

A Little Bit of Statistics

L26

Principal Component Analysis is basically an interpretation of the SVD + QD in the language of statistics.

- This is often how the SVD, or "linear algebra", is used in statistics and data science.
- It makes precise statements about lines/planes/etc. of best fit, and how good the fit is.

To that end, we need a bit of terminology from statistics.

Idea: an $m \times n$ matrix stores n samples, each containing m values or measurements.

One value ($m=1$):

Let's record everyone's scores on midterm 1:
Samples x_1, x_2, \dots, x_n ($n = \# \text{students}$)

- The **mean** (average) of the samples is

$$\mu = \frac{1}{n} (x_1 + x_2 + \dots + x_n)$$

- The **variance** of the samples is

$$s^2 = \frac{1}{n-1} [(x_1 - \mu)^2 + (x_2 - \mu)^2 + \dots + (x_n - \mu)^2]$$

- The **standard deviation** is $s = \sqrt{s^2}$.

The standard deviation tells you how "spread out" your values are from the mean:

$\approx 68\%$ of samples will be within $\pm s$ of μ

$\approx 95\%$ of samples will be within $\pm 2s$ of μ

$\approx 99\%$ of samples will be within $\pm 3s$ of μ

(if your data are normally distributed...)

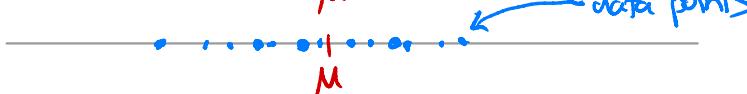
→ Where are these formulas from?

A statistics class!

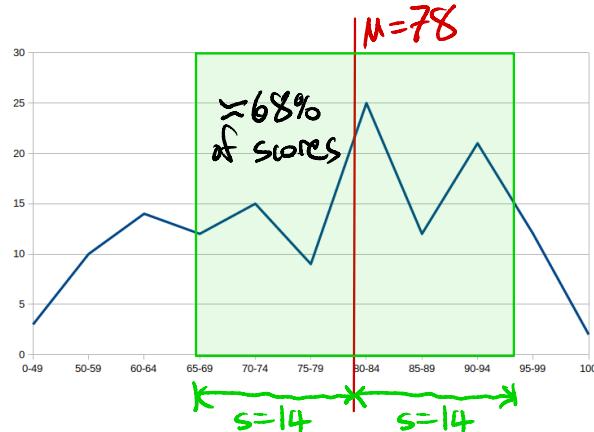
NB: The recentered values $(x_1 - \mu), (x_2 - \mu), \dots, (x_n - \mu)$ have mean $\mu - \mu = 0$.

Eg: large s :

small s :



Eg: Here is a histogram of midterm 2 scores from fall '20:



Two Values ($m=2$):

Now let's record everyone's scores on problem 1 and problem 2 on midterm 2: samples

$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n) \quad x_i = \text{score on problem 1} \quad y_i = \text{score on problem 2}$$

- Mean scores:

$$M_1 = \frac{1}{n} (x_1 + x_2 + \dots + x_n) = \text{mean of problem 1}$$

$$M_2 = \frac{1}{n} (y_1 + y_2 + \dots + y_n) = \text{mean of problem 2}$$

- Recenter to compute variance:

$$\bar{x}_i = x_i - M_1 \quad \bar{y}_i = y_i - M_2 \quad (\text{now mean } = 0)$$

- Variances:

$$s_1^2 = \frac{1}{n-1} (\bar{x}_1^2 + \bar{x}_2^2 + \dots + \bar{x}_n^2)$$

$$s_2^2 = \frac{1}{n-1} (\bar{y}_1^2 + \bar{y}_2^2 + \dots + \bar{y}_n^2)$$

- Total Variance: $s^2 = s_1^2 + s_2^2$

NB: Except for the total variance, these are just statistics for Problems 1 and 2 individually — so far we've ignored the fact that they might be **correlated**. This is what the PCA does.

