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Abstract

This thesis is concerned with the structure theory of generalized Levi sub-
groups G of simply-connected Chevalley groups defined over a finite ex-
tension of a p-adic field. We present a geometric parameterization of this
structure known as the Bruhat-Tits building B(G). The building facilitates
visualizing and reasoning about the structure of G, and therefore has appli-
cations to all things related to such groups. We present Moy and Prasad’s
classification of depth-zero super-cuspidal representations of G using the
building. Such representations are obtained by induction from cuspidal
representations of finite Chevalley groups — this is therefore an important
connection between p-adic representation theory and the representation
theory of finite groups of Lie type.

1. Introduction

Much of the research done in the field of algebra in the past century has been the analysis
of certain well-behaved matrix groups defined over various fields, and the representations
thereof. Real and complex matrix groups such as SOn(R), the rotations of n-space, and
GLn(R), the group of invertible n × n matrices, are vital to physicists: for instance, the
atomic orbitals of the hydrogen atom come from representations of the Lie algebra of the
matrix group SU2, and particles can be thought of as irreducible representations of various
symmetry groups such as SU3. Matrix groups defined over the finite fields Fq comprise
all finite simple groups except for the alternating groups An and a finite set of exceptions,
and are therefore of primary importance to finite group theory. The p-adic fields have many
characteristics of continuous fields such as R, but are also closely related to finite fields such
as Fq. Matrix groups over p-adic fields turn out to be very important to number theorists. It
is this latter class of groups which will concern us in this paper: we will study generalized
Levi subgroups G of simply-connected Chevalley groups defined over finite extensions of
p-adic fields. Specifically, we will investigate the structure theory and representation theory
of these groups.

Review of the p-adics. First we review the concept of a p-adic field, where p denotes a
fixed prime number. Such fields were originally introduced by number theorists to facilitate
calculations which involve an infinite number of congruences modulo pn (it is therefore not
surprising that p-adic representation theory has applications to number theory). In short,
the p-adic field Qp is obtained from the rational numbers as the completion of Q with
respect to the p-adic norm, in the same way that R is obtained as the completion of Q with
respect to the standard absolute value | · |. To wit: the sequence 3, 3.1, 3.14, 3.141, . . . is a
nice sequence of rational numbers, called a Cauchy sequence, whose elements get arbitrarily
close together, in the sense that |3.1415− 3.141| is small. However, this sequence converges
to π, which is not rational. One can realize the real numbers by declaring that all such
sequences converge to something, in this way obtaining all infinite nonrepeating decimals
trailing off to the right.

The exact same construction works if we replace the standard absolute value by the fol-
lowing size function. Let a ∈ Z, and write a = pn · b, where b ∈ Z and p does not divide b
— the number n is well-defined because of the uniqueness of prime factorizations. Then we
can set the p-adic absolute value of a to be |a|p = p−n for a 6= 0 and |0|p = 0. For example,
if p = 2, then 48 = 24 ·3 has norm 2−4; if we write 48 in its binary expansion 110000, we can
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see that its norm is completely dependent on its least significant nonzero digit. This is oppo-
site from the standard absolute value, where a number’s size depends on its most significant
digit. One can extend the p-adic norm to all rational numbers by setting |a/b|p = |a|p/|b|p
for b 6= 0, and using this, one can again declare that all Cauchy sequences (i.e., sequences
{xn} of rational numbers such that |xn − xm|p gets arbitrarily small) must converge. One
thus obtains the complete p-adic field Qp as the set of all infinite, nonrepeating decimals
(written in base p) which trail off to the left, instead of to the right — note that numbers are
“small” if their least significant digits are zero.

One should note that if a ∈ Z and p does not divide a, then |a|p = 1, whether a is large
or small — in this sense, the p-adic norm obliterates all information about any prime other
than p. This is one reason that fields such as Qp are useful to number theorists. These
fields also have the interesting property that if we set R = {a ∈ Qp : |a|p ≤ 1} and
℘ = {a ∈ Qp : |a|p < 1}, then R/℘ is naturally isomorphic to the finite field Fp of p
elements, called the residue field. This fact is vital.

The basic objects. Claude Chevalley [Che55] has developed a method, later extended by
Steinberg [Ste68], by which one can take a complex semisimple Lie group, such as SLn(C),
and an arbitrary field k, and produce the analogous group defined over k — SLn(k) in this
example. The resulting groups are called Chevalley groups. It is these objects with which
we will be concerned, where k is a finite extension of some field Qp. We should note that all
of the analysis that we will present is usually done in the more general context of reductive
algebraic groups, but that the latter approach is more difficult and is beyond the scope of
this paper. We give a full example of Chevalley’s construction in Section 1.1; at this point,
one can gain a good intuition for the structure theory of our groups by analyzing the simple
example of G = GL3(Qp).

The first thing to notice is that the group T of diagonal matrices in G is an abelian group,
called a maximal torus, which is isomorphic to (Q×

p )3. The torus T acts nicely on the
off-diagonal matrix entries by conjugation: for example,

[
a
b
c

] [
1 x

1
1

] [
a
b
c

]−1

=
[

1 x·a/c
1

1

]
.

The group B of all invertible upper-diagonal matrices forms a large subgroup of G, with the
nice property that B = TU as a semidirect product, where U is the normal subgroup of B
with ones on the diagonal. That is,

[
∗ ∗ ∗
∗ ∗
∗

]
=
[
∗
∗
∗

] [
1 ∗ ∗

1 ∗
1

]
.

We call B a Borel Subgroup, U its unipotent radical, and the decomposition B = TU a
Levi Decomposition; in this context, T is a Levi subgroup of B.

We define any subgroup P containing B to be a standard parabolic subgroup. It turns
out that [

∗ ∗ ∗
∗ ∗
∗

]
,
[
∗ ∗ ∗
∗ ∗ ∗

∗

]
,
[
∗ ∗ ∗
∗ ∗
∗ ∗

]
, and

[
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

]

are the only standard parabolic subgroups in G. Any parabolic subgroup has a Levi decom-
position into a semidirect product of a Levi subgroup and a unipotent radical; for instance,
we have

P =
[
∗ ∗ ∗
∗ ∗ ∗

∗

]
=
[
∗ ∗
∗ ∗

∗

] [
1 ∗

1 ∗
1

]
= MPUP .

The Levi subgroup MP above is isomorphic to GL2(Qp)×GL1(Qp), whose structure theory
is similar to that of G = GL3(Qp) itself. This is vital to the structure theory and the repre-
sentation theory of the type of group we are concerned with: that is, all (generalized) Levi



1: INTRODUCTION 3

subgroups of a simply-connected p-adic Chevalley group can be analyzed in a uniform way.
This suggests using inductive arguments in our analysis.

So far we have ignored the fact that Qp is a p-adic field, as opposed to an arbitrary field;
indeed, the above definitions hold upon replacing Qp with any field. There is, however,
much structure theory which depends on the p-adic nature of Qp. For n ∈ Z, define

℘n = {a ∈ Qp : |a| ≤ p−n}.

Then
{0} ⊂ · · · ⊂ ℘3 ⊂ ℘2 ⊂ ℘ ⊂ R ⊂ ℘−1 ⊂ ℘−2 ⊂ · · · ⊂ Qp

is an exhaustive filtration of Qp by compact open subgroups (the topology of Qp is given
by the norm | · |p). Using this, we can define many interesting compact open subgroups of
our group G (where the topology on G is induced from the natural topology on the space
of 3 × 3 p-adic matrices). For instance, if we set

Gy =
[
R R R
R R R
R R R

]
and G+

y =

[
1+℘ ℘ ℘
℘ 1+℘ ℘
℘ ℘ 1+℘

]

(where all sets of matrices are of course intersected with G), then these are compact open
subgroups. These groups have the vital property that

Gy/G
+
y
∼=

[
Fp Fp Fp

Fp Fp Fp

Fp Fp Fp

]
∼= GL3(R/℘) = GL3(Fp)

which is the “same” group over the finite field. (Note that this is a generalization of the fact
that Fp = R/℘.) This fact suggests that we will be able to use the theory of finite Chevalley
groups to enhance our understanding of the p-adic versions

All of the objects treated in this section can be defined in any generalized Levi subgroup
of a simply-connected p-adic Chevalley group; this is precisely the structure theory we will
investigate in the majority of this thesis.

Representation theory. In Chapter 5, we will give an important application of the struc-
ture theory of our groups (as developed up to that point) to p-adic representation theory.
It is therefore useful at this point to give a summary of some of the basic results in that
area. The results mentioned here are the result of the invaluable work done by Jacquet,
Langlands, Kottwitz, Mautner, Bernstein, Steinberg, Casselman, Iwahori, Moy, Prasad, and
many others.

Let (π, V ) be a representation of a group G of the type that we are considering — that
is, V is some complex vector space, and π is a homomorphism from G into GL(V ) (in other
words, each g ∈ G acts on V by an invertible linear map, such that π(g) ◦ π(h) = π(gh)).
We say that (π, V ) is smooth if, for all v ∈ V , the subgroup of G fixing v contains a compact
open subgroup. In other words, the action of G on V is continuous with respect to the
discrete topology on V . All representations we will encounter are smooth. We write R(G)
for the category of smooth representations of G. If, in addition,

V K = {v ∈ V : kv = v for all k ∈ K}

is finite-dimensional for every compact open subgroup K of G, then we say that V is ad-

missible.
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If V has no G-invariant subspace — that is, V has no vector subspace U such that
π(g) · u ∈ U for every u ∈ U and g ∈ G — then we say that V is irreducible. Equiv-
alently, irreducible representations are simple G-modules. One can show that the only
finite-dimensional smooth irreducible representations of G are one-dimensional, so that all
interesting smooth representations are infinite-dimensional.

A fundamental problem in p-adic representation theory is to find all smooth irreducible
representations of G (all such representations are automatically admissible). One of the
most basic objects used to accomplish this goal, for reasons that will become clear, is the
super-cuspidal representation.

Let P ⊂ G be a proper parabolic subgroup with Levi decomposition P = MU as above,
and let V (U) be the subspace of V generated by {π(u)v − v : u ∈ U, v ∈ V }. Then
VU :=V/V (U) is the largest quotient of V on which U acts trivially, and is therefore a natural
representation of M because P = MU .

Definition 1.1. We say that the smooth representation (π, V ) is super-cuspidal if for ev-
ery (standard) proper parabolic subgroup P of G with Levi decomposition MU , the
space VU is trivial.

Intuitively, then, a super-cuspidal representation has nothing to do with any proper Levi
subgroup — it is determined only by the data that differentiates the full group G from its
Levi subgroups. One should note that this definition is almost identical to the definition of a
cuspidal representation of a simply-connected Chevalley group over a finite field (over the
finite field, one usually requires that cuspidal representations be irreducible):

Definition 1.2. A finite-dimensional irreducible representation (τ,W ) of a simply-conn-
ected Chevalley group G defined over a finite field is cuspidal if for every (standard)
proper parabolic subgroup P of G with Levi decomposition MU, the space WU is trivial.

