

Number of Solutions

In the examples last time, our system of equations had only one solution. This is because we could isolate each variable. In terms of pivots:

One Solution: this happens when the augmented matrix has a pivot in every non-augmented column but not the augmented column.

$$\begin{array}{c}
 \text{non-augmented columns} \\
 \left(\begin{array}{cc|c} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{array} \right) \\
 \text{augmented column}
 \end{array}
 \rightsquigarrow
 \begin{array}{l}
 \text{one solution} \\
 \begin{array}{l} x_1 = 2 \\ x_2 = 3 \\ 0 = 0 \end{array}
 \end{array}$$

What happens if there's a pivot in the augmented column?

Eg: $x_1 + x_2 = 3$

$$\begin{array}{l}
 2x_1 - x_2 = 4 \\
 -x_1 + x_2 = 7
 \end{array}
 \rightsquigarrow
 \left(\begin{array}{cc|c} 1 & 1 & 3 \\ 2 & -1 & 4 \\ -1 & 2 & 7 \end{array} \right)$$

$$\begin{array}{l}
 R_2 \leftarrow 2R_1 \\
 R_3 \leftarrow R_1
 \end{array}
 \left(\begin{array}{cc|c} 1 & 1 & 3 \\ 0 & -3 & -2 \\ 0 & 3 & 10 \end{array} \right)
 \rightsquigarrow
 \left(\begin{array}{cc|c} 1 & 1 & 3 \\ 0 & -3 & -2 \\ 0 & 0 & 8 \end{array} \right)$$

↑ pivots

This system of equations is:

$$\begin{array}{l}
 x_1 + x_2 = 3 \\
 -3x_2 = -2 \\
 0 = 8
 \end{array}$$

This system has **no solutions** — no values of x_1, x_2 can satisfy the 3rd equation!

Logically, if you had a solution (x_1, x_2) of the original equations, then you do row ops \rightarrow get a solution of $0=8$, which is a contradiction. Hence no solution can exist!

Zero Solutions: this

happens when there is a pivot in the augmented column.

$$\left(\begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) \rightarrow \begin{array}{l} x_1 = 0 \\ x_2 = 0 \\ 0 = 1 \end{array}$$

↑ pivot!

no solutions!

Def: A system of equations is **consistent** if it has a solution. It is **inconsistent** if it doesn't have any solutions.

If a system is consistent and there's a non-augmented column with no pivot, that corresponds to a variable that cannot be isolated. It turns out there are infinitely many solutions in that case.

oo Solutions: this

happens when there is no pivot in the augmented column

and in another column too.

$$\left(\begin{array}{cc|c} 1 & 2 & 3 \\ 0 & 0 & 0 \end{array} \right) \rightarrow \begin{array}{l} \text{no pivot!} \\ x_1 + 2x_2 = 3 \\ 0 = 0 \end{array}$$

↑ not isolated!

$\underbrace{\infty \text{ solutions:}}$
the line $x_1 = 3 - 2x_2$

NB: You have to find the pivots to count solns, which means **elimination**.

Parametric Vector Form

When there are infinitely many solutions, how do we "list", or **parameterize**, them all?

Eg:
$$\begin{array}{l} 2x+y+12z=1 \\ x+2y+9z=-1 \end{array} \rightsquigarrow \left(\begin{array}{ccc|c} 2 & 1 & 12 & 1 \\ 1 & 2 & 9 & -1 \end{array} \right)$$

$$\xrightarrow{\text{RREF}} \left(\begin{array}{ccc|c} 1 & 0 & 5 & 1 \\ 0 & 1 & 2 & -1 \end{array} \right) \rightsquigarrow \begin{array}{l} x + 5z = 1 \\ y + 2z = -1 \end{array}$$

Observation: If you substitute **any number** for z , you get the system

$$\begin{array}{l} x = 1 - 5z \\ y = -1 - 2z \end{array} \quad \begin{array}{l} \text{variables} \rightarrow x = 1 - 5z \leftarrow \text{numbers} \\ \text{variables} \rightarrow y = -1 - 2z \leftarrow \text{numbers} \end{array}$$

This has a unique solution!