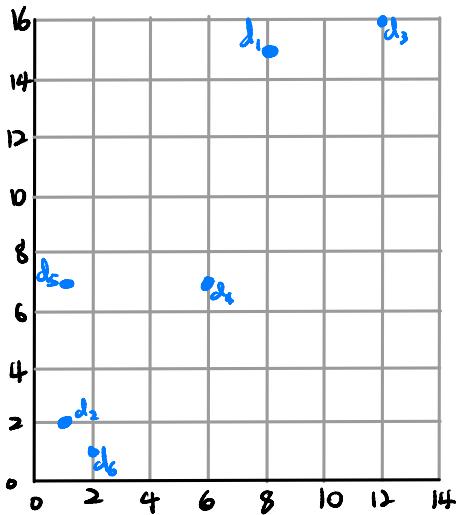
Running Example: Suppose the problem 1 & 2 scores are:

$$d_i = \begin{pmatrix} x_i \\ y_i \end{pmatrix} = \begin{pmatrix} 8 \\ 15 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 12 \\ 16 \end{pmatrix}, \begin{pmatrix} 6 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 7 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix} \quad \begin{matrix} \bar{M}_1 = 5 \\ \bar{M}_2 = 8 \end{matrix} \quad \begin{matrix} m=2 \\ n=6 \end{matrix}$$

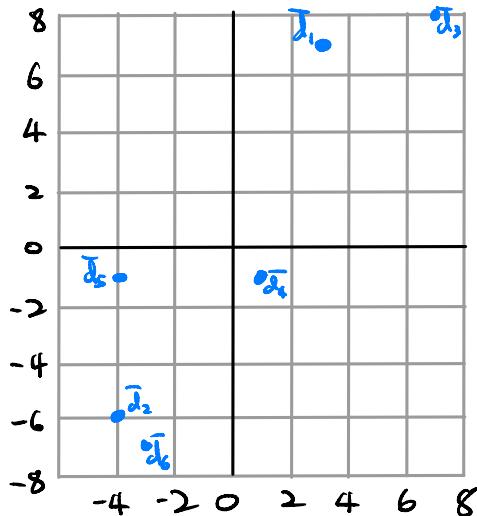
Recenter: subtract $\begin{pmatrix} \bar{M}_1 \\ \bar{M}_2 \end{pmatrix} = \begin{pmatrix} 5 \\ 8 \end{pmatrix}$ \rightsquigarrow

$$\bar{d}_i = \begin{pmatrix} \bar{x}_i \\ \bar{y}_i \end{pmatrix} = \begin{pmatrix} 3 \\ 7 \end{pmatrix}, \begin{pmatrix} -4 \\ -6 \end{pmatrix}, \begin{pmatrix} 7 \\ 8 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -4 \\ -1 \end{pmatrix}, \begin{pmatrix} -3 \\ -7 \end{pmatrix} \quad \begin{matrix} \sum \bar{x}^2 = 20 \\ \sum \bar{y}^2 = 40 \end{matrix} \quad \begin{matrix} \text{total} \\ \text{variance} \end{matrix} \quad \begin{matrix} s^2 = 60 \end{matrix}$$

Geometrically, subtracting $\begin{pmatrix} 5 \\ 8 \end{pmatrix}$ moves the origin to $\begin{pmatrix} 5 \\ 8 \end{pmatrix}$:



subtract
means



NB: The recentered values have mean zero, so

$$\bar{d}_1 + \dots + \bar{d}_6 = \begin{pmatrix} 3 - 4 + 7 + 1 - 4 - 3 \\ 7 - 6 + 8 - 1 - 1 - 7 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Principal Component Analysis

Now we do linear algebra.

Suppose we have n samples of n values: data points

$$d_1, d_2, \dots, d_n$$

Store in a matrix:

$$A_0 = \begin{pmatrix} d_1 & \dots & d_n \end{pmatrix}$$

Recenter the data points (subtract the means of each row):

$$A = \begin{pmatrix} \bar{d}_1 & \dots & \bar{d}_n \end{pmatrix}$$

NB: Each value now has mean zero. This means

$$\bar{d}_1 + \bar{d}_2 + \dots + \bar{d}_n = 0.$$

Def: The covariance matrix is $S = \frac{1}{n-1} A A^T$.

This contains the dot products of the rows.

For example, if $m=2$ and

$$A = \begin{pmatrix} \bar{d}_1 & \cdots & \bar{d}_n \end{pmatrix} = \begin{pmatrix} \bar{x}_1 & \cdots & \bar{x}_n \\ \bar{y}_1 & \cdots & \bar{y}_n \end{pmatrix}$$

then

$$S = \frac{1}{n-1} \begin{pmatrix} (\text{row 1}) \cdot (\text{row 1}) & (\text{row 1}) \cdot (\text{row 2}) \\ (\text{row 2}) \cdot (\text{row 1}) & (\text{row 2}) \cdot (\text{row 2}) \end{pmatrix}$$
$$= \frac{1}{n-1} \begin{pmatrix} \bar{x}_1^2 + \cdots + \bar{x}_n^2 & \bar{x}_1 \bar{y}_1 + \cdots + \bar{x}_n \bar{y}_n \\ \bar{x}_1 \bar{y}_1 + \cdots + \bar{x}_n \bar{y}_n & \bar{y}_1^2 + \cdots + \bar{y}_n^2 \end{pmatrix}$$