If H ⊂ G is a subgroup and (σ,W ) is a smooth representation of H , then we define
IndGH σ to be the space of all maps f : G → W such that f is locally constant on the right
(that is, there is some compact open subgroup Kf ⊂ G such that f(gk) = f(g) for all g ∈ G
and k ∈ Kf ), and for any g ∈ G and h ∈ H , we have f(hg) = σ(h)f(g). For g ∈ G and
f ∈ IndGH σ, we define g · f by the right-regular action, that is, (g · f)(x) = f(xg) for x ∈ G.
With this action, IndGH σ is a smooth representation of G, called an induced representation.
We also define indGH σ to be the subspace of IndGH σ consisting of functions whose support is
compact modulo H (on the left). Intuitively, the functors ind and Ind are methods by which
one can take a representation of a subgroup H ⊂ G, and obtain a representation of all of G,
which, in some sense, does not contain any more information.

With these definitions, one can show that if (π, V ) ∈ R(G) is irreducible, then there exists
a (not necessarily proper) parabolic subgroup P of G with Levi decomposition MU and
an irreducible super-cuspidal representation σ of M such that π is a subrepresentation of
IndGP σ̃, where σ̃ is σ extended to P = MU by declaring that U acts trivially (recall that U
is normal in P ). Therefore we start to see that the smooth irreducible representations of G
divide into those that can be induced from smaller well-behaved subgroups of G, and those
that arise from the data that is unique to G and independent of its proper Levi subgroups.
This division is in fact a splitting of the category R(G) into the full subcategories of super-
cuspidal representations and those representations found in representations induced from
super-cuspidal representations of proper Levi subgroups.
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Therefore, with the inductive argument hinted at before, we see that in a sense, we
can understand all of the smooth irreducible representations of G if we can understand its
super-cuspidal representations. Thus the super-cuspidal representations are the fundamen-
tal objects in p-adic representation theory. That said, the only class of groups for which all of
the super-cuspidal representations are known is GLn(k) (and some of its close relatives like
SLn(k), under some extra conditions on k). Thus finding the super-cuspidal representations
is a major outstanding problem in p-adic representation theory.

The general strategy for finding super-cuspidal representations is by compact induction
from subgroups K of G which are compact mod the center of G. The justification for this
dates back to Mautner [Mau64]. He showed that that if σ is a smooth irreducible represen-
tation of K and indGK σ is irreducible, then it is super-cuspidal. Many, many people have
tried to find all super-cuspidal representations in this fashion, but none have been success-
ful. However, if (π, V ) is an irreducible super-cuspidal representation of G such that the
space of G+

y -fixed vectors is nonzero (in the example above), then Moy and Prasad showed

that the natural representation of Gy/G+
y (which is GL3(Fp) in our example above) on V G

+
y

contains a cuspidal representation, and that (π, V ) can be obtained by compact induction
from this representation. This is a rather surprising connection between the representation
theory of G and the representation theory of its analog over the finite residue field — some-
how, cuspidal and super-cuspidal representations are related. In this way, Moy and Prasad
classify all super-cuspidal representations of G with vectors fixed under certain subgroups
similar to G+

y (which is a nontrivial class of representations), using information about the
cuspidal representations of finite groups of Lie type, which are well understood (in the sense
that all finite simple groups are classified). We will carry out this classification in Chapter 5.

Motivation. The structure theory of our groups is rich and beautiful, and deserves to be
studied for that reason alone. There are, however, applications to other areas of mathemat-
ics. For instance, Moy and Prasad [MP94] devised a method of characterizing a representa-
tion (π, V ) of G by its depth, that is, how “deep” one must look into a certain filtration of
the compact open subgroups Gy in order to find a compact open subgroup K such that the
space V K of K-fixed vectors is nonzero. This increases our understanding of the representa-
tion theory of G — see Chapter 5. As another example, DeBacker [DeB02] has found a way
to parameterize nilpotent orbits in the Lie algebra of G via the structure theory presented in
this paper, which aids in the study of harmonic analysis on G. Harmonic analysis on reduc-
tive p-adic groups and p-adic representation theory in turn have some deep applications to
number theory.

Our focus. We will present the construction of the Bruhat-Tits building B(G), which is a
geometric parameterization of the structure of G. The building is a huge CW-complex with
a natural G action, which is formed by gluing together many apartments A, which are all
copies of affine ℓ-space Rℓ, cut up by hyperplanes in a regular fashion (see Figure 4.1). For
instance, an apartment of SL3 is a plane, tiled by equilateral triangles. The building also
has a natural metric, with respect to which the group G acts by isometries.

Much of the structure theory of G can be realized using the building and its G-action:
for example, if y ∈ B(G) is any point, then we can form the stabilizer subgroup Gy = {g ∈
G : g ·y = y}, justifying the notation above. This subgroup always turns out to have a natu-
ral quotient which is isomorphic to a generalized Levi subgroup of the analogous Chevalley
group defined over the residue field. In general, many important structural properties trans-
late directly into the geometric language of the building, and vice-versa; thus the building
makes it much easier to reason about and visualize the structure of G.
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The building was invented by Bruhat and Tits in [BT72] the 1970’s, but its power was
only exploited to a limited extent until the mid-1990’s, when Moy and Prasad defined certain
filtration subgroups Gx,r and gx,r for x ∈ B(G). Using this new structure, Moy and Prasad
were able to prove, among other things, the results already mentioned, which we present in
Chapter 5. Since then, an intensive study has been made of the building and its applications
to all things related to p-adic Chevalley groups.

Roadmap. In Section 1.1, we will present Chevalley’s construction of Sp4(k); if the reader
is not familiar with Chevalley groups, this should be a sufficient introduction.

In Chapter 2, we present the basic unit of the Bruhat-Tits building: the affine apartment.
Since much of the “affine” structure ofG (that is, the structure of a p-adic Chevalley groupG
which depends on the fact that it is defined over a p-adic field) is analogous to the “spherical”
structure of any Chevalley group (that is, the structure which does not depend on the field
k), we also give an introduction to the spherical apartment of an arbitrary Chevalley group
G, and show how the spherical apartment gives rise to much of the standard Chevalley
group structure theory of G. Since the spherical structure theory may be more familiar to
the reader, Section 2.1 will hopefully be helpful in understanding Section 2.2.

If the Bruhat-Tits building is made by gluing together many affine apartments, parahoric
subgroups comprise the glue. It is these subgroups which make up the structure theory used
to build the building, and most of the structure that the building parameterizes is realized in
terms of parahorics. We therefore devote all of Chapter 3 to parahoric subgroups. Parahoric
subgroups also have the extremely important property that they have a quotient which is
isomorphic to a generalized Levi of a Chevalley group defined over the residue field; this is
discussed in Section 3.2. Parahoric subgroups play a role in the affine structure theory of
G analogous to the role parabolics play in the spherical structure theory of G; some of the
results which solidify this analogy are given in Section 3.3.

With the knowledge about parahorics developed in Chapter 3, we define the Bruhat-
Tits building in Chapter 4. There is an analogous spherical building associated with any
Chevalley group (formed by gluing together many spherical apartments), but, unlike in
Chapter 2, we do not present that construction. We give the full example of the building of
SL2(k) in Section 4.2.

Chapter 5 is devoted to Moy and Prasad’s classification of irreducible super-cuspidal rep-
resentations of depth zero using the Bruhat-Tits building; in particular, we show that all such
representations can be obtained from cuspidal representations of Chevalley groups over the
finite field. It is very useful to understand this relationship between finite group representa-
tion theory and p-adic representation theory — for one, the representation theory of finite
Chevalley groups is well understood. In Section 5.1, we define the notion of the depth of
a representation; in Section 5.2, we present the classification; and in Section 5.3, we show
how Section 5.2 is used to find all depth-zero irreducible super-cuspidal representations of
SL2(k). We make good use of Section 4.2 in Section 5.3.

Acknowledgments. It is a pleasure to thank my advisor, Stephen DeBacker, without
whose time, patience, and advice, none of this would have been possible. I am also indebted
to Martin Weissman for his help and support.

1.1. Chevalley group example: Sp4

The constructive nature of Chevalley groups obliges us to define much notation, which is
perhaps easier to absorb if presented in a concrete example. In addition, one who is not
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familiar with the general construction of Chevalley groups may find this example and the
one in Appendix A helpful. We therefore present the Chevalley-Steinberg construction of the
group Sp4(k), where k is an arbitrary field. All of the notation in this section can be defined
in the same way for any Chevalley group; after this section, we will no longer assume that
we are working with Sp4.

The Chevalley Data. The basic data needed to construct Sp4(k) is the Dynkin diagram of
type C2, which shows two simple roots, a short one and a long one, at a 135◦ angle. From
this data, we can construct the (abstract) root system Φc, which is given in Figure 1.1, along
with its co-root system (note that the short and long roots are switched). In this section we
label the simple roots α and β and the simple root system ∆c = {α, β}; the other positive
roots are given in the figure. A complex simple Lie algebra which gives rise to this root
diagram will be of the form gC = hC

⊕
γ∈Φc(gγ)C, where (gγ)C is the one-dimensional root

space associated with the root γ and hC is the two-dimensional Cartan subalgebra. There
are elements X±γ ∈ (g±γ)C and Zγ ∈ hC such that (Xγ , X−γ , Zγ) is an sl2 triple, with the
elements Zγ scaled such that for every root δ,

[Zγ , Xδ] = 2(δ, γ)/(γ, γ) ·Xδ, (1.1)

which is always an integer multiple since Φc is a root system.

2α+ βα+ ββ

α

−β−α− β−2α− β

−α
(−α)∨

β̌

(α+ β)∨

(2α+ β)∨

α̌

(−β)∨

(−α− β)∨

(−2α− β)∨

Figure 1.1: The root system and co-root system of type C2. This co-root system is usually drawn rotated clock-
wise 45◦ from this drawing; in this representation, the Euclidean space containing the root system and its dual
containing the co-root system are identified via the inner product.

We can realize gC as the space of 4 × 4 matrices which preserve the skew form M =[
0 I2

−I2 0

]
. One can show [FH91, p.239] that gC is the space of block matrices

[
A B
C D

]
such

that B and C are symmetric and A and D are negative transposes of each other. Therefore
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a basis for gC is

Xα =

[
0 1

0
0
−1 0

]
X−α =

[
0
1 0

0 −1
0

]
Zα = [Xα, X−α] =

[
1
−1

−1
1

]

Xβ =

[
0 0 0

0 0 1
0

0

]
X−β =

[
0

0
0 0 0
0 1 0

]
Zβ = [Xβ, X−β ] =

[
0

1
0
−1

]

Xα+β = [Xα, Xβ] =

[
0 0 1

0 1 0
0

0

]
X−α−β = [X−β, X−α] =

[
0

0
0 1 0
1 0 0

]

X2α+β =
1

2
[Xα, Xα+β ] =

[
0 1 0

0 0 0
0

0

]
X−2α−β =

1

2
[X−α−β , X−α] =

[
0

0
1 0 0
0 0 0

]
.

(1.2)

One can check that the requirements (1.1) are satisfied, so this is indeed a simple Lie algebra
with the correct Dynkin diagram. It is important that the integer span

g :=


⊕

γ∈Φc

Z ·Xγ


⊕

(
⊕

δ∈∆c

Z ·Hδ

)

of the basis elements is stable under the bracket, so that we have in fact chosen a Chevalley

basis for gC. This is the first important step in constructing a Chevalley group; Chevalley
showed that any complex semisimple Lie algebra has such a basis.

