
UNIQUE FACTORIZATION AND FERMAT’S LAST THEOREM
HOMEWORK 1

Problem 1 (Pythagorean Triples). In this problem you will find all Pythagorean triples, i.e., all
integer solutions to the equation

x2 + y2 = z2

with xyz 6= 0. The solution will be used in the next problem, but you can skip this problem if you like
since it’s tangential to the lectures (although it’s really quite pretty). Given such a solution (x, y, z),
we can write (x/z)2 + (y/z)2 = 1, and hence (x/z, y/z) is a point on the unit circle

S1 = {~v ∈ R2 : |~v| = 1}
with rational (Q-valued) coordinates; such a point is called a rational point. So our first step will be
to determine all of the rational points on S1. In order to do this, we will define an invertible map
between R and S1 \ {N}, where N = (0, 1) is the “north pole”.

(i) Define ϕ : R → S1 \ {N} as follows. Given t ∈ R, let L be the line through (t, 0) and N . Prove
that L intersects S1 in exactly one other point

(x, y) =
(

2t

t2 + 1
,
t2 − 1
t2 + 1

)
.

Set ϕ(t) = (x, y). Prove that ϕ is bijective (one-to-one and onto), and calculate ϕ−1(x, y) for
(x, y) ∈ S1 \ {N}. Show that ϕ−1 takes rational points on S1 \ {N} to rational numbers, so that
ϕ restricts to a bijection between Q and the set of rational points on S1 \ {N}.

(ii) Let (x, y, z) be a Pythagorean triple. Briefly explain why, when classifying Pythagorean triples,
we may assume that x, y, z are pairwise coprime (that is, the greatest common divisor of any
two is 1). Such a triple is called primitive. Assuming therefore that (x, y, z) is primitive, prove
that exactly one of x, y is even, and that z is odd (hint: examine the equation x2 + y2 ≡ z2

(mod 4)).
(iii) Again let (x, y, z) be a primitive Pythagorean triple, and assume that x is even, so that y and

z are odd. As (x/z)2 + (y/z)2 = 1, we have from part (i) that there exists t = p/q such that
(x/z, y/z) = ϕ(t). Rewriting, we have

x

z
=

2pq

p2 + q2

y

z
=

p2 − q2

p2 + q2
.

We may of course assume that p and q are coprime. Prove that p and q have opposite parity
(i.e. that one is odd and the other is even), and that 2pq is prime to p2 + q2. Conclude that

(1.1) x = 2pq y = p2 − q2 z = p2 + q2.

(iv) Conversely, prove that if p and q are relatively prime nonzero integers with opposite parity, and
if we define (x, y, z) using the equations (1.1), then (x, y, z) is a primitive Pythagorean triple.
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Problem 2 (Fermat’s Last Theorem for n = 4). In this problem you will prove that there are no
solutions to the equation

(2.1) x4 + y4 = z2

in nonzero integers x, y, z. This implies that Fermat’s Last Theorem is true for n = 4 (why?). Note
that if there exists a solution to (2.1), then there exists such a solution with x, y, z > 0.

(i) Let (x, y, z) be a solution to (2.1) with x, y, z > 0, and assume that with z ≥ 1 is minimal
among all such solutions. Show that x, y, z are pairwise coprime. As (x2)2 + (y2)2 = z2, we
may apply Problem 1. After possibly permuting x and y, we can find coprime nonzero integers
p, q of opposite parity such that

x2 = 2pq y2 = p2 − q2 z = p2 + q2.

We may assume that p and q are positive. By examining the above equations modulo 4, show
that q is is even, say q = 2q′. Prove that p and q′ are squares, say p = a2 and q′ = b2.

(ii) Show that y is prime to p and q. Applying Problem 1 to the equation y2 + q2 = p2, we get that
there are relatively prime nonzero c, d such that

(2.2) y = c2 − d2 q = 2cd p = c2 + d2.

Show that c and d are again squares, say c = x′2 and d = y′2.
(iii) Since p = a2, the equation (2.2) gives an equation a2 = x′4+y′4. Show that a < z, contradicting

the minimality of z.
The above method of choosing a minimal solution to an equation, then showing that there must exist
a smaller solution, was invented by Fermat, and is known as infinite descent. (Fermat would have
chosen any solution and found a smaller one, then remarked that such a pattern could not continue
indefinitely.) In fact the above argument is based on Fermat’s own proof of this fact.

Problem 3 (Roots of Unity). In this problem you will prove some of the basic properties of the roots
of unity. Let n ≥ 2 be an integer.

(i) Prove that there are exactly n complex numbers ζ such that ζn = 1. Such a complex number is
called an nth root of unity.

(ii) Let µn = {ζ ∈ C : ζn = 1}. Prove that µn is a group under multiplication of complex numbers.
In other words, show that:
(1) 1 ∈ µn,
(2) if ζ, ζ ′ ∈ µn then ζζ ′ ∈ µn, and
(3) if ζ ∈ µn then ζ−1 ∈ µn.

(iii) Show that µn is a cyclic group. In other words, show that there exists ζ ∈ µn such that

µn = {1, ζ, ζ2, . . . , ζn−1}.

(iv) An nth root of unity ζ as in (iii) is called a generator. How many generators does µn have?
Write them all down.

(v) Factor the bivariate polynomial Xn + Y n as a product of homogeneous linear polynomials
(polynomials of the form aX + bY for a, b ∈ C).



UNIQUE FACTORIZATION AND FERMAT’S LAST THEOREM HOMEWORK 1 3

Problem 4 (Prime Factorization). This problem is meant to make you think carefully about how to
prove the existence and uniqueness of prime factorization of ordinary integers, since we will soon be
factoring more interesting numbers.

(1) Show that any positive integer a can be written as a product p1 · · · pn of (not necessarily
distinct) prime numbers.

(2) In class we showed, using only division with remainder, that if p is a prime number and p|ab,
then p|a or p|b. Using only this fact, prove that the prime factorization in (i) is unique, in that
if

a = p1 · · · pn = q1 · · · qm

where the pi, qj are (not necessarily distinct) prime numbers, then n = m and one can reorder
(p1, . . . , pn) to obtain (q1, . . . , qn).


