
UNIQUE FACTORIZATION AND FERMAT’S LAST THEOREM
HOMEWORK 2

The main purpose of this homework assignment is to use the existence of unique factorizations
of 3-cyclotomic integers to prove Fermat’s Last Theorem in the case n = 3. The arguments, while
beautiful, are quite involved. I recommend starting with Problems 1 and 3, and coming back to
Problem 2 (which is much easier than Problem 3) if you have the time and inclination.

We begin with one last reduction step. Suppose that there exist nonzero integers x, y, z such that

(0.1) x3 + y3 = (x + y)(x + ζy)(x + ζ2y) = z3.

If a prime p divides two of x, y, z, then it divides the third, and(
x

p

)3

+
(

y

p

)3

=
(

z

p

)3

.

Replacing x, y, z with x/p, y/p, z/p and continuing in this fashion, we may assume that x, y, z are
pairwise coprime, i.e. that any two of x, y, z are coprime.

Problem 1 (The greatest common divisor of x + y, x + ζy, x + ζ2y). Let x, y ∈ Z[ζ] be nonzero
coprime 3-cyclotomic integers.

(i) Using the fact that x and y are coprime, show that there exist c1, c2, c3, d1, d2, d3 ∈ Z[ζ] such
that

c1(x + y) + d1(x + ζy) = ζ − 1

c2(x + y) + d2(x + ζ2y) = ζ − 1

c3(x + ζy) + d3(x + ζ2y) = ζ − 1.

(1.1)

[Hint: (x + ζy)− (x + y) = (ζ − 1)y and ζ(x + y)− (x + ζy) = (ζ − 1)x.]
(ii) Use (i) to show that the greatest common divisor of any two of the terms x + y, x + ζy, x + ζ2y

is either ζ − 1 or 1.
(iii) Suppose that (ζ − 1) - (x3 + y3). Show that x + y, x + ζy, and x + ζ2y are pairwise coprime.
(iv) Now suppose that (ζ − 1) | (x3 + y3). Show that ζ − 1 divides each of the factors x + y, x + ζy,

and x + ζ2y, so that the greatest common divisor of any two is equal to ζ − 1 by (ii).

Problem 2 (Fermat’s Last Theorem for n = 3, “easy” case). Suppose that there exist nonzero
pairwise coprime integers x, y, z such that x3 + y3 = z3. Assume for this problem that 3 - xyz, so that
x + y, x + ζy, and x + ζ2y are pairwise coprime by Problem 1(iii)1. The following is based on a proof
due to Sophie Germain.

(i) Note that x3 +y3 = (x+y)(x2−xy+y2). Use Problem 1(iii) to show that x+y and x2−xy+y2

are coprime integers. Conclude using (0.1) that x + y and x2 − xy + y2 are cubes.
(ii) Replacing z with −z, we rewrite our supposed solution in the more symmetric form x3 + y3 +

z3 = 0. Taking advantage of this symmetry and applying (i), we find that there are integers
a, α, b, β, c, γ such that

x + y = a3 x2 − xy + y2 = α3

x + z = b3 x2 − xz + z2 = β3

y + z = c3 y2 − yz + z2 = γ3.

1As discussed in class, 3 divides the integer z3 if and only if (ζ − 1) | z3).
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Reducing the equation x3 + y3 + z3 = 0 modulo 7, prove that 7 | xyz. Assume without loss of
generality that 7 | x. Since

a3 + b3 + (−c)3 = 2x ≡ 0 (mod 7),

we have that 7 | abc for the same reason. Prove that 7 - a and 7 - b, so that 7 | c.
(iii) Since 7 | c we have y ≡ −z (mod 7), so since x ≡ 0 (mod 7), the above equations give γ3 ≡ 3β3

(mod 7). Use this to show that 7 | z, and derive a contradiction to the assumption that x, y, z
are pairwise coprime.

