UNIQUE FACTORIZATION AND FERMAT'S LAST THEOREM HOMEWORK 4

Problem 1. Let $D \ge 5$ be a squarefree integer, and suppose that $D \equiv 1, 2 \pmod{4}$. Let $\delta = \sqrt{-D}$ and let $R = \mathbb{Z}[\delta]$ be the imaginary quadratic integer ring for -D. Prove that 2 is irreducible but not prime in R. Conclude that R is not a principal ideal domain, and does not have unique factorizations.

Problem 2. Let *L* be a lattice in **C** and let (z, w) be a lattice basis for *L*. Recall that $\Delta(L)$ is the area of the paralellogram whose vertices are 0, z, w, and z + w. In this problem you will show that $\Delta(L)$ is independent of the choice of lattice basis.

(i) Let (z', w') be another lattice basis for *L*. Prove that there exist $a, b, c, d \in \mathbb{Z}$ such that

$$z' = az + bw \qquad w' = cz + dw.$$

- (ii) Using the fact that (z', w') is also a lattice basis, show that $ad bc = \pm 1$.
- (iii) Show that the area of the paralellogram with vertices 0, z', w', z' + w' is equal to |ad bc| times the area of the paralellogram with vertices 0, z, w, z + w.

Problem 3. Let *R* be an imaginary quadratic integer ring and let $I, I' \subset R$ be nonzero ideals. Prove that *I* and *I'* are homothetic if and only if there exists a nonzero ideal $J \subset R$ such that *IJ* and *I'J* are principal ideals.

Problem 4. Let *R* be an imaginary quadratic integer ring and let $I \subset R$ be a nonzero ideal. Prove that there is a lattice basis (z, w) for *I* such that *z* is a positive integer.

Problem 5. Let $\delta = \sqrt{-6}$ and let $R = \mathbb{Z}[\delta]$, the imaginary quadratic integer ring for -6. Let $I = (2, \delta)$ and $J = (3, \delta)$.

- (i) Show that $(2, \delta)$ is a lattice basis for *I* and that $(3, \delta)$ is a lattice basis for *J*.
- (ii) Find a lattice basis for the product ideal *IJ*.
- (iii) Calculate $\Delta(I)$, $\Delta(J)$, and $\Delta(IJ)$.
- (iv) Factor the principal ideal (6) into prime ideals. (See Problem 5(i) on Homework 3.)
- (v) Prove that $I \sim J$.