
L10L26A Little Bit of Statistics

Principal Component Analysis is basically an
interpretation of the SVD + Q0 in the language of
statistics .

-> This is often how the SVD
,

or

"linear algebra", is used in statistics and
data science.

-> It makes precise statements about lines/
planes/etc . of best fit

,
and how good the

fit is.

To that end, we need a bit of terminology from
statistics

.

Idea: an men matrix storesn samples ,
each

containingm values or measurements.



One value (m=1) :

Let's record everyone's scores on midterm 1 :

samples XyX2, --

,
Xn (n=#Students)

· The mean laverage) of the samples is

M= (x ,
+ xz+ - -+xn)

· The variance of the samples is
s2 =[(x= -m)+ (xz-u) +. - + (xn-u)]

· The standard deviation is s=

The standard deviation tells you how "spread out"

your values are from the mean
:

68% of samples will be withinIs of M
95% of samples will be within 12s of M
~ 99% of samples will be within 135 of M

lif your data are normally distributed...)
-> Where are these formulas from?

A statistics class !
NB : The recentered values (x1-M) , (x.-M)> ...

) (xn-M)
have mean M-M =0

Eg : large s:....

-atapointsM

smallSi & ~.O -

M



Eg: Here is a histogram of midterm 2 scores from
fall '20 :

M=78

-68%

of scores

#474
Two Values (m=2) :

Now let's record everyone's scores on problem 1
and problem 2 on midterm2 : samples

(i) ) (x), .., (*)
xi = score on problem 1
Yi score on problem

· Mean scores :

M.= (x , + Xz+...+ Xn) = mean of problem 1

Mz=* (y ,
+ yz + -

- +yn) = mean of problem 2

· Recenter to compute variance:

=Xi -M, Y =Yi-M2 (now mean =0)

· Variances :

Si =n(+Y+- +(n)
S= (ji+ y2 + - -+yz)

· Total Variance : st = si+52



NB : Except for the total variance, these are just
statistics for Problems 1 and 2 individually-
so far we've ignored the fact that they might
be correlated. This is what the PCA does.

Running Example: Suppose the problem 1&2 scores are:

di = (i) = (15) , (2), (i) , (f), (7), (5) .

Mi=5 m=2

Mz=8 n=6

Recenter : subtract (i) = 15) v> total
=20 ↓variance= (5) = (7) ,[) , (8) ,(i),(i),(2)55 =405=60

Geometrically, subtracting (5) moves the origin to 18) :

16
d

·ds 8 To d

14 6

12 4

18 2

subtract
g
d5

& 2 ·5. ·
6 means -2

4 - 4

·
dz Tz
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·6
·to

O

8 2468101214
-8

-4 -20 2468

NB : The recentered values have mean zero
,

so

+ -+ = ( 3
-4 +7+ 1 - 4 -3 ( = (%)7-6 + 8 -) - 1 -7



Principal Component Analysis
Now we do linear algebra
Suppose we haven samples ofa values : data points

di das
-

..
da

Store in a matrix:

A. = (a, ... (n)
Recenter the data points (subtract the means of

each row) :

A =( ...)
NB : Each value now has mean zero

.

This means

T+d+ -..+d= 0 .

Def :The coveriance matrix is S = nFAAT.
This contains the dot products of the rows.



For example, if m =2 and

A =(- )=(2)
then

S=(ow Coua
=)- -

The diagonal entries are the variances :

Si=x++ [r) S=t(ji+... +yt)
The trace is the total variance :

Tr(S) = Si+Se = 52

The off-diagonal entries are called covariances.

Essentially ,
if the (1,2) entry

nt (x,y+... + [n]n)
is large than : andi tend to have the same

sign : so if the first measurement is above average,
then the second probably is too .

Likewise if theC

(1 ,2) - entry is large negative, then the opposite is
true.

We won't use covariances directly for anything.



Running Example:

d = (i) ,
(2), (i)

,
(f)

,
(7)

,
(i) -> Ao=(15)

= (3) ,[ , (8) ,(i),(i),(E) - A =13)
S= AAT = (202)

Total variance : Tr(s) = 20+40 = 60

Covariance=25 : the values are correlated.

Covariance Matrix : Summary
A :
mxn recentered data matrix.

S = nEAAT = covariance matrix
(mxm)

the (ii) -entry of S is
Si-variance of the it value

The trace of S is the total variance :

Tr(S) = sitset+S = S2

The (i,j) - entry of S is the covariance
of the ith & jt values.



APPLY THE SVD :

The eigenvalues and eigenvectors of

S=At(t)(A)T
compute the SVD ofAland FAT).

A=U + guv+ - .. + aunvT

where:

·26--z6>0 are the nonzero

eigenvalues of S .

