

Review: the SVD, So Far

L25

Last time, we covered the outer product form of SVD.

$A: mxn$ matrix of rank r

$$A = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \dots + \sigma_r u_r v_r^T$$

- $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_r > 0$ are the **singular values**
- $\{v_1, v_2, \dots, v_r\}$ are orthonormal vectors in \mathbb{R}^n .
 - These are the **right singular vectors**.
 - They form a basis for $\text{Row}(A)$.
 - They are eigenvectors of $A^T A$:

$$A^T A v_i = \sigma_i^2 v_i$$

- $\{u_1, u_2, \dots, u_r\}$ are orthonormal vectors in \mathbb{R}^m .
 - These are the **left singular vectors**.
 - They form a basis for $\text{Col}(A)$.
 - They are eigenvectors of $A A^T$:

$$A A^T u_i = \sigma_i^2 u_i$$

The singular vectors are related by

$$A v_i = \sigma_i u_i$$

$$A^T u_i = \sigma_i v_i$$

The SVD of A^T is

$$A^T = \sigma_1 v_1 u_1^T + \sigma_2 v_2 u_2^T + \dots + \sigma_r v_r u_r^T$$

NB: If A is a wide matrix ($m < n$) then

It's much easier to compute eigenvalues & eigenvectors of AA^T in this case.

If A is wide, compute the SVD of A^T

Eg: $A = \begin{pmatrix} -10 & 10 & -10 & 10 \\ 10 & 5 & 10 & 5 \end{pmatrix}$ ← wide

$$A^T A = \begin{pmatrix} 100 & -50 & 100 & -50 \\ -50 & 125 & -50 & 125 \\ 100 & -50 & 100 & -50 \\ -50 & 125 & -50 & 125 \end{pmatrix} \quad \leftarrow \text{yikes!}$$

$$AA^T = \begin{pmatrix} 400 & -100 \\ -100 & 250 \end{pmatrix} \quad p(\lambda) = (\lambda - 450)(\lambda - 200)$$

$$\lambda_1 = 450 \rightarrow \alpha_1 = \sqrt{\lambda_1} = 15\sqrt{2} \quad u_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ -1 \end{pmatrix} \quad v_1 = \frac{1}{\sqrt{10}} \begin{pmatrix} -2 \\ 1 \\ -2 \end{pmatrix}$$

$$\lambda_2 = 200 \quad \omega \quad \sigma_2 = \sqrt{\lambda_2} = 10\sqrt{2} \quad U_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \quad V_2 = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$

$$\rightarrow A^T = \sigma_1 V_1 U_1^T + \sigma_2 V_2 U_2^T$$

$$\rightarrow A = \sigma_1 U_1 V_1^T + \sigma_2 U_2 V_2^T$$

These are right-singular vectors of A^T
 \Rightarrow left-singular vectors of A .

SVD: Matrix Form

Let A be an $m \times n$ matrix of rank r .

Then $A = U \Sigma V^T$ where:

- U is an $m \times m$ orthogonal matrix.
- V is an $n \times n$ orthogonal matrix.
- Σ is an $m \times n$ diagonal matrix.

orthogonal:
square with
orthonormal
columns

These matrices contain:

$$\Sigma = \begin{pmatrix} \sigma_1 & & & 0 \\ & \ddots & & \\ & & \sigma_r & 0 \\ 0 & & & \ddots & 0 \end{pmatrix} \quad \sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_r > 0$$

are the singular values

$$U = \begin{pmatrix} | & | & | & | \\ u_1 & \dots & u_r & u_{r+1} & \dots & u_m \\ | & | & | & | \end{pmatrix} \quad V = \begin{pmatrix} | & | & | & | \\ v_1 & \dots & v_r & v_{r+1} & \dots & v_m \\ | & | & | & | \end{pmatrix}$$

left orthonormal basis for $\text{Nul}(A^T)$

right orthonormal basis for $\text{Nul}(A)$

Recall: To compute the SVD of A , you compute orthonormal eigenvectors v_1, v_2, \dots, v_r for the nonzero eigenvalues of $A^T A$. The 0-eigenspace of $A^T A$ is $\text{Nul}(A^T A) = \text{Nul}(A)$, so $v_{r+1}, v_{r+2}, \dots, v_n$ is an orthonormal eigenbasis of $A^T A$. Likewise, $u_1, \dots, u_r, u_{r+1}, \dots, u_m$ is an orthonormal eigenbasis of $A A^T$.