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 - 5z \\ -1 - 2z \\ z \end{pmatrix} \quad \text{if } z=1 \rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -4 \\ -3 \\ 1 \end{pmatrix}$$

$$\begin{array}{l} \text{Check: } 2(-4) + (-3) + 12(1) = 1 \\ \quad (-4) + 2(-3) + 9(1) = -1 \end{array}$$

Upshot: For **any value of z** you get a **unique solution**. This means the solutions are **parameterized** by z .

[DEMO]

Shapes: Implicit vs Parameterized Description

- The equations
$$\begin{aligned} 2x+y+12z &= 1 \\ x+2y+9z &= -1 \end{aligned}$$
 describe a **line** (as an intersection of 2 planes). This is an **implicit description**

which means it expresses the line as the **solutions** of a system of equations.

→ It's **easy to check** if $(-4, -3, 1)$ lies on the line: just substitute $x = -4$, $y = -3$, $z = 1$ into the equations & see if they're satisfied.

→ It's **hard to produce** points on the line with this description - can't directly write solutions.

- The parametric equations $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1-5z \\ -1-2z \\ z \end{pmatrix}$ describe the same **line** in terms of one **parameter** z : this is a

parametric description

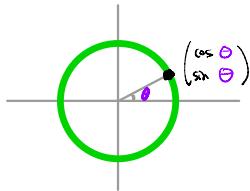
→ It's **hard to check** if a point lies on the line: does there exist a value of the parameter producing that point?

→ It's **easy to produce** points on the line - just choose any value for z !

Both $2x+y+12z=1$ and $x+2y+9z=-1$ and $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1-5z \\ -1-2z \\ z \end{pmatrix}$ are different descriptions of the same line! Each has its uses. This theme will recur throughout the semester.

Non-linear example: (just to emphasize the point)

Here is the unit circle:



Here is an implicit equation:

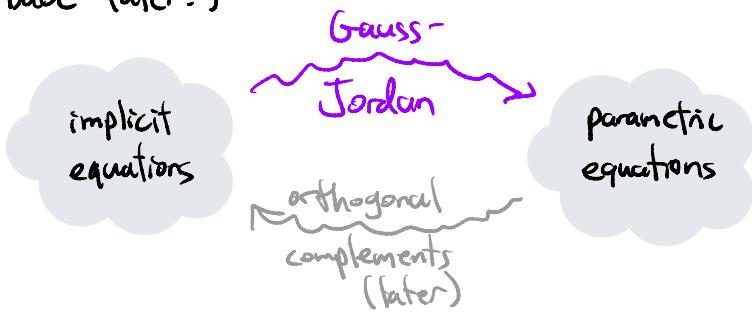
$$x^2+y^2=1$$

Here is a parametric description:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$

$\theta = \text{parameter}$

In the first example, we used Gauss-Jordan to go from the implicit form to the parametric form. (We'll learn how to go back later.)



Back to our example: We can write our parametric solution using vectors:

$$\begin{aligned} x &= 1 - 5z \\ y &= -1 - 2z \\ z &= z \end{aligned} \rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -5 \\ -2 \\ 1 \end{pmatrix}$$

This is how we will parameterize solutions of systems of linear equations. Here's the procedure.

Def: A **pivot column** of a matrix is a column with a pivot. (Remember, pivots are the 1st entry in each row in REF)

Def: A **free variable** of a coefficient matrix is a variable corresponding to a column with **no pivot**.

$$\left(\begin{array}{ccc|c} 1 & 0 & 5 & 1 \\ 0 & 1 & 2 & -1 \end{array} \right) \quad \begin{array}{l} x, y \text{ are in pivot columns} \\ z \text{ is a free variable} \end{array}$$

These are exactly the variables that you can't isolate in elimination.