We will use the following notation for our abstract root system and our Chevalley data:

g is our integer Lie algebra, which comes from the complex semisimple Lie algebra
gC and a Chevalley basis.

Φc is the (abstract) root system of g.

Lc = |Φc| is the number of roots.

(Φc)± is some choice of positive and negative roots; in our case, (Φc)+ = {α, β, α +
β, 2α+ β}.

∆c is the set of simple roots with respect to (Φc)+; in our case, ∆c = {α, β}.

gγ = Z ·Xγ is the (integer) root space in g of the root γ ∈ Φc.

h is the (integer) Cartan subalgebra. In our case, h = Z · Zα ⊕ Z · Zβ.

ℓc = |∆c| is the rank of g.

E is the Euclidean space containing the abstract root system Φc.

E∗ is the linear dual of E. (In general, if X is a vector space, then X∗ denotes its
linear dual.)

(·, ·) is the inner product on E and on E∗.

ΛcR ⊂ E is the root lattice, i.e., the lattice spanned by Φc.

〈γ, δ〉 = 2(γ, δ)/(δ, δ) is always an integer for γ, δ ∈ Φc (by the definition of a root sys-
tem).

〈·, ·〉 is also used to denote the canonical pairing of E with E∗ (sorry, there are only so
many kinds of brackets). For α ∈ E and x ∈ E∗ we will often write α(x) for 〈x, α〉.

Φ̌c ⊂ E∗ is the system of co-roots.

γ̌ ∈ E∗ is the co-root corresponding to γ ∈ Φc, defined by the equation 〈γ̌, δ〉 = 〈γ, δ〉
for all δ ∈ Φc.
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Λ̌cR ⊂ E∗ is the co-root lattice, that is, the lattice generated by Φ̌c. (In general, if
X ⊂ ΛcR is a subset of the root lattice, then X̌ ⊂ Λ̌R is the corresponding subset of
the co-root lattice.)

Our Chevalley basis is
{Xγ , Zδ : γ ∈ Φc, δ ∈ ∆c}

where each Xγ spans the root space gγ , and the Zδ span the Cartan subalgebra h. All of the
above Chevalley data (except the specific choice of simple and positive roots) will be fixed

throughout this paper (again, we will not assume that our Chevalley group is Sp4(k) after
this section).

Before moving on, we must make a note about root systems: if one starts with a complex
semisimple Lie algebra, one uses the root space decomposition and the Killing form to real-
ize the root system as a subset of a real subspace of h∗

C
. We can recover that realization: let

hR be the real span of the elements {Zγ : γ ∈ ∆c (or γ ∈ Φc)}. For each δ ∈ Φc, Equation
(1.1) allows us to define a linear map hR → R, also denoted by δ, by the formula

δ(Zγ) ·Xδ = [Zγ , Xδ] = 〈δ, γ〉 ·Xδ (1.3)

for γ ∈ ∆c; the above formula then holds for any γ ∈ Φc. So for instance, one calculates that
α(diag(a, b,−a,−b)) = a − b and β(diag(a, b,−a,−b)) = 2b. In a dual manner, any co-root
γ̌ defines a linear map R → hR simply by γ̌(r) = r · Zγ ; we then recover δ ◦ γ̌ = 〈δ, γ〉.
Extending linearly, we can identify E with h∗

R
and E∗ with hR in a natural way. That said,

after this section we will never use any realization of the root system Φc; rather, we will
regard it as a separate object which interacts with our groups.

The Chevalley Group. The strategy is to obtain Sp4(k) by formally exponentiating the
above Lie algebra. One can obtain all of the isogeny forms of a Lie group via Steinberg’s
method, so we need one more piece of data in order to construct the simply-connected
form Sp4. In general, we will assume that all of our Chevalley groups are simply-connected

(see Appendix A). Using our identification of h∗
R

with E, we can define the weight lattice

ΛcW ⊃ ΛcR to be the set of all λ ∈ h∗
R

such that λ(Zγ) ∈ Z for all γ ∈ ∆c. One can show
that the lattice generated by the weights of any representation of gC is contained between
ΛcR and ΛcW . Fix a faithful finite-dimensional representation V C of gC whose weight lattice

(i.e., the lattice generated by the weights of V C) is all of ΛcW (the particular choice of
representation ends up being irrelevant) — this is the property that will allow us to generate
the simply-connected form.1

The next step is to choose a full-rank lattice V in V C which is invariant under the set

{Xn
γ /n! : n ∈ N, γ ∈ Φc}, (1.4)

where we are thinking of Xn
γ /n! as a member of End(V C). One can show [Ste68] that

such a lattice exists, and that the choice of the lattice is ultimately unimportant. Set V k

to be the vector space V ⊗ k; note that each Xn
γ /n! acts on V k in a natural way. Since

the representation V C has a finite number of weights, there is some n for each γ such that
Xn
γ ∈ End(V k) is zero. Therefore for t ∈ k and γ ∈ Φc,

exp(tXγ) = 1 + tXγ +
(tXγ)

2

2!
+

(tXγ)
3

3!
+ · · · ∈ GL(V k)

1E.g., if we had chosen V C to be the adjoint representation, whose weight lattice is simply the root lattice, then
we would generate the adjoint form.
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is a well-defined element, with inverse exp(−tXγ). Define the Chevalley group Gc to be
the group generated by {exp(tXγ) : t ∈ k, γ ∈ Φc}.

In our case, the weight lattice of the standard representation of Sp4(C) is all of ΛcW .
Indeed, one sees that ΛcW = Z(α/2)⊕ Zβ, and that the weight corresponding to the weight
space spanned by (1, 0, 0, 0) is α/2. We have X2

γ = 0 for all γ ∈ Φc, so Z4 ⊂ C4 is a good
choice for a full-rank sublattice. We then have V k = k4, and Xγ acts on V k via the matrices
(1.2). Since exp(tXγ) = 1 + tXγ , we have

exp(tXα) =

[
1 t

1
1
−t 1

]
exp(tX−α) =

[
1
t 1

1 −t
1

]

exp(tXβ) =

[
1 0 0

1 0 t
1

1

]
exp(tX−β) =

[
1

1
0 0 1
0 t 1

]

exp(tXα+β) =

[
1 0 t

1 t 0
1

1

]
exp(tX−α−β) =

[
1

1
0 t 1
t 0 1

]

exp(tX2α+β) =

[
1 t 0

1 0 0
1

1

]
exp(tX−2α−β) =

[
1

1
t 0 1
0 0 1

]

(1.5)

which are elements of GL(V k).

We will use the following notation for the objects defined above:

V is some lattice contained in a faithful complex representation V C of gC which is
invariant under the set (1.4). We will require that our Chevalley groups be simply-

connected (see Appendix A), so the lattice of weights of the representation V C must
be the weight lattice.

Vµ is the (integer) weight space of V corresponding to the weight µ. In our case, the
weight spaces are generated by the coordinate vectors; for instance,

diag(a, b,−a,−b) · (1, 0, 0, 0) = a · (1, 0, 0, 0),

so the space Vµ = (Z, 0, 0, 0) corresponds to the weight µ : diag(a, b,−a,−b) 7→ a.

vµ generates the weight space Vµ, so the vµ generate V as an integer lattice. In our
case, the vµ are the unit coordinate vectors.

V k = V ⊗Z k, which is k4 in our case.

xγ(t) = exp(tXγ) for t ∈ k. Note that xγ(t+ u) = xγ(t)xγ(u) for u ∈ k.

Xγ = Xγ(k) is the root subgroup {xγ(t) : t ∈ k} ∼= k+.

Gc is the full Chevalley group, defined as the subgroup of GL(V k) generated by the
Xγ for γ ∈ Φc.

The Cartan subgroup. Since the elements Zγ ∈ h do not necessarily have finite or-
der as elements of End(V k), we cannot exponentiate them directly. However, the rela-
tion Zγ = [Xγ , X−γ ] gives us a clue as to how to define the Cartan subgroup. Define
wγ(t) = xγ(t)x−γ(−t

−1)xγ(t) for t ∈ k× and γ ∈ Φc, so for instance,

wα(t) =

[
0 t

−t−1 0
0 t−1

−t 0

]
and wβ(s) =

[ 1 0 0 0
0 0 0 s
0 0 1 0
0 −s−1 0 0

]
.

Let hγ(t) = wγ(t)wγ(1)−1, so, in our case, we have

hα(t) =

[ t
t−1

t−1

t

]
and hβ(s) =

[
1
s

1
s−1

]
.
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A list of relations satisfied by the wγ(t) and hγ(t) can be found in [Ste68, pp. 27–30]. Define
the Cartan subgroup T of Gc to be the subgroup generated by {hγ(t) : γ ∈ Φc, t ∈ k×}.
This subgroup has many useful properties (cf. [Ste68, Lemma 28]); we point out that T is
abelian, and each hγ defines a homomorphism k× → T . It is also true that T is generated
by hγ(k×), γ ∈ ∆c, so in our case,

T =

{[
t
t−1s

t−1

s−1t

]
: s, t ∈ k×

}
=

{[ t
s
t−1

s−1

]
: s, t ∈ k×

}

which is the set of all diagonal elements preserving our skew form M . It is very important
to note that any element of T has a unique expression of the form hα(s)hβ(t), so that T ∼=
(k×)2. This property is equivalent to the fact that we exponentiated the simply-connected
form, as proved in [Ste68] (recall that over C, isogeny forms are obtained from the simply-
connected form by quotienting by subgroups of the center of Gc, which must live in T ).

In summary, we have defined:

wγ(t) = xγ(t)x−γ(−t−1)xγ(t) for t ∈ k×.

hγ(t) = wγ(t)wγ(1)−1 for t ∈ k×.

T is the Cartan subalgebra, or distinguished maximal torus, which is generated by
the hγ(t). By [Ste68, Lemma 28], simply-connectedness implies that any element
of T can be written uniquely as

hγ1(t1) · · ·hγn
(tn)

for γi ∈ ∆c, so that T ∼= (k×)ℓ
c

. Note that we are fixing the torus T throughout
this paper.

Generalized Levi subgroups. Now that we have defined the basic objects associated with
the Chevalley group Gc, we can begin to understand the generalized Levi subgroups G,
which comprise the more general class of groups with which we will be concerned.

Definition 1.3. Let Φ ⊂ Φc be a subset which is also a root system (we do not require that
Φ spans E), and such that if γ, δ ∈ Φ and γ + δ ∈ Φc, then γ + δ ∈ Φ. We call such a Φ a
closed sub-root system.

Remark 1.4. One can obtain all closed sub-root systems of Φc by deleting vertices from
an extended Dynkin diagram — see [BDS49].

Let G be the subgroup of Gc generated by T and the Xγ for γ ∈ Φ. We call G the (stan-

dard) generalized Levi subgroup associated with the closed sub-root system Φ; conjugates
of G are generalized Levi subgroups. In this paper, unless otherwise specified, all general-
ized Levi subgroups will contain our fixed torus T — that is, they will correspond as above
to some closed sub-root system Φ ⊂ Φc. For a full treatment of generalized Levi subgroups,
see [BDS49].

