

Linear (In)Dependence

Last time: We defined **subspaces** = linear spaces thru 0, and various ways of **describing** them:

(1) As a span / Col space - **parametric**

(2) As a solution set / Null space - **implicit**.

Today we focus on (1). We'll see that

★ Some spanning sets are better than others. ★

In particular, you might be using **too many vectors**!

Eg: $V = \text{Span} \left\{ \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix}, \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 5 \\ 12 \end{pmatrix} \right\}$ is a **plane**:

The first two vectors are noncollinear \Rightarrow they span a plane, and the last is a LC of the first 2:

$$\begin{pmatrix} -1 \\ 5 \\ 12 \end{pmatrix} = \frac{5}{2} \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix}$$

[DEMO]

so the 3 vectors are coplanar. In particular,

$$\text{Span} \left\{ \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix}, \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 5 \\ 12 \end{pmatrix} \right\} = \text{Span} \left\{ \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix}, \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix} \right\}$$

This reduces the number of **parameters** used to produce the vectors in the plane:

$$x_1 \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix} + x_2 \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix} + x_3 \begin{pmatrix} -1 \\ 5 \\ 12 \end{pmatrix} \quad \text{vs.} \quad x_1 \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix} + x_2 \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix}$$

(You should only need 2 numbers to sweep out a plane.) Moreover, the parameterization with 2 parameters is **unique**, but with 3 parameters it is **redundant**:

$$2\left(-\frac{5}{2}\begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix} + 3\begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ 5 \\ 12 \end{pmatrix}\right) = 0$$

[DEMO]

$$\begin{pmatrix} 0 \\ 1 \\ 5 \end{pmatrix} = 1\begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix} - 1\begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix} + 0\begin{pmatrix} -1 \\ 5 \\ 12 \end{pmatrix} \quad \text{but } \begin{pmatrix} 0 \\ 1 \\ 5 \end{pmatrix} = x_1\begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix} + x_2\begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix} \text{ only for } x_1=1, x_2=-1.$$

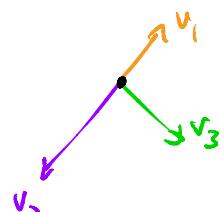
We want to formalize the notion that there are "too many" spanning vectors by saying one vector is in the span of the others.

In the example above, any 2 noncollinear vectors span a plane, and no pair of spanning vectors was collinear, so **any** one of those vectors is in the span of the others. This is not always the case.

$$\text{Eg: } v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad v_2 = \begin{pmatrix} -2 \\ -2 \\ -2 \end{pmatrix} \quad v_3 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$

$$\text{Here } v_2 = -2v_1 + 0v_3 \in \text{Span}\{v_1, v_3\}$$

$$\text{but } v_3 \notin \text{Span}\{v_1, v_2\} = \text{(line)}$$



We want a condition that means **some** vector is in the span of the others, without specifying which.

Answer: rewrite as a homogeneous vector equation:

$$v_2 = -2v_1 + 0v_3 \implies -2v_1 - v_2 + 0v_3 = 0.$$

Def: A list of vectors $\{v_1, v_2, \dots, v_n\}$ is **linearly dependent (LD)** if the vector equation

$$x_1v_1 + x_2v_2 + \dots + x_nv_n = 0$$

has a **nontrivial** solution $(x_1, x_2, \dots, x_n) \neq (0, 0, \dots, 0)$.

Such a solution is called a **linear relation**.

Eg: $\begin{pmatrix} -1 \\ 5 \\ 12 \end{pmatrix} = \frac{5}{2} \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix} \implies \begin{pmatrix} -1 \\ 5 \\ 12 \end{pmatrix} + \frac{5}{2} \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix} = 0$

[linear relation]

$$\implies \left\{ \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix}, \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 5 \\ 12 \end{pmatrix} \right\} \text{ is LD}$$

Eg: $v_2 = -2v_1 + 0v_3 \implies -2v_1 - v_2 + 0v_3 = 0$

[linear relation]

$$\implies \{v_1, v_2, v_3\} \text{ is LD.}$$

NB: If $x_1v_1 + x_2v_2 + \dots + x_nv_n = 0$ with some $x_i \neq 0$ then

$$v_i = -\frac{1}{x_i}(x_1v_1 + x_2v_2 + \dots + x_{i-1}v_{i-1} + x_{i+1}v_{i+1} + \dots + x_nv_n)$$

$$\in \text{Span}\{v_1, v_2, \dots, v_{i-1}, v_{i+1}, \dots, v_n\}$$

This explains why:

$\{v_1, \dots, v_n\}$ is LD \Leftrightarrow *some v_i is in the span of the others*

Recall: $Ax = 0$ has a *nontrivial* solution $\Leftrightarrow A$ has a *free variable*. (Otherwise the only solution is 0.)

