

Quadratic Optimization

L23

This is the last ingredient we'll need for the SVD/PCA.

It is the simplest case of **quadratic programming**, which is a big subfield of optimization. (Least squares is also a kind of quadratic programming.)

Def: An **optimization problem** means finding **extremal** values (the minimum and/or maximum) of a function $f(x_1, x_2, \dots, x_n)$, subject to some constraint on the input (x_1, x_2, \dots, x_n) .

In quadratic optimization, we want to extremize a quadratic form $q(x_1, x_2, \dots, x_n)$. But this almost never has a maximum — recall that $q(cx) = c^2 q(x)$, so if $c = 100000$ then $q(cx)$ is very large! Hence we introduce the constraint $\|x\|=1$.

Quadratic Optimization Problem:

Find the minimum & maximum values of a quadratic form $q(x_1, x_2, \dots, x_n)$ subject to the constraint $x_1^2 + x_2^2 + \dots + x_n^2 = 1$.

Of course, if $x = (x_1, x_2, \dots, x_n)$ then

$$x_1^2 + x_2^2 + \dots + x_n^2 = 1 \iff \|x\| = 1.$$

As usual, quadratic optimization is relatively easy when q is **diagonal**.

Eg: Extreme $q(x_1, x_2) = 3x_1^2 - 2x_2^2$ subject to

Maximum:

$$q(x_1, x_2) = 3x_1^2 - 2x_2^2 \leq 3x_1^2 + 3x_2^2 = 3(x_1^2 + x_2^2) = 3$$

$-2x_2^2 \leq 3x_2^2$

$x_1^2 + x_2^2 = 1$

So the maximum value is 3; it is attained at $(x_1, x_2) = \pm (1, 0)$.

Minimum:

$$q(x_1, x_2) = 3x_1^2 - 2x_2^2 \geq -2x_1^2 - 2x_2^2 = -2(x_1^2 + x_2^2) = -2$$

$3x_1^2 \geq -2x_1^2$

So the minimum value is -2; it is attained at $(x_1, x_2) = \pm (0, 1)$.

This trick works whenever q is diagonal:

$$q(x) = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \dots + \lambda_n x_n^2$$

Order the x_i such that $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$.

- The **maximum** value is λ_1 , attained at e_1 .
- The **minimum** value is λ_n , attained at e_n

$\} \text{ subject to } \|x\|_2^2 = 1$

(Note that the λ_i could be negative.)

So how to extremize a quadratic form in general?

Orthogonally diagonalize!

Recall: We can write $q(x) = x^T S x$ for a symmetric matrix S . If we orthogonally diagonalize S :

$$S = Q D Q^T \quad D = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

and change variables $x = Qy$, then

$$q = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \cdots + \lambda_n y_n^2.$$

Important: since Q has orthonormal columns, it preserves lengths & dot products (L13):

$$\|Qy\| = \|y\| \quad (Qy_1) \cdot (Qy_2) = y_1 \cdot y_2.$$

In particular, $\|y\| = 1 \iff \|x\| = \|Qy\| = 1$, so this doesn't change our constraint.

Eg: Extremize $q(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2 - 5x_1x_2$

subject to $x_1^2 + x_2^2 = 1$.

We have $q = x^T S x$ for $S = \begin{pmatrix} 1/2 & -5/2 \\ -5/2 & 1/2 \end{pmatrix}$.

Orthogonally diagonalize: the characteristic polynomial is

$$p(\lambda) = \lambda^2 - \lambda + 6 = (\lambda - 3)(\lambda + 2)$$

We compute an orthonormal eigenbasis:

$$\lambda = 3 \rightsquigarrow \begin{pmatrix} -b \\ a-\lambda \end{pmatrix} = \begin{pmatrix} 5/2 \\ -5/2 \end{pmatrix} \rightsquigarrow w_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\lambda = -2 \rightsquigarrow \begin{pmatrix} -b \\ a-\lambda \end{pmatrix} = \begin{pmatrix} 5/2 \\ 5/2 \end{pmatrix} \rightsquigarrow w_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

So $S = QDQ^T$ for

$$Q = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad D = \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}.$$

Setting $x = Qy$ we have $q = 3y_1^2 - 2y_2^2$, so:

- The maximum value is $3 =$ largest eigenvalue.

It is attained at $y = \pm \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

$$\Rightarrow x = \pm Q \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \pm w_1 \quad (= 1^{\text{st}} \text{ column of } Q) \\ = \text{any unit } 3\text{-eigenvector of } S.$$

- The minimum value is $-2 =$ smallest eigenvalue.