In fact, if $A = U\Sigma V^T$ then

$$A^T A = (U\Sigma V^T)^T (U\Sigma V^T) = V\Sigma^T U^T U \Sigma V^T = V\Sigma^T \Sigma V^T$$

$$\Sigma^T \Sigma = \begin{pmatrix} \text{diag } \sigma_1^2 & & \\ & \ddots & \\ & & \sigma_m^2 & 0 \\ 0 & \cdots & 0 & \cdots & 0 \\ & & n \times m \end{pmatrix} \begin{pmatrix} \text{diag } \sigma_1^2 & & \\ & \ddots & \\ & & \sigma_m^2 & 0 \\ 0 & \cdots & 0 & \cdots & 0 \\ & & m \times n \end{pmatrix} = \begin{pmatrix} \text{diag } \sigma_1^2 & & \\ & \ddots & \\ & & \sigma_m^2 & 0 \\ 0 & \cdots & 0 & \cdots & 0 \\ & & m \times m \end{pmatrix}$$

Likewise, $A A^T = U \Sigma \Sigma^T U^T$.

Same nonzero eigenvalues

$$A^T A = V \begin{pmatrix} \text{diag } \sigma_1^2 & & \\ & \ddots & \\ & & \sigma_m^2 & 0 \\ 0 & \cdots & 0 & \cdots & 0 \\ & & m \times m \end{pmatrix} V^T \quad A A^T = U \begin{pmatrix} \text{diag } \sigma_1^2 & & \\ & \ddots & \\ & & \sigma_m^2 & 0 \\ 0 & \cdots & 0 & \cdots & 0 \\ & & n \times n \end{pmatrix} U^T$$

How to Compute $A = U\Sigma V^T$:

(1) Compute the singular values & singular vectors

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0 \quad \{v_1, v_2, \dots, v_r\} \quad \{u_1, u_2, \dots, u_r\}$$

as before.

(2) Compute orthonormal bases

$$\{v_{r+1}, v_{r+2}, \dots, v_n\} \quad \text{for } \text{Null}(A) = 0\text{-eigenspace of } A^T A$$

$$\{u_{r+1}, u_{r+2}, \dots, u_m\} \quad \text{for } \text{Null}(A^T) = 0\text{-eigenspace of } A A^T$$

probably using PIV and Gram-Schmidt.

$$(3) \quad U = \begin{pmatrix} & 1 & 1 & 1 \\ u_1 & \cdots & u_r & u_{r+1} & \cdots & u_m \\ & 1 & 1 & 1 & & \end{pmatrix} \quad V = \begin{pmatrix} & 1 & 1 & 1 \\ v_1 & \cdots & v_r & v_{r+1} & \cdots & v_m \\ & 1 & 1 & 1 & & \end{pmatrix} \quad \Sigma = \begin{pmatrix} \text{diag } \sigma_1^2 & & \\ & \ddots & \\ & & \sigma_m^2 & 0 \\ 0 & \cdots & 0 & \cdots & 0 \\ & & m \times n \end{pmatrix}$$