For example, let Φ = {±β,±(2α+ β)}. This is a closed sub-root system, which is of type
A1 ×A1 because β and 2α+ β are orthogonal. Exponentiating the root spaces, we find

G =

[
∗ ∗
∗ ∗

∗ ∗
∗ ∗

]
.
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Although G is a generalized Levi subgroup, it is not a Levi subgroup — that is, we cannot
choose a system of simple roots for Φ which extend to a set of simple roots for Φc (more on
this in the next subsection). The group G′ generated by X±β and X±(2α+β) (but not T ) is
a Chevalley group in its own right; it is one of the isogeny forms of SO4(k). The group G′

need not be simply-connected; in particular, it is not necessarily the case that any element
of the Cartan subalgebra T ′ of G′ can be written uniquely as

hα1(t1) · · ·hαn
(tn)

for αi ∈ ∆ (see Appendix A). In other words, T ′ is not necessarily a torus. In our case,
however, we have T ′ = T by coincidence, and G′ happens to be the simply-connected form
Spin4(k)

∼= SL2(k) × SL2(k). In general, we have G = TG′ — note that T normalizes G′

because it acts diagonally on all of the root spaces.

Since generalized Levi subgroups behave so much like full Chevalley groups, some of the
notation in place for Gc can also be defined for G. One should also regard most of this
notation as fixed:

Φ ⊂ Φc is a closed sub-root system.

L = |Φ|.

Φ± is some choice of positive and negative roots (we will not necessarily assume that
Φ± ⊂ (Φc)±).

EΦ ⊂ E is the subspace of E spanned by the root system Φ.

E∗
Φ is the dual of EΦ, which can be identified with the subspace of E∗ spanned by Φ̌.

ΛR ⊂ EΦ is the lattice generated by Φ.

∆ is a set of simple roots for Φ. Note that ∆ may not be contained in any ∆c — in
our case, we can take ∆ = {β, 2α+ β}, which is not a simple root system for Φc.

ℓ = |∆|.

G is the generalized Levi subgroup of Gc associated with Φ. Note that the rank of G
is still ℓc because G contains all of T .

Since we do not use an “intrinsic” definition of a generalized Levi subgroup of a Chevalley
group, we must always work in an ambient larger group. For clarity, then, whenever we
define an object for a generalized Levi subgroup, the same symbol with a superscript c will
denote the same object in the maximal generalized Levi subgroup, i.e., all of Gc. So for
instance, we have Φ and ∆ defined for G, whereas Φc and ∆c are the maximal versions of
Φ and ∆ associated with Gc. Also, if Φ0 ⊂ Φ is a smaller closed sub-root system, then we
will regard the generalized Levi subgroup G0 ⊂ G associated with Φ0 as a generalized Levi
subgroup of G as well as of Gc.

Parabolic subgroups. The basic structure theory of Chevalley groups is not very difficult.
It revolves around parabolic subgroups. Let Θ ⊂ ∆ and let ΦΘ be the set of integer linear
combinations of elements of Θ which are also roots in Φ. Then ΦΘ is a closed sub-root
system of Φc, so there is a corresponding generalized Levi subgroupMΘ — generalized Levis
which arise in this way are called standard Levi subgroups, and conjugates of the MΘ are
Levi subgroups. Let PΘ be the subgroup of G generated by T and the root subgroups Xγ
for γ ∈ ΦΘ ∪ Φ+ — that is,

PΘ = 〈T, Xγ : γ ∈ ΦΘ ∪ Φ+〉.
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Then PΘ is a standard parabolic subgroup associated with the subset Θ of ∆; conjugates
of PΘ are called parabolic subgroups.2 If Θ = ∅, i.e., MΘ = T , then B = P∅ is the
minimal standard parabolic subgroup, called the (standard) Borel subgroup. One can
show that the subgroups PΘ for Θ ⊂ ∆ are the only subgroups of G containing B. If we set
UΘ = 〈Xγ : γ ∈ Φ+ \ ΦΘ〉, then UΘ is normal in PΘ, UΘ ∩MΘ is trivial, and PΘ = MΘUΘ

as a semidirect product. This decomposition is called a Levi decomposition of PΘ. Note
that PΘ/UΘ

∼= MΘ. If we set

PΘ = 〈T, Xγ : γ ∈ ΦΘ ∪ Φ−〉 UΘ = 〈Xγ : γ ∈ Φ− \ ΦΘ〉,

then PΘ is a (not standard) parabolic subgroup with Levi decomposition PΘ = MΘUΘ such
that PΘ ∩ PΘ = MΘ. We call PΘ the opposite parabolic of PΘ with respect to MΘ.

In our example of Sp4, the only subsets of ∆c = {α, β} are ∅, {α}, {β}, and ∆c. Referring
to the root space equations (1.5), we see that

M∅ =

[
∗
∗
∗
∗

]
P∅ =

[
∗ ∗ ∗ ∗
∗ ∗ ∗
∗
∗ ∗

]
U∅ =

[
1 ∗ ∗ ∗

1 ∗ ∗
1
∗ 1

]
P ∅ =

[
∗
∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

]
U∅ =

[
1
∗ 1
∗ ∗ 1 ∗
∗ ∗ 1

]

Mα =

[
∗ ∗
∗ ∗

∗ ∗
∗ ∗

]
Pα =

[
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

]
Uα =

[
1 ∗ ∗

1 ∗ ∗
1

1

]
Pα =

[
∗ ∗
∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

]
Uα =

[
1

1
∗ ∗ 1
∗ ∗ 1

]

Mβ =

[
∗
∗ ∗
∗

∗ ∗

]
Pβ =

[
∗ ∗ ∗ ∗
∗ ∗ ∗
∗

∗ ∗ ∗

]
Uβ =

[
1 ∗ ∗ ∗

1 ∗
1
∗ 1

]
Pβ =

[
∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

]
Uβ =

[
1
∗ 1
∗ ∗ 1 ∗
∗ 1

]

M∆c = Sp4(k) P∆c = Sp4(k) U∆c = {1} P∆c = Sp4(k) U∆c = {1}

where we write Mα = M{α}, etc.

For another example of parabolic subgroups, see Example 2.14.

More about root systems. Much of our work will be done in terms of root systems, so
we have some more to say about how Φ interacts with our group G. For every root γ (resp.
co-root γ̌), we have defined a linear map hR → R (resp. R → hR). Not surprisingly, we
can find “exponential” versions of these maps, obtaining homomorphisms T → k× (resp.
k× → T ). Everything that follows is completely analogous to the discussion starting on
page 9.

For γ, δ ∈ Φ, [Ste68, p.30, (R8)] tells us that

hγ(t)xδ(s)hγ(t)
−1 = xδ(t

〈δ,γ〉s); (1.6)

compare this with (1.3) on page 9. Proceeding analogously, since Gc is simply-connected,
we may define a homomorphism δ : T → k× by

δ(hγ(t)) = t〈δ,γ〉

for δ, γ ∈ ∆c; the above equation is then true for all γ, δ ∈ Φc. Let X∗(T ) be the group of
homomorphisms T → k× generated by the roots γ ∈ Φc;3 we have defined things in such
a way that we have a natural surjective homomorphism from ΛcR onto X∗(T ).4 Also, any

2Again, unless otherwise specified, all Levis, generalized Levis, and parabolics are assumed to contain T — this
means that the Levis and generalized Levis are standard, but the parabolics are only standard with respect to some
choice of simple roots.

3This notation is nonstandard. In an algebraic group setting, X∗(T ) is defined to be the group of algebraic
characters of T ; this is not a natural definition from the standpoint of Chevalley groups.

4This homomorphism is not injective if the field k is finite; therefore in the Chevalley group context, we can not
realize our root system as a subset of X∗(T ) ⊗ R as is standard.
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co-root γ̌ defines a homomorphism k× → T given by hγ; we then have δ ◦ γ̌(t) = t〈δ,γ〉.
Let X∗(T ) be the group of homomorphisms k× → T generated by the γ̌ for γ ∈ Φc, so, as
before, we have a surjective homomorphism from the co-root lattice Λ̌cR onto X∗(T ).

In the example of Sp4(k), we have calculated that the root α corresponds to the map h∗
R
→

R given by α(diag(a, b,−a,−b)) = a−b; the same calculation gives that our “exponentiated”
realization is α(diag(a, b, a−1, b−1)) = ab−1, as expected. Similarly, β(diag(a, b,−a,−b)) =
2b so β(diag(a, b, a−1, b−1)) = b2.

To reiterate, we have defined:

X∗(T ) is the group of homomorphisms from T to k× generated by the roots. If λ ∈ ΛcR,
then we will also write λ for its image in X∗(T ); that is, we will regard λ as a
homomorphism T → k× when it suits us.

X∗(T ) is the group of homomorphisms k× → T generated by the co-roots. If λ̌ ∈ Λ̌cR,
then we will again write λ̌ for its image in X∗(T ).

We never explicitly refer to the groups X∗(T ) and X∗(T ), but we will consistently identify
co-roots and roots with their images in X∗(T ) and X∗(T ), respectively. This is also a good
place to define:

ΛC ⊂ ΛcR is the set of all λ ∈ ΛcR with 〈λ, γ〉 = 0 for all γ ∈ Φ. In other words,
ΛC = ΛR ∩ E⊥

Φ .

C ⊂ T is the split center of G, which we define to be the subgroup of T generated
by the λ̌(t) for t ∈ k× and λ ∈ ΛC . The relations in [Ste68, pp. 27–30] show that
C is contained in the center of G.

The Weyl group. Let W be the Weyl group associated with Φ, that is, the group of
isometries of E (or of E∗) generated by the reflections over the hyperplanes orthogonal to
the roots in Φ (resp. co-roots in Φ̌). Let N be the subgroup of G generated by T and the
wγ(t) for γ ∈ Φ and t ∈ k×. One can show [Ste68, Exercise, p.36] that T is normal in
N , and that N is the full normalizer in G of T if k has more than three elements. It is a
basic fact that the map N → W which sends wγ(t) to the reflection over the hyperplane
orthogonal to γ (or γ̌) induces an isomorphism of N/T with W .

If G = Sp4(k), we find that coset representatives for N c/T are the determinant-1 permu-
tation matrices corresponding to the permutations

1, (13), (24), (1234), (1432), (12)(34), (13)(24), (14)(23)

which we recognize as the dihedral group D4 of symmetries of the square. The roots for Sp4

lie on a square in E (see Figure 1.1), and we readily see that the isomorphism of N c/T with
W c is the same as realizing W c as the symmetries of that square. If G = Spin4(k) ⊂ Sp4(k)
as above, then N/T ∼= {1, (13), (24), (13)(24)} is the Klein four group.

We define the following objects relating to the Weyl group:

N is the subgroup ofG generated by T and the wγ(t) for γ ∈ Φ. If the field in question
has more than three elements, then N = NG(T ) by [Ste68, Exercise, p.36].

