

Subspaces ... can be hard to motivate.

So far, to every matrix A we have associated **two** linear spaces thru the origin:

(1) $\text{Span}\{\text{cols of } A\}$ ($=$ all b vectors making $Ax=b$ consistent)
This is a **parametric description** of a shape.

(2) Solution set of $Ax=0$ ($= \text{Span}\{\text{vectors from PVF}\}$)
This is an **implicit description** of a shape.

We want to introduce a notion of "**linear space thru 0** " called **subspaces** that is **independent** of the particular way we have of describing it.

Another example (L3): both $\begin{array}{l} 2x+y+12z=1 \\ x+2y+9z=-1 \end{array}$ and $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1-5z \\ -1-2z \\ z \end{pmatrix}$ are **different descriptions** of the **same line!**

We will get a lot of mileage out of changing our description of our subspace to something more convenient for the problem at hand. We want the language to discuss the subspace as its own thing (a **shape**), without carrying around auxiliary data (**numbers**).

That said, every subspace can be described as a span:

Subspaces
are Spans

and

Spans are
subspaces

(The same is true if you replace "Span" by "Solution set of a homogeneous system of linear equations.")

So you can think "subspace = $\text{Span}\{\dots\}$ "

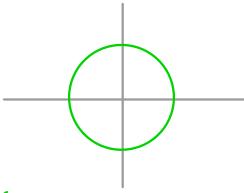
(or "subspace = solutions of $(\dots)x = 0$ ")

but of course we haven't chosen spanning vectors yet.

Another advantage: we get a criterion for a **subset** to be a span.

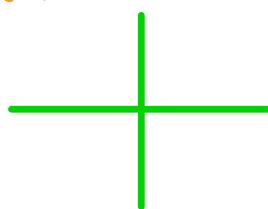
Def: A **subset** of \mathbb{R}^n is any collection of vectors.

Eg: (a): unit circle (b): first quadrant (c): coordinate axes



$$\{(x, y) : x^2 + y^2 = 1\}$$

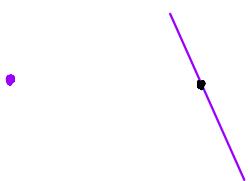
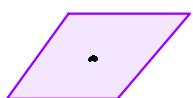
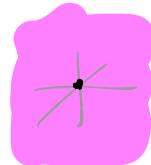
$$\{(x, y) : x \geq 0, y \geq 0\}$$



$$\{(x, y) : xy = 0\}$$

These are all **subsets**.

They shouldn't be subspaces though — these don't look like spans, and **subspaces look like spans**.



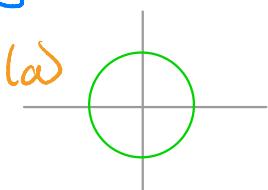
Def: A subspace of \mathbb{R}^n is a subset V satisfying:

- (1) [closed under +] If $u, v \in V$ then $u+v \in V$
- (2) [closed under scalar \times] If $v \in V$ and $c \in \mathbb{R}$ then $cv \in V$.
- (3) [contains 0] $0 \in V$.

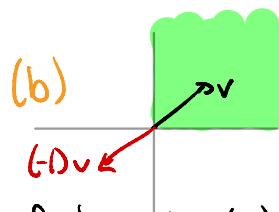
These conditions characterize "linear spaces thru 0" among all subsets.

NB: If V is closed under scalar \times and $v \in V$ then $0 = 0v \in V$ as well, so (3) just forces V to be nonempty: it says $\{\}$ is not a subspace.

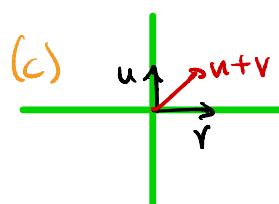
Eg: In the examples above:



fails (1), (2), (3)



fails only (2)



fails only (1)

Here are some easy examples of subspaces.

Eg: $\{0\}$ is a subspace:

- (1) If $u, v \in \{0\}$ then $u=v=0 \Rightarrow u+v=0 \in \{0\}$ ✓
- (2) If $v \in \{0\}$ and $c \in \mathbb{R}$ then $v=0 \Rightarrow cv=0 \in \{0\}$ ✓
- (3) $0 \in \{0\}$ ✓

NB: $\{0\} = \text{Span}\{\}$ is also a span.