Proof:

$$U\Sigma V^T = \begin{pmatrix} (& | & | & | &) \\ u_1 \dots u_r & u_{r+1} \dots u_m \\ | & | & | & | \end{pmatrix} \begin{pmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_r & 0 \\ 0 & & & \ddots & 0 \end{pmatrix} \begin{pmatrix} v_1^T \\ v_2^T \\ v_3^T \\ \vdots \\ v_p^T \end{pmatrix}$$

$$= \begin{pmatrix} (& | & | & | &) \\ u_1 \dots u_r & u_{r+1} \dots u_m \\ | & | & | & | \end{pmatrix} \begin{pmatrix} \sigma_1 v_1^T \\ \sigma_2 v_2^T \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\text{outer product form} \quad = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \dots + \sigma_r u_r v_r^T + 0 + \dots + 0$$

$$= A$$

//

NB: We could have put any vectors we want in the last $m-r$ columns of U and the last $n-r$ columns of V and the product is still $A = U\Sigma V$ (since these vectors are multiplied by 0). But we really want U and V to have orthonormal columns. So u_{r+1}, \dots, u_m must be $\perp \text{Span}\{u_1, \dots, u_r\} = \text{Col}(A)$, so they must be a basis for $\text{Col}(A)^\perp = \text{Nul}(A^T)$. Likewise for V .

NB: In matrix form,

$$A^T = V\Sigma^T U^T$$

is the SVD of A^T .

$$\text{Eg: } A = \begin{pmatrix} -10 & 10 & -10 & 10 \\ 10 & 5 & 10 & 5 \end{pmatrix}$$

$$(1) \quad \textcolor{brown}{e}_1 = 15\sqrt{2} \quad \textcolor{red}{u}_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ -1 \end{pmatrix} \quad \textcolor{violet}{r}_1 = \frac{1}{\sqrt{10}} \begin{pmatrix} -2 \\ 1 \\ -2 \end{pmatrix}$$

$$\textcolor{brown}{e}_2 = 10\sqrt{2} \quad \textcolor{red}{u}_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \quad \textcolor{violet}{r}_2 = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

(2) In this case, $m=r=2$ (full row rank), so $\text{Nul}(A^T) = \{0\} \Rightarrow$ no more u_i 's to compute.

But $n=4$ and $r=2 \Rightarrow \dim \text{Nul}(A) = 2$, so we need to compute $\textcolor{blue}{v}_3$ and $\textcolor{blue}{v}_4$ (orthonormal basis for $\text{Nul}(A)$).

$$\text{Nul}(A) : \begin{pmatrix} -10 & 10 & -10 & 10 \\ 10 & 5 & 10 & 5 \end{pmatrix} \xrightarrow{\text{ref}} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \xrightarrow{\text{Pf}} \text{basis} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

We got lucky that these vectors \uparrow are already orthogonal—usually we'd have to do Gram-Schmidt. So just divide by the lengths:

$$\textcolor{blue}{v}_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \quad \textcolor{blue}{v}_4 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix}$$

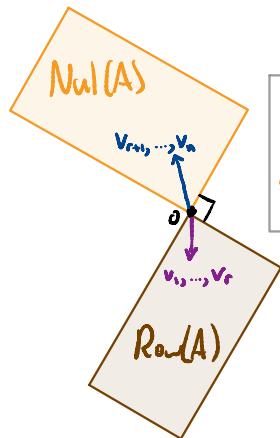
$$(3) \quad U = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix} \quad V = \begin{pmatrix} -2\sqrt{10} & 1\sqrt{10} & -\sqrt{2} & 0 \\ 1\sqrt{10} & 2\sqrt{10} & 0 & -1\sqrt{2} \\ -2\sqrt{10} & 1\sqrt{10} & \sqrt{2} & 0 \\ 1\sqrt{10} & 2\sqrt{10} & 0 & 1\sqrt{2} \end{pmatrix} \quad \Sigma = \begin{pmatrix} 15\sqrt{2} & 0 & 0 & 0 \\ 0 & 10\sqrt{2} & 0 & 0 \end{pmatrix}$$

We can draw all this in the Big Picture:

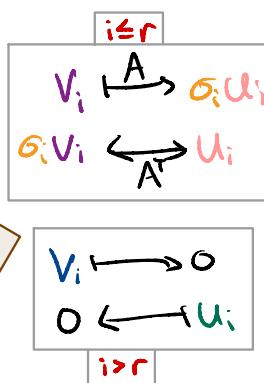
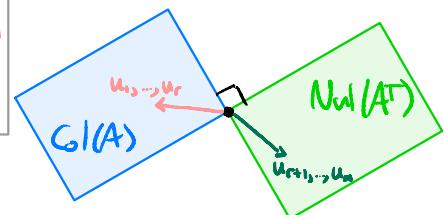
The Big Picture, Revisited

$A = m \times n$ matrix of rank r

Row Picture (\mathbb{R}^n)



Column Picture (\mathbb{R}^m)

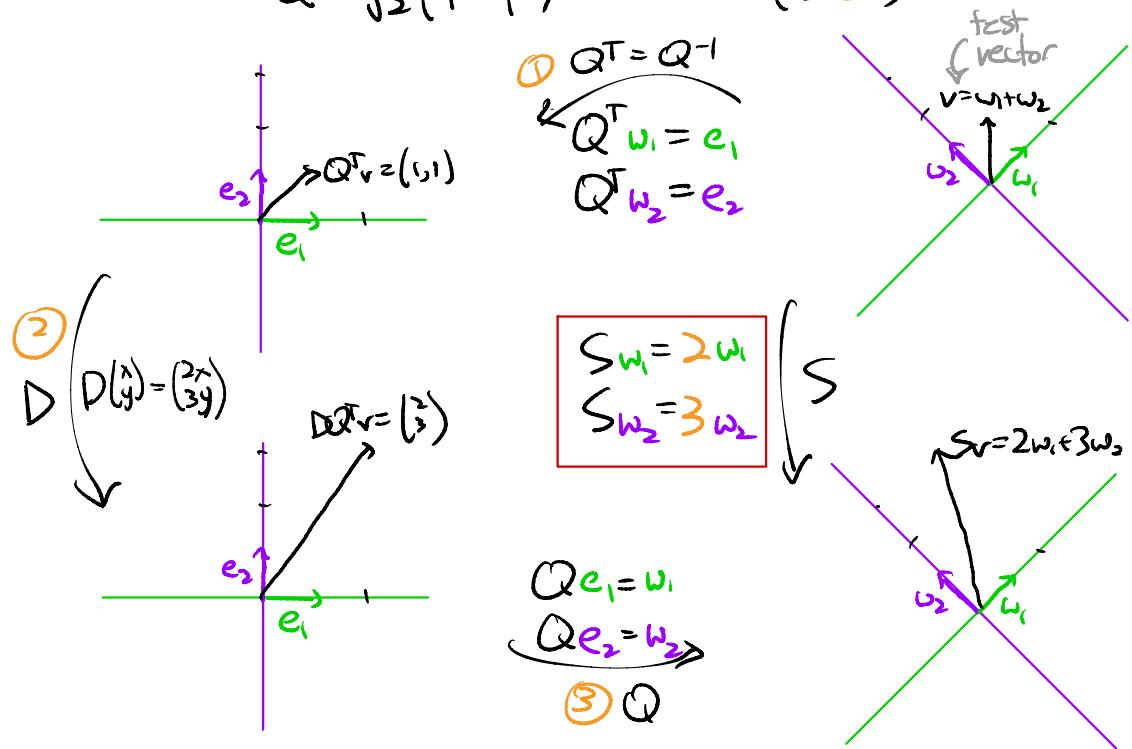


Geometry of the SVD, Matrix Form

We've drawn a picture of a triple product decomposition before.

