
Elementary Matrices

This turnsrow operations into matrix multiplication.
It lets us use matrix algebra to reason about elimination.

Def : An elementary matrix is a matrix obtained from
the identify matrix by doing one now operation.

GEg: (a)A
G G

%(3)
G I

%B 1000O

Fact : If E is the elementary matrix for a now operation,
then

E :A = (the matrix obtained by doing thesamerow operation to A

row left-multiplication
operations by elementary-

matrices

- I

Eg&2)
E=

G

I O %B(0) // same!O

G 1 -

FA =(
-I5

-8 - 21

Left-multiplication by (00) does Ry-z5R ,
-

Fact : An elementary matrix is invertible. Its inverse is

the elementary matrix that un-does therow operation.

GWhy?
E = (meme) = (i)
Eze(me)=

EnE = EnEIg = EnlEIs) =Ifirstmultiplyby

What does that do?

Ry-z5R , Rs+z5R,Is Els - EzlE, Ig)
mult. by E, mult. by E2

I
& G

I ResRe I o I
(

This does the now operation R3-=5R ,, then un-does it!
So you getIs back.

EsFi = Is means Ei =Ez

This illustrates the following important point:

If E is an elementary matrix , then

compute EA by doing a now operation.

Not by multiplying matrices !

What if you do multiple now operations?
Consider these elementary matrices:
EiRit=2R2 Ez: Rax=2 Es : Rat Ra

Let's apply these in order to a matrix A :
Rit=2R2 Rux=2 R2= RsAmus EAmus EstEA) mus Es(Er(EA))

do Rax=) do R2Rz

to FA to EzEiA =LEsErEi)A

Why did the elementary matrices end up in the opposite
order?

EsErEA = EsFaIFiAl
= first multiply by EI , then by Ez, then Es

Application to Invertibility :

Suppose A In . That means you can do some number

ofrow operations to A to get In .

Let En,Er be the

elementary matrices for theserow operations. Then

In = (Er:- EstilA

= A = ErEsti

In particular, A is invertible !
It also tells us how to compute At using now operations :

column-first matrix multiplication
↑ =>ClAIB) = (AICB)

(Er :EnEi(AlIn) = ((Er :EnElAl (Er :EnEi[n)
= (In (A)

This means if you do the same now operations to In,
then you get A : that's our algorithm from last time.

Triangular Matrices

Def : A matrix is upper/lower triangular if all of the
entries below/above the main diagonal are zero.

upper triangular lower triangular

(O (I 000 (O
00

↑
main diagonal

maindiagonal
=

any number

Def : A matrix is upper/lower unitriangular if it is
upper/lower triangular and all diagonal entries = 1.

upper unitriangular lower unitriangular
1 00

(! 1 (I 108 (
o O 1 1

=

any number

Eg : These matrices are upper-Aular but not unibular :
o O

(5) (0)(5)(00O I
=

any number

(including zero!

Eg: These matrices are lower unitular:

any number(200) (6)- (including zero!

NB : A matrix is diagonalE) It is both upper- &
lower-Dular : that means all off-diagonal entries
are zero .

Eg: A matrix in REF is upper-Aular :

1 - 3

O 43 31 : (00 2

Eg: The elementary matrix for Ri += c Ri
, ii]

ladd a multiple of a row to a new below it

is lower-uniDular :

1
Fact : If A & B are nxn upper lumi)Dular matrices
then so are AB and A lif A is invertible).
Likewise for lower lumilDular matrices .

Eg : (!)()=
(0)" = (matrixinversion

NB : Any square, unibular matrix is invertible :

1) = pivets

LU Decompositions :
If Gaussian elimination on A requires no

now swaps, then ↑
Using the prescribed

not yourA = LU algorithm
owclever ops!

where:

L is lower unibular

U is an REF for A (E) upper-Dular)

Eg: (2) = A = LU = (200)

How does this speed up solving Ax=b?

How to solve Ax=b using A =LU
:

(1) Solve Ly =b using substitution.

(2) Solve Ux=y using substitution.

Then Ax = ((U)x= (((x) = Ly =b

Eg: Solve (x= (i) using

(= A = Lu = (2%)
(1) Solve (200)y= (p) using substitution.

(12)

Br()u y
= ()

(2) Solve (x = (2) using substitution.

(

&(
O

& (0))
-x= (i)

Check: (2)() = (i)
Wait, was that really any faster than elimination?

(1) Solve (200p) using substitution :

This elimination goes down instead of up, but it

amounts to the same thing-just reorder the
rows if you like, - 2 flops
Butthe pirots are already = 1 /L is unibular

so you don't have to do the n roc scaling ops
↳ n-n flops

(2) Solve (2) using substitution :

This is just Jordan substitution us r flops.