So $\{v_1, \dots, v_n\}$ is LD

$\Leftrightarrow x_1v_1 + x_2v_2 + \dots + x_nv_n = 0$ has a nontrivial soln

\Leftrightarrow the matrix $\begin{pmatrix} v_1 & \dots & v_n \end{pmatrix}$ has a *free variable*.

This is how you can check if vectors are LD (and find a linear relation).

Eg: Is $\left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} \right\}$ LD? If so, find a linear relation.

We have to solve the vector equation

$$x_1 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + x_2 \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} + x_3 \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} = 0$$

\Leftrightarrow augmented matrix $\begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix} \xrightarrow{\text{ref}} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\text{PIF}} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_3 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$

free \Rightarrow LD

Taking any $x_3 \neq 0$ gives a nonzero soln \Rightarrow linear relation:

$$x_3 = 1 \quad | \quad \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} - 2 \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} + 1 \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} = 0$$

Eg: Any set containing the zero vector is LD:
 $0v_1 + 0v_2 + \dots + 0 = 0 \Rightarrow \{v_1, v_2, 0\}$ is LD

Eg: If $r > n$ then any r vectors in \mathbb{R}^n are LD:

$\begin{pmatrix} | & | \\ v_1 & \dots & v_r \\ | & | \end{pmatrix}$ is a wide matrix \Rightarrow has a free variable

Eg: any 3 vectors in \mathbb{R}^2 are necessarily LD:

$\begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$ has a free variable.

[DEMO]

NB: " $\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \end{pmatrix}, \begin{pmatrix} 5 \\ 6 \end{pmatrix} \}$ is LD" means "a nonzero soln of $\begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}x = 0$ exists." A linear relation means "there is an actual nonzero solution: $(x_1, x_2, x_3) = (\dots)$ ".

Summary: Let v_1, v_2, \dots, v_n be vectors.

The Following Are Equivalent (TFAE):

for given vectors,
either they're all
true or they're
all false

(1) $\{v_1, v_2, \dots, v_n\}$ is linearly dependent

(2) The matrix

$\begin{pmatrix} | & | \\ v_1 & \dots & v_n \\ | & | \end{pmatrix}$ has a free variable.

(3) Some v_i is in the span of the others.

Vectors that are not LD are called:

Def: A list of vectors $\{v_1, v_2, \dots, v_n\}$ is **linearly independent (LI)** if the vector equation

$$x_1v_1 + x_2v_2 + \dots + x_nv_n = 0$$

has **only the trivial solution** $(x_1, x_2, \dots, x_n) = (0, 0, \dots, 0)$.

A logically equivalent definition is:

$\{v_1, v_2, \dots, v_n\}$ is LI if $x_1v_1 + x_2v_2 + \dots + x_nv_n = 0$
implies $x_1 = x_2 = \dots = x_n = 0$

The logical negation of the **Summary** above is:

Summary: Let v_1, v_2, \dots, v_n be vectors.

The Following Are Equivalent:

(1) $\{v_1, v_2, \dots, v_n\}$ is **linearly independent**

(2) The matrix

$$\begin{pmatrix} | & | \\ v_1 & \dots & v_n \\ | & | \end{pmatrix}$$
 has a pivot in every column

(3) **No** v_i is in the span of the others.

Roughly, (3) means vectors are LI if their span is **as large as it can be**: every time you add a vector, the span gets **bigger**!

Linguistic Note: According to the definition, LI/LD are adjectives that apply to a list of vectors.

Bad: "A is LI"

Good: "A has LI columns"

Bad: " v_1 is LD on v_2 and v_3 "

Good: " $\{v_1, v_2, v_3\}$ is LD" or " $v_1 \in \text{Span}\{v_2, v_3\}$ "

Eg: Is $\left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \begin{pmatrix} 7 \\ -8 \\ 9 \end{pmatrix} \right\}$ LI or LD?