Eg (L21): $S = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} & -1 \\ -1 & \sqrt{2} \end{pmatrix} = Q \Delta Q^T$ for

$$Q = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \quad \Delta = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$



In the case of the SVD, $A = U \Sigma V^T$ means:

- ① Multiply by V^T : **orthogonal** (rotate/flip)
- ② Multiply by Σ : **diagonal** (stretch coordinates)
- ③ Multiply by U : **orthogonal** (rotate/flip)

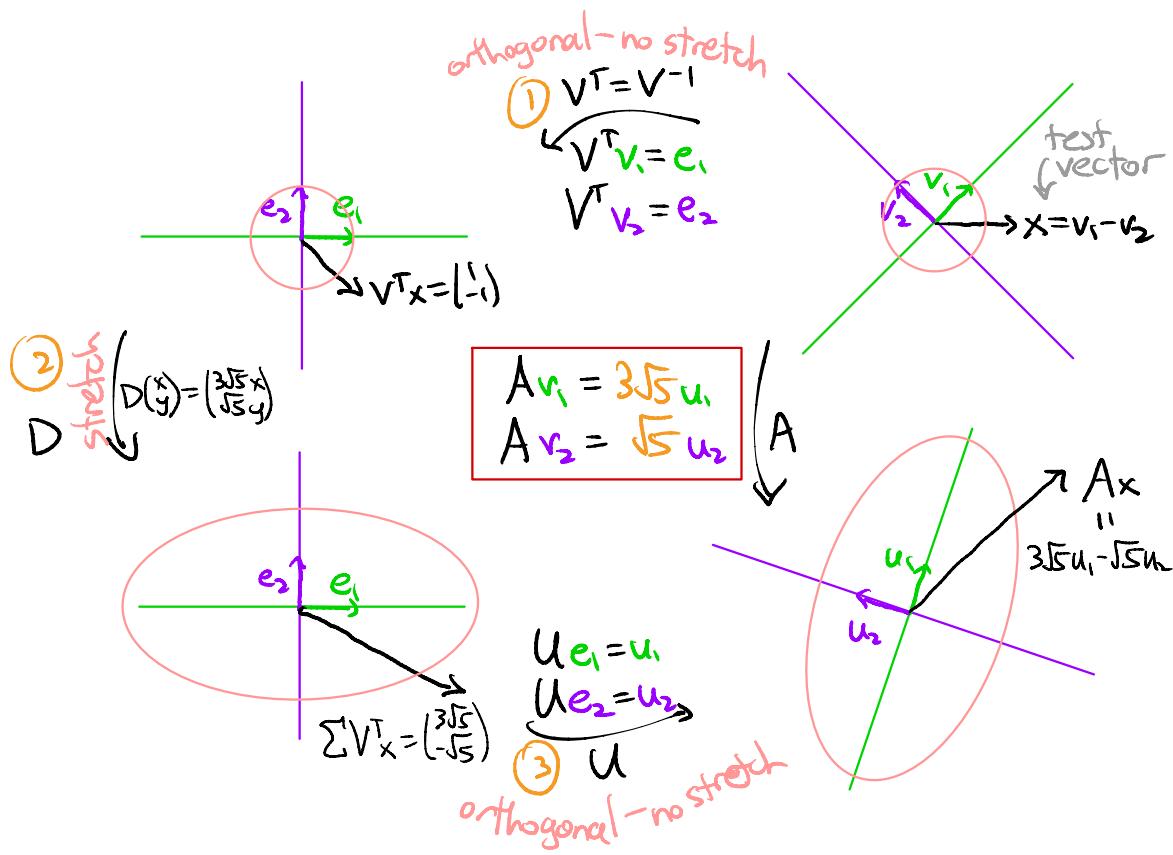
$$\text{Eg: } A = \begin{pmatrix} 3 & 0 \\ 4 & 5 \end{pmatrix} \stackrel{(L24)}{=} 3\sqrt{5} \mathbf{u}_1 \mathbf{v}_1^T + \sqrt{5} \mathbf{u}_2 \mathbf{v}_2^T \quad \text{where}$$