Problem 3 (Fermat’s Last Theorem for n = 3, hard case). Suppose that there exist nonzero
pairwise coprime integers x, y, z such that x3 + y3 = z3, and assume now that 3 | xyz. If 3 | x then
we can rewrite (0.1) as (−z)3 + y3 = (−x)3; replacing x with −z and z with −x, and using a similar
trick if 3 | y, we may assume without loss of generality that 3 | z, so 3 - xy. The following is based
on Kummer’s proof of Fermat’s Last Theorem in this case, specialized to the exponent 3 (so yes, this
proof generalizes enormously). You will in fact prove the following (slightly) more general theorem:

Theorem 3.1. Let x, y, w ∈ Z[ζ] be pairwise coprime nonzero 3-cyclotomic integers such that (ζ − 1) -
xyw, let k be a positive integer, and let e ∈ Z[ζ]× be a 3-cyclotomic unit. Suppose that

x3 + y3 = e (ζ − 1)3k w3.

Then k > 1, and there exist pairwise coprime nonzero 3-cyclotomic integers X, Y,W ∈ Z[ζ] such that
(ζ − 1) - XY W , a positive integer K < k, and a 3-cyclotomic unit E ∈ Z[ζ]×, satisfying the equation

X3 + Y 3 = E (ζ − 1)3K W 3.

(i) Show that Theorem 3.1 implies Fermat’s Last Theorem in this case.
(ii) Let a ∈ Z[ζ]. We say that z, w ∈ Z[ζ] are congruent modulo a, and we write z ≡ w (mod a),

provided that a | (z − w). This definition allows us to do modular arithmetic in Z[ζ] in exactly
the same way as we do modular arithmetic in the integers.

Prove that any element of Z[ζ] is congruent to 0, 1, or −1 modulo ζ − 1.
(iii) We have a factorization

e(ζ − 1)3kw3 = (x + y)(x + ζy)(x + ζ2y).

By Problem 1(iv), ζ − 1 divides all three of the factors on the right side of the above equation,
and the greatest common divisor of any two is equal to ζ − 1. We claim that (ζ − 1)2 divides
one (and hence exactly one) of the factors x + y, x + ζy, x + ζ2y. Writing x + y = r(ζ − 1) for
r ∈ Z[ζ], show that

x + y = (ζ − 1)r

x + ζy = (ζ − 1)(r + y)

x + ζ2y = (ζ − 1)(r − ζ2y).

Use (ii) and the fact that y 6≡ 0 (mod ζ−1) to prove that ζ−1 divides one of the terms r, r + y,
r − ζ2y. Conclude that (ζ − 1)4 | (x3 + y3), so k > 1, and that (ζ − 1)3k−2 divides one of the
factors x + y, x + ζy, x + ζ2y.

(iv) Let K = k − 1 > 0. If (ζ − 1)3k−2 divides x + ζy (resp. x + ζ2y), replace y with ζy (resp. ζ2y)
so that (ζ − 1)3k−2 = (ζ − 1)3K+1 divides x + y. Show that

x + ζ−1y = (ζ − 1) e−1 t3−1

x + y = (ζ − 1) e0 (ζ − 1)3K t30

x + ζy = (ζ − 1) e1 t31

(3.1)

for some units e−1, e0, e1 ∈ Z[ζ]×, and pairwise coprime nonzero 3-cyclotomic integers t−1, t0, t1 ∈
Z[ζ] not divisible by ζ − 1. (Note that ζ−1 = ζ2.)
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(v) Eliminate x and then y from (3.1) to obtain

0 = e1t
3
1 − (1 + ζ)e0(ζ − 1)3Kt30 + e−1t

3
−1.

Divide through by e1 to get the relation

(3.2) E0(ζ − 1)3Kt30 = t31 + E−1t
3
−1,

where E0, E−1 ∈ Z[ζ]× are units (why?).
(vi) Show that for any a ∈ Z[ζ], its cube is a 3-cyclotomic integer congruent to 0, 1, or −1 modulo 3,

and that a3 ≡ 0 (mod 3) if and only if (ζ − 1) | a. Prove that the unit E−1 in (3.2) is congruent
to 0, 1, or −1 modulo 3, and use this to show that E−1 = ±1. Now rewrite (3.2) in the required
form of Theorem 3.1.

(vii) Other than the (critically important) fact that Z[ζ] has unique factorizations, can you determine
which step in the above proof is by far the hardest to generalize to odd prime exponents p > 3?
(I will be impressed if you figure out.)

Problem 4. Prove “by hand” that 2 is prime in Z[ζ].


