
L10L24The Singular Value Decomposition : Introduction

We finally come to the capstone of the class.
The SVD is a fundamental application of linear algebra to

· Data Science · Statistics (via PCA)
· Engineering · etc.

Today we'll discuss the outer product form and the
mechanics (plumbing?) of the SVD.

(back to

Theorem (SVD; outer product form) : rectangular
matrices)
-

Let A be an myn matrix of rankr . Then

A= quir ,

T+quin*+... +purT

where :

· 6767... 0

· [U,Uzyur] is an orthonormal set in IR".
·[VjVz, ...,Vr3 is an orthonormal set in IR".

What does this mean?

Idea : think of the columns of A as data points.

Here's an informal description of what the SVD says-

Let's not worry about the is or unit vectors yet.



r= 1 : If neR"velR" are nonzero vectors
,
then

upT = u(v... ) = (vin ... vin)I

weights -
multiples ofu

This is an man matrix of rank 1 : ColluuT] =SpanGus
Let's plot the columns of uut -
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Upshot: A matrix A of rank 1 encodes data points
kolumns) that lie on a line KolAll . The outer

product decomposition A= uvT tells you

which line : Spansu?
and which multiples of u : the entries of rI



r=2 : In this case
,
A= urT+Ut.
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linear combinations of usus

This is an men matrix of rank 2 : the columns

are linear combinations of v., U,
so

Col(A) = Spanniun3 is a plane.
9
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Upshot :A matrix A of rank 2 encodes data points
kolumns) that lie on a plane KollAll . The outer

product decomposition A= u, v,
+hav tells you

which plane : Spanni ,us?
and the weights ofn U2 "the entries of vis VI.

BUT : 1(2)( > (l(33)/1 ,
so the (3) -direction

is less important!

(2)(- 213 -2) + (=3)(312 +10

(2)/1213-2) (to one decimal place
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We're extracted important information :

our data points almost lie on a
line !



In general, the SVD will find :

· the best-fit line
· the best-fit plane
o the best-fit 3-space

etc
., for our data, all at once ,

and tell you
how well they fit your data in the sense of
orthogonal least squares. (226 , (27)

Why might you care?
· Data compression

: if A is a 2x5 matrix and
it almost has rank 1

,
then Anniv

A = ) I has 10 numbers
,
but

un= ))( I only has 7.

· Data analysis : The SVD will reveal all

approximate linear relations among your
data points.

· Dimension Reduction : If our data points are in

p
,000,000

but almost lie on a 100-dimensional

subspace, then computers only need to use 100

numbers
,
not 1, 000, 000 (curse of dimensionality).

· Statistics : SVD finds important correlations· etc...



Mechanics of the SVID

Recall the statement of the

Theorem (SVD; outer product form) :

Let A be an myn matrix of rankr . Then

A= quir ,

T+quin*+... +purT
where :

· 6767... 0

· [U,Uzyur] is an orthonormal set in IR".
·[VjVz, ...,Vr3 is an orthonormal set in IR".

The quantities in the theorem all have names.

Def:
· G,62 -.,or are

the singular values
·Ki,Uz, ..., Ur are the left singular vectors 3 ofA· Vis Key Un are the right singular rectors

Here are some formal consequences of the
statement of the theorem.



Formal Consequence 1 : For any vector XIRY,

IAx= (quiv ,

T+quin+... +qurTx
= qui(vix) + auz(v+x) + - - +our(vX)
=

qu.
(vix) + Guz(vex) + -- - + our (vr=x)

=> Ax= (viX)u,
+ G(vX)uz + - -+Gr(vrX)Ur

Formal Consequence 2 : Taking X=v above,

Avi alvivi) u+ -+ /Vivi) ui +. . + Or(vi)Ur

" W j
-

-KVyVas-Vr3 is othonomal)

Hence the singular rectors are related by :

Avi=iy llAvill = oi

Formal Consequence 3 :

[UUz, ... ur3 is an orthonormal basis for CollA) .