We have to solve the vector equation

$$x_1 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + x_2 \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} + x_3 \begin{pmatrix} 7 \\ -8 \\ 9 \end{pmatrix} = 0$$

vs augmented matrix

$$\left(\begin{array}{ccc|c} 1 & 4 & 7 & 0 \\ 2 & 5 & -8 & 0 \\ 3 & 6 & 9 & 0 \end{array} \right) \xrightarrow{\text{ref}} \left(\begin{array}{ccc|c} 1 & 4 & 7 & 0 \\ 0 & -3 & -22 & 0 \\ 0 & 0 & 32 & 0 \end{array} \right)$$

There's a pivot in every column \Rightarrow no nontrivial solution \Rightarrow LI. Or, if you prefer:

$$\left(\begin{array}{ccc|c} 1 & 4 & 7 & 0 \\ 2 & 5 & -8 & 0 \\ 3 & 6 & 9 & 0 \end{array} \right) \xrightarrow{\text{ref}} \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right) \Rightarrow \begin{array}{l} x_1 = 0 \\ x_2 = 0 \\ x_3 = 0 \end{array}$$

[DEMO]

LI means Parameterizations are not Redundant:

If $\{v_1, v_2, \dots, v_n\}$ is LI and $b \in \text{Span}\{v_1, v_2, \dots, v_n\}$ then there are unique weights x_1, x_2, \dots, x_n such that

$$b = x_1 v_1 + x_2 v_2 + \dots + x_n v_n$$

Proof: The associated matrix equation

$$\begin{pmatrix} 1 & v_1 & \dots & v_n \end{pmatrix} x = b$$

is consistent ($b \in \text{Span}\{v_1, v_2, \dots, v_n\}$) \Rightarrow has 1 soln
(no free variables). //

What do LI/LD mean in geometric terms?

Eg: $\{v\}$ is LD.

Eg: $\{v\}$ is LD $\Leftrightarrow v=0$

so $\{v\}$ is LI $\Leftrightarrow \text{Span}\{v\}$ is a line (dim 1)

[DEMO]

Eg: $\{v_1, v_2\}$ is LD $\Leftrightarrow v_1 \in \text{Span}\{v_2\}$ or $v_2 \in \text{Span}\{v_1\}$
ie v_1 & v_2 are collinear

[DEMO]

so $\{v_1, v_2\}$ is LI $\Leftrightarrow \text{Span}\{v_1, v_2\}$ is a plane (dim 2)

Eg: $\{v_1, v_2, v_3\}$ is LD $\Leftrightarrow v_1 \in \text{Span}\{v_2, v_3\}$ or $v_2 \in \text{Span}\{v_1, v_3\}$
or $v_3 \in \text{Span}\{v_1, v_2\}$
ie. v_1, v_2, v_3 are coplanar

so $\{v_1, v_2, v_3\}$ is LI $\Leftrightarrow \text{Span}\{v_1, v_2, v_3\}$ is space (dim 3)
et cetera...

[DEMO]

The span of n LI vectors has dimension n

Basis and Dimension

The red box above says we should **define** the dimension of a subspace V by

- (1) describing V as a **span** of **LI** vectors
- (2) counting how many vectors we used.

Step (1) is the notion of a basis.

Def: Let V be a subspace. A set of vectors $v_1, v_2, \dots, v_n \in V$ is a **basis** for V if:

$$(1) V = \text{Span} \{v_1, v_2, \dots, v_n\}$$

$$(2) \{v_1, v_2, \dots, v_n\} \text{ is LI.}$$

In other words, a basis gives a way to describe V as a **span** of **LI** vectors.

NB: A basis is a **minimal** spanning set. $\text{LI} \Rightarrow$ if you remove any vector from your basis, the span gets smaller!

NB: Spans + $\text{LI} \Rightarrow$ we get a **unique parameterization** of the vectors in V : every $b \in V$ can be written as

$$b = x_1 v_1 + x_2 v_2 + \dots + x_n v_n$$

for **unique** values x_1, x_2, \dots, x_n .

We want to use "Span{ n LI vectors} has dim n " to define dimension now, but first we need to know:

Fact: Any basis for V has the **same number of vectors**.

In other words, you can't have different descriptions

$$V = \text{Span}\{v_1, v_2\} \quad \text{and} \quad V = \text{Span}\{w_1, w_2, w_3\}$$

with $\{v_1, v_2\}$ and $\{w_1, w_2, w_3\}$ both LI.

Def: The **dimension** of a subspace V is the number of vectors in **any basis**.

Notn: $\dim(V)$

We'll see below why this agrees with our Provisional Defn in L3.

In fact, once you know $\dim(V)$, if you have the right # vectors then it's a basis if it spans or it's LI.

Basic Thm: Suppose $\dim(V) = d$. Let $v_1, v_2, \dots, v_d \in V$.

- If $\text{Span}\{v_1, v_2, \dots, v_d\} = V$ then $\{v_1, v_2, \dots, v_d\}$ is LI (so it's a basis for V)
- If $\{v_1, v_2, \dots, v_d\}$ is LI then $\text{Span}\{v_1, v_2, \dots, v_d\} = V$ (so it's a basis for V)

Eg: (1) Any 2 vectors that span a plane are LI.
(2) Any 2 LI vectors in a plane form a basis.