Total : up

Solving Ax=b using A
= LK takes

2n2-n2n flops

This turned elimination+ substitution= Ens flops into In!
of course, you still have to compute A =LU :

Where does A=LK come from?

If you can do Gaussian elimination without now swaps
then the onlyrow operations you're allowed to do are

ladd a multiple of a row
Ri += c Rj , izj to a new below it

The corresponding elementary matrices are lower-unibular :

= E

Let E--., Er be the elementary matrices for the row
ops you performed in Gaussian elimination. They are
lower-unibular

A U = REF(A) means

lleft-multiplication by Ei
Uz ErFre: - ErE

,
A

does now operation i

Since the Ei's are lower-unitular, so are

(ErFre : EnE) and L = (ErFre : EE)
= EE" --- ErFErt

Then LU = (ErFre :· EnE)
"

(ErFre :· EnEA

=A
NB : L = EE" ---ErrErt "keeps track" of the now

operations you did in Gaussian elimination.

NB: A= LU is a matrix factorization : it is a way
of writing a matrix as a product of simpler matrices.
-> We'll learn many of these
-> They all make different calculations faster.

This also gives you a way of computing L& U.

L= EE" ---Erer" = EE" ---ErEr" Im

This means :

· start with Im

· multiply by Er" means unde the last now op.
· multiply by Er means unde the (r-St row op.
i

· multiply by En" means unde the 221 row op.
· multiply by E ,

"

means unde the 1st row op.

This is L . /I is still the REF.)

Ega =(Pr(
MR (2) = u

Compute L :

1)
=
row up

Here's a better way of doing the bookkeeping.

Computing A=LU using the 2-Column Method :

(1) Start with a blank mym"L"matrix on the left

and your matrix A on the right.
Using the prescribed algorithm!

(2) Perform Gaussian elimination on A. . For each now

replacement Ri += cR
; put -c in the (isj)

entry of the matrix.

(3) Add1's to the diagonal entries of L & O's

to the rest of the blank entries.

Now L is on the left and U on the right.

Eg:
L -2 columns- U

start

I ((estAblank->

Bri (Dent (2)
(c=-2)

RR() (
M()(82) = U

Fill in the blank entries of Li

(3 -1)m(2%)=

Computational Complexity
Finding A =LU is just Gaussian elimination + some
extra bookkeeping.

Computing A = LU : Ens fleps

Solving Ax=b given A=LU : = In flops

How does this help? Isn't this just as long as
Gauss-Jordan elimination?

Yes
,
unless you have to solve Ax=b for 1, 000,000

different values of b! In this case
, you just

do elimination once and substitution 1, 000,000 X.

Eg: If n = 103 and you have 10
% 6's :

· Gauss-Jordan 100 times is 106x (103)3 = 5 -10 flops
· LU + substitution 10" times is 31103"+ 106x21103)

- 2- 101 flops

from sympy import *
from time import time

 # This is the 10x10 matrix with 2's on the diagonal and 1's elsewhere
 # eye(n) = nxn identity matrix; ones(n) = nxn matrix of 1's
 # (multiply by 1.0 to force it to use floating point arithmetic)
A = (eye(10) + ones(10)) * 1.0
 # This is the vector [1,1,1,1,1,1,1,1,1,1]
b = ones(10, 1) * 1.0

start = time()
 # Compute LU decomposition
L, U, _ = A.LUdecomposition()
 # Solve using substitution 1000 times
for _ in range(1000):
 U.upper_triangular_solve(L.lower_triangular_solve(b))
end = time()
print(end - start)
 # "7.144780397415161" (seconds)

 # Now solve using elimination 1000 times
start = time()
for _ in range(1000):
 A.solve(b) end = time()
print(end - start)
 # "48.048372983932495" (seconds)
 # Roughly 10x slower!

If I want my computer
to solve Ax=b for a zillion

values of b, I want toor
0

ask it for
G an LU decomposition

↑ first!

This is faster in SymPy too :

What about inverses? Isn't it faster to solve for X by
multiplying by A? Ax=b>A b

· Computing A" uses = Ens flops.
· Multiplying Ad uses =In flops too !
· Computing A " ends up introducing more rounding errors.

Maximal Partial Pivoting
The system of equations

X= 1
xz = 1 has one solution

Xz= /
X,+ Xz=2

Let's tweak it just a little bit :

- 10
-

17x
,
+ Xz = 1

X,+ Xz=
2

Presumably this has one solution Xil , X
* 1.