$$u_1 = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 \\ 3 \end{pmatrix} \quad v_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad u_2 = \frac{1}{\sqrt{10}} \begin{pmatrix} -3 \\ 1 \end{pmatrix} \quad v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\Rightarrow A = U \Sigma V^T \text{ for}$$

$$U = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 & -3 \\ 3 & 1 \end{pmatrix} \quad V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \quad \Sigma = \begin{pmatrix} 3\sqrt{5} & 0 \\ 0 & \sqrt{5} \end{pmatrix}$$

Let's also draw the unit circle \bigcirc to visualize stretching.



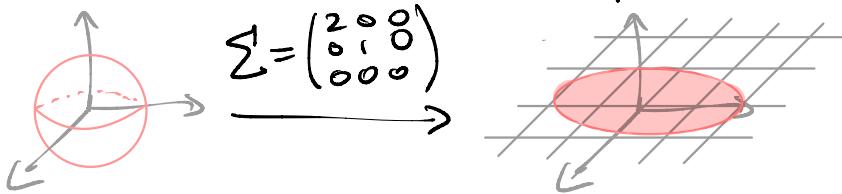
Reiterate: Any matrix can be expressed as:
 (rotate/flip) then (stretch) then (rotate/flip)

Notes/Caveats:

- In **diagonalization**, you start & end with the **same basis** $\{w_1, w_2, \dots, w_n\}$ (eigenbasis).

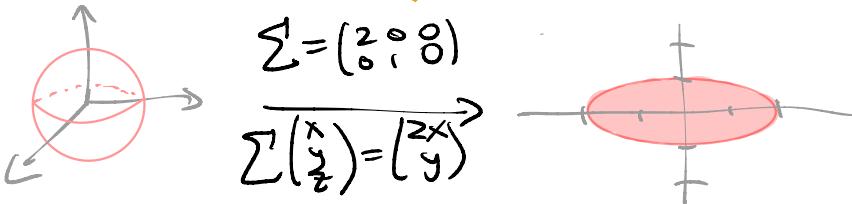
In the **SVD**, you start with the **right singular vectors** $\{v_1, v_2, \dots, v_n\}$ and you end with the **left singular vectors** $\{u_1, u_2, \dots, u_m\}$.

- The Σ step can flatten your sphere $\|x\|=1$:



(This can happen with a $S = QDQT$ decomposition too—that means 0 is an eigenvalue of S .

- The Σ step can **change dimensions**:



"Project onto the xy -plane, then forget the z -coordinate."

Geometry of the SVD: Outer Product Form

This is the geometric interpretation that we will use throughout L26 & L27 when we do the PCA.

Give the columns of A a name:

$$A = \begin{pmatrix} d_1 & \cdots & d_n \end{pmatrix}$$

$d_i = \text{data points}$

SVD of A : $A = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \cdots + \sigma_n u_n v_n^T$

$$\text{Recall: } A v_i = \sigma_i u_i \quad A^T u_i = \sigma_i v_i$$

Expand out $A^T u_i = \sigma_i v_i$:

$$A^T u_i = \begin{pmatrix} -d_1^T & \cdots & -d_n^T \\ \vdots & \ddots & \vdots \\ -d_n^T & \cdots & -d_1^T \end{pmatrix} u_i = \begin{pmatrix} d_1 \cdot u_i \\ \vdots \\ d_n \cdot u_i \end{pmatrix}$$

$$\begin{aligned} \Rightarrow \sigma_i u_i v_i^T &= u_i (\sigma_i v_i)^T \stackrel{A^T u_i = \sigma_i v_i}{=} u_i (A^T u_i)^T \\ &= u_i (d_1 \cdot u_i \cdots d_n \cdot u_i) \\ &= \begin{pmatrix} 1 & & 1 \\ (d_1 \cdot u_i) u_i & \cdots & (d_n \cdot u_i) u_i \\ 1 & & 1 \end{pmatrix} \end{aligned}$$

NB: $(d \cdot u_i) u_i$ is the **orthogonal projection** of d onto $\text{Span}\{u_i\}$: $\frac{d \cdot u_i}{u_i \cdot u_i} u_i = (d \cdot u_i) u_i$ because $\|u_i\|=1$.