Eg: $V = \text{all of } \mathbb{R}^n$ is a subspace

NB: $\mathbb{R}^n = \text{Span}\{e_1, \dots, e_n\}$ is also a span.

The properties are mainly useful for showing that a subset is **not** a subspace: you just have to find one **counterexample** to one of the axioms.

Eg: $V = \{(x, y) : x \in \mathbb{Z}, y \in \mathbb{R}\}$ is not a subspace.

It fails (2):

$$\left(\begin{matrix} 1 \\ 0 \end{matrix}\right) \in V \text{ and } \frac{1}{2} \in \mathbb{R} \text{ but } \frac{1}{2} \left(\begin{matrix} 1 \\ 0 \end{matrix}\right) \notin V.$$

We will verify that some subsets are subspaces:

Fact: A span is a subspace.

Proof: Let $V = \text{Span}\{v_1, v_2, \dots, v_n\}$.

(1) Let $u, v \in V$. Then there are scalars x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n such that

$$u = x_1 v_1 + x_2 v_2 + \dots + x_n v_n$$

$$v = y_1 v_1 + y_2 v_2 + \dots + y_n v_n.$$

$$\begin{aligned} \text{Then } u + v &= (x_1 v_1 + x_2 v_2 + \dots + x_n v_n) + (y_1 v_1 + y_2 v_2 + \dots + y_n v_n) \\ &= (x_1 + y_1) v_1 + (x_2 + y_2) v_2 + \dots + (x_n + y_n) v_n \in V. \end{aligned}$$

(2) Let $v \in V$ and $c \in \mathbb{R}$. Then there are scalars x_1, x_2, \dots, x_n such that

$$v = x_1v_1 + x_2v_2 + \dots + x_nv_n.$$

Then $c \cdot v = c(x_1v_1 + x_2v_2 + \dots + x_nv_n)$
 $= (cx_1)v_1 + (cx_2)v_2 + \dots + (cx_n)v_n \in V.$

(3) $0 = 0 \cdot v_1 + 0 \cdot v_2 + \dots + 0 \cdot v_n \in V$ //

Conversely, if V is a subspace and $v_1, v_2, \dots, v_n \in V$, $x_1, x_2, \dots, x_n \in \mathbb{R}$ then

$$x_1v_1, x_2v_2, \dots, x_nv_n \in V \quad \text{by (2)}$$

$$\Rightarrow x_1v_1 + x_2v_2 \in V \quad \text{by (1)}$$

$$\Rightarrow (x_1v_1 + x_2v_2) + x_3v_3 \in V \quad \text{by (1)}$$

$$\Rightarrow \dots \Rightarrow x_1v_1 + x_2v_2 + \dots + x_nv_n \in V \quad \text{by (1)}$$

So any linear combination of v_1, v_2, \dots, v_n is in V

$\Rightarrow \text{Span}\{v_1, v_2, \dots, v_n\}$ is contained in V .

Choose enough v_i 's to "fill up" V , then:

Fact: A subspace is a span.

More precisely, any subspace can be **expressed** as a span (in infinitely many ways).

Fact: The solution set of a homogeneous system of linear equations is a subspace.

We know how to use PVF to express the solution set of $Ax=0$ as a span, so this follows from the previous fact, but it is instructive to verify it directly.

Proof: Let $V = (\text{solution set of } Ax=0)$

(1) Let $u, v \in V$. Then u, v are solutions of $Ax=0$:

$$Au=0 \quad Av=0$$

$$\Rightarrow A(u+v) = Au+Av = 0+0=0$$

Hence $u+v$ is also a solution of $Ax=0$, so $u+v \in V$.

(2) Let $v \in V$ and $c \in \mathbb{R}$. Then v is a solution of $Ax=0$:

$$Av=0 \Rightarrow A(c \cdot v) = c \cdot Av = c \cdot 0 = 0.$$

Hence $c \cdot v$ is also a solution of $Ax=0$, so $c \cdot v \in V$.

(3) $0 \in V$ because $A \cdot 0 = 0$ (this is the trivial solution).

//

Fundamental Subspaces

To any matrix A we will associate four subspaces:

$\text{Col}(A)$ $\text{Nul}(A)$ $\text{Row}(A)$ $\text{Nul}(A^T)$

These are just new names for things we have already considered. We'll discuss Col & Nul today.

