

Orientation:

This course roughly goes as follows:

- (1) Solve $Ax=b$ ✓
- (2) Almost solve $Ax=b$ *
- (3) Solve $Ax=\lambda x$
- (4) SVD

We've done pretty much all we'll do for (1).

Now we start on (2). The method of least squares is a **geometric** construction, so we'll spend the next 3 weeks on geometry (subspaces, orthogonality, projections).

Please bear with me for a couple of weeks of theory before we start to see applications on the horizon.

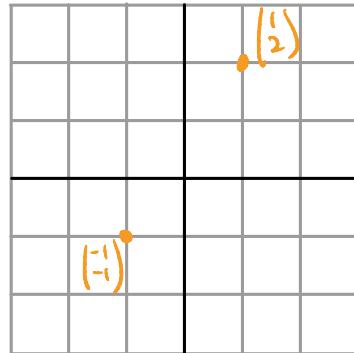
Geometry of Vectors

Recall: A **vector** in \mathbb{R}^n is just a list of n numbers:

$$v = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$$

We can draw a vector as a **dot / point** in Euclidean space:

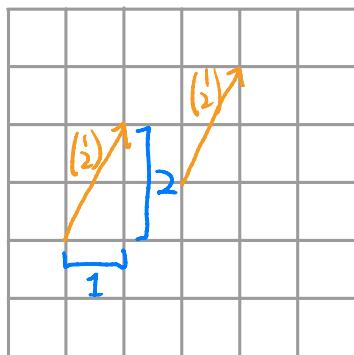
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\text{-coordinate} \\ y\text{-coordinate} \end{pmatrix}$$



We will often consider a vector as an **arrow**: it measures the **difference** between two points.

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\text{-displacement} \\ y\text{-displacement} \end{pmatrix}$$

NB: The tail of the arrow can be anywhere. By default we'll draw it at the origin.

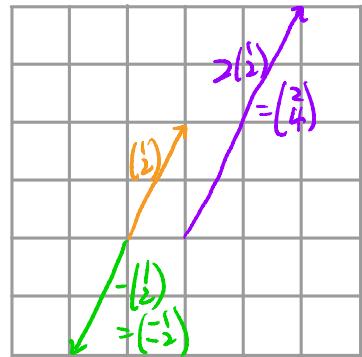


[DEMO]

How do **algebraic operations** behave **geometrically**?
We'll describe them by drawing arrows.

Scalar Multiplication

- The **length** of $c \cdot v$ is $|c| \times (\text{length of } v)$
- The **direction** of $c \cdot v$ is
 - the same as v if $c > 0$
 - opposite if $c < 0$



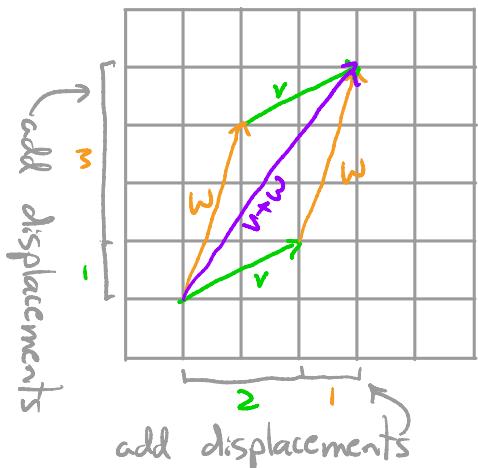
[DEMO]

Vector Addition

Adding $v+w$ just adds the **displacements**.

Parallelogram Law: to draw $v+w$, move the **tail** of v to the **head** of w (or vice-versa). Now $v+w$ is the arrow from the tail of w to the head of v .

$$v = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \quad w = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \quad v + w = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$



[DEMO]

Vector Subtraction

$$w + (v-w) = v$$

so $v-w$ starts at the head of w and ends at the head of v .