W ∼= N/T is the Weyl group of G, realized as a group of isometries of E or E∗.

rγ is the reflection in E (resp. E∗) over the hyperplane orthogonal to γ (resp. γ̌). In
E, we have

rγ(x) = x− 〈x, γ〉γ (1.7)

and in E∗,
rγ(x

∗) = x∗ − 〈x∗, γ〉γ̌. (1.8)
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The group N acts on E and E∗ via the identification N/T ∼= W , with wγ(t) acting
by rγ and T acting trivially.

Hγ is the hyperplane in E∗ fixed by rγ , which is also the set of all λ ∈ E∗ such that
〈λ, γ〉 = 0, or alternatively, the hyperplane orthogonal to γ̌. Note that Hγ = H−γ .

p-adic fields. Everything we have done so far holds when k is an arbitrary field, but
after all, this thesis is about p-adic Chevalley groups, so from now on we fix the following
notation:

k is a fixed non-Archimedean local field of characteristic zero, or equivalently, k is a
finite extension of a p-adic field.5

ω : k× → Z is a nontrivial discrete valuation, such that ω(k×) = Z.

R is the ring of integers of k.

̟ is a uniformizing element.

℘ = ̟R is the prime ideal of R.

f = R/℘ is the residue field.

q = |f|.

We will encounter generalized Levi subgroups of our fixed simply-connected Chevalley
group defined over the field k and its residue field f, so we need to define one last bit of
notation. The objects associated with Chevalley groups over k will be written in the standard
italic computer modern math type as above, and objects associated with Chevalley groups
over f will be written in a Serif font. So, for instance, over k we have the groups G, T,N,
and Xα(k), and the elements xα(t), wβ(s); over f, the analogous objects will be denoted
G,T,N,Xα(f), xα(t), and wβ(s). The objects that depend only on the Chevalley data and not
the field, like g, Φ, and everything else relating to the root system (including W ) will not be
written differently when we are thinking about them in relation to the finite field or to k.

Remark 1.5. As mentioned before, everything that we will do in this paper works in
the more general context of connected reductive algebraic groups defined over non-
Archimedean local fields. It is more difficult to incorporate this added generality —
when we work with Chevalley groups, we have a canonical choice of maximal torus
(i.e., the Cartan subgroup), but in the algebraic group context, we do not necessarily
even have such a torus. For the more general treatment, see Bruhat and Tits [BT84].

2. The spherical and affine apartments

Much of the structure of a generalized Levi subgroup G of a p-adic Chevalley group can
be represented geometrically via its affine apartment, denoted A(G). This structure exists
because of the fact that our non-Archimedean local field k possesses a nontrivial discrete
valuation. Some of the structure of G, however, arises from the fact that G is a Chevalley
group, without respect to which field G is defined over; namely, we can find a Cartan
subgroup, a Borel, parabolics, etc. These subgroups are related to the spherical apartment
of the Chevalley group G, which is defined independently of the field k.

2.1. The spherical apartment

5Everything that we will do also works in the positive characteristic case, but for simplicity we assume that k is
a finite extension of a p-adic field.
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Since the affine apartment locally looks like a spherical apartment, we will need to under-
stand the latter as well as the former. Also, many of the results for the affine apartment
are completely analogous to those for the spherical apartment, so it is important to review
them. In this section, f can be replaced with any field, but we will almost always be con-
cerned with the spherical apartment of groups over the residue field. Again we emphasize
that the definition and properties of the spherical apartment are completely determined by
the Chevalley data and not the field.

Definition 2.1. The (standard) spherical apartment of G is the Euclidean space As =
As(G) = E∗; that is, As is the Euclidean space containing the (abstract) co-root system
of G

c.

This definition of As is the same for every generalized Chevalley group of Gc containing
T. In a sense, though, there is more structure to As than that of a Euclidean space; that
is, we would like to distinguish between As(G) and As(G

′) if G and G′ are two different
generalized Levi subgroups of G

c containing T.

Definition 2.2. The root system Φ gives rise to the hyperplanes Hα ⊂ As for α ∈ Φ. We
say that these hyperplanes are hyperplanes of As(G), and that the collection of such
hyperplanes is the hyperplane structure of As(G).

Therefore whereas As(G) and As(G
′) may be the same as Euclidean spaces, they will have

different hyperplane structures if G 6= G′. In other words, if α ∈ Φc \ Φ, then we do not
consider Hα to be a hyperplane of As(G). We will not define a “hyperplane structure” any
more carefully than this, as its purpose is more intuitive than mathematical.

The Weyl group W of G is usually realized as a group of isometries of the Euclidean
space E∗

Φ spanned by the co-root system Φ̌. This turns out not to be the most natural object
to use for our purposes, because the dimension of E∗

Φ may be smaller than the rank of
G. However, all of the geometric information about As, most importantly the hyperplane
structure, is carried by E∗

Φ, so we define:

Definition 2.3. The reduced apartment Ared
s (G) ⊂ As(G) of G is the vector space E∗

Φ.
Let πG : As → Ared

s be the orthogonal projection map.

Thus
As = Ared

s ⊕ (E∗
Φ)⊥.

Since α(x) = α(πG(x)) for α ∈ Φ, all hyperplanes Hα for α ∈ Φ are parallel to (E∗
Φ)⊥, in the

sense that Hα = πG(Hα) × (E∗
Φ)⊥.. Therefore the Weyl group acts trivially on (E∗

Φ)⊥ in the
above decomposition. In other words, Ared

s really does contain all of the relevant geometric
information, and the factor of (E∗

Φ)⊥ is (for the moment) completely redundant.

Remark 2.4. Proposition B.4 shows that Λ̌C spans (E∗
Φ)⊥ — that is, the decomposition

E∗ = E∗
Φ ⊕ (E∗

Φ)⊥ is carried by the co-root lattice Λ̌cR.

Definition 2.5. Since there is a linear action of W ∼= N/T on As, we have a natural action
of N on As, with wα(t) acting by rα and T acting trivially. We will denote this action by
n · x, for n ∈ N and x ∈ As.

Recall that if G has root system Φ with simple roots ∆, then the Weyl group is generated by
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the rα for α ∈ ∆, i.e., W is generated by flips over theHα for α ∈ ∆ [Car89, Prop. 2.1.8(ii)].

Definition 2.6. A Weyl chamber D ⊂ As is a connected component of As \
⋃
α∈ΦHα.

The fundamental Weyl chamber with respect to ∆ is the Weyl chamber D such that
α(x) > 0 for every x ∈ D and all simple roots α.

Following [Car89, Chapter 2], one can show that:

Proposition 2.7. (i) A Weyl chamberD uniquely determines a set of simple roots ∆ with
respect to which D is the fundamental Weyl chamber, and vice-versa. The simple
roots are the roots α such that Hα borders D and such that α(x) > 0 for x ∈ D.
Therefore W is generated by reflections over the hyperplanes bordering D.

(ii) If D,D′ ⊂ As are two Weyl chambers, then there is a unique element w of W such
that w ·D = D′.

Therefore the number of Weyl chambers is the size of the Weyl group. A system of positive
roots gives rise to a Borel subgroup B generated by T and Xα(f) for α ∈ Φ+, so Proposi-
tion 2.7 tells us that the minimal parabolic subgroups containing T correspond to Weyl
chambers D. One of the most important facts (for our purposes) about the Borel subgroups
is the following:

Theorem 2.8 ([Car89, Prop. 8.2.1]). Let S = {rα : α ∈ ∆} be the simple reflections that
generate W . The data (B,N,W, S) form a BN -pair, in the sense of [Tit62].6

A large amount of structure theory follows.

Corollary 2.9 (Spherical Bruhat decomposition; [Car89, Prop. 8.2.2]). G = BNB.

Notation 2.10. For Θ any subset of ∆, let WΘ be the subgroup of W generated by the rα
for α ∈ Θ, let NΘ be the lift in N of WΘ, and let PΘ = BNΘB.

One should compare the above definition to the (equivalent) definition of PΘ given in
Section 1.1. Note that B = P∅. The existence of a BN -pair gives:

Corollary 2.11 ([Car89, Theorem 8.3.4]). The sets PΘ are the subgroups of G containing
B. If Θ′ ⊂ ∆, then PΘ = PΘ′ if and only if Θ = Θ′, and PΘ ∩ PΘ′ = PΘ∩Θ′ .

Definition 2.12. Let x ∈ As, and let W s
x = stabW (x). One can show [Car89, §2.6] that if

D is a Weyl chamber whose closure contains x and ∆ is the set of simple roots associated
with D, then there is a subset Θ of ∆ such that W s

x is generated by the reflections rα for
α ∈ Θ. Let Px = PΘ (cf. Corollary 2.11).

Note that Px = G if and only if πG(x) = 0. The definition of Px has a more geometric
interpretation.

6Carter actually only proves this fact for the adjoint form of a Chevalley group, but the proof holds for any
Chevalley group. The theorem is true for a generalized Levi subgroup G as well because G = TG′, where G′ is a
Chevalley group.
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Proposition 2.13 ([Car89, Prop. 8.5.1]). We can write Px as

Px = 〈T, Xα(f) : α ∈ Φ, α(x) ≥ 0〉. (2.1)

A Levi subgroup Mx of Px is

Mx = 〈T, Xα(f) : α ∈ Φ, α(x) = 0〉. (2.2)

Thus the definition of Px does not depend on the choice ofD. In this way, we can associate
a parabolic subgroup to any point in As; note that every parabolic subgroup containing T

arises in this way. Note also that Px = PπG(x). One should keep in mind that the subgroup
Px really depends only on the hyperplanes containing x, and not on the specific choice of
the point x — that is, Px actually depends on the local hyperplane structure around x.

Example 2.14. The group G = SL3(f) has two simple roots α and β of the same length,
with an angle of 120◦ between them, so the same is true for the co-roots. Therefore the
spherical apartment is given in Figure 2.1. The Levi subgroup with root system {±α}
(which is isomorphic to GL2(f)) has the same apartment, but the hyperplanes Hβ and
Hα+β do not appear. Thus we see that As(GL2(f)) = As(SL2(f)) × R — note that
Ared
s (GL2(f)) is spanned by α̌.7

Assume the root spaces in SL3(f) are as follows:

Xα(f) =
[

1 f
1

1

]
Xβ(f) =

[
1

1 f
1

]
Xα+β(f) =

[
1 f

1
1

]

X−α(f) =
[

1
f 1

1

]
X−β(f) =

[
1

1
f 1

]
X−α−β(f) =

[
1

1
f 1

]
.

With our choice of simple roots, D labels the fundamental Weyl chamber in Figure 2.1,
so if z ∈ D, then Pz = P∅ is a Borel subgroup, i.e.,

Pz = P∅ =
[
∗ ∗ ∗
∗ ∗
∗

]

is the set of all upper-triangular matrices in SL3(f). Since x ∈ Hα and y ∈ Hβ , we have

Px = Pα =
[
∗ ∗ ∗
∗ ∗ ∗

∗

]
and Py = Pβ =

[
∗ ∗ ∗
∗ ∗
∗ ∗

]
.

If x′ is in the same connected component ofHα\{0} as x, then Px′ = Px. Of course, P0 =
P∆ = G (where 0 is the origin) by the spherical Bruhat decomposition (Corollary 2.9).