Upshot: The columns of $\sigma_i u_i v_i^T$ are the orthogonal projections of the columns of A onto $\text{Span}\{u_i\}$.

Eg: $A = \begin{pmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{pmatrix}$

$A = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T$ for

$\sigma_1 \approx 16.9$ $\sigma_2 \approx 3.92$

$u_1 \approx \begin{pmatrix} .561 \\ .828 \end{pmatrix}$ $u_2 \approx \begin{pmatrix} .828 \\ -.561 \end{pmatrix}$

LEGEND:

- = $d_i = \begin{pmatrix} 3 \\ 7 \end{pmatrix}, \begin{pmatrix} -4 \\ -6 \end{pmatrix}, \dots$

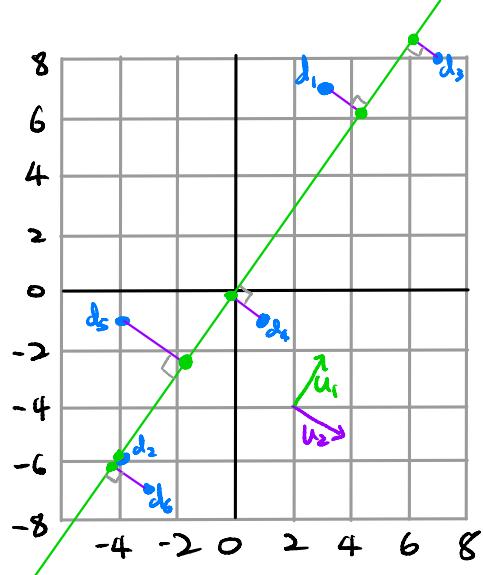
- = columns of $\sigma_i u_i v_i^T$

- = orthogonal projections of \bullet onto $\text{Span}\{u_i\}$

- = columns of $\sigma_i u_2 v_2^T$

- = orthogonal projections of \bullet onto $\text{Span}\{u_2\}$

NB: $A = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T$ means $\bullet = \bullet + \cancel{\bullet} \rightsquigarrow$



The SVD "pulls apart" the columns of A into the u_1, u_2 -directions: the principal components.

In fact, the i^{th} column of

$$\sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \dots + \sigma_r u_r v_r^T$$

is $(d_i \cdot u_1) u_1 + (d_i \cdot u_2) u_2 + \dots + (d_i \cdot u_r) u_r$

(projection formula) = orthogonal projection of d_i onto

$$\text{Col}(A) = \text{Span}\{u_1, u_2, \dots, u_r\}$$

$= d_i$ because $d_i \in \text{Col}(A)$ (it's the i^{th} column!)

This is just the i^{th} column of the SYD:

$$A = \begin{pmatrix} d_1 & \dots & d_n \end{pmatrix} = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \dots + \sigma_r u_r v_r^T$$

More generally, for $k \leq n$, the i^{th} column of

$$\sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \dots + \sigma_k u_k v_k^T$$

is equal to

$$(d_i \cdot u_1) u_1 + (d_i \cdot u_2) u_2 + \dots + (d_i \cdot u_k) u_k$$

= orthogonal projection of d_i onto $\text{Span}\{u_1, u_2, \dots, u_k\}$

Partial Sums are Projections

For $k \leq n$, the i^{th} column of

$$\sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \dots + \sigma_k u_k v_k^T$$

is the orthogonal projection of d_i onto

$$\text{Span}\{u_1, u_2, \dots, u_k\}$$