UNIQUE FACTORIZATION AND FERMAT’S LAST THEOREM
HOMEWORK 2

The main purpose of this homework assignment is to use the existence of unique factorizations
of 3-cyclotomic integers to prove Fermat’s Last Theorem in the case n = 3. The arguments, while
beautiful, are quite involved. I recommend starting with Problems 1 and 3, and coming back to
Problem 2 (which is much easier than Problem 3) if you have the time and inclination.

We begin with one last reduction step. Suppose that there exist nonzero integers x, y, z such that

(0.1) o’ 4y’ = (2 +y)(@+Cy)(e+Py) = 2°.
If a prime p divides two of x, y, z, then it divides the third, and

)+ -6)

Replacing z,y,z with x/p,y/p,z/p and continuing in this fashion, we may assume that z,y, > are
pairwise coprime, i.e. that any two of z, y, z are coprime.

Problem 1 (The greatest common divisor of = + y,z + (y, = + (%y). Let z,y € Z[(] be nonzero
coprime 3-cyclotomic integers.

(i) Using the fact that « and y are coprime, show that there exist ¢, ¢, ¢3,d1,ds,ds € Z[C] such
that

calrty)+di(z+Cy)=¢—-1
(1.1) c@+y) +da(z+Cy)=¢—1
cs(z + Cy) + ds(z + (Py) = ¢ — 1.

[Hint: (z +Cy) — (z+y) = ((—Dyand ((z +y) — (z +(y) = (( — 1)z.]

(ii) Use (i) to show that the greatest common divisor of any two of the terms = + y, z + Cy, x + %y
is either ( — 1 or 1.

(iii) Suppose that (¢ — 1) { (z® + »?). Show that = + y, 2 + (y, and x + (?y are pairwise coprime.

(iv) Now suppose that (¢ — 1) | (2 + »?). Show that ¢ — 1 divides each of the factors = + y, x + Cy,
and x + (?y, so that the greatest common divisor of any two is equal to ( — 1 by (ii).

Problem 2 (Fermat’s Last Theorem for n = 3, “easy” case). Suppose that there exist nonzero
pairwise coprime integers x, vy, z such that 3 + y3 = 23. Assume for this problem that 3 { zyz, so that
x + vy, x4 Cy, and = + 2y are pairwise coprime by Problem 1(iii). The following is based on a proof
due to Sophie Germain.

(i) Note that 23 +y* = (v +y)(2% — 2y +y?). Use Problem 1(iii) to show that x +vy and x? — xy + 3>
are coprime integers. Conclude using (0.1) that = + y and 22 — zy + y? are cubes.

(ii) Replacing z with —z, we rewrite our supposed solution in the more symmetric form z3 + 33 +
23 = (0. Taking advantage of this symmetry and applying (i), we find that there are integers
a,a,b, B, c,v such that

z+y=d 2 —ay+y’=a’
r+z="56 2 —xz+ 2=

3

yt+z=c yQ—yz+z2:73.

1As discussed in class, 3 divides the integer 23 if and only if ¢—=1)12%.
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Reducing the equation 3 + y3 + 2 = 0 modulo 7, prove that 7 | xyz. Assume without loss of
generality that 7 | x. Since

A+ b0+ (=) =22=0 (mod7),
we have that 7 | abe for the same reason. Prove that 7 a and 71 b, so that 7 | c.
(iii) Since 7| cwehavey = —z (mod 7), sosince z = 0 (mod 7), the above equations give y* = 333
(mod 7). Use this to show that 7 | z, and derive a contradiction to the assumption that z,y, z
are pairwise coprime.

