
L10L27PCA So Far
+... +Ar= 0

A = (--.n) a centered data matrix

SVD: A= quinT+Guar+... +aurT

S=At= (A) (A)T the covariance matrix

· diagonal entries are si-Sm = variances of

the measurements (rows)
· nonzero eigenvalues are 6222 ...20

with orthonomal eigenvectors UpUz, ..,
Ur

· total variance
s = Tr(s) = Si+Se+ -+Sm = G+g+... +0

For wEIRY Pull= 1
,
the variance in the -direction is

slu)" = uTSu= ((du)+ (tu)"+... + (u)-]

=sum of length of projections of di
onto Span9u3]

d si =slei
?

· The variance is maximized at X=u,;

the maximum value is slu)" = 02.

· If A has FRR,
the variance is minimized

at X=Ur; the minimum value is stur)" =or



More generally, we can maximize slu"subject to
llull=) and nu,

=0. We get the direction of
second-largest variance = U2

,
with second-largest

variance = o (=second-largest eigenvalue of S).
And so on. See L23

, near the end.

= it-largest variance
ui = direction with it-largest variance

Recall (L25) : In the SVD

A=guinuak+- unt
u) the columns of giv,

T

= the orthogonal projections of the
columns of A (the di) onto Spanquil.

Def : The ith principal component of A is nivit

This is "the component of A in the direction of it

largest variance"; and the SVD says that A
is decomposed as a sum of its principal
components,



Running Example:

= (3) ,[ , (8) ,(i),(i),(E) - A =13)
S= AAT = (202)

&

A = G,
vir, T+UzV for 8 To "Is

56 .9 o 3. 6 &

L

4,/ : 56 28) un(: span
2

The variance is maximized
·

5 · Mus
-2

< s
in the ur-direction

,
with - 4

maximum variance=56 .9· -6 ↳
·6

The variance is minimized -8
-4 -202468

in the u2-direction, with ·=1 principal comp
minimum variance 3

.
1.

=2 principal comp
· = -+o

NB: Total variance :

s =Tr(s) = 60 = si+32 = 40+20

= a + 0 = 56 .9+3 .
1



Saying that the variance in the U2-direction is
minimized means the sum of the squares of the

lengths of the is minimized.
These are the

orthogonal distances to Spansu.3=, so :

Upshot : The direction of largest variance is the
line of best fit in the sense of orthogonal
least squares, and the

error= /sum of length of 1=2.

The rest of this lecture is devoted to explaining
This phenomenon, and understanding what happens
when m>2.



Subspaces) of Best Fit/Matrix Approximations
As above,

A =( --) a centered data matrix (m xn)

If neRY llull= Is then

slu)=sum of length of projections of ci onto Span[u3]
This definition makes sense if we replace Spanius
with any subspace.

Def : Let V be a subspace of IR". The

variance along V of our data points is

s(V)"= nF[Il(d)vlk+ 1(k)ulk+.. -+ 11(dn] v/2]
↑ ↑↑ orthogonal projections

NB :The way we're defined things , if V=Span[u)
then slu)" = >(SpanSuT]

NB : s(vt)"= [l(i)v+11+ 1(k)v=11+-- -+ 11(dn)v+112]
= x the sum of the lorthogonal) distance

did

L
from the data points to V.



How to Computes(V)" :

k=dimV

Find an orthonormal basis Sw ,Wy ... ,WE for V-
Then s(V)"= s(w)+slv+... +slwn]

Proof : By the projection formula,
(i)v = (w)wit(w)w2+--+ ki-wi.)Win

If we take the dot product
I (di)vll= (div-(i)v

using the above formula and distribute, then

WiW,
=O for it] and wiwi= I

, so

1) (di)vll= (ciw)+ Itwa+...+ loWil?

Therefore ,

s(V)
== [ll()v+11+ 1(k)v=11+ -.

-+ 11(dn)v+112]

= [(iw ,) + Itwal"+.+ (diwi)" +

low ,)
"

+ 1wal"+.+ (diwi)2 +

-- +

liw .) + Itiwal" +... + (diw,)2]
(sumb) = s +S

Il



Eg : Let's computes(V)" for V=" using the
othonormal basis Seyez,.., em3 .

s(RM)
=

= Steil" +slee"+...+ slem?"
=si + S + - .. +Si = $2

So sIIR)= s =Tr(s) = total variance.

Now we come to the fact that relates best fit and
largest variance.

Theorem : If V is any subspace of 1" then
s(l" + s(V +)" =s = total variance.