Def: The **column space** of a matrix is the span of its columns.

Notation: $\text{Col}(A) = \text{Span}\{\text{cols of } A\}$

This is a subspace of \mathbb{R}^m $m = \# \text{ rows of } A$
 \rightsquigarrow **column picture** $= \# \text{ entries in each column}$

A column space is a span by definition, so we've already verified it is a subspace.

Conversely, $\text{Span}\{v_1, v_2, \dots, v_n\}$ is the column space of the matrix with columns v_1, v_2, \dots, v_n , so:

Column spaces and **Spans** are interchangeable.

Eg: $\text{Col}\begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} = \text{Span}\left\{\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}\right\}$ $\text{Span}\left\{\begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}, \begin{pmatrix} 9 \\ 10 \\ 10 \end{pmatrix}\right\} = \text{Col}\begin{pmatrix} 7 & 9 \\ 8 & 10 \end{pmatrix}$

If A has columns v_1, v_2, \dots, v_n and $x = (x_1, x_2, \dots, x_n)$ then

$$Ax = \begin{pmatrix} 1 & 1 & \dots & 1 \\ v_1 & v_2 & \dots & v_n \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1 v_1 + x_2 v_2 + \dots + x_n v_n$$

(using the column-first definition). Hence multiplying by **all** vectors x gives **all** linear combinations of the columns:

$$\text{Col}(A) = \{Ax : x \in \mathbb{R}^n\}$$

With this description we have another way to see that $b \in \text{Col}(A) \iff$ there is an x such that $Ax = b$, i.e., $\iff Ax = b$ is consistent.

Column Picture Criterion for Consistency, revisited:

$$Ax = b \text{ is consistent} \iff b \in \text{Col}(A)$$

(intuitively)

Many **different matrices** will have the **same column space**.

$$\begin{aligned} \text{Eg: } \text{Col} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} &= (\text{the } xy\text{-plane}) \quad \begin{array}{c} \text{A purple parallelogram representing the } xy\text{-plane.} \\ \text{A purple arrow points to the top-left corner of the parallelogram.} \end{array} \\ &= \text{Col} \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} = \text{Col} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \dots \end{aligned}$$

(any 2 noncollinear vectors in the xy -plane span it)

So there are many **different descriptions** of a subspace as a **Col** space.

Def: The **null space** of a matrix A is the solution set of $Ax = 0$.

Notation: $\text{Nul}(A) = \{x : Ax = 0\}$

This is a subspace of \mathbb{R}^n $n = \# \text{columns}$
 \rightsquigarrow **row picture** $= \# \text{variables}$

We verified already that $\text{Nul}(A)$ is a subspace.

Try not to be intimidated by the new terminology:

A null space is just the solution set
of a homogeneous system of equations

(infinitely)

Many **different matrices** will have the **same null space**.

Indeed, row operations do not change the solution set!

Eg: $\text{Nul} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \xrightarrow{R_2 \leftarrow 4R_1} \text{Nul} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \end{pmatrix} \xrightarrow{R_2 \div -3} \text{Nul} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \end{pmatrix}$
etc.

So there are many **different descriptions** of a subspace as a **Nul space**.

We know how to find a spanning set for $\text{Nul}(A)$:

$\text{Nul}(A)$

→
PVF
(Gauss-Jordan)
WORK

Span { vectors from PVF }

Eg: Express $\text{Nul} \begin{pmatrix} 1 & 2 & 2 & 1 \\ 2 & 4 & 1 & -1 \end{pmatrix}$ as a span / Col space.

We have to find the solution set of

$$\begin{pmatrix} 1 & 2 & 2 & 1 \\ 2 & 4 & 1 & -1 \end{pmatrix} x = 0$$

in PVF.

$$\begin{pmatrix} 1 & 2 & 2 & 1 \\ 2 & 4 & 1 & -1 \end{pmatrix} \xrightarrow{\text{ref}} \begin{pmatrix} 1 & 2 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$\begin{aligned} x_1 &= -2x_2 + x_4 \\ \hookrightarrow x_2 &= x_2 \\ x_3 &= -x_4 \\ x_4 &= x_4 \end{aligned} \quad \begin{aligned} \xrightarrow{\quad} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} &= x_2 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix} \end{aligned}$$

$$\text{So } \text{Nul} \begin{pmatrix} 1 & 2 & 2 & 1 \\ 2 & 4 & 1 & -1 \end{pmatrix} = \text{Span} \left\{ \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix} \right\} = \text{Col} \begin{pmatrix} -2 & 1 \\ 1 & 0 \\ 0 & -1 \end{pmatrix}$$