Procedure: To find the **parametric vector form** of the solutions of a system of equations:

(1) Put $(A|b)$ into **RREF**. Stop if inconsistent.
(Nothing to parameterize in this case.)

$$\left\{ \begin{array}{l} x_1 + 2x_2 + 2x_3 + x_4 = 1 \\ 2x_1 + 4x_2 + x_3 - x_4 = -1 \end{array} \right. \rightarrow \left(\begin{array}{cccc|c} 1 & 2 & 2 & 1 & 1 \\ 2 & 4 & 1 & -1 & -1 \end{array} \right)$$

$\xrightarrow{\text{RREF}}$ $\left(\begin{array}{cccc|c} 1 & 2 & 0 & -1 & -1 \\ 0 & 0 & 1 & 1 & 1 \end{array} \right)$

(2) Write out the corresponding equations.

$$\left(\begin{array}{cccc|c} 1 & 2 & 0 & -1 & -1 \\ 0 & 0 & 1 & 1 & 1 \end{array} \right) \rightsquigarrow \begin{array}{l} x_1 + 2x_2 - x_4 = -1 \\ x_3 + x_4 = 1 \end{array}$$

free

(3) Move the **free variables** to the **right side** of $=$.
 Keep the free variables in columns, and add trivial equations $x_i = x_i$ for the free variables, in order.

$$\begin{array}{l} x_1 + 2x_2 - x_4 = -1 \\ x_3 + x_4 = 1 \end{array} \rightsquigarrow \begin{array}{l} x_1 = -1 - 2x_2 + x_4 \\ x_2 = \\ x_3 = 1 \\ x_4 = \end{array}$$

trivial equations

columns

(4) Gather the columns into vectors. Pull out the free variables as **weights**.

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

linear combination

Result: $x = \begin{pmatrix} \text{constant} \\ \text{vector} \end{pmatrix} + \begin{pmatrix} \text{a linear combination with} \\ \text{free variables as weights} \end{pmatrix}$

All solutions of the system are obtained by substituting any values for the free variables.

In other words, we obtain a parametric form of the solution set in which the free variables are the parameters.

IMPLICIT

$$\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 1 \\ 2x_1 + 4x_2 + x_3 - x_4 = -1 \end{cases} \xrightarrow{\text{PVF}}$$

PARAMETRIC

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

Eg: Setting $x_2 = 1$ and $x_3 = 2$ gives one solution:

$$\begin{pmatrix} -5 \\ 1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + 1 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

NB: The ^(constant) vector is the solution obtained by substituting 0 for all the free variables:

$$\begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

The ^(constant) vector is a solution of the system!

Def: This vector is called a particular solution.

Eg: $x+y+z=1 \rightsquigarrow (1 \ 1 \ 1 \ 1)$ is already in RREF

$$\rightsquigarrow x+y+z=1 \rightsquigarrow \begin{array}{l} x=1-y-z \\ y=y \\ z=z \end{array}$$

↑
free

PVF $\rightsquigarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ ← linear combination

This is a parameterized plane.

[DEMO]

Eg: $x+y=2$ $\rightsquigarrow (1 \ 1 \ 2)$ RREF $\rightsquigarrow (1 \ 0 \ 1)$
 $x-y=0$

In this case there are no free variables!

$$\begin{array}{l} x=1 \\ y=1 \end{array} \rightsquigarrow \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

This is a point.

Observation:

- 2 free variables / parameters
 \rightsquigarrow solution set is a plane.
- 1 free variable / parameter
 \rightsquigarrow solution set is a line.
- 0 free variables / parameters
 \rightsquigarrow solution set is a point.

Provisional Definition: The dimension of the solution set of a consistent system of equations is the number of free variables.

We'll develop a more robust notion of dimension later.

Inverse Matrices

In an equation involving numbers, you can solve

$$ax = b \quad \text{by dividing both sides by } a: \quad x = \frac{b}{a}.$$

Does this work with matrices? $Ax = b \Leftrightarrow x = \frac{b}{A} ??$

Yes, but only for certain matrices.

NB: $b = a^{-1}$ (numbers) $\Leftrightarrow ab = 1$

and $c = 1 \Leftrightarrow cd = d$ for every number d .

Consider the **identity matrix** $I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$.

Since $I_n D = D$ for every matrix D , this plays the role of the number 1.

Def: An $n \times n$ (square!) matrix A is **invertible** if there exists an $n \times n$ matrix A^{-1} such that $A^{-1}A = I_n$.

Otherwise (if A^{-1} does not exist), A is called **singular**.

Fact: $A^{-1}A = I_n \Leftrightarrow AA^{-1} = I_n$: there's no difference between a "left inverse" & a "right inverse".

NB: Non-square matrices have no inverse by definition.