(According to the parallelogram law above.)

$$v = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \quad w = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \quad v - w = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

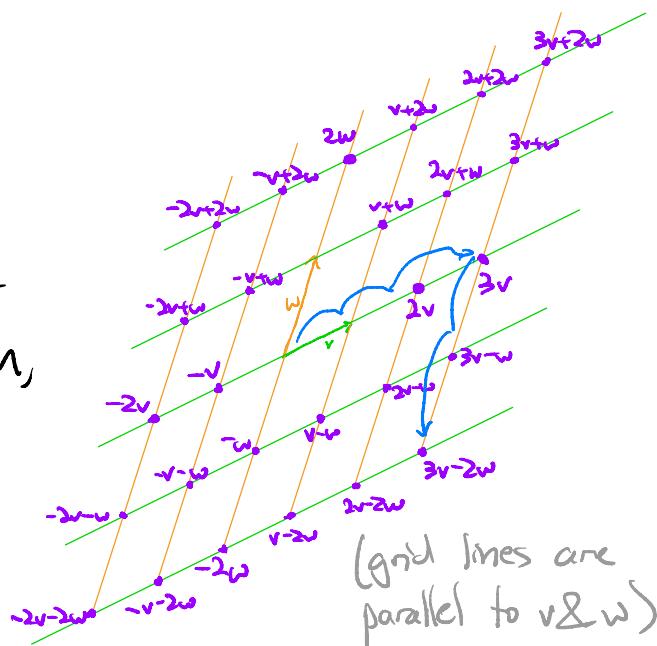
Linear Combinations

[DEMO]

First scales, then add.

This is like giving directions:

"To get to $3v - 2w$, first go $3 \times$ length of v in the v -direction, then go $2 \times$ length of w in the $(-w)$ -direction."



(grid lines are parallel to v & w)

[DEMO 1]

[DEMO 2]

[DEMO 3]

Spans

Recall: If $Ax=b$ is consistent, then the solution set has the form

$$x = \begin{pmatrix} \text{constant} \\ \text{vector} \end{pmatrix} + \left(\begin{array}{l} \text{all linear combinations of} \\ \text{some vectors from PVF} \end{array} \right)$$

For which b is $Ax=b$ consistent (has a solution)?

Rewrite as a vector equation:

$$Ax=b \equiv x_1v_1 + x_2v_2 + \dots + x_nv_n = b$$

$\uparrow \text{columns} \uparrow \text{of } A \uparrow$

This has a solution (there exists some choice of weights x_1, \dots, x_n) exactly when b is a linear combination of v_1, v_2, \dots, v_n .

Said differently, $Ax=b$ is consistent for

$$b \in \left(\begin{array}{l} \text{all linear combinations of} \\ \text{the columns of } A \end{array} \right)$$

This is the column picture criterion for consistency, which we'll see many times.

Let's study & draw "all linear combinations of some vectors"

Def: The span of a list of vectors is the set of all linear combinations of those vectors:

This is set builder notation \rightarrow

Translation of the previous page using Spans:

If $Ax=b$ is consistent, then the solution set has the form

$$x = \begin{pmatrix} \text{constant} \\ \text{vector} \end{pmatrix} + \text{Span} \left\{ \text{some vectors from PVF} \right\}$$

and $Ax = b$ is consistent if and only if
 $b \in \text{Span} \{ \text{columns of } A \}$.

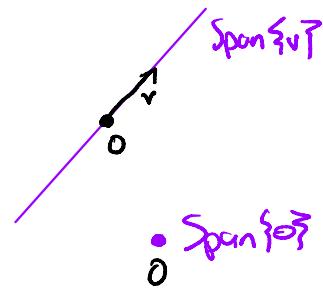
Visualizing Spans

$\text{Span}\{v_1, v_2, \dots, v_n\}$ is the smallest "linear space" containing the vectors v_1, v_2, \dots, v_n and 0 .

One Vector:

$$\text{Span}\{v\} = \{x \cdot v : x \in \mathbb{R}\}$$

- This is the line thru 0 and v **unless**
- $v=0$, in which case it's the point $\{0\}$.



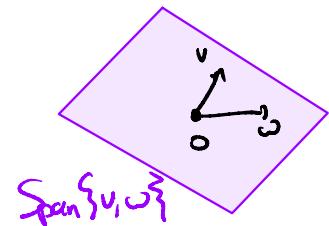
[DEMO 1]

[DEMO 2]

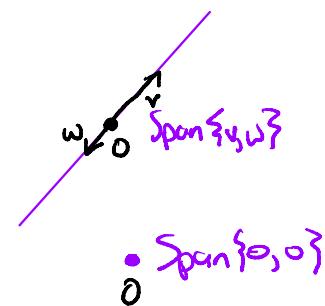
2 vectors:

$$\text{Span}\{v, w\} = \{x_1 v + x_2 w : x_1, x_2 \in \mathbb{R}\}$$

- This is the plane thru $0, v, w$ **unless**
- $0, v, w$ lie on the same line, **unless**
- $0=v=w$, in which case it's the point $\{0\}$.