The diagonal entries are the **variances**:

$$S_1^2 = \frac{1}{n-1} (\bar{x}_1^2 + \cdots + \bar{x}_n^2) \quad S_2^2 = \frac{1}{n-1} (\bar{y}_1^2 + \cdots + \bar{y}_n^2)$$

The **trace** is the **total variance**:

$$\text{Tr}(S) = S_1^2 + S_2^2 = S^2$$

The **off-diagonal** entries are called **covariances**.

Essentially, if the $(1,2)$ entry

$$\frac{1}{n-1} (\bar{x}_1 \bar{y}_1 + \cdots + \bar{x}_n \bar{y}_n)$$

is large then \bar{x}_i and \bar{y}_i tend to have the same sign: so if the first measurement is above average, then the second probably is too. Likewise, if the $(1,2)$ -entry is large negative, then the opposite is true.

We won't use covariances directly for anything.

Running Example:

$$d_i = \begin{pmatrix} 8 \\ 15 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 12 \\ 16 \end{pmatrix}, \begin{pmatrix} 6 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 7 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix} \rightarrow A_0 = \begin{pmatrix} 8 & 1 & 12 & 6 & 1 & 2 \\ 15 & 2 & 16 & 7 & 7 & 1 \end{pmatrix}$$

$$d_i = \begin{pmatrix} 3 \\ 7 \end{pmatrix}, \begin{pmatrix} -4 \\ -6 \end{pmatrix}, \begin{pmatrix} 7 \\ 8 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -4 \\ -1 \end{pmatrix}, \begin{pmatrix} -3 \\ -7 \end{pmatrix} \rightarrow A = \begin{pmatrix} 3 & -4 & 7 & 1 & -4 & 3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{pmatrix}$$

$$S = \frac{1}{6-1} A A^T = \begin{pmatrix} 20 & 25 \\ 25 & 40 \end{pmatrix} \quad \begin{matrix} S_1^2 = 20 \\ S_2^2 = 40 \end{matrix}$$

Total variance: $\text{Tr}(S) = 20 + 40 = 60$

Covariance = 25: the values are correlated.

Covariance Matrix: Summary

A: $m \times n$ **recentered** data matrix.

$$S = \frac{1}{n-1} A A^T = \text{covariance matrix} \quad (m \times m)$$

The (i,i) -entry of S is

$S_i^2 = \text{variance}$ of the i^{th} value

The trace of S is the **total variance**:

$$\text{Tr}(S) = S_1^2 + S_2^2 + \dots + S_m^2 = S^2$$

The (i,j) -entry of S is the covariance of the i^{th} & j^{th} values.

APPLY THE SVD:

The eigenvalues and eigenvectors of

$$S = \frac{1}{\sqrt{n-1}} A A^T = \left(\frac{1}{\sqrt{n-1}} A \right) \left(\frac{1}{\sqrt{n-1}} A \right)^T$$

compute the SVD of $\frac{1}{\sqrt{n-1}} A$ (and $\frac{1}{\sqrt{n-1}} A^T$).

$$\frac{1}{\sqrt{n-1}} A = \sigma_1 U_1 V_1^T + \sigma_2 U_2 V_2^T + \dots + \sigma_r U_r V_r^T$$

where:

- $\sigma_1^2 \geq \sigma_2^2 \geq \dots \geq \sigma_r^2 > 0$ are the nonzero eigenvalues of S .
- U_1, U_2, \dots, U_r are orthonormal eigenvectors of S
= left-singular vectors of $\frac{1}{\sqrt{n-1}} A$
 $\hookrightarrow S = \left(\frac{1}{\sqrt{n-1}} A \right) \left(\frac{1}{\sqrt{n-1}} A \right)^T$, not $\left(\frac{1}{\sqrt{n-1}} A \right)^T \left(\frac{1}{\sqrt{n-1}} A \right)$
- V_1, V_2, \dots, V_r are the right-singular vectors

As always: of $\frac{1}{\sqrt{n-1}} A$

$$U_i = \frac{1}{\sigma_i} \cdot \frac{1}{\sqrt{n-1}} A V_i \quad V_i = \frac{1}{\sigma_i} \cdot \frac{1}{\sqrt{n-1}} A^T U_i$$

NB: The SVD of A is just

$$A = \sqrt{n-1} \sigma_1 U_1 V_1^T + \sqrt{n-1} \sigma_2 U_2 V_2^T + \dots + \sqrt{n-1} \sigma_r U_r V_r^T$$

→ same singular vectors of $\frac{1}{\sqrt{n-1}} A$, but the singular values are $\sqrt{n-1} \sigma_1, \dots, \sqrt{n-1} \sigma_r$.