Eg: The only basis for the point $\{0\}$ is $\{\}$
 $\Rightarrow \dim \{0\} = 0$ ✓ ($\{0\}$ is LD)

(A point had better have a basis with zero vectors!)

Eg: Any nonzero vector in a line V is a basis
 $\Rightarrow \dim V = 1$ ✓

Eg: Any two noncollinear vectors in a plane V form a basis
 $\Rightarrow \dim V = 2$ ✓

etc.

Eg: Find a basis for $V = \text{Span} \left\{ \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix}, \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 5 \\ 12 \end{pmatrix} \right\}$

This is a plane, so we just need 2 non-collinear vectors. For instance,

$$\left\{ \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix}, \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix} \right\} \text{ or } \left\{ \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 5 \\ 12 \end{pmatrix} \right\} \text{ or } \left\{ \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 6 \\ 13 \end{pmatrix} \right\}$$

$$\begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ 5 \\ 12 \end{pmatrix}$$

Eg: $\{e_1, e_2, \dots, e_n\}$ forms a basis for \mathbb{R}^n .

Indeed,

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \dots + x_n \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

so they span \mathbb{R}^n . LI: if $\uparrow = 0$ then all $x_i = 0$.

Hence $\dim \mathbb{R}^n = n$ — our notion of dimension passes this sanity check.

NB: The only n -dimensional subspace of \mathbb{R}^n is **all of \mathbb{R}^n** . Indeed, if V is in \mathbb{R}^n and $\dim V = n$ then V contains n LI vectors (a basis). But the Basis Thm \Rightarrow any n LI vectors in \mathbb{R}^n span \mathbb{R}^n .

NB: \mathbb{R}^n has (infinitely) many bases!

a plane
↓

Eg: Any 2 noncollinear vectors form a basis for \mathbb{R}^2 :
 $\{(1, 0), (0, 1)\}$ or $\{(1, 1), (1, -1)\}$ or $\{(2, 1), (3, 4)\}$...

In fact, any nonzero subspace has infinitely many bases — they are **highly non-unique**.

→ A basis is **some way** of describing a subspace using the **fewest parameters**.

Warning! Be careful to distinguish those 3 things:

Subspace

$$V = \text{Span} \left\{ \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix}, \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 5 \\ 12 \end{pmatrix} \right\}$$

This is a **plane**.
It has **3 vectors** in it.

Basis

$$\left\{ \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix}, \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix} \right\}$$

This is a **basis** for V . It has **2 vectors** in it.

Matrix

$$\begin{pmatrix} 2 & 2 \\ -4 & -5 \\ 6 & 1 \end{pmatrix}$$

This is a **matrix**. Its **columns** form a **basis** for V .

To pass from a **basis** to a **subspace** you take the **span**:

$$\left\{ \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix}, \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix} \right\} \text{ is } \text{Span} \left\{ \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix}, \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix} \right\} = \text{Col} \begin{pmatrix} 2 & 2 \\ -4 & -5 \\ 6 & 1 \end{pmatrix}$$

How do you **find a basis** for a subspace?

Recall: To do computations on a subspace, first express it as $V = \text{Col}(A)$ or $V = \text{Nul}(A)$.

Basis for $\text{Col}(A)$

Thm: The pivot columns of A form a basis of $\text{Col}(A)$.

$$\left(\begin{array}{ccc} 1 & 2 & -1 \\ -2 & -4 & 2 \end{array} \right) \xrightarrow{\text{ref}} \left(\begin{array}{ccc} 1 & 2 & -1 \\ 0 & 0 & 0 \end{array} \right) \rightarrow \text{basis: } \left\{ \begin{pmatrix} 1 \\ -2 \end{pmatrix} \right\}$$

\nwarrow pivot column

NB: You have to take the pivot columns of the original matrix, not its REF! This is because row operations change the column space:

$$\text{Col} \left(\begin{pmatrix} 1 & 2 & -1 \\ -2 & -4 & 2 \end{pmatrix} \right) = \text{Span} \left\{ \begin{pmatrix} 1 \\ -2 \end{pmatrix} \right\} =$$

$$\text{but } \text{Col} \left(\begin{pmatrix} 1 & 2 & -1 \\ 0 & 0 & 0 \end{pmatrix} \right) = \text{Span} \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\} =$$



NB: This procedure produces one of infinitely many bases for $\text{Col}(A)$! Don't become too attached to one basis - there may be a more convenient one to use.

(later: orthogonal bases...)