Span{v, w}



Span{v, w}

[DEMO 1]

[DEMO 2]

3 vectors:

$$\text{Span}\{u, v, w\} = \{x_1u + x_2v + x_3w : x_1, x_2, x_3 \in \mathbb{R}\}$$

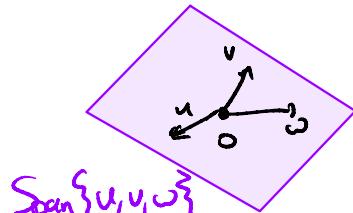
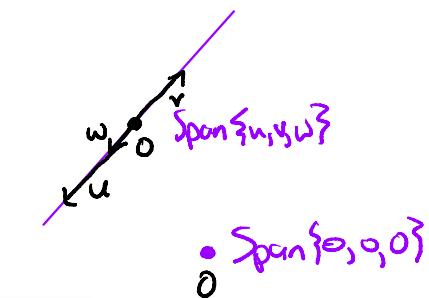
→ This is the **space** containing

O, u, v, w unless

→ O, u, v, w lie on the same plane, unless

→ O, u, v, w lie on the same line, unless

→ $O = u = v = w$, in which case it's the point $\{O\}$.



[DEMO]

What about the span of zero vectors?

$$\text{Span}\{\} = \{O\}$$

(by convention)

Potential Cause of Confusion:

Be careful to distinguish between these 2 sets:

$\{\}$ is the **empty set**. It has **no vectors at all**.

(eg: the solution set of an inconsistent system)

$\{O\}$ is a **point**. It contains (only) the **zero vector**.

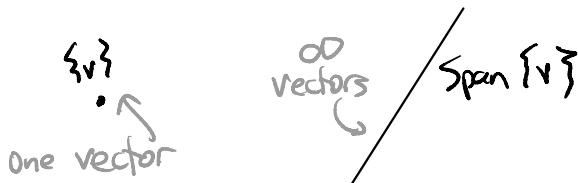
The (only) difference between them is:

$\{0\}$ contains 0 and $\{\}$ does not.

Another Potential Cause of Confusion:

$\{v_1, v_2, \dots, v_n\}$ is a set with n vectors in it.

$\text{Span } \{v_1, v_2, \dots, v_n\}$ is a linear space: it has infinitely many vectors. (unless all $v_i = 0 \dots$)



Taking a Span is a parametric description of a linear space thru the origin:

$$\text{Span } \{v, w\} = \{x_1 v + x_2 w : x_1, x_2 \in \mathbb{R}\}$$

It is one way to describe an infinite set using finite data. (Then you can do computations!)

NB: Every span contains 0 !

because $0 = 0 \cdot v_1 + 0 \cdot v_2 + \dots + 0 \cdot v_n$.

Non-Eg: $\{ \}$ This line is a "linear space" but it is not a span because it does not contain 0.

Non-Eg: $\{ \}$ does not contain 0 \Rightarrow not a span.

Computational Question: Is $\begin{pmatrix} 8 \\ 16 \\ 3 \end{pmatrix}$ in $\text{Span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \\ 7 \end{pmatrix} \right\}$?

Translate: Is $\begin{pmatrix} 8 \\ 16 \\ 3 \end{pmatrix}$ a linear combination of $\begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \\ 7 \end{pmatrix}$?

Translate: Can we solve the equation

$$x_1 \begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix} + x_2 \begin{pmatrix} -1 \\ -2 \\ 7 \end{pmatrix} = \begin{pmatrix} 8 \\ 16 \\ 3 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} 1 & -1 \\ 2 & -2 \\ 6 & 7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 8 \\ 16 \\ 3 \end{pmatrix} ?$$

We know how to do this!

$$\left(\begin{array}{cc|c} 1 & -1 & 8 \\ 2 & -2 & 16 \\ 6 & 7 & 3 \end{array} \right) \xrightarrow{\text{ref}} \left(\begin{array}{cc|c} 1 & 0 & -1 \\ 0 & 1 & -9 \\ 0 & 0 & 0 \end{array} \right) \rightarrow \begin{array}{l} x_1 = -1 \\ x_2 = -9 \end{array}$$

$$\therefore \begin{pmatrix} 8 \\ 16 \\ 3 \end{pmatrix} = -\begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix} - 9\begin{pmatrix} -1 \\ -2 \\ 7 \end{pmatrix} \in \text{Span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \\ 7 \end{pmatrix} \right\} \quad \checkmark$$

This is a specific instance of the:

Column Picture Criterion for Consistency

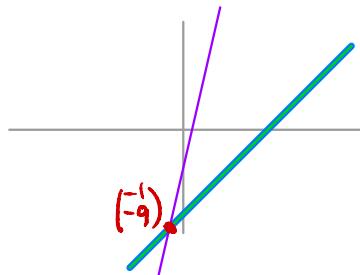
$Ax=b$ is consistent $\iff b \in \text{Span} \{ \text{columns of } A \}$
(has at least one solution)

I can't over-emphasize how important it is for you to internalize this concept!