We need to keep the $\frac{1}{n-1}$'s around so that, for instance, we have $\text{Tr}(S) = (\text{total variance})$.

Fact: The trace of a square matrix is the sum of its eigenvalues, counted with algebraic multiplicity:

$$\text{Tr} \left[C \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & & \\ \vdots & & \ddots & \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} C^{-1} \right] = \lambda_1 + \lambda_2 + \dots + \lambda_n$$

(This was an optional HW problem.)

Apply this to S : we know $\text{Tr}(S) = (\text{total variance})$,

so

$$s_1^2 + s_2^2 + \dots + s_m^2 = s^2 = \text{Tr}(S) = \sigma_1^2 + \sigma_2^2 + \dots + \sigma_n^2$$

Q: Ok, so what do the singular values & singular vectors of $\frac{1}{\sqrt{n-1}} A$ tell us about our data?

A: The **directions** and **magnitudes** of largest and smallest **variance**.

The rest of this lecture is devoted to decoding that sentence.

Def: Let A be a **recentered** data matrix with covariance matrix $S = \frac{1}{n-1} A A^T$, and let $u \in \mathbb{R}^m$ be a unit vector. The **variance in the u -direction** of our data points is

$$s(u)^2 = u^T S u.$$

This is a slick definition that obviously suggests quadratic optimization, but let's unpack what it means.

We've seen $x^T (A^T A) x$ before (L21, L23). In this case,

$$\begin{aligned} s(u)^2 &= u^T S u = u^T \cdot \frac{1}{n-1} A A^T u = \frac{1}{n-1} (u^T A)(A^T u) \\ &= \frac{1}{n-1} (A^T u)^T (A^T u) = \frac{1}{n-1} (A^T u) \cdot (A^T u) = \frac{1}{n-1} \|A^T u\|^2 \end{aligned}$$

If A has columns $\bar{d}_1, \bar{d}_2, \dots, \bar{d}_n$ then

$$A^T u = \begin{pmatrix} -\bar{d}_1^T \\ \vdots \\ -\bar{d}_n^T \end{pmatrix} u = \begin{pmatrix} \bar{d}_1 \cdot u \\ \vdots \\ \bar{d}_n \cdot u \end{pmatrix}, \quad \text{so}$$

$$s(u)^2 = \frac{1}{n-1} \|A^T u\|^2 = \frac{1}{n-1} [(\bar{d}_1 \cdot u)^2 + (\bar{d}_2 \cdot u)^2 + \dots + (\bar{d}_n \cdot u)^2]$$

NB: Since A is a recentered data matrix, we have

$$\bar{d}_1 + \bar{d}_2 + \dots + \bar{d}_n = 0,$$

so

$$0 = 0 \cdot u = (\bar{d}_1 + \bar{d}_2 + \dots + \bar{d}_n) \cdot u = \bar{d}_1 \cdot u + \bar{d}_2 \cdot u + \dots + \bar{d}_n \cdot u$$

Therefore, $s(u)^2$ is the variance of the numbers

$\bar{d}_1 \cdot u, \bar{d}_2 \cdot u, \dots, \bar{d}_n \cdot u$ with mean zero.

Eg: If $u = e_i = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ then

$$\bar{d}_i \cdot e_i = \left(\begin{pmatrix} \bar{x}_1 \\ \bar{x}_2 \\ \vdots \\ \bar{x}_n \end{pmatrix} \right) \cdot \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \bar{x}_i$$

$$\begin{aligned} \text{so } s(e_i)^2 &= \frac{1}{n-1} [(\bar{d}_1 \cdot e_i)^2 + (\bar{d}_2 \cdot e_i)^2 + \dots + (\bar{d}_n \cdot e_i)^2] \\ &= \frac{1}{n-1} (\bar{x}_1^2 + \bar{x}_2^2 + \dots + \bar{x}_n^2) = s_i^2 \end{aligned}$$