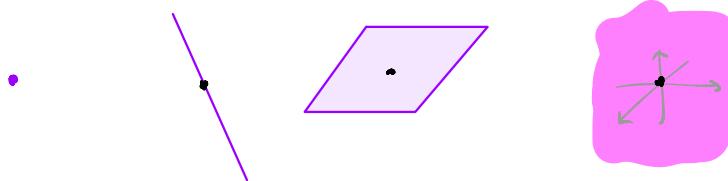
(As with $\text{Col}(A)$, there are infinitely many other ways to do this.)

This procedure lets us pass between two descriptions of a subspace: $\text{Nul} \rightsquigarrow \text{Span / Col}$.

Perspective:

Col & Nul are two ways of **describing** a subspace using matrices (so a computer can do computations).

But when you hear **subspace** you should think **shape**:



You should **not** think **numbers**:

$$\text{Col} \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \quad \text{Nul} \begin{pmatrix} 1 & 2 & 2 & 1 \\ 2 & 4 & 1 & -1 \end{pmatrix}$$

Implicit vs Parametric Descriptions

$\text{Col}(A)$ is a **span**, so it is a **parametric description**:

$$\text{Col} \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} = \text{all vectors of the form } x_1 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + x_2 \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$$

parameters

→ It is easy to **produce vectors** in $\text{Col}(A)$:

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \quad 2 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} - \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \dots \in \text{Col} \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

→ It is hard to **check** if a vector is in $\text{Col}(A)$:

$$\begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} \in \text{Col}(A) ? \rightarrow \text{solve } \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} x = \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} \dots$$

$\text{Nul}(A)$ is a **solution set**, so it is an **implicit description**:

equations

$$\text{Nul} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \left\{ \begin{array}{l} \text{solutions} \\ \text{of} \end{array} \right. \begin{array}{l} x_1 + 2x_2 + 3x_3 = 0 \\ 4x_1 + 5x_2 + 6x_3 = 0 \end{array} \right\}$$

→ It is easy to **check** if a vector is in $\text{Nul}(A)$:

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \in \text{Nul} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} ? \quad \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \checkmark$$

→ It is hard to **produce vectors** in $\text{Nul}(A)$:

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} x = 0 \xrightarrow[\text{(work)}]{\text{PVF}} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_3 \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

In practice, if someone hands you a subset V , either:

- (a) You will find a counterexample to one of the subspace axioms to show that V is not a subspace, or:
- (b) You will express V as a column or null space
 - this verifies that V is a subspace
 - now you can do computations on V .

In particular, you will (basically) never verify that a subset **is** a subspace using the ≥ 3 axioms.

Doing (b) is more of an art than a science, but one rule of thumb is:

- Is V defined in terms of **parameters**?
Is it easy to **produce** vectors in V ?
→ probably easier to express as a col space / span.
- Is V defined in terms of **equations**?
Is it easy to **check** if a vector is in V ?
→ probably easier to express as a null space.

$$\text{Eg: } V = \{(x, y, z) \in \mathbb{R}^3 : x + y = z\}$$

This is defined by an **equation**, so it's probably a null space. In fact, $x + y = z \Leftrightarrow x + y - z = 0$
so $V = \text{Null}(1 \ 1 \ -1)$.

$$\text{Eg: } V = \left\{ \begin{pmatrix} 3a+b \\ a-b \\ b \end{pmatrix} : a, b \in \mathbb{R} \right\}$$

This is defined by **parameters**. It's easy to produce vectors in V : eg. $a=1, b=2 \rightarrow \begin{pmatrix} 5 \\ -1 \\ 2 \end{pmatrix} \in V$.

So it's probably a column space. Rewrite:

$$\begin{pmatrix} 3a+b \\ a-b \\ b \end{pmatrix} = a \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

$$\rightarrow V = \text{Span} \left\{ \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right\} = \text{Col} \begin{pmatrix} 3 & 1 \\ 1 & -1 \\ 0 & 1 \end{pmatrix}.$$