Eg: $\begin{pmatrix} 1 & -1 \\ 2 & -2 \\ 6 & -1 \end{pmatrix}x = \begin{pmatrix} 8 \\ 16 \\ 3 \end{pmatrix} \Rightarrow$ consistent because
 $\begin{pmatrix} 8 \\ 16 \\ 3 \end{pmatrix} \in \text{Span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix} \right\}$

[DEMO]

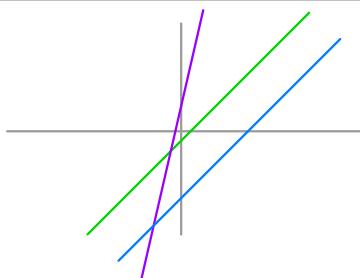
row picture:
 $x_1 - x_2 = 8$
 $2x_1 - 2x_2 = 16$
 $6x_1 - x_2 = 3$



Eg: $\begin{pmatrix} 1 & -1 \\ 2 & -2 \\ 6 & -1 \end{pmatrix}x = \begin{pmatrix} 7 \\ 1 \\ -1 \end{pmatrix} \Rightarrow$ inconsistent because
 $\begin{pmatrix} 7 \\ 1 \\ -1 \end{pmatrix} \notin \text{Span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix} \right\}$

[DEMO]

row picture:
 $x_1 - x_2 = 7$
 $2x_1 - 2x_2 = 1$
 $6x_1 - x_2 = -1$



Homogeneous Equations

"hoe-moe-gee-nee-us"

Def: A system of equations $Ax=b$ is **homogeneous** if $b=0$.

Eg: $x_1 + 2x_2 + 2x_3 + x_4 = 0$ $2x_1 + 4x_2 + x_3 - x_4 = 0$ \Rightarrow homogeneous

A homogeneous system is **always consistent** because $x=0$ is a solution: $A \cdot 0 = 0$

Def: The zero vector $\mathbf{0}$ is called the **trivial solution** of the homogeneous system $Ax=0$.

It's "trivial" in the sense that it has nothing to do with A .

NB: Conversely, if $x=0$ is a solution of $Ax=b$ then $b=A \cdot 0 = 0$.

Eg: Let's find the PRF of the solutions of the system

$$\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 0 \\ 2x_1 + 4x_2 + x_3 - x_4 = 0 \end{cases} \rightsquigarrow \left(\begin{array}{cccc|c} 1 & 2 & 2 & 1 & 0 \\ 2 & 4 & 1 & -1 & 0 \end{array} \right)$$

$$\xrightarrow{R_2 - 2R_1} \left(\begin{array}{cccc|c} 1 & 2 & 2 & 1 & 0 \\ 0 & 0 & -3 & -3 & 0 \end{array} \right)$$

$$\xrightarrow{R_2 \div -3} \left(\begin{array}{cccc|c} 1 & 2 & 2 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{array} \right)$$

$$\xrightarrow{R_1 - 2R_2} \left(\begin{array}{cccc|c} 1 & 2 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{array} \right)$$

free

$$\begin{array}{l}
 x_1 = 0 - 2x_2 + x_4 \\
 x_2 = x_2 \\
 x_3 = 0 - x_4 \\
 x_4 = x_4
 \end{array}$$

PVF

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

Observations:

(1) The augmented column is **always zero**.

If your system is homogeneous, there's no real need to write it down!

$$\left(\begin{array}{cccc|c} 1 & 2 & 2 & 1 & 0 \\ 2 & 4 & 1 & -1 & 0 \end{array} \right) \rightsquigarrow \left(\begin{array}{cccc|c} 1 & 2 & 2 & 1 & 0 \\ 2 & 4 & 1 & -1 & 0 \end{array} \right)$$

(2) The particular solution is **zero**.

