UNIQUE FACTORIZATION AND FERMAT'S LAST THEOREM HOMEWORK 3

Problem 1. Prove that $\mathbb{Z}[\sqrt{-2}]$ is a principal ideal domain. [Hint: prove that division with remainder works in $\mathbb{Z}[\sqrt{-2}]$ for the same reason that it works in $\mathbb{Z}[\zeta]$]

Problem 2 (Imaginary quadratic integer rings are integrally closed). Let $D \ge 2$ be a squarefree integer. A complex number of the form $z = a + b\sqrt{-D}$ with $a, b \in \mathbf{Q}$ is called an *algebraic integer* if it is a root of a monic polynomial $f(X) = X^2 + tX + n$ with $t, n \in \mathbf{Z}$.

- (i) Prove that $z^2 (z + \overline{z}) z + |z|^2 = 0$ for any $z \in \mathbf{C}$.
- (ii) Prove that any element $z \in R$ is an algebraic integer.

(iii) Let $z = a + b\sqrt{-D}$ with $a, b \in \mathbf{Q}$. Prove that if z is an algebraic integer then $z \in R$.

Hence *R* is exactly the set of algebraic integers in the field $\mathbf{Q}(\sqrt{-D}) = \{a + b\sqrt{-D} : a, b \in \mathbf{Q}\}.$

Problem 3 (Irreducible and prime elements). Let *R* be an imaginary quadratic integer ring.

- (i) Prove that a prime element in *R* is irreducible.
- (ii) Prove that any nonzero non-unit in R is a product of irreducible elements of R. In other words, irreducible factorizations always exist in R.
- (iii) Prove that if all irreducible elements of R are prime, then prime factorizations in R are unique up to reordering and multiplication by units.

Problem 4 (Non-unique factorizations in $\mathbb{Z}[\sqrt{-5}]$). Let $R = \mathbb{Z}[\delta]$ with $\delta = \sqrt{-5}$.

- (i) Show that 2, 3, 1 + δ, and 1 − δ are irreducible in R. [Hint: to show that 2 is irreducible, for example, prove that there is no element z ∈ R with |z|² = 2.]
- (ii) Show that 2, 3, $1+\delta$, and $1-\delta$ are not prime in *R*. [Hint: use the fact that $6 = 2 \cdot 3 = (1+\delta)(1-\delta)$.]

Problem 5 (Practice with ideal factorization).

- (i) Factor the ideal (6) into prime ideals in $\mathbb{Z}[\sqrt{-6}]$.
- (ii) Determine whether 11 is irreducible and/or prime in $\mathbb{Z}[\sqrt{-5}]$.
- (iii) Factor the principal ideal (14) into prime ideals in $\mathbb{Z}[\sqrt{-5}]$. Be sure to prove that the factors of your ideal are prime!

Problem 6 (The Main Lemma of ideal factorization). Let *R* be an imaginary quadratic integer ring. Recall that if $I \subset R$ is an ideal, its *complex conjugate* is $\overline{I} = \{\overline{z} : z \in I\}$.

(i) Prove that \overline{I} is an ideal in R.

Recall from class that I can be generated by two elements, say I = (z, w). Then $\overline{I} = (\overline{z}, \overline{w})$ and $I\overline{I} = (z\overline{z}, z\overline{w}, \overline{z}w, w\overline{w})$.

- (ii) Show that $z\overline{z}$, $w\overline{w}$, and $z\overline{w} + \overline{z}w$ are ordinary integers. Let $n \in \mathbb{Z}$ be their greatest common divisor.
- (iii) Prove that $(n) \subset I\overline{I}$.
- (iv) Prove that $n \mid z\overline{z}$ and $n \mid w\overline{w}$.
- (v) Prove that $z\overline{w}/n$ and $\overline{z}w/n$ are algebraic integers in the sense of Problem 2. Conclude using Problem 2(iii) that *n* divides $z\overline{w}$ and $\overline{z}w$ in *R*.
- (vi) Prove that $I\overline{I} = (n)$.
- (vii) *Extra credit*: Let *I* be the ideal $(2, 1 + \sqrt{-3})$ of the ring $\mathbb{Z}[\sqrt{-3}] = \{a + b\sqrt{-3} : a, b \in \mathbb{Z}\}$. (Note that this is *not* the quadratic integer ring $\mathbb{Z}[\zeta]$!) Prove that $I\overline{I}$ is not a principal ideal.