! (2) , Ho (· Hok2+ 10k

R(-
= 1 + 17

Ri= Ra/us
So XI= 1 and x2=I/

Let's try this on the computer.

from sympy import *
 # 1e-17 is 10^(-17)
A = Matrix([[-1e-17, 1.0, 1.0],
 [1.0, 1.0, 2.0]])

 # This does R2 += 10^(17) R1
 # (force sympy to use the smaller pivot)
A.row_op(1, lambda v, j: v + 1e17*A[0,j])
pprint(A)
 # [-1e-17 1 1]
 # [0 1e17 1e17]

 # Now do Jordan substitution
pprint(A.rref(pivots=False))
 # [1 0 0]
 # [0 1 1]
 # This answer is numerically very wrong!

https://en.wikipedia.org/wiki/IEEE_754

What went wrong?

Most computers represent decimal
numbers in 64-bit floating
point format.

this amounts to 17 decimal

digits of precision.

When the computer does

I
- 17 ! /2) B , (antzak)

it computes
Hol =mdigit,0000000

but it forgets the least significant (18th) digit :

- ,

000
Ho = 10000000000000000mmm= 100000000000000000

E
=
1017

-

·
2+ 1017= 100000000000000002

= 100000000000000000

so

mmmLikewise :
= 1017

https://en.wikipedia.org/wiki/IEEE_754?wprov=

So the computer does

-

(107 ! (2) Br , (10thatout
M (1) BR(

%

)
B(60(%)u X

Summary :
We had to divide R

, by the 1 pirot = -10-17
it we multiplied it by 1017

S

then added it to R2

which had the effect of forgetting the rest of
the entries of R2

.

How to fix this? 2017

Row scaptochoosethe large()
R((i) voMu

A = Matrix([[1e-17, 1.0, 1.0],
 [1.0, 1.0, 2.0]])
 # Do Gauss-Jordan with MPP
pprint(A.rref(pivots=False))
 # [1 0 1]
 # [0 1 1]

There are several pivoting strategies for avoiding this
kind of rounding error. Here is the simplest.

Gaussian Elimination with Maximal Partial Pivoting:
In Step (a) of Gaussian elimination, perform a
row swap so that lone of the largest numbers
in the column (in absolute value) becomes the new

pixot .

NB : Sympy does this by default.

The story so far :

· Can solve Ax=b faster with A =LU
,
which only

works when you can do Gaussian elimination with
norow swaps.

· Elimination is much more numerically accurate if you
row swap for every pirot.

The best of both worlds is:

PALU Decompositions

Def : A permutation matrix is a product of elementary
matrices for row swaps.

So if P is a permutation matrix then
PA= (do a bunch of row swaps on A)
= Crearrange the rows of A)

PALU Decomposition :

Any matrix A has a factorization

PA = LU
where:

P is a permutation matrix
L is lower unibular

U is an REF for A

Idea: First do all the row swaps on A (PA) , the
compute its LU decomposition (PA=LU)

-

Of course, you don't know which row swaps you'll need
to do before doing elimination! Thankfully, this is taken
care of with some slightly fancier bookkeeping.

Computing PA=LU Using the S-Column Method.

III Start with the mxm identity matrix "P" on the left,
a blank mym "L"matrix in the middle

,
and your

matrix A on the right.
- Using the prescribed algorithm !

(2) Do Gaussian Elimination on A.

· For each now replacement Ri += cR
; put -<

in the (isj) entry of the matrix.

· For eachrow swap RizeRj, swap the corresponding
rows of L (including blank entries !) and P.

(3) Add1's to the diagonal entries of L & O's

to the rest of the blank entries.

Now P is on the left
,
Lin the middle, and

U on the right.

Important: This only works if youdo Gaussian elimination
as prescribed ! It will fail if you try to be more

clever with your now operations.

Eg IPALU with Maximal Partial Pivoting) :
Compute a PA= LU decomposition using MPP for

A= (20-
P L U

(68))(t-
I) (
) (
E
Re(d) Es 102
Fill in the blank entries of Li

Eo =5) was)=
Check:

(9) fo=

Of course , this is only useful if we can use it to
solve Ax = b :

How to solve Ax=b using PA =LU
:

10) Compute Pb . (rearrange the entries of b)
(1) Solve Ly = Pb using substitution.

(2) Solve Ux=y using substitution.

Then PAx = ((u)x= ((Ux) = Ly = Pb.

(Multiply both sides by P
*

= Ax=b.)

Eg: Solve Ax=b where

A= (0 -- b= (
using (9)f=

10) Pb =(d) (0) = () (rearrange)

(1) Solve LyzPb using substitution :

I) (0)y = ()

(2) Solve Ux =y using substitution
:

po) t:)x =(5)

Check :

()(5) =1)

Computational Complexity
Finding PA =LU is just Gaussian elimination + some
extra bookkeeping, as with A =LU ·

And solving Ax=b using PA = LU only had the extra
Step (0)

,
which is just rearranging (no flops).

So the complexity is the same as A =LU ·

Computing PA = LU : Ens fleps

Solving Ax=b given PA=LU: In flops