Example 2.15. As we know from Section 1.1, the Chevalley group Sp4 has a short root α
and a long root β at a 135◦ angle — see Figure 1.1. Therefore the spherical apartment
As(Sp4(f)) is given in Figure 2.2. If G denotes the generalized Levi subgroup of Sp4(f)
with root system {±β,±(2α+ β)} (cf. Section 1.1), then As(G) looks the same, except
missing the diagonal hyperplanes.

Assume that the root spaces are as in Section 1.1. With our choice of simple roots, D
is a fundamental Weyl chamber, so if z ∈ D, then the corresponding Borel subgroup is

Pz =

[
∗ ∗ ∗ ∗
∗ ∗ ∗
∗
∗ ∗

]
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α̌β̌

Hα+β

Hβ

D y

Hα

x

Figure 2.1: The spherical apartment of SL3(f).

α̌

β̌

Hβ

Hα H2α+β

Hα+β

D

y

x

Figure 2.2: The spherical apartment of Sp4(f).
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(i.e., all elements of Sp4(f) with nonzero entries as indicated). If x ∈ Hα and y ∈ Hβ

are as indicated, we have

Px =

[
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

]
Py =

[
∗ ∗ ∗ ∗
∗ ∗ ∗
∗

∗ ∗ ∗

]
.

One should refer back to Section 1.1, where we have already found these parabolics.

2.2. The affine apartment

The crucial structure that we will use in order to define the affine apartment is the nontrivial
discrete valuation on k. In short, the valuation allows us to define an action of N on the
apartment consisting of translations as well as reflections. Since translations are affine maps,
we need to think of the apartment differently:

Definition 2.16. The standard affine apartment, or apartment, of the group G is the
affine space under the vector space As = E∗, and is denoted A = A(G).

When we say that A is the affine space under As, we simply mean that:� A is set-theoretically the same as As.� The natural automorphisms of A are affine isometries — that is, the maps A
∼
−→ A

generated by the linear isometries and the translations.� If x, y are two points in A, then the difference x− y is a vector in As.� If x ∈ A and v ∈ As, then the sum x+ v is another point in A.

A general affine space has no origin, or distinguished point, and it is possible to treat A
in such a manner; see [BT72]. We will not take this approach: we allow the origin 0 ∈ A to
remain distinguished, so to every point p ∈ A there is naturally associated the vector p− 0.
(We will often simply write p for p − 0.) Thus, with our choice of origin, we are in fact
identifying A with the vector space As.

As in the spherical case, the hyperplane structure of A will play an important conceptual
role.

Definition 2.17. Given any α ∈ Φ and n ∈ Z, our choice of origin allows us to define an
affine functional α+ n : A → R given by

(α+ n)(x) = α(x− 0) + n.

Let Hα+n be the codimension one hyperplane killed by α + n, and let rα+n be the
reflection over Hα+n. Note that Hα+n = H−α−n. Define the hyperplane structure of
A(G) to be the set of hyperplanes Hα+n with α ∈ Φ and n ∈ Z.

Note again that A(G) = A(G′) for any two generalized Levi subgroups G,G′ of Gc, but
that the hyperplane structure of A(G) may be different from that of A(G′).

Example 2.18. We again use the example of G = SL3(k). Let the notation be as in Ex-
ample 2.14. Since γ(γ̌) = 2 for any root γ, the affine apartment of SL3 is given in
Figure 2.3.

7In general, As(G) ∼= As(Gder) × As(Z), where Gder is the derived group of G and Z is the center of G.
Note that SL2(f) is the derived group of GL2(f) and that the center of GL2(f) is isomorphic to GL1(f), whose
apartment is R.
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α̌β̌

Hβ+0

Hα+1

Hβ+1Hβ−1

Hα+0 Hα−1

Hα+β+0

Hα+β−2

Hα+β+1

Figure 2.3: The affine apartment of SL3(k).

It is useful to have an explicit formula for rα:

Definition 2.19. Any co-root α̌ ∈ Φ̌c gives rise to a translation Tα on A, given by

Tα(x) = x+ α̌.

One can check that rα+n is given by the formula

rα+n(x) = (Tα)−n ◦ rα(x− 0) = (x− 〈x, α〉α̌) − nα̌. (2.3)

It is important to note that when we think of the apartment A(G), we do not consider
the hyperplanes Hα for α ∈ Φc \ Φ, as mentioned above (so the hyperplane structure of
A(Gc) may not be the same as that of A(G)), but that we do consider translations Tα for all
α ∈ Φc. See Example 2.29.

Like the spherical apartment, the affine apartment has a natural decomposition.

Definition 2.20. Let the reduced (affine) apartment Ared = Ared(G) of G be the affine
space under Ared

s (G) = E∗
Φ, and let πG : A(G) → Ared(G) be the orthogonal projection

map.

Remark 2.21. If the Chevalley group G′ with root system Φ is also a simply-connected
Chevalley group, then the reduced apartment Ared(G) can be identified with the apart-
ment A(G′), with the same hyperplane structure.
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Note that, as before, each Hα+n for α ∈ Φ and n ∈ Z is parallel to (E∗
Φ)⊥, so all geometric

information about A is carried by Ared. Also, as in Remark 2.4, the lattice Λ̌C spans (E∗
Φ)⊥.

The action of N on the apartment A will now be given by affine transformations, as
opposed to linear transformations. This action is a bit more difficult to define. We will start
by defining the action in the case that G = Gc (so that E∗

Φc = E∗), and then proceed as in
the spherical case, first defining an affine analog W̃ c of the Weyl group with a natural action
on Ac = A(Gc), and then showing that W̃ c is a quotient of N c, thus obtaining an action of
N c on Ac.

First we define the affine version of the Weyl group. We can do this for any generalized
Levi G ⊂ Gc containing T .

Definition 2.22. The affine Weyl group W̃ is the group of affine transformations of A
generated by the reflections rα+n for α ∈ Φ and n ∈ Z.

Note that this is completely analogous to the (spherical) Weyl group W , which is gener-
ated by the reflections rα. The spherical Weyl group is also generated by the reflections over
the hyperplanes bordering a Weyl chamber; there is an analogous result for the affine Weyl
group, which we will prove in Proposition 3.32. Note also that if G′ is a generalized Levi of
G, then its affine Weyl group W̃ ′ is a subgroup of W̃ . In order to realize W̃ c as a quotient
of N c, we need to define the relevant subgroup:

Definition 2.23. Define

T (R) = 〈hα(t) : t ∈ R×, α ∈ ∆c〉 ∼= (R×)ℓ
c

.

This is the maximal compact subgroup of T .

Proposition 2.24. The group N c is the normalizer in Gc of T (R).

Proof.

If wβ(u) ∈ N c and hα(t) ∈ T (R) for α ∈ ∆c, then [Ste68, Lemma 20] gives

wβ(u)hα(t)wβ(u)
−1 = hβ(u)hrβ(α)(t)hβ(u)

−1 = hrβ(α)(t).

If rβ(α) = a1α1 + · · ·+amαm is an expression of rβ(α) as an integer linear combination
of simple roots, then

hrβ(α)(t) = hα1(t
a1) · · ·hαm

(tam) ∈ T (R).

Since the generators of N c normalize T (R), we have that T (R) is normal in N c.

In order to prove the converse, we cheat and assume that there is some t ∈ T (R)
such that the centralizer in G of t is T (this is just the statement that there is some
regular semisimple element in T (R), which is a standard fact from the theory of linear
algebraic groups). If g ∈ G is such that gtg−1 ∈ T (R), then gtg−1 ∈ T , so t ∈ g−1Tg.
Thus g−1Tg centralizes t, so g−1Tg = T , and therefore g ∈ N .

❒

We will shortly identify W̃ c with N c/T (R), thus defining the action of N c on Ac. (It is
not in general true that W̃ = N/T (R), but only that W̃ ⊂ N/T (R); more on this later.) In
the following proposition, the group Zℓ

c

is the group of translations, so this proposition is
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analogous to the fact that the group of isometries of Euclidean space is a semidirect product
of the orthogonal group and the group of translations.

Lemma 2.25. The groups W̃ c and N c/T (R) are both isomorphic to a semidirect product
of Zℓ

c

with W c. Furthermore, the map N c → W̃ c that takes wα(1) 7→ rα and hα(t) 7→

(Tα)−ω(t) induces an isomorphism of N c/T (R) with W̃ c.

Proof.

First we show that W̃ c = W c ⋉ Zℓ
c

. Let Λ ⊳ W̃ c be the subgroup of translations, and
note that W c is the subgroup of W̃ c generated by the rα+0. The intersection W c ∩ Λ

is trivial, and W̃ c = Λ ·W c by (2.3). Thus W̃ c = W c ⋉ Λ; we would like to show that
Λ ∼= Zℓ

c

. We note that for each α ∈ ∆c, we have Tα = rα−1rα ∈ Λ, so Λ contains
Λ′ = 〈Tα : α ∈ ∆c〉 ∼= Zℓ

c

. Furthermore, it is easy to see that the lattice generated
by {α̌ : α ∈ ∆c} is stabilized by W̃ c, so Λ can only take the origin to points in that
lattice; thus Λ′ = Λ. It is useful to write down the interaction between translations and
reflections:

rαTβr
−1
α (x) = x+ rα(β̌) = Trαβ(x) (2.4)

because rα(β̌) = (rαβ)∨.

Now we show that N c/T (R) = W c ⋉ Zℓ
c

. First note that T/T (R) ⊳ N c/T (R) is a
normal subgroup isomorphic to Zℓ

c

. Let

N c(R) = 〈wα(t) : t ∈ R×, α ∈ ∆c〉 ⊃ T (R).

We claim that W c ∼= N c(R)/T (R) ⊂ N c/T (R). The map n · T (R) 7→ n · T from
N c(R)/T (R) to W c = N c/T is well-defined and surjective because the wα(1) generate
the Weyl group. We would like to show that the map is injective, i.e., that T ∩N c(R) =
T (R). This is true because the subgroup of T that preserves the Chevalley lattice V ⊗
R is exactly T (R), and N c(R) preserves V ⊗ R, so T ∩ N c(R) ⊂ T (R); the other
inclusion is clear. Noting that N c(R)/T (R) ∩ T/T (R) = (N c(R) ∩ T )/T (R) = {1}
and that N c/T (R) = (T/T (R)) · (N c(R)/T (R)) because the elements wα(1) are coset
representatives of T \N c, we have W̃ c = Zℓ

c

⋉W c as well.

The action of N c(R)/T (R) on T/T (R) is given by [Ste68, Lemma 20]:

wα(1)hβ(t)wα(1)−1 = hrαβ(t)

which is compatible with the action (2.4); therefore the map that sends wα(1) 7→ rα
(both generators of W c) and hα(t) 7→ (Tα)−ω(t) (both generators of Zℓ

c

) is a well-
defined isomorphism.

❒

In other words, the valuation on k gives us a notion of the “size” of an element of T ,
which we can use to define a translation. This in turn allows us to define an action of N on
A.

Definition 2.26. Let N c act on Ac by setting n · x = w · x, where w ∈ W̃ c is the image of
n under the projection N c

։ N c/T (R) = W̃ c. Define the action of N on A to be the
action of N c restricted to N .