More generally,

$$s(e_i)^2 = s_i^2 = \text{variance of the } i^{\text{th}} \text{ value}$$

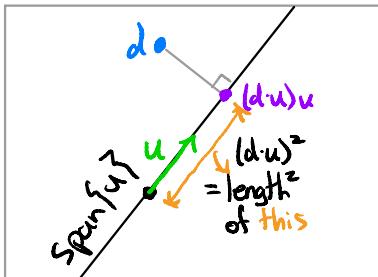
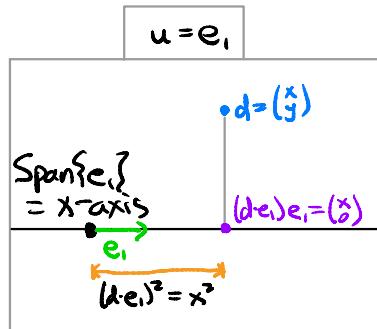
For a general unit vector u , recall that the orthogonal projection of d onto $\text{Span}\{u\}$ is $(d \cdot u)u$, so that

$$\| (d \cdot u)u \|^2 = (d \cdot u)^2 \|u\|^2 = (d \cdot u)^2.$$

In other words,

$$(d \cdot u)^2 = \text{length}^2 \text{ of the projection of } d \text{ onto } \text{Span}\{u\}$$

Picture:

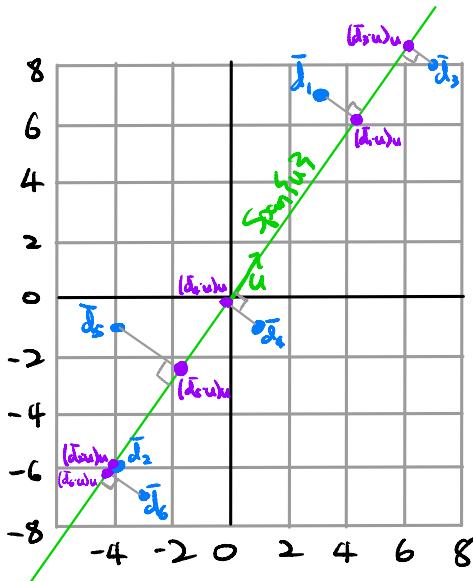


Running Example:

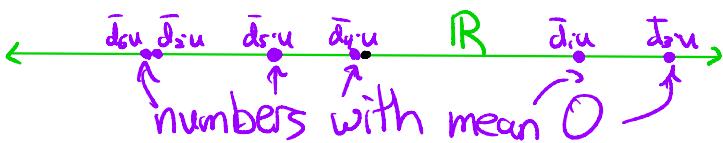
In this case,

$s(u)^2 = \text{sum of squares of distances of } \cdot \text{ from zero.}$

Here's another way to think about it: $\text{Span}\{u\}$ is a "number" line, and $(d_i \cdot u)u$ is a "number" on it. Then $s(u)^2 = \text{the variance of these numbers.}$



ROTATE



APPLY QUADRATIC OPTIMIZATION

The quadratic form $s(u)^2 = u^T S u$ has maximum value (subject to $\|u\|=1$) = σ_1^2 = largest eigenvalue of S . It attains its maximum at u_1 = unit σ_1^2 -eigenvector. Therefore:

u_1 is the direction of greatest variance
 $\sigma_1^2 = s(u_1)^2$ = variance in the u_1 -direction

(Remember that σ_1 is the first singular value of $\frac{1}{\sqrt{n-1}} A$ and u_1 is the first left singular vector.)

This says our data points are "stretched out" the most in the u_1 -direction.

Running Example:

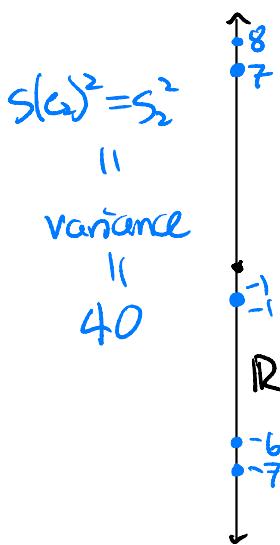
In our example, $\sigma_i^2 = 56.9$ and $u_i \approx \begin{pmatrix} 0.561 \\ 0.828 \end{pmatrix}$.

The variance is maximized in the u_i -direction with max variance 56.9.