It is attained at $y = \pm \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$\Rightarrow x = \pm Q \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \pm w_2 \quad (= 2^{\text{nd}} \text{ column of } Q) \\ = \text{any unit } (-2)\text{-eigenvector of } S.$$

NB: If x is a unit eigenvector of S with eigenvalue

then

$$q(x) = x^T S x = x^T (Sx) = x^T (\lambda x) = \lambda x^T x = \lambda \|x\|^2 = \lambda \quad \checkmark$$

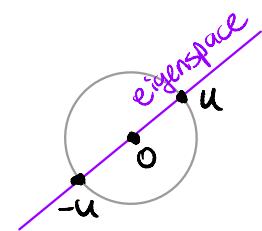
How to Extremize a Quadratic Form q subject to
 Diagonalize $q(x)$: express it as $\|x\|=1$:
 $q(x) = x^T S x \quad S = Q D Q^T$.

- The maximum value is the largest eigenvalue of S . It is attained at any unit eigenvector.
- The minimum value is the smallest eigenvalue of S . It is attained at any unit eigenvector.

Conventionally, we choose the largest eigenvalue to be first, and order them decreasing:

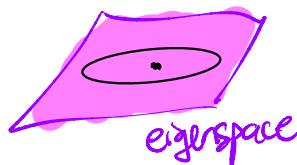
$$D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \ddots & 0 \\ 0 & & \lambda_n \end{pmatrix} \quad \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n.$$

NB: If $GM(\lambda) = 1$, then there are only 2 unit eigenvectors $\pm u$: there are only 2 unit vectors on any line.



Otherwise, there are infinitely many!

For instance, if the eigenspace is a plane then there's a circle of unit eigenvectors. In fact, if $\{u_1, u_2\}$ is an orthonormal basis of the λ -eigenspace, then any unit λ -eigenvector can be written $u = x_1 u_1 + x_2 u_2$ where $\|u\|^2 = x_1^2 + x_2^2 = 1$.



Additional Constraints

Sometimes the largest or smallest value of q is not very interesting — for example, in the spectral graph theory problem on the homework. We can “rule out” that value by imposing an additional constraint.

“Second-Largest” Value:

Suppose $q(x)$ is maximized (subject to $\|x\|=1$) at u_1 . What is the maximum value of $q(x)$ subject to

$$\|x\|=1 \text{ and } x \cdot u_1 = 0?$$

This rules out u_1 (because $u_1 \cdot u_1 = 1$), so we get the “second-largest” value.

(Actually q attains every value in between, too — not on vectors orthogonal to u_1 , though — hence the quotes.)

Eg: Find the largest and second-largest values of

$$q(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + 5x_3^2 + 2x_1x_2 - 8x_1x_3 + 8x_2x_3$$

$$\text{subject to } x_1^2 + x_2^2 + x_3^2 = 1.$$

Diagonalize q : we have $q(x) = x^T S x$ for

$$S = \begin{pmatrix} 2 & 1 & -4 \\ 1 & 2 & 4 \\ -4 & 4 & 5 \end{pmatrix} = Q D Q^T$$

$$Q = \begin{pmatrix} -1/\sqrt{6} & 1/\sqrt{2} & \sqrt{3}/\sqrt{6} \\ 1/\sqrt{6} & 1/\sqrt{2} & -1/\sqrt{3} \\ 2/\sqrt{6} & 0 & 1/\sqrt{3} \end{pmatrix} \quad D = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

Change variables to $x = Qy$: then

$$q = 9y_1^2 + 3y_2^2 - 3y_3^2.$$

The largest (maximum) value is 9; it is achieved at $y = \pm \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \Rightarrow x = \pm Q \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \pm u_1$, $u_1 = \frac{1}{\sqrt{6}} \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$ (the unit 9-eigenvectors).

What about the second-largest value? This is easy in the y -coordinates: the extra constraint is

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 0, \text{ which means } y_1 = 0.$$

Then $q(0, y_2, y_3) = 3y_2^2 - 3y_3^2$. This has maximum value 3, achieved at $\pm \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.

Now we remember that

Q preserves dot products!

Since $u_1 = Q \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, if $x = Qy$ then

$$u_1 \cdot x = (Q(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix})).(Qy) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot y$$

Hence $u_1 \cdot x = 0 \iff \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot y = 0$. Therefore, the second-largest value is 3, and it is achieved at $\pm Q(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}) = \pm u_2$. $u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ (the unit 3-eigenvectors).

This same procedure works for any q .