Indeed
, I shows that any Axe Spanu, uz

, ... ur],
and 2 shows Ui = Alvi) eCollA).



Formal Consequence 4 : Take transposes :

At= (quiv ,

T+quin+... +qurT)T
= (quiviT(T+ (unv2T)+...+urvT)T

-GVUT+ QUUs+ - - - + OrVUT

This is also an SVD- the only difference is
we switched the uis and vis.

The SVD of At is

AT= GinT+ Qus+ - + orVUT

In particular, A and At have the same
:

· singular values G ..., On and

· singular rectors (switch right and left).

Since CollAT) = Row(A)
,
3 + 4 imply :

Formal Consequence 5 :

SVVz,...,Vr3 is an orthonormal basis for Row(A).

Formal Consequence 6 :

Applying 2 and 4 gives

Aui = avi and llATwill = oi



Therefore,

AAvAbui) = g(Athi)Glivi) = ovi

AATuAlvi) =
0 (Avi) obki)= obvi

ATAvi=Vi Atui =Gui

This says :

V , V2--. ,Vr are othonomal eigenvectors
of ATA) with eigenvalues 0.2. , or

Us) Uz)--. ,Ur are othonomal eigenvectors
of AAs with eigenvalues 0.2. , or

This tells us how to prove the SVD exists/
how to compute the SVD :

orthogonally diagonalize S=ATA or AAT

Let's prove that the SVD exists.

Pay attention to steps 1-2: they illustrate the
mechanics of the SVD.



ProofThat the SVD Exists
Let S =AA . Recall that S is positive-
semidefinite, so its eigenvalues are =0.

By the Spectral Theorem, AM(X) = GM/X) for each

eigenvalue X,
so I'll refer to both as the

"multiplicity of X".

Let X
,zXz7--zXn=O be the eigenvalues

of S
,
in decreasing order. If an eigenvalue

has multiplicityo it appears & times in this

list .

Step 1: I claim that O is an eigenvalue of
multiplicity n-r (v=rank(A).

this just means O isn't an eigenvalue if n =n.)

Proof : The multiplicity of O is equal to

GM(0) = dim NullS-OIn) = dim Nul(s)
= dim Nul(ATA).

But Nul(ATA)"Nul(A) and dim Nul(A)-
so the multiplicity of O is n-r. Il



Step 1 implies Xr+ 1
= Xrtz= - - = Xn =0

Izero is the smallest eigenvalue, so
it comes last).

Therefore the nonzero eigenvalues of S=AA are
X

.
zX27--Xr >0.

Now we can define the singular values and
the singular vectors.

a ...

LetEv , ...,
v

- T be othonormal eigenvectors
of S with eigenvalues X1

,
X, ...,

Xr
, respectively.

(This uses AM=GM again : if X , has

multiplicity 2 then X1 = X2 and there are

two LI X- -eigenvectors .
(

We know what the his have to be :

=Ar. u= Au -- . UnAur

Step 2 : I claim Sus U2, ...,
urh is orthonormal.

Proof: niUj = (Avi) . (A) = (vi) (Avi)

= (Avi)(Avj)= (viTAT) (Avi)



= a viT(AA) vi= it Sus

St(j)=
= Vivi

Now we use the fact that Evv....,
v

- T is
orthonomal :.
i=j : this Vivi =↳
itj : this = gvivi =0

/
Now we know what all of the singular values
and rectors are supposed to be, so the only
thing left to do is :

Step 3 : Verification that

A=u,v,

T+quin+... +urT
.

Proof : Let B = uiv ,

T+quin+ -+curt
.
We

want to show that A=B
. Recall (L11) that

it's enough to show that Ax= By for all rectors
XeIR?

Let [VreyVrtz ....M3 be an orthonormal basis

for the 10-eigenspace of Sl= Nul(s) = Nul(A).



Then Evistas ...,
Vr

,Keyunt is an Orthonormal

eigenbasis of S .

We just didn't do the O eigenvalue yet!