There's good reason for this, as you'll see on the Hw.

It's easy to compute the inverse of a 2×2 matrix:

Fact: $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible $\Leftrightarrow ad-bc \neq 0$, in which case

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Check: $\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \frac{1}{ad-bc} \begin{pmatrix} da-bc & db-bd \\ -ca+ac & -cb+ad \end{pmatrix}$

$$\frac{1}{ad-bc} \begin{pmatrix} ad-bc & 0 \\ 0 & ad-bc \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$$
 ✓

Eg: $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ is nonzero but not invertible:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a & 0 \\ c & 0 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

so no inverse exists.

Fact: $(A^{-1})^{-1} = A$

Fact: If A & B are invertible then so is AB , and

$$(AB)^{-1} = A^{-1} \cancel{B^{-1}} \quad B^{-1}A^{-1}$$

Check: $(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}I_n B = B^{-1}B = I_n$ ✓

Wait - what was wrong with $A^{-1}B^{-1}$?

$$(A^{-1}B^{-1})(AB) = A^{-1} \cancel{B^{-1}} \overbrace{AB}^{\text{nothing to cancel!}}$$

Here's how to compute A^{-1} in general.

Matrix Inversion: Let A be an $n \times n$ matrix.

(1) Form the augmented matrix $(A | I_n)$.

(2) Find its RREF:

$$(A | I_n) \rightsquigarrow (B | E)$$

If $B = I_n$ then $E = A^{-1}$. Otherwise A is not invertible.

Eg: Compute $\begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix}^{-1}$.

$$\left(\begin{array}{ccc|ccc} 1 & 2 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ -1 & 2 & 1 & 0 & 0 & 1 \end{array} \right) \xrightarrow{\substack{R_2 \leftarrow R_2 \\ R_3 \leftarrow R_1}} \left(\begin{array}{ccc|ccc} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 1 & 0 \\ 0 & 4 & 1 & 1 & 0 & 1 \end{array} \right)$$

$\xrightarrow{I_3}$

$$\xrightarrow{R_2 \leftarrow 4R_2} \left(\begin{array}{ccc|ccc} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & -3 & 4 & 1 \end{array} \right)$$

$$\xrightarrow{R_2 \times -1} \left(\begin{array}{ccc|ccc} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -3 & 4 & 1 \end{array} \right)$$

$$\xrightarrow{R_1 \leftarrow 2R_1} \left(\begin{array}{ccc|ccc} 1 & 0 & 0 & -1 & 2 & 0 \\ 0 & 1 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -3 & 4 & 1 \end{array} \right)$$

$\xrightarrow{I_3}$

A^{-1}

$$\text{So } \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} -1 & 2 & 0 \\ 1 & -1 & 0 \\ -3 & 4 & 1 \end{pmatrix}.$$

Check: $\begin{pmatrix} -1 & 2 & 0 \\ 1 & -1 & 0 \\ -3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \checkmark$

Why does this work? Elementary matrices (next time).

Eg: Compute $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}^{-1}$.

$$\left(\begin{array}{ccc|ccc} 1 & 2 & 3 & 1 & 0 & 0 \\ 4 & 5 & 6 & 0 & 1 & 0 \\ 7 & 8 & 9 & 0 & 0 & 1 \end{array} \right) \xrightarrow{\substack{R_2 \leftarrow 4R_1 \\ R_3 \leftarrow 7R_1}} \left(\begin{array}{ccc|ccc} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -3 & -6 & -4 & 1 & 0 \\ 0 & -6 & -18 & -7 & 0 & 1 \end{array} \right) \xrightarrow{R_3 \leftarrow 3R_2} \left(\begin{array}{ccc|ccc} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -3 & -6 & -4 & 1 & 0 \\ 0 & 0 & 0 & 5 & -3 & 1 \end{array} \right)$$

There's a zero row on the left, so the RREF can't be $(I_3 | *)$. Hence the matrix is **not invertible**.

In fact, the only way you'll get $(I_n | *)$ is if there are n pivots on the left, ie, n pivots in A .

Thm: Let A be an $n \times n$ matrix.

The Following Are Equivalent (TFAE):

for a given matrix, either they're all true or they're all false

- (1) A is invertible
- (2) The RREF of A is I_n
- (3) A has n pivots.