(3) The solution set is a **span**:

$$(\text{solution set}) = \text{Span} \left\{ \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix} \right\} \quad \begin{matrix} (\text{the weights}) \\ \text{are the} \\ \text{free variables} \end{matrix}$$

These observations are true for any homogeneous system:

$$(\text{solution set of } Ax=0) = \text{Span} \left\{ \begin{matrix} \text{vectors from} \\ \text{PVF} \end{matrix} \right\}$$

Inhomogeneous Equations

Def: A system of equations $Ax=b$ is **inhomogeneous** if $b \neq 0$.

Eg:
$$\begin{aligned} x_1 + 2x_2 + 2x_3 + x_4 &= 1 \\ 2x_1 + 4x_2 + x_3 - x_4 &= -1 \end{aligned}$$
 is **inhomogeneous**

An **inhomogeneous** system may be **inconsistent**.

Def: If $Ax=b$ is inhomogeneous, its **associated homogeneous equation** is $Ax=0$.

Eg: Let's solve this inhomogeneous system, with its associated homogeneous equation alongside.

INHOMOGENEOUS

$$\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 1 \\ 2x_1 + 4x_2 + x_3 - x_4 = -1 \end{cases}$$

$$\xrightarrow{\begin{array}{l} \\ R_2 - 2R_1 \end{array}} \left(\begin{array}{cccc|c} 1 & 2 & 2 & 1 & 1 \\ 0 & 4 & 1 & -1 & -1 \end{array} \right)$$

$$\xrightarrow{\begin{array}{l} \\ R_2 \div 3 \end{array}} \left(\begin{array}{cccc|c} 1 & 2 & 2 & 1 & 1 \\ 0 & 0 & -3 & -3 & -1 \end{array} \right)$$

$$\xrightarrow{\begin{array}{l} \\ R_1 - 2R_2 \end{array}} \left(\begin{array}{cccc|c} 1 & 2 & 0 & -1 & -1 \\ 0 & 0 & 1 & 1 & 1 \end{array} \right)$$

free

HOMOGENEOUS

$$\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 0 \\ 2x_1 + 4x_2 + x_3 - x_4 = 0 \end{cases}$$

$$\xrightarrow{\begin{array}{l} \\ R_2 - 2R_1 \end{array}} \left(\begin{array}{cccc|c} 1 & 2 & 2 & 1 & 0 \\ 0 & 4 & 1 & -1 & 0 \end{array} \right)$$

$$\xrightarrow{\begin{array}{l} \\ R_2 \div 3 \end{array}} \left(\begin{array}{cccc|c} 1 & 2 & 2 & 1 & 0 \\ 0 & 0 & -3 & -3 & 0 \end{array} \right)$$

$$\xrightarrow{\begin{array}{l} \\ R_1 - 2R_2 \end{array}} \left(\begin{array}{cccc|c} 1 & 2 & 2 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{array} \right)$$

$$\xrightarrow{\begin{array}{l} \\ R_1 - 2R_2 \end{array}} \left(\begin{array}{cccc|c} 1 & 2 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{array} \right)$$

free

$$x_1 = -1 - 2x_2 + x_4$$

$$x_2 = x_2$$

$$x_3 = 1 - x_4$$

$$x_4 = x_4$$

→ PVF

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + \text{Span} \left\{ \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix} \right\}$$

different!

$$x_1 = 0 - 2x_2 + x_4$$

$$x_2 = x_2$$

$$x_3 = 0 - x_4$$

$$x_4 = x_4$$

→ PVF

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

solution set:

$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \text{Span} \left\{ \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix} \right\}$$

same!

The only difference is the particular solution!

This means they're parallel planes!

In general:

$$(\text{solution set of } Ax=0) = (\text{zero}) + \text{Span} \left\{ \text{vectors from PVF} \right\}$$

same vectors!

this is a span!

$$(\text{solution set of } Ax=b) = (\text{nonzero vector}) + \text{Span} \left\{ \text{vectors from PVF} \right\}$$

$b \neq 0$

(if $Ax=b$ is consistent)

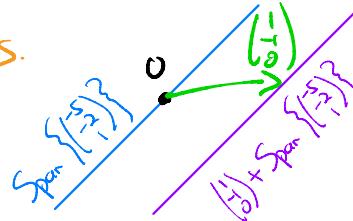
this is not a span!
it is a translate
of a span.

Eg: The solution set of...

$$\dots \begin{pmatrix} 2 & 1 & 12 \\ 1 & 2 & 9 \end{pmatrix} x = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ is } \text{Span} \left\{ \begin{pmatrix} -5 \\ 1 \end{pmatrix} \right\}$$

$$\dots \begin{pmatrix} 2 & 1 & 12 \\ 1 & 2 & 9 \end{pmatrix} x = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \text{ is } \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \text{Span} \left\{ \begin{pmatrix} -5 \\ 1 \end{pmatrix} \right\}$$

These are parallel lines.