Problem 3 (Fermat’s Last Theorem for n = 3, hard case). Suppose that there exist nonzero
pairwise coprime integers z,y, z such that 3 + y® = 23, and assume now that 3 | xyz. If 3 | = then
we can rewrite (0.1) as (—2)3 + y® = (—z)?; replacing x with —z and z with —z, and using a similar
trick if 3 | y, we may assume without loss of generality that 3 | z, so 3 1 xy. The following is based
on Kummer’s proof of Fermat’s Last Theorem in this case, specialized to the exponent 3 (so yes, this
proof generalizes enormously). You will in fact prove the following (slightly) more general theorem:

Theorem 3.1. Let z,y,w € Z[(] be pairwise coprime nonzero 3-cyclotomic integers such that (( — 1) 1
xyw, let k be a positive integer, and let e € Z[(]* be a 3-cyclotomic unit. Suppose that

2?4y =e(¢—1)**wd.
Then k > 1, and there exist pairwise coprime nongero 3-cyclotomic integers X,Y, W € Z[(] such that
(¢ — 1)1 XYW, a positive integer K < k, and a 3-cyclotomic unit E € Z[¢]*, satisfying the equation

X34+Y3=F( -1 w3,

(i) Show that Theorem 3.1 implies Fermat’s Last Theorem in this case.

(ii) Let a € Z[C]. We say that z,w € Z[(] are congruent modulo a, and we write z = w (mod a),
provided that a | (z — w). This definition allows us to do modular arithmetic in Z[(] in exactly
the same way as we do modular arithmetic in the integers.

Prove that any element of Z[(] is congruent to 0, 1, or —1 modulo ¢ — 1.
(iii) We have a factorization
e(¢ = D)*w’® = (2 +y) (@ + Cy) (@ + Py).
By Problem 1(iv), ¢ — 1 divides all three of the factors on the right side of the above equation,
and the greatest common divisor of any two is equal to ( — 1. We claim that (¢ — 1)? divides

one (and hence exactly one) of the factors x + v,z + Cy, x + (?y. Writing x +y = r(¢ — 1) for
r € Z[¢], show that

x+y=(C—Dr
24 Cy= (¢~ 1) +)
2+ ¢y = (C— 1) — C2y).
Use (ii) and the fact that y # 0 (mod ¢ — 1) to prove that ¢ — 1 divides one of the terms r, r + y,
r — ¢%y. Conclude that (( — 1)* | (2 + ¢?), so k > 1, and that (¢ — 1)3*~2 divides one of the
factors x + y, x + Cy, = + (y.
(iv) Let K =k — 1> 0. If (¢ — 1)3*~2 divides = + Cy (resp. = + (3y), replace y with (y (resp. (%y)
so that (¢ — 1)3%=2 = (¢ — 1)35+! divides = + y. Show that
s+ (Tly=(¢C-1)
3.1 z4+y=(—1)eo(¢—1)>*%¢#
z+Cy=(C-Dert]

for some units e_1, eg, e; € Z[(]*, and pairwise coprime nonzero 3-cyclotomic integers t_1, tg, t; €
Z[¢] not divisible by ¢ — 1. (Note that (! = (2.)

€_1 t3—1
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(v) Eliminate z and then y from (3.1) to obtain
0 = elt? — (1 —+ C)e()(C — 1)3th —+ e,ltg_l.
Divide through by e; to get the relation
(3.2) Eo(¢ = 13883 =3+ B_ 113 |,
where Ey, E_; € Z[(]* are units (why?).

(vi) Show that for any a € Z[(], its cube is a 3-cyclotomic integer congruent to 0, 1, or —1 modulo 3,
and that a® = 0 (mod 3) if and only if (¢ — 1) | a. Prove that the unit E_; in (3.2) is congruent
to 0,1, or —1 modulo 3, and use this to show that F_; = +1. Now rewrite (3.2) in the required
form of Theorem 3.1.

(vii) Other than the (critically important) fact that Z[{] has unique factorizations, can you determine

which step in the above proof is by far the hardest to generalize to odd prime exponents p > 3?
(I will be impressed if you figure out.)

Problem 4. Prove “by hand” that 2 is prime in Z[(].