· U, Uz, ..., Ur are othonormal eigenvectors of S
= left-singular vectors ofA
↳Ste

, notit(int)
· Vi ,Va, -..,

Vr are the right-singular rectors
As always : ofA

u= Avi vi=u
NB : The SVD of A is just

A =quinT+UzkT+--GUrV

-> same singular rectors of FA
,
but the

singular values areto ...or



We need to keep the it's around so that,
for instance

, we have TrIS) = Hotal variance).

Fact : The trace of a square matrix is the

sum of its eigenvalues, counted with algebraic
multiplicity :

T [c( .)]=
(This was an optional HW problem)

Apply this to S : we know Tr(s) = Hotal variance)
,

so
sitst.+S==Trls)= 6+62+--

Q : Ok, so what do the singular values & singular
vectorsof A tell us about our data?

A : The directions and magnitudes of largest
and smallest variance.

The rest of this lecture is devoted to decoding
that sentence.



Def : Let A be a recentered data matrix with
covariance matrix S=AAT and let helm
be a unit rector. The variance in the-direction
of our data points is

slub" = uTSu.

This is a slick definition that obviously suggests
quadratic optimization, but let's unpack what it means
We're seen XT/ATA)X before (L21, (23) · In
this case,

stul" = uTSu = uTAAtu=nTA)(Atu)

= (Au)(A) = Flt(ATu)=illAul

If A has columns discs.,an then

Au== So

slu)= llAul=(In)+ (u)"+.. -+ Itriu)]



NB : Since A is a recentered data matrix, we have

++.. -+d=0,
So

0 =0u = (d++.. -+d) .

u= diutau+ -+div

Therefore, slul is the variance of the numbers

diutiu .,
driv with mean zero.

Eg: If n = e= (6) then

die = ()(d) =i

so sle=ke+(e)+..-+ Irie)]

= (xi +*+... + knz) = si

More generally,
slei) =s = variance of the it value

For a general unit rector u recall that the

orthogonal projection of d onto Spanus is
(d.u)u

, so that

II(d-u)ull = (d.u) llull= (d-u)
2.

In other words ,

Idu)" = length of the projection of d onto Spandu?.



Picture :

u = e ,

d
· d= (j)

= X-axisS Spanse 3 (dele=1)
)

er
-

spar [de)"= X
=

(u)uRunning Example:

8 di ·Is

In this case,
6 aliu)u
4 um

sln)"= sum of squares 2

span

of distances of liulue
from zero.
·

5 ·
-2

<95uu

Here's another way to
- 4

(in)u 2
-6 1tu)u

-

think about it : Span[u3
-8
·6

I -4 -202468is a number" line
,
and

Iaiu)u is a "number" on -it. Then slul" = thevariance

of these numbers. uuu R i tin ,& *

↑ ↑ - Anumbers with mean O



APPLY QUADRATIC OPTIMIZATION

The quadratic form slu)=uTSu has maximum
value (subject to Kull= 1) = 0

.

2
= largest eigenvalue

of S. It attains its maximum at u,
= unit o

eigenvector. Therefore :

U ,
is the direction of greatest variance
o= s(u)"= variance in the -direction

(Remember that o
,
is the first singular value of

A and u,
is the first left singular vector)

This says our data points are "stretched out" the
most in the u-direction.



Running Example:

In our example, o=56 .9 and n 105).
The variance is maximized in the u.-direction
with max variance 56 .9.

Note this is greater than
Si= 20= problem 1 variance
S2= 40 =problem2 variance.

(u)u
8 8 di ·Is

sk7 6 aliu)u
It 4 La
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variance y-words
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slu)=variance56 .9



Eg : Here's how I should (but won't grade the
final exam.

· Put the scores of each problem in an man

matrix to (m=#problems, n =# students)
· Subtractrow (problem) averages to recenter

-> matrix A = ( ...)
· Compute the first left singular rector u,
· The score for student i is

di U,
+ I mean scores

This maximizes the standard deviation by
weighting the problems according to u..

Of course
,
this isn't necessarily fair. For instance,

if the jt coordinate of u is negative, then
you're penalized for getting problemj correct !

Minimum Variance :

If A has FRR ,
then slul has minimum value

(subject to lull=1) = o = smallest eigenvalue of S.

It is minimized at Un = unit or- eigenvector.
Therefore :



Ur is the direction of smallest variance

o= slut"= variance in the ur-direction

(If A does not have FRR then slul has minimum
value zeros attained at any unit rector in NullAT))
Running Example:

&

In our case,

8 Tos

o 3
.07 U /:88) somet

2

the variance in the U2-o
direction is minimized=> -2

5

<

·

Ye
the sum of the length - 4

of the projections is
-6 goto

minimized.
-8

-4 -20 2468

But the length of is the orthogonal distance of
the data point from Spanquis = Spanquast.

Conclusion : In this case,
the direction of maximum variance

= the line of best fit in the sense of

orthogonal least squares
and the error= Edistance from = slun]