Proof: Let R be the RREF of A . Eg:

$$A = \begin{pmatrix} 1 & 0 & 3 & 0 & 4 \\ v_1 & v_2 & v_3 & v_4 & v_5 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix} \rightsquigarrow R = \begin{pmatrix} 1 & 0 & 3 & 0 & 4 \\ 0 & 1 & 2 & 0 & 6 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

↑
pivot columns

Note $Ax=0 \iff Rx=0$ (same solution sets). This says the cols of A & cols of R satisfy the **same linear relations**.

Spans: To show that the pivot columns span $\text{Col}(A)$, we need to show that the other columns are already in the span of the pivot columns. This is certainly true for R : for example,

$$\begin{pmatrix} 4 \\ 6 \\ -1 \\ 0 \end{pmatrix} = 4 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + 6 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

last col 1st col 2nd col 4th col

Rewrite: $4 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + 6 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} 3 \\ 2 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 4 \\ 6 \\ -1 \\ 0 \end{pmatrix} = 0$

This is a linear relation among the cols of R , so the cols of A satisfy the same relation:

$$4v_1 + 6v_2 - v_4 - v_5 = 0 \Rightarrow v_5 = 4v_1 + 6v_2 - v_4$$
$$\Rightarrow v_5 \in \text{Span}\{v_1, v_2, v_4\}$$

LI: Suppose $x_1v_1 + x_2v_2 + x_4v_4 = 0$. The cols of R satisfy the same relation:

$$0 = x_1 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_4 \\ 0 \end{pmatrix}$$

This implies $x_1 = x_2 = x_4 = 0$, so $\{v_1, v_2, v_4\}$ is LI. ✓

Since the pivot cols of A span $\text{Col}(A)$ & are LI, they form a basis. //

Eg: Find a basis for $V = \text{Span} \left\{ \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix}, \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 5 \\ 12 \end{pmatrix} \right\}$.

This is the same as $\text{Col} \begin{pmatrix} 2 & 2 & -1 \\ -4 & -5 & 5 \\ 6 & 1 & 12 \end{pmatrix}$. Let's find the pivot columns:

$$\begin{pmatrix} 2 & 2 & -1 \\ -4 & -5 & 5 \\ 6 & 1 & 12 \end{pmatrix} \xrightarrow{\text{ref}} \begin{pmatrix} 2 & 2 & -1 \\ 0 & -1 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$

So $\left\{ \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix}, \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix} \right\}$ is the basis produced by this procedure.

Def: The rank of A is $\text{rank}(A) = \# \text{ pivots of } A$.

Consequence: The number of vectors in any basis for $\text{Col}(A)$ equals the number of pivots:

$$\boxed{\dim \text{Col}(A) = \# \text{ pivots of } A = \text{rank}(A).}$$

Basis for $\text{Nul}(A)$

Thm: The vectors attached to the free variables in the **parametric vector form** of the solns of $Ax=0$ form a basis for $\text{Nul}(A)$.

Eg: Find a basis for $\text{Nul} \begin{pmatrix} 1 & 2 & 2 & 1 \\ 2 & 4 & 1 & -1 \end{pmatrix}$

$$\begin{pmatrix} 1 & 2 & 2 & 1 \\ 2 & 4 & 1 & -1 \end{pmatrix} \xrightarrow{\text{ref}} \begin{pmatrix} 1 & 2 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$\begin{aligned} x_1 &= -2x_2 + x_4 \\ \rightarrow x_2 &= x_2 \\ x_3 &= -x_4 \\ x_4 &= x_4 \end{aligned} \quad \xrightarrow{\text{ }} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = x_2 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

$$\rightarrow \text{basis } \left\{ \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix} \right\}$$

NB: As before, this produces **one** of infinitely many bases.

Proof: Every solution of $Ax=0$ has the form

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = x_2 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix} \quad (\text{that was the point of PVF}).$$

So these vectors **span** $\text{Nul}(A)$. We have to check that they are **LI**.

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = x_2 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow x_2 = x_4 = 0$$

//

Consequence: The number of vectors in any basis for $\text{Nul}(A)$ is equal to the number of free variables:

$$\dim \text{Nul}(A) = \#\text{free variables} = \#\text{columns} - \text{rank}(A)$$

NB: Before (L3) we provisionally defined the dimension of the solution set of a consistent system $Ax=b$ to be the # free variables. But we know

$$\begin{pmatrix} \text{sols of} \\ Ax=b \end{pmatrix} = \begin{pmatrix} \text{particular} \\ \text{solution} \end{pmatrix} + \text{Nul}(A)$$

and $\dim \text{Nul}(A) = \#\text{free variables}$, so this is consistent with the definition in this lecture.