Q^T \text{ for}$$

$$Q = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad D = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$

$$(3) x = Qy: \text{ this means}$$

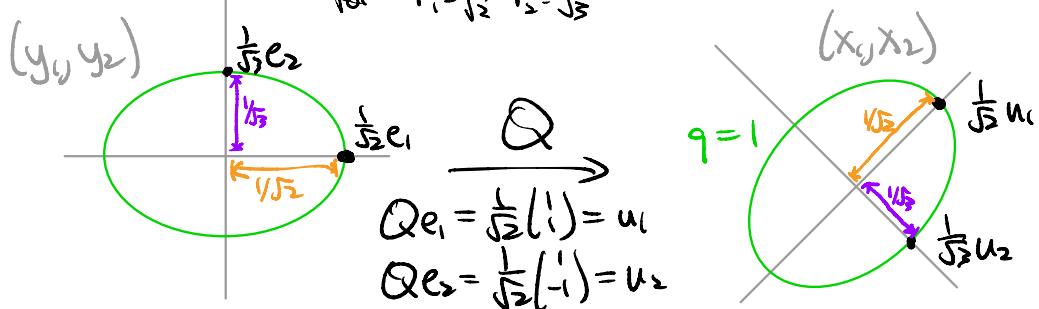
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = Q \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}}(y_1 + y_2) \\ \frac{1}{\sqrt{2}}(y_1 - y_2) \end{pmatrix}$$

$$\Rightarrow q = 2y_1^2 + 3y_2^2$$

These explains where the formulas before came from! It also tells us how to draw the ellipse. This is easy in the (y_1, y_2) -coordinates:

$$q = 2y_1^2 + 3y_2^2 = \left(\frac{y_1}{r_1}\right)^2 + \left(\frac{y_2}{r_2}\right)^2$$

$$\text{for } r_1 = \frac{1}{\sqrt{2}}, r_2 = \frac{1}{\sqrt{3}}$$



So the axes are the lines thru u_1 & u_2 and the radii are $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{3}}$. (NB $\|u_1\| = 1 = \|u_2\|$)

Diagonalization also tells us if $q(\mathbf{x})=1$ is an ellipse or a hyperbola:

- it's an **ellipse** if both eigenvalues are **positive**:

$$\lambda_1 y_1^2 + \lambda_2 y_2^2 = 1 \quad \lambda_1, \lambda_2 > 0$$

Since λ_1, λ_2 are the eigenvalues of S , this means S is **positive-definite**

- it's a **hyperbola** if $\lambda_1 > 0$ and $\lambda_2 < 0$ or vice-versa: this means S is **indefinite**.

Def: A quadratic form q is **positive-definite** if $q(\mathbf{x}) > 0$ for all $\mathbf{x} \neq 0$.

If $q(\mathbf{x}) = \mathbf{x}^T S \mathbf{x}$ then q is positive-definite $\Leftrightarrow S$ is positive-definite by the positive-energy criterion.

In this case, $q=1$ defines an **ellipsoid** ("egg"), and orthogonally diagonalizing S computes its axes & radii.

How to Put an Ellipsoid in Standard Form:

Let q be a positive-definite quadratic form, so $q(x)=1$ defines an ellipsoid. Write $q(x)=x^T S x$.

Orthogonally diagonalize S :

$$S = Q D Q^T \quad Q = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & & 1 \end{pmatrix} \quad D = \begin{pmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n & \\ & & & 0 \end{pmatrix}$$

The axes go thru u_1, \dots, u_n , and the radii are $\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}$.

Eg: Let's diagonalize $q(x) = \frac{1}{5}(9x_1^2 + 6x_2^2 - 4x_1x_2)$

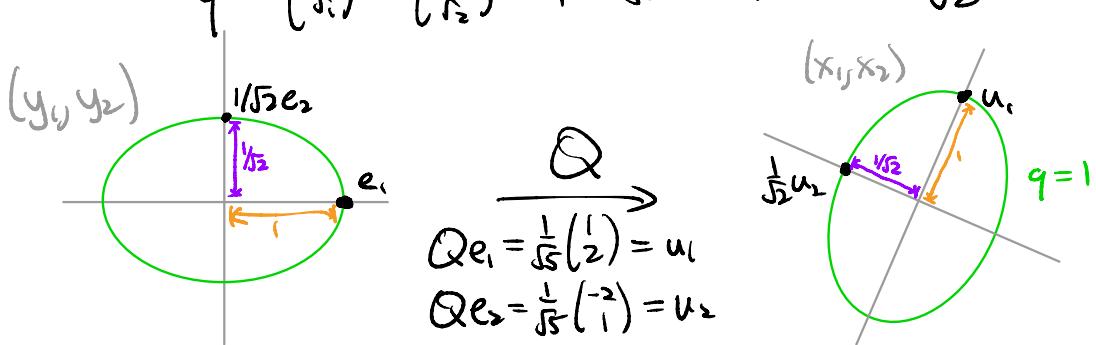
(1) $q(x) = x^T S x$ for $S = \frac{1}{5} \begin{pmatrix} 9 & -4 \\ -4 & 6 \end{pmatrix}$

(2) $S = Q D Q^T$ for $Q = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} \quad D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$

(3) $x = Qy \rightsquigarrow q = y_1^2 + 2y_2^2$

This means $q=1$ is an ellipse:

$$q = \left(\frac{y_1}{r_1}\right)^2 + \left(\frac{y_2}{r_2}\right)^2 = 1 \quad \text{for } r_1=1 \quad r_2=\frac{1}{\sqrt{2}}$$



So the axes go thru u_1 & u_2 , with radii 1 & $1/\sqrt{2}$.