(i)Avi = qui = Bri(in) :

Avi-ali by definition of Ui.

Bri = kuiv,T+quin+...qurvi
=O = O

= alvivi) u+ - + o(Vivi) ui +.. +Or(VrVi)Un
=

Gillis as in Formal Consequence 2

(ii) Avi = 0 = Bri (ixr) :

Avi = 0 because vieNul(s) =Nul(A).

BV = kuiv ,

T+quin+...qurvi
=O

- =O

= a(vivi)u+G(vivi)uzt---ortvnivibur
=O because ViB V

,Vas. ..,Vr Crai) .

(iii) Ax= Bx forany vector v :

Since[VyVa, ..., Un] is a basis for IRY
, we

can expand in the eigenbasis :

*= X,V, +X2V2+=+XnVn

=Ax=A(x,v, +X2V+ =- +XnVn)
= X,
Av+XAr+... -XnAV

lisiil
= X, Bv , +XzBvz+...+XBun
= B(x,v, +X2V+ = +xnVn) =BX//



Summary : Mechanics of the SVD

A :
an men matrix of rank r

SVD : A = quin+quest.+ourvT

Ax = alvix)n,
+ alvax)uz + ...+Ortvixur

Singular Values : 6
,
702-->O

6767---or are the nonzero eigenvalues
of ATA and AAT

Left singular Vectors : Susua --,
ur?

-> Orthonormal eigenvectors of AAT
:

Atui = Gui

-> Orthonomal basis for Col(A)

Right singular Vectors : [VisV -..,Ur

-> Orthonormal eigenvectors of ATA
:

AAvi = Givi

-> Orthonomal basis for Row(A)

The singular rectors are related by :

Avi = Givi Ani = Givi llAvill= o = /Anill

SVD of AT : AT=Gin+ Qus+ --- a vUt



NB : At and AAT have the

same nonzero eigenvalues 02, 02, ...,
of

(We showed in Formal Consequence 6 that these

are eigenvalues of AFA and AAT, and we

showed in the proof that the other eigenvalues =0)

Q : What about the O eigenvalue?

Hint: What if A is a tall matrix with FCR?

The proof also gives a procedure to compute the

SVD (see below).

NB : This is not the algorithm used in practice !

Efficiently computing the SVD is a hard problem.
See the course website for some links to
real-world algorithms.

NB : If A is wide (m>n) then it's probably
easier to compute the SVD of A:

ATA is nxn but AAT is mxm
,

so it's easier to find eigenvalues and
eigenvectors of AAT in this case.



Naive Schoolbook Procedure to Compute the SVD :

Let A be can mxn matrix of rankr.

(1) Compute the nonzero eigenvalues of S=AA:

X= xc] --- Xr>O

(The Xi's appear multiple times if their
multiplicities are 22 .)

-> There are automatically n of them

(counted with multiplicity), and they
are positive.

(2) Find an orthonormal basis for the di-

eigenspace (i= 1 ,
2

, ...
r)- get an orthonomal

set Ev ,V ...Vr] with SVi= Xivi

-> Since AM(xi) =GM/Xi), you automatically
getr vectors.

(3) Setoi and Ki=Avi (i =12-r) .

Then Supus
,...,
ur3 is othonormal, and

A Gun+quavit.+ourvT

is the SVD of A.



Eg : A = (5) v =2 12 pivots/invertible

(1) S = ATA= (25)
p(x) = det(S-X12) = x 2-50x+225

= (x- 45)(X -5)

so Xi= 452Xz=5

(2) Compute eigenspaces :

x =45(a) = (28) -> vi=Eli)

x= 5 (ix) = (2)- vz= (i)

(3) % =5 = 355 02= =55

=Av
,

=35(5)(i)=3t(a)=o(s)
Uz=Arz=(i)= (+)
Check : I will = to s =

Kull=R= /
niUz=0

SVD :

(15)= 3.5-o : Ell 11 +55. ()·(1)

M3 : You don't want to cancel the ro's and Go's here!

You want to remember that a =355&=5.