Back to solving $Ax=b$ by "dividing by A ":

Suppose A is invertible.

$$\begin{aligned} Ax=b &\iff A^{-1}(Ax) = A^{-1}b \\ &\iff (A^{-1}A)x = A^{-1}b \\ &\iff I_n x = A^{-1}b \iff x = A^{-1}b. \end{aligned}$$

Solving $Ax=b$ by Dividing by A

If A is invertible then

$$Ax=b \iff x = A^{-1}b$$

In particular, $Ax=b$ has **exactly one solution** for every value of b , and we get a **formula for x in terms of b** .

Eg: Solve $\begin{aligned} 2x_1 + 3x_2 &= b_1 \\ x_1 + 2x_2 &= b_2. \end{aligned}$

This is $Ax=b$ for $A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$

$$\Rightarrow A^{-1} = \frac{1}{4-3} \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix}$$

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = A^{-1}b = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} 2b_1 - 3b_2 \\ -b_1 + 2b_2 \end{pmatrix}$$

ie $\begin{aligned} x_1 &= 2b_1 - 3b_2 \\ x_2 &= -b_1 + 2b_2 \end{aligned}$ formula for x in terms of b

Computational Complexity of Gauss & Jordan

In real life you won't be running these algorithms by hand — you'll ask a computer! So it's important to know how much processing time is required (approximately).

Def: A **floating point operation (flop)** refers to the computer instructions $+, -, \times, \div$ for floating point numbers (the computer's internal representation of decimals).

You can think of one flop as a **unit of computer time**.

Matrix \times Vector takes how many flops?

Let's multiply an $n \times n$ matrix times an $n \times 1$ vector.

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} a_{11}b_1 + a_{12}b_2 + \cdots + a_{1n}b_n \\ \vdots \\ a_{n1}b_1 + a_{n2}b_2 + \cdots + a_{nn}b_n \end{pmatrix}$$

For the first coordinate:

$$\begin{aligned} 1. a_{11} \times b_1 & \quad 2. a_{12} \times b_2 \quad \dots \quad n. a_{1n} \times b_n \\ n+1. a_{11}b_1 + a_{12}b_2 & \quad n+2. (a_{11}b_1 + a_{12}b_2) + a_{13}b_3 \quad \dots \\ 2n-1: (a_{11}b_1 + \cdots + a_{1,n-1}b_{n-1}) + a_{1n}b_n \end{aligned}$$

Total is $2n-1$ flops per coordinate $\times n$ coordinates

$$= 2n^2 - n \leq \boxed{2n^2 \text{ flops}}$$

Matrix \times Matrix takes how many flops?

Let's multiply an $n \times n$ matrix times an $n \times n$ matrix.

$$A \begin{pmatrix} v_1 & \dots & v_n \end{pmatrix} = \begin{pmatrix} Av_1 & \dots & Av_n \end{pmatrix}$$

This is just n matrix \times vector products

so $\leq 2n^3$ flops.

... Or Is It? Amazingly, there are more clever procedures that can multiply matrices faster!

Nobody knows exactly how quickly matrix products can be computed, but the current record is

$$\mathcal{O}(n^p), \quad p = 2.371552 \dots$$

Gaussian Elimination takes how many flops?

Let's use an $n \times n$ (square) matrix for simplicity.

(1a) Row swaps require 0 flops (no $+$, $-$, \div , \times)

(1b) How many flops for a row replacement?

$$\begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_n \\ b_1 & b_2 & b_3 & \dots & b_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \end{pmatrix} \xrightarrow{R_2 \leftarrow \frac{b_1}{a_1} R_1} \begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_n \\ 0 & b_2 - \frac{b_1}{a_1} a_2 & b_3 - \frac{b_1}{a_1} a_3 & \dots & b_n - \frac{b_1}{a_1} a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \end{pmatrix}$$

Count: 1. $b_1 \div a_1$ 2. $\frac{b_1}{a_1} \times a_2$ 3. $b_2 - \frac{b_1}{a_1} a_2$

4. $\frac{b_1}{a_1} \times a_3$ 5. $b_3 - \frac{b_1}{a_1} a_3$

\vdots

2n-2. $\frac{b_n}{a_n} \times a_{n-1}$ 2n-1. $b_n - \frac{b_1}{a_1} a_n$

Total flops for each row replacement: $2n - 1 = 2(n-1) + 1$

Total # row replacements in (1b): $n-1$

Total flops in (1b): $[2(n-1) + 1](n-1) = 2(n-1)^2 + (n-1)$

Step (2) is just step (1) applied to an $(n-1) \times (n-1)$ matrix.

