UNIQUE FACTORIZATION AND FERMAT'S LAST THEOREM HOMEWORK 5

Problem 1 (Factorization of prime integers). Let R be an imaginary quadratic integer ring, let $P \subset R$ be a nonzero prime ideal, and let n = N(P), so n > 1 is an integer and $P\overline{P} = (n)$.

- (i) Show that if $I \subset R$ is a nonzero ideal such that N(I) is prime, then I is prime.
- (ii) Let $n = p_1 \cdots p_r$ be the prime factorization of n (as an ordinary integer). Prove that both P and \overline{P} divide the same ideal (p_i) for some i.
- (iii) Use (i) to show that that there is a prime integer p such that n = p or $n = p^2$. In the case that n = p is prime, show that p is not a prime element of R and that $(p) = P\overline{P}$. If $n = p^2$ is a prime square, show that p is a prime element of R and that $P = \overline{P} = (p)$.
- (iv) Conversely, show that if a prime integer p is not a prime element of R then there exists a prime ideal P of R such that $(p) = P\overline{P}$, and that \overline{P} is also prime.
- (v) *Extra credit*: can you determine which prime integers p have the prime factorization $(p) = P^2$ for a prime ideal $P \subset R$?

Problem 2 (The quadratic imaginary integer rings which are PIDs). For each value of D, prove that the ideal class group of the imaginary quadratic integer ring for -D is a principal ideal domain:

$$D = 1, 2, 3, 7, 11, 19, 43, 67, 163.$$

(We have already treated the cases D = 1, 2, 3.)

Problem 3 (A very curious polynomial). Let $\delta = \sqrt{-163}$ and let $\eta = \frac{1}{2}(1+\delta)$, so $R = \mathbb{Z}[\eta]$ is the quadratic imaginary integer ring for -163. Let

$$f(X) = X^2 - X + 41 = (X - \eta)(X - \overline{\eta})$$

- (i) Let $z \in R$ be non-real, i.e. $z \notin \mathbf{R}$. Show that $|z|^2 \ge 41$
- (i) Let $0 \le a \le 40$ be an integer. Show that $f(a) = |a \eta|^2 < 41^2$. Use (i) to conclude that $a \eta$ is irreducible.
- (iii) Again let $0 \le a \le 40$ be an integer. Use (ii) and Problem 2 above to prove that $a \eta$ is prime, then use Problem 1 to prove that $|a \eta|^2$ is a prime integer.
- (iv) Conclude that $f(0), f(1), f(2), \ldots, f(39), f(40)$ are all prime numbers.

Problem 4 (Calculating ideal class groups). For each value of *D*, calculate the ideal class group of the imaginary quadratic integer ring for -D:

$$D = 6, 10, 13, 14, 15, 17, 21.$$