Corollary 2.27 (to Lemma 2.25). (i) If wα(t) = hα(t)wα(1) is a generator of N , then it
acts by (Tα)ω(t)rα = rα−ω(t).



24 THE BRUHAT-TITS BUILDING AND REPRESENTATION THEORY

(ii) If n ∈ N with n · x = x for every x ∈ A, then n ∈ T (R). That is,
⋂
x∈A stabN (x) =

T (R).

There are some important things to note about the action of N on A.� The linear part of the action of any element of N is in the Weyl group W .� If (E∗
Φ)⊥ 6= {0} then it is no longer true that N acts trivially on (E∗

Φ)⊥ (so this infor-
mation is no longer redundant) — if λ ∈ ΛC and t ∈ k×, then λ̌(t) ∈ T will act as a
translation in (E∗

Φ)⊥. (Since ΛC spans E⊥
Φ , there is always some element of T which

will act nontrivially on (E∗
Φ)⊥.)� However, it is still true that W̃ acts trivially on (E∗

Φ)⊥.� Therefore, W̃ may be a proper subgroup of N/T (R).

Example 2.28. The group G = SL2(k) has one root α, so the affine apartment of SL2 is
one-dimensional and the “hyperplanes” Hα+n are just points. See Figure 2.4. Suppose
that we choose the simple root α such that α(

[
a 0
0 a−1

]
) = a2, so α̌(t) =

[
t 0
0 t−1

]
and

Xα(k) =
[

1 k
0 1

]
. Then hα(̟n) =

[
̟n 0
0 ̟−n

]
is a translation to the right by n · α̌; that is,

hα(̟n) takes 0 to Hα−2n. We also have wα(1) =
[

0 1
−1 0

]
which is a flip over Hα+0, so

hα(̟n)wα(1) =
[

0 ̟n

−̟−n 0

]
is a flip over Hα−n. Note that the action of N stabilizes the

lattice Z · α̌ — for instance, there is no n ∈ N such that nHα+0 = Hα+1.

Hα+0 Hα−1 Hα−2Hα+1Hα+2

α̌

Figure 2.4: The affine apartment of SL2(k).

Example 2.29. Let G ⊂ SL3(k) be the Levi subgroup with root system Φ = {±α} (cf.
Example 2.18), so we have

G ∼= GL2(k) =
[
∗ ∗
∗ ∗

∗

]
⊂ SL3(k).

Here E∗
Φ is spanned by α̌; see Figure 2.5. Note the (conceptual) absence of the hyper-

planes H±β+n and H±α±β+n in the apartment of GL2(k). We have

hα(t) =
[
t
t−1

1

]
and hβ(s) =

[
1
s
s−1

]
,

so
hα(t)hβ(t)

2 =
[
t
t
t−2

]
∈ C.

This corresponds to the fact that α̌+ 2β̌ is orthogonal to Ared(GL2(k)), as in Figure 2.5.
Therefore hα(t)hβ(t)

2 acts as a translation in the (E∗
Φ)⊥ direction — note that (E∗

Φ)⊥ is
generated by α̌+ 2β̌.

In this case, W̃ is generated by the reflections over the Hα+n, which is a subgroup of
W̃ c which fixes (E∗

Φ)⊥.
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Hα+2

Hα+1

Hα+0

Hα−1

Hα−2α̌

(α̌ + 2β̌)/2

β̌

Ared(GL2(k))

Figure 2.5: The apartment of GL2(k) ⊂ SL3(k). Compare this with Figure 2.3.

Before finishing this section, we spend some time investigating the hyperplane structure
of the apartment A. The fact that A is cut out by hyperplanes makes it look like a simplicial
complex (although in general it is not one) whose structure is preserved by the action of N .
This result follows from the following lemma, whose proof follows from the facts that each
map rβ : As → As is an isometry, and that 〈β̌, α〉 ∈ Z for all roots α and β.

Lemma 2.30. Let α ∈ Φ, and let x ∈ A be any point. Then� if β ∈ Φ, then 〈x, α〉 ∈ Z if and only if 〈rβ+0x, rβα〉 ∈ Z and� if β ∈ Φc, then 〈x, α〉 ∈ Z if and only if 〈Tβx, α〉 ∈ Z.

Now we can define the “simplicial decomposition” of A and show that N preserves this
structure.

Definition 2.31. For x ∈ A, let

Φx = {α ∈ Φ : α(x) ∈ Z} (2.5)

and
Hn = {x ∈ A : |Φx| = n}.

Define a facet or n-facet to be a connected component of Hn.8 If F is such a facet,
then F = πG(F ) × (E∗

Φ)⊥ (see Figure 2.5); therefore it is much more natural to speak

8Since the dimension of a facet is not determined by the number of hyperplanes that facet is contained in, it is
inconvenient to label facets by their dimension.
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about geometric properties of πG(F ) than of F . Thus we define the dimension of a
facet F to be the dimension of πG(F ) (as a manifold). Since H0 consists of elements
that are not contained in any hyperplane and H2ℓ contains elements in the intersection
of ℓ hyperplanes, one would expect that the dimension of an 2n-facet would be ℓ − n.
We define a 0-facet to be a maximal facet and a L-facet to be a special facet (where
L = |Φ|). More generally, if πG(F ) = {v} is one point, or equivalently, F = F , then we
say that F is a minimal facet, and any point in F is a vertex; if F is a special facet, we
call the points in F special vertices (note that all special facets are minimal).

It may be helpful at this point to refer back to Example 2.29 (where all vertices are
special), and to glance at Example 2.34.

First note that A =
∐L
n=0 Hn, so the facet structure is somewhat like a simplicial decom-

position. Note also that a 2ℓ-facet can be a minimal facet without being a special facet; this
can happen because the roots that assume integer values at a point may not contain a set of
simple roots (consider the vertex v in Figure 2.6). Lemma 2.30 immediately implies that:

Corollary 2.32 (to Lemma 2.30). The action of N preserves each Hn. In particular, N
preserves the hyperplane structure of A.

In Chapter 3, we will associate a subgroup Gx of G to any point x ∈ A, in analogy to
Section 2.1. At this point, we may associate a generalized Levi subgroup M(x) of G to a
point x ∈ A, as follows.

Definition 2.33. DefineM(x) to be the generalized Levi subgroup of G containing T with
root system Φx.

Lemma 2.30 easily implies that Φx is a closed sub-root system of Φ, so the above definition
makes sense. Note that x is a special vertex of A(M(x)).

Example 2.34. Consider the group G = Sp4(k); let the notation be as in Example 2.15.
The facet structure of Sp4(k) is especially interesting because there are two types of
vertices. We have 0 ∈ H8, so 0 is special (note that there are eight roots), but the vertex
v in Figure 2.6 is only in H4 because Φv = {±β,±(2α+β)}. This corresponds to the fact
that M(v) ∼= SL2(k) × SL2(k) = Spin4(k) is a generalized Levi subgroup of Sp4(k), but
is not an actual Levi subgroup (cf. Section 1.1). All one-dimensional facets are in H2;
for instance, if x is in the facet F ′ in the figure, then Φx = {±α} and M(x) = GL2(k).
The maximal facets are the regions which look like F ; if x ∈ F , then M(x) = T .

3. Parahoric subgroups

Parahoric subgroups are the affine analogs of parabolic subgroups. They are associated
with points in the apartment (and later the building) of G, in analogy to Section 2.1. As
mentioned before, the building is constructed by gluing affine apartments together; the
parahoric subgroups are the glue. They are therefore very important to the building, so we
devote this entire chapter to them.

To give a preliminary idea of what parahoric subgroups are, let us consider the case
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β̌

α̌

(α+ β)∨

(2α+ β)∨

v

F ′

F

Figure 2.6: The affine apartment of Sp4(k), with facet structure and co-roots of positive roots.

G = SL3(k). Some standard parahoric subgroups of G are

Gx =
[
R R R
R R R
R R R

]
Gy =

[
R R R
R R R
℘ ℘ R

]
Gz =

[
R R R
℘ R R
℘ ℘ R

]

(where all sets of matrices are implicitly intersected with SL3(k)). The above matrix groups,
and parahoric subgroups in general, have the following important properties:

(i) They are compact and open with respect to the induced topology on G as a group
of p-adic matrices. This is because R and ℘ are compact and open. This property is
important to the representation theory of G; see Chapter 5.

(ii) Parahoric subgroups have a natural quotient which is isomorphic to a generalized Levi
subgroup of Gc, which is the Chevalley group defined over the residue field by the same
Chevalley data as Gc. To wit:

[
R R R
R R R
R R R

]/[
1+℘ ℘ ℘
℘ 1+℘ ℘
℘ ℘ 1+℘

]
=
[

f f f
f f f
f f f

]
∼= SL3(f)

[
R R R
R R R
℘ ℘ R

]/[
1+℘ ℘ R
℘ 1+℘ R
℘ ℘ 1+℘

]
=
[

f f
f f

f

]
∼= GL2(f)

[
R R R
℘ R R
℘ ℘ R

]/[
1+℘ R R
℘ 1+℘ R
℘ ℘ 1+℘

]
=
[

f
f

f

]
∼= GL1(f) × GL1(f) × GL1(f).

(iii) A minimal parahoric and the subgroup N form a generalized BN -pair. The BN -pair
machinery can thus be used to reveal some of the structure theory of G. For instance,
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Gz above is a minimal parahoric, and N ∩Gz = T (R), so N/(N ∩Gz) = N/T (R) ∼= W̃
(this is in general true only when G = Gc however). This is analogous to the theorem
that N/(N ∩B) = N/T ∼= W , where B is a minimal parabolic.

The sections in this chapter roughly correspond to the entries in the list above.

3.1. Definition and basic properties

Without further ado, we define the parahoric subgroups.

Definition 3.1. Let Ψ be the subset of affine functionals on A given by

Ψ = {α+ n : α ∈ Φ, n ∈ Z};

we call Ψ the set of affine roots. For ψ = α+ n ∈ Ψ, write

Xψ = Xα(℘n) = {xα(t) : t ∈ ℘n}.

For x ∈ A, define the groups

Gx = 〈T (R), Xψ : ψ ∈ Ψ, ψ(x) ≥ 0〉

G+
x = 〈T (1 + ℘), Xψ : ψ ∈ Ψ, ψ(x) > 0〉

where
T (1 + ℘) = 〈hα(t) : α ∈ ∆0, t ∈ 1 + ℘〉 ⊂ T (R)

is defined as before.9 Written more explicitly, we have

Gx = 〈T (R), Xα(℘−⌊α(x)⌋) : α ∈ Φ〉

G+
x = 〈T (1 + ℘), Xα(℘1−⌈α(x)⌉) : α ∈ Φ〉.

(3.1)

The subgroups Gx are called parahoric subgroups, and the subgroup G+
x is the pro-

unipotent radical of Gx.10 A minimal Gx (i.e., x ∈ H0) is called an Iwahori subgroup,
and if x is a vertex, then Gx is a maximal parahoric (we will see later that, in this case,
Gx really is not contained in any larger parahoric). Note that Gx and G+

x only depend
on the facet that contains x, since they change exactly when some α(x) is an integer;
therefore if F is a facet, we will often write GF and G+

F . Note that GπG(x) = Gx and
G+
πG(x) = G+

x .