(2) Total flops: $2(n-2)^2 + (n-2)$

(3) Total flops: $2(n-3)^2 + (n-3)$

⋮

(n-1) Total flops: $2 \cdot 1 + 1$

Total flops for Gaussian elimination:

$$2(n-1)^2 + 2(n-2)^2 + \dots + 2 = 2 \frac{n(n-1)(2n-1)}{6}$$
$$+ (n-1) + (n-2) + \dots + 1 = + \frac{n(n-1)}{2}$$
$$= \frac{2}{3}n^3 - \frac{1}{2}n^2 - \frac{1}{6}n \approx \boxed{\frac{2}{3}n^3 \text{ flops}}$$

(Pyramidal number) (triangular number)

Jordan Substitution takes how many flops?

Start with an $n \times n$ matrix in REF. Worst case is n pivots:

$$\left(\begin{array}{cccc|c} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ 0 & a_{21} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{nn} & b_n \end{array} \right)$$

(1a) $R_n \div a_{nn}$ $\rightsquigarrow \left(\begin{array}{cccc|c} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ 0 & a_{21} & \cdots & a_{2n} & b_2 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & b_n/a_{nn} \end{array} \right)$ l. $b_n \div a_{nn}$
 (1 flop)

(1b) $R_1 \div a_{1n} R_n$ $\rightsquigarrow \left(\begin{array}{cccc|c} a_{11} & a_{12} & \cdots & 0 & b_1 - a_{1n} \frac{b_n}{a_{nn}} \\ 0 & a_{21} & \cdots & 0 & b_2 - a_{2n} \frac{b_n}{a_{nn}} \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & b_n/a_{nn} \end{array} \right)$

$R_2 \div a_{2n} R_n$

$R_{n-1} \div a_{n-1,n} R_n$

Count: 2. $a_{1n} \times \frac{b_n}{a_{nn}}$

3. $b_1 - a_{1n} \frac{b_n}{a_{nn}}$

4. $a_{2n} \times \frac{b_n}{a_{nn}}$

5. $b_2 - a_{2n} \frac{b_n}{a_{nn}}$

:

$2(n-1). a_{n-1,n} \times \frac{b_n}{a_{nn}}$

$2(n-1)+1. b_{n-1} - a_{n-1,n} \frac{b_n}{a_{nn}}$

Total flops in (1): $2(n-1)+1$

Step (2) is just step (1) applied to an $(n-1) \times (n-1)$ matrix

(2) Total flops: $2(n-2)+1$

(3) Total flops: $2(n-3)+1$

:

(n-1) Total flops: $2 \cdot 1 + 1$

(n) Total flops: $2 \cdot 0 + 1$

Total flops for Jordan substitution:

$$2[1 + 2 + \dots + (n-1)] + n = n(n-1) + n$$
$$= n^2 \text{ flops}$$

Summary:

- Multiply $(n \times n)$ matrix & $(n \times 1)$ vector: $\approx 2n^2$ flops
- Multiply two $(n \times n)$ matrices: $\mathcal{O}(2^p)$ $2 < p < 3$ flops
- Gaussian Elimination $(n \times n)$: $\approx \frac{2}{3}n^3$ flops
- Jordan Substitution $(n \times n)$: n^2 flops
- Inverting an $(n \times n)$ matrix: $\approx \frac{4}{3}n^3$ flops

I'll expect you to know which are $\mathcal{O}(n^2)$ algorithms & which are $\mathcal{O}(n^3)$.

Important Observation:

$\frac{2}{3}n^3$ is an order of magnitude larger than n^2

Eg: If $n=1,000$ then $n^2 = 10^6$, $\frac{2}{3}n^3 = 666 \times 10^6$, which is 666 times slower!

Elimination is much slower than Substitution