[DEMO]

Upshot: the solution set of $Ax=b$ is a translate of the solution set of $Ax=0$. (or it is empty)

The solution set of $Ax=b$ looks exactly the same for different values of $b \in \text{Span} \{ \text{cols of } A \}$.

(if $b \notin \text{Span} \{ \text{cols of } A \}$ then $Ax=b$ is inconsistent.)

NB: In fact, to get from $\begin{pmatrix} \text{sols of} \\ Ax=0 \end{pmatrix}$ to $\begin{pmatrix} \text{sols of} \\ Ax=b \end{pmatrix}$, you can translate by any one solution of $Ax=b$.

→ if $Ap=b$ and $Ax=0$ then

$$A(p+x) = Ap + Ax = b + 0 = b \quad \checkmark$$

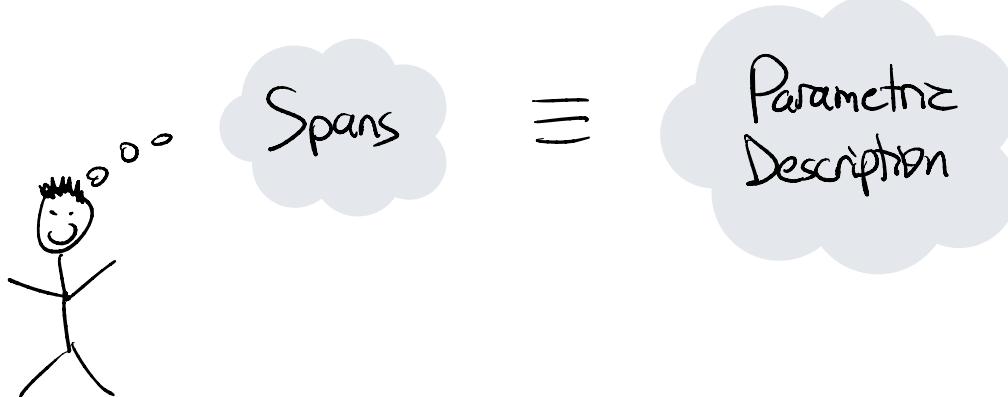
So you don't really need to use the particular solution from PVF.

Reiterate: Expressing a solution set as a (translate of a) span means giving a **parametric description**:

$$\begin{pmatrix} \text{solution} \\ \text{set} \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + \text{Span} \left\{ \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix} \right\}$$

means

So think:



Summary: Row & Column Picture

We have discussed two conceptual properties of systems of linear equations, namely, what happens when you allow the x vector & the b vector to vary.

Column Picture: vary the b vector in \mathbb{R}^m

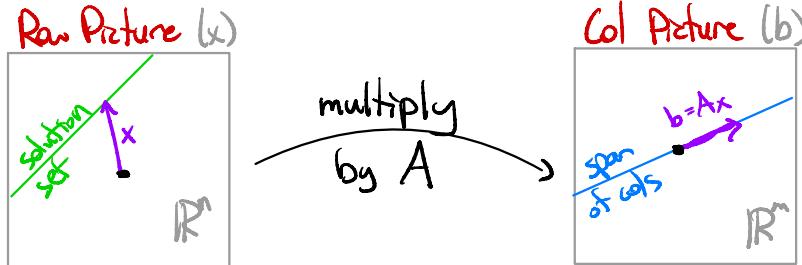
$Ax=b$ is consistent $\Leftrightarrow b \in \text{Span}\{\text{cols of } A\}$

Row Picture: the x vectors in \mathbb{R}^n

$$(\text{all solutions of } Ax=b) = (\text{some solution of } Ax=b) + (\text{all solutions of } Ax=0)$$

or no solutions if $b \notin \text{Span}\{\text{cols of } A\}$

Picture of both at the same time:



[SUPER IMPORTANT DEMO]

The solution set lives in the... row picture!
The b-vectors live in the... column picture!
The columns all live in the... column picture!
That's how you keep them straight!

NB: We're thinking of a matrix A as a **function**:

$x \in \mathbb{R}^n$ is the **input** (row picture)

$b = Ax \in \mathbb{R}^m$ is the **output** (column picture)

Visualizing a matrix means geometrically understanding the relationship between x and Ax .