Proof : Choose an orthonormal basis SwiWith for
V(k=dimK) and Wity--Wm for V

+

(m-k =dimVt)
· Then Swis - -WkWkey ...Wm] is

othonormal since WiWj =0 for ick and j > k
because WitV

, WieVt. Hence Sw
. . ,
0mY is

an orthonomal basis for 1 so

s(V)
"

+ s(V+) 2

= s(wil+...+s(wk)"+s (wit+- + s(wn)2
= s(1Rk)" = S2

.

Il



Eg: Let's computes(V)" for V= CollA) using the
orthonormal basis Su, U2, -..,

Un3.
5 (Col(A))= s(n)"+ s(uz)"+-+s(ur)

= a + G + ... +or =S .

This means s(Vt)" = s(NullATY)= 0 ,
which

makes sense because the ii all project to 0
in NullAT) =Col(A)t .

Recall that s(vt= sum of distance" of Mi to V

Def : For any dimension k*m,
the

k-space of best fit for our data points
(in the sense of orthogonal least squares) is
the subspace V of dimension k that

2

minimizes s(Vt) = error?

Since s(V)"+ s(V+
"

=52 is independent of V
it follows that

maximizing s(V)" = minimizing s(rt)2.
↑ ↑

notsum of
variance orthogonalIn other words

,
along V

distance" to V

thespace theseared+ variance .
of larges



We know that V = Spansuis is the line of best
fit

,
with s(V)=2 s[it" =c+o+- +or

To find the plane of best fit, we want to

maximize the variance. The most we can increase

s(vi) is by the second-largest variance of :

if U=SpanSuua3 then

s() =slui"+ slunk = 02+ s(t)" = o+. +o?

Continuing in this way, the greedy algorithm
gives the k-space of best fit:

= Spankun,uas---- UpY
s(v)= a+a++(H=Q +Q2+..-+o

We've split the total variance st=c++ - +o

into the large part ="+a+ - +&and the
small part quit oiz+ --+" = error

"

Recall : Since the SVD of A is
Aguinakak+ --- naururt
the columns of
uniquak+---

are the orthogonal projections of thei onto
Via = Span Sun U2

, ...,UY .



So not only does the SVD compute the k-space
of best fit for every Is it also finds the
best approximations (= orthogonal projections) of
your data points on those spaces!

More precisely,
if

Aguinakak+---
then

A-Ak=Gunn+ -+un

The columns are the orthogonal projections of the di
onto Unt .

The sum of the length is
(n-1) x variance = (n-1) s(Vit)"= (n-1)(+ -- .+or

2)
But if you add the length of all the columns of a
matrix

, you just get the sum of the squares of
the entries of that matrix !

B= (y ...) = (bij) us (iv)++(vi) = Ebj

So An is in fact the best approximation to A of
rank k

, in the sense of sum of squares of matrix
entries !



Summary: Subspaces of Best Fit
A :

man centered data matrix
↓

SVD:A
= GunT +Quart+ -- -+UrUT

For kEm
,
the K-space of best fit is
V=SpanSuyuzs---UnY with

error
?=a+2++o

The columns of
Aguinakak+---
are the orthogonal projections of the
columns of A onto Up.

This is the best rank-k approximation of A.

NB : This is the error in the sense of variance :

slot"nsum of distance" of Mi to UK)
So the error in terms of absolute distances is
just In-1)s(Vit)= sum of squares of singular
values of A (not A).



Eg : Suppose that
↓
A = 10 niv+ Surve+ 0 .2uzu+ 0. 1Un

· Best-fit line :

V = Spanhuis error= 82+0 .
22+0.F264

· Best-fit plane :

V= Span[usuz] error t= 0 .
2"+0 .1 20 .04

· Best-fit 3-space :

=Span[unUzua3 error= 0 .50 .0

Conclusion :

· Your data are not approximately collinear.
The best-fit line is V, but errors is large .

· Your data are approximately coplanar.
The best-fit plane is U2, and error is small.

· The 3-space of best-fit doesn't improve
the errors by much over U-adding us

means you're storing extra data with little
increase in precision.

So the most useful approximation to the data is
AnAz =manu



Upshot : Ifa ,
02
, ... on are much larger than

Ot2,...
O. Then your data closely fit the

1 space of best fit Un= Spanius ....up
,
and

AnAp=un+ -+Un

is a good approximation that doesn't waste a

lot of memory.

When m is large, there could J I strictly
decreasing)

be thousands of singular 2values
,
so you'll see them

plotted like this : i=84
Si

In this case, it looks like the data are

approximately 84-dimensional.
Exactly where you set your cutoff is determined
by what p value you need-

NB : If you want the best-fit k-space before
recentering , just add back the means !

IOriginal data points) Sit V+ /Milmeansdisda - -da

Origina AAt