How to Find the "Second-Largest" Value of q :

Diagonalize $q(x)$: express it as
 $q(x) = x^T S x$ $S = Q D Q^T$.

Put the eigenvalues in decreasing order:

$$\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n.$$

Let u_1 be a unit λ_1 -eigenvector (so q is maximized at u_1).

The largest value of $q(x)$ subject to

$$\|x\|=1 \text{ and } x \cdot u_1 = 0$$

is λ_2 ; it is achieved at

any unit λ_2 -eigenvector $\perp u_1$.

NB: Let u_2 be a unit λ_2 -eigenvector. Then $u_1 \cdot u_2 = 0$ automatically, unless $\lambda_1 = \lambda_2$ (ie, $\lambda_1 = \lambda_2$ has multiplicity ≥ 2). More on this on the HW.

Third-Largest Value, Etc:

Assume the eigenvalues are in decreasing order:

$$\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$$

Let u_3 be a unit λ_3 -eigenvector.

- The **largest** value subject to

$$\|x\|=1 \quad x \cdot u_1 = 0 \quad x \cdot u_2 = 0$$

is λ_3 ; it is achieved at any unit λ_3 -eigenvector. ("third-largest value")

- The **smallest** value subject to

$$\|x\|=1 \quad x \cdot u_n = 0$$

is λ_{n-1} ; it is achieved at any unit λ_{n-1} -eigenvector. ("second-smallest value")

etc.

Quadratic Optimization for $q(x) = \|Ax\|^2$

This is what we'll use in the PCA.

Let A be any matrix, $S = A^T A$, $q(x) = x^T S x$.

Then

$$\begin{aligned} q(x) &= x^T S x = x^T (A^T A) x = (x^T A^T)(A x) \\ &= (A x)^T (A x) = (A x) \cdot (A x) = \|A x\|^2. \end{aligned}$$

$q(x) = \|A x\|^2$ is the quadratic form for $S = A^T A$

This means we can extremize $\|A x\|^2$ subject to $\|x\|=1$.

Recall: The matrix $S = A^T A$ is **positive-semidefinite**.

It's even positive-definite if A has FCR.

Indeed, if $Sx = \lambda x$ and $\|x\|=1$ then

$$\begin{aligned} \|A x\|^2 &= x^T A^T A x = x^T S x = x^T \lambda x \\ &\Rightarrow \lambda x^T x = \lambda \|x\|^2 = \lambda. \end{aligned}$$

So $\lambda = \|A x\|^2 \geq 0$. (See L21.)

How to Extremize $q(x) = \|Ax\|^2$:

Orthogonally diagonalize $S = A^T A$. Put the eigenvalues of S in decreasing order:

$$\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$$

Let u_i be a unit λ_i -eigenvector.

- The largest value of $\|Ax\|^2$ subject to $\|x\|=1$ is λ_1 ; it is achieved at any unit λ_1 -eigenvector
- The smallest value of $\|Ax\|^2$ subject to $\|x\|=1$ is λ_n ; it is achieved at any unit λ_n -eigenvector
- The largest value of $\|Ax\|^2$ subject to $\|x\|=1$ and $x \cdot u_1 = 0$ is λ_2 ; it is achieved at any unit λ_2 -eigenvector ("second-largest value")

Likewise for third-largest, second-smallest, etc.

NB: These are eigenvalues and eigenvectors of S , not of A . Indeed, A need not be a square matrix!

The largest value of $\|Ax\|$ subject to $\|x\|=1$ has a name.

Def: The **matrix norm** of A is the maximum value of $\|Ax\|$ subject to $\|x\|=1$.

So $\|Ax\| = \sqrt{\lambda_1}$, where $\lambda_1 \geq 0$ is the largest eigenvalue of $S = A^T A$. It is achieved at any unit λ_1 -eigenvector (of S).

Eg: Compute $\|A\|$ for $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$.

In this case, $S = A^T A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$.

The characteristic polynomial is

$$p(\lambda) = \lambda^2 - 6\lambda + 5 = (\lambda - 5)(\lambda - 1)$$

So $\|A\| = \sqrt{5}$ because 5 is the largest eigenvalue. A unit eigenvector is

$$\begin{pmatrix} -b \\ a - \lambda \end{pmatrix} = \begin{pmatrix} -2 \\ -2 \end{pmatrix} \rightarrow u_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Check:

$$A u_1 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

$$\|A u_1\| = \left\| \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \right\| = \frac{1}{\sqrt{2}} \sqrt{1+4+4+1} = \frac{\sqrt{10}}{\sqrt{2}} = \sqrt{5}$$