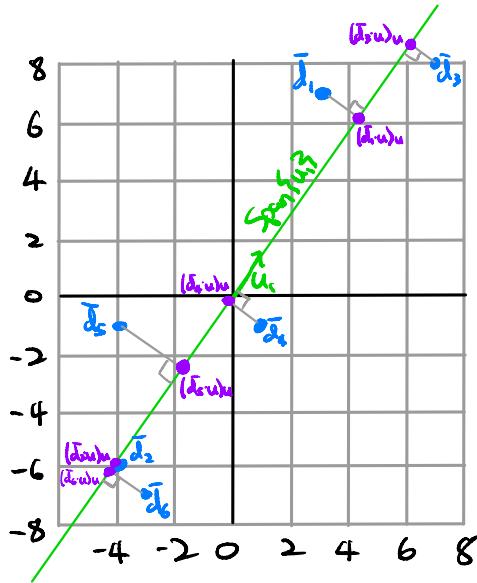
Note this is greater than

$$s_1^2 = 20 = \text{problem 1 variance}$$

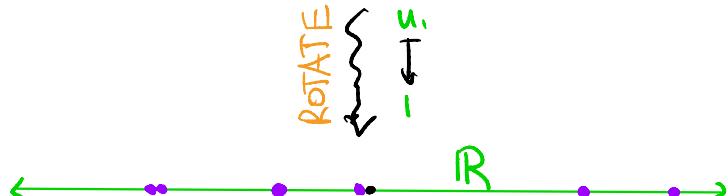
$$s_2^2 = 40 = \text{problem 2 variance.}$$



y-coords
(Problem 2)



these are
more spread
out



$$s(u_i)^2 = \text{variance} \approx 56.9$$

Eg: Here's how I should (but won't) grade the final exam.

- Put the scores of each problem in an $m \times n$ matrix A_0 ($m = \# \text{problems}$, $n = \# \text{students}$)
- Subtract row (problem) averages to recenter
 \rightarrow matrix $A = \begin{pmatrix} \vdots & \vdots \\ d_1 & \cdots & d_n \\ \vdots & \vdots \end{pmatrix}$
- Compute the first left singular vector u_1
- The score for student i is
$$d_i \cdot u_1 + (\text{mean scores})$$

This maximizes the standard deviation by weighting the problems according to u_1 .

Of course, this isn't necessarily fair. For instance, if the j^{th} coordinate of u_1 is negative, then you're penalized for getting problem j correct!

Minimum Variance:

If A has FRR, then $\|u\|^2$ has minimum value (subject to $\|u\|=1$) = σ_r^2 = smallest eigenvalue of S . It is minimized at $u_r = \text{unit } \sigma_r^2\text{-eigenvector}$.

Therefore:

u_r is the direction of smallest variance
 $\sigma_r^2 = s(u_r)^2 = \text{variance in the } u_r\text{-direction}$

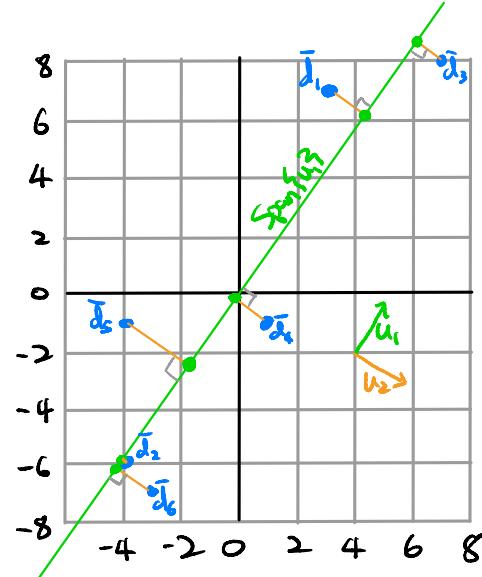
(If A does not have FRR then $s(u)^2$ has minimum value zero, attained at any unit vector in $\text{Nul}(A^T)$.)

Running Example:

In our case,

$$\sigma_2^2 \approx 3.07 \quad u_2 \approx \begin{pmatrix} 0.828 \\ -0.561 \end{pmatrix}$$

The variance in the u_2 -direction is minimized \Rightarrow the sum of the length of the projections is minimized.



But the length of projection is the orthogonal distance of the data point from $\text{Span}\{u_1\} = \text{Span}\{u_2\}^\perp$.

Conclusion: In this case,

the direction of maximum variance
= the line of best fit in the sense of orthogonal least squares

and the error $^2 = \sum \text{distance}^2$ from $\text{Span}\{u_2\} = s(u_2)^2$