We should note that the G in Gx symbolizes the group G, so that if M is another
generalized Levi subgroup, then its associated parahorics will be denoted Mx, etc.

Parahoric subgroups are the affine analogs of parabolic subgroups, and Iwahori subgroups
are the affine analogs of Borels. It will become clear later (cf. Theorem 3.34) exactly how
and why these behave like parabolics and Borels.

9The definitions of Gx and G+
x depend on the choice of Chevalley basis. One can show that a different choice of

Chevalley basis is equivalent to choosing a y ∈ As such that α(y) ∈ Z for all α ∈ Φ. With this choice of Chevalley
basis, the parahoric subgroups G′

x are given by Gx+y. This is another reason that A is naturally an affine space.
10The subgroup G+

x is the minimal normal subgroup of Gx with the property that Gx/G+
x is the group of f

points of a connected reductive group defined over f.
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Example 3.2. Consider G = SL3(k) again (see Example 2.18), and take the root spaces to
be as in Example 2.14. We will use the example of SL3(k) throughout this chapter. The
minimal parahorics in a neighborhood of 0 are given in Figure 3.1 — of course, all sets of
matrices are implicitly intersected with SL3(k) (and will always be so unless otherwise
mentioned). Note how the generating subgroups correspond roughly to matrix entries.
The only generators of a parahoric that are different for its pro-unipotent radical are the
torus and the root subgroups Xα where α(x) ∈ Z. For a minimal parahoric, there are no
roots that satisfy this property, so no off-diagonal matrix entries change: for instance, if
y is as in the figure, then the parahoric at y and its pro-unipotent radical are given by

Gy =

[
R R R
℘ R R
℘ ℘ R

]
G+
y =

[
1+℘ R R
℘ 1+℘ R
℘ ℘ 1+℘

]
.

On the other hand, 0 is a special vertex, so every matrix entry will change; the parahoric
of the point 0 and its pro-unipotent radical are therefore

G0 =
[
R R R
R R R
R R R

]
G+

0 =

[
1+℘ ℘ ℘
℘ 1+℘ ℘
℘ ℘ 1+℘

]
.

The point x in Figure 3.1 has Φx = {±β}, so its parahoric and pro-unipotent radical are

Gx =

[
R R R
℘ R R
℘ R R

]
G+
x =

[
1+℘ R R
℘ 1+℘ ℘
℘ ℘ 1+℘

]
.

We will now present the basic properties of these groups. We shall not go into the low-
level machinery used to prove these results, so we refer the reader to [BT72] for the details.
The presentation given there is very good.

Definition 3.3. We define the topology on G to be that induced by the natural topology
on the k-vector space End(V k) — in other words, the induced topology as a subset of
matrices with entries in k.

By explicitly determining the possible matrix entries for the groups Gx and G+
x , one finds

that:

Proposition 3.4. Each group Gx and G+
x is compact, open, and closed.

Using the Chevalley commutator relations, one can show that:

Proposition 3.5. Each G+
x is normal in Gx.

If n ∈ N , then it is easy to show that nXα(℘m)n−1 = Xn·α(℘m). This immediately implies
that:

Proposition 3.6. If n ∈ N , then nGxn−1 = Gn·x and nG+
x n

−1 = G+
n·x.

The following fact can easily be proved using information about the action of xα(t) and
hβ(t) on V k.
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y

x

»
R R R
℘ R R
℘ ℘ R

–

»
R ℘ ℘
R R ℘
R R R

–

»
R ℘ ℘
R R R
R ℘ R

–

»
R ℘ R
R R R
℘ ℘ R

– »
R R R
℘ R ℘
℘ R R

–

»
R R ℘
℘ R ℘
R R R

–

"
R R ℘−1

℘ R R

℘2 ℘ R

#

"
R ℘−1 R

℘2 R ℘
℘ R R

#

"
R ℘ ℘2

R R ℘

℘−1 R R

#

"
R ℘ R

R R ℘−1

℘ ℘2 R

#

"
R ℘2 ℘

℘−1 R R
R ℘ R

# "
R R ℘

℘ R ℘2

R ℘−1 R

#

Figure 3.1: Some minimal parahoric subgroups of SL3(k).

Proposition 3.7. For x ∈ A, define lattices Vx, V +
x ⊂ V k by

Vx =
⊕

µ

Vµ ⊗Z ℘
−⌊µ(x)⌋

V +
x =

⊕

µ

Vµ ⊗Z ℘
1−⌊µ(x)⌋

where these are to be interpreted as tensor products of additive abelian groups. The
groups Gx (and G+

x ) preserve Vx and V +
x . If x is a special vertex, then G+

x fixes Vx/V +
x .

It turns out that if x is a special vertex, then Gx is the largest subgroup that preserves Vx.

Proposition 3.8. We have Gx ∩ T = T (R) for any x ∈ A.

Proof.

By definition, T (R) ⊂ Gx ∩ T . Conversely, we know that Gx preserves the lattice Vx,
so since T (R) is the largest subgroup of T that has this property, we must have the
opposite inclusion. (Cf. the proofs of Lemma 2.25 and Theorem 3.17.)

❒

Proposition 3.9. The intersection
⋂
x∈AGx = T (R).

Proof.
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We will only provide a sketch, as this result should be intuitively obvious from the
definitions. It suffices to prove the result in the full Chevalley group. The strategy is to
show that P =

⋂
xGx acts diagonally on the root spaces Vµ, so that P is contained in

the centralizer in Gc of T , which is T itself (cf. Proposition B.3). Indeed, consider how
a p ∈ P acts on Vµ: p takes a generator vµ to some multiple of vµ plus a sum of other
root spaces. Moving in any direction orthogonal to µ, one finds from Proposition 3.7
that the components of p · vµ that are not in the Vµ root space must be arbitrarily small.
Therefore P acts diagonally.

❒

Parahoric subgroups have very nice (but not surprising) intersection properties and de-
compositions. We refer the reader to [IM65] for the proofs in some specific cases and to
[BT72] for proofs in much greater generality.

Proposition 3.10. (i) Let M ⊂ G be a generalized Levi subgroup, and let x ∈ A. Then
Gx ∩M ⊃Mx and G+

x ∩M = G+
x ∩Mx = M+

x .

(ii) Let P be a standard parabolic subgroup with Levi decomposition MU . Let Θ be
the root system of M , so that P is generated by T and the root subgroups Xα for
α ∈ Φ+ ∪ Θ. Then

U ∩Gx =
∏

α∈Φ+\Θ

Xα(℘−⌊α(x)⌋)

U ∩G+
x =

∏

α∈Φ+\Θ

Xα(℘1−⌈α(x)⌉)

where the product is taken in any fixed order, and the expression is unique with
respect to that order.

Remark 3.11. Recall [Ste68, Lemmas 17 and 18] that in the notation of Proposition 3.10(ii),

U =
∏

α∈Φ+\Θ

Xα (3.2)

with uniqueness of expression, where the product is taken in any fixed order.

Proposition 3.12. Let P be a standard parabolic subgroup with Levi decomposition MU
and opposite parabolic P = MU .

(i) For any x ∈ A, the product map

(u,m, u) 7→ umu : (G+
x ∩ U) × (G+

x ∩M) × (G+
x ∩ U)

∼
−→ G+

x

is a bijection. The product can be taken in any order.

(ii) Let ΦM be the root system of M . If x ∈ A with Φx ⊂ ΦM , then we have a decom-
position

Gx = (Gx ∩ U)(Gx ∩M)(Gx ∩ U).

(iii) Suppose that P is a minimal parabolic. Then

Gx = (Gx ∩N)(Gx ∩ U)(Gx ∩ U) = (Gx ∩N)(Gx ∩ U)(Gx ∩ U)

= (Gx ∩ U)(Gx ∩ U)(Gx ∩N) = (Gx ∩ U)(Gx ∩ U)(Gx ∩N).
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Proposition 3.12(i) says that each G+
x has an Iwahori decomposition with respect to any

P = MU . Proposition 3.12(iii) can be seen as a kind of Jordan decomposition: any element
of Gx can be written as nuu, where n is semisimple, u and u are unipotent, and all three
are contained in Gx.

Example 3.13. To illustrate Propositions 3.10 and 3.12, we give the example of G =
SL3(k). Let the notation be as in Example 3.2. Let M ⊂ SL3(k) be a Levi subgroup
isomorphic to GL2(k), and let P = MU be the standard parabolic subgroup containing
M ; we will take

M =
[
∗
∗ ∗
∗ ∗

]
U =

[
1 ∗ ∗

1
1

]
P =

[
∗ ∗ ∗
∗ ∗
∗ ∗

]
.

For the point x in Figure 3.1, Proposition 3.10(i) tells us that

M ∩Gx = M ∩

[
R R R
℘ R R
℘ R R

]
=
[
R
R R
R R

]
= Mx

M ∩G+
x = M ∩

[
1+℘ R R
℘ 1+℘ ℘
℘ ℘ 1+℘

]
=

[
1+℘

1+℘ ℘
℘ 1+℘

]
= M+

x .

Proposition 3.10(ii) affirms the unsurprising fact that

U ∩Gx = U ∩G+
x =

[
1 R R

1
1

]
=
[

1 R
1

1

] [
1 R

1
1

]
.

The parabolic P = MU opposite to P with respect to M , and its unipotent radical U ,
are given by

P =
[
∗
∗ ∗ ∗
∗ ∗ ∗

]
U =

[
1
∗ 1
∗ 1

]
.

The Iwahori decomposition (Proposition 3.12(i)) of G+
x with respect to P = MU is:

[
1+℘ R R
℘ 1+℘ ℘
℘ ℘ 1+℘

]
=
[ 1
℘ 1
℘ 1

] [ 1+℘
1+℘ ℘
℘ 1+℘

] [
1 R R

1
1

]

where the product can be taken in any order. In this case, the analogous decomposition
(Proposition 3.12(ii)) holds for Gx as well:

[
R R R
℘ R R
℘ R R

]
=
[ 1
℘ 1
℘ 1

] [
R
R R
R R

] [
1 R R

1
1

]
.

This last decomposition works because Φx = {±β}, which is the root system for M . It is
not true that [

R R R
℘ R R
℘ R R

]
=
[

1
1

℘ R 1

] [
R R
℘ R

R

] [
1 R

1 R
1

]
.

For any nonempty Ω ⊂ A, we can define subgroups GΩ which generalize parahoric sub-
groups.

Definition 3.14. Let Ω ⊂ A be any nonempty region. Define

GΩ = 〈T (R), Xα(℘−⌊infx∈Ω α(x)⌋) : α ∈ Φ〉.
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We will use the following facts about the groups GΩ:

Proposition 3.15. (i) GΩ =
⋂
x∈ΩGx.

(ii) Proposition 3.12(iii) holds for any GΩ.

3.2. Passage to the residue field

The goal of this section is to demonstrate that for any x in the apartment, Gx/G+
x is a

generalized Levi of a Chevalley group over the residue field f, and that the hyperplane
structure of the spherical apartment of Gx/G+

x is the same as the local hyperplane structure
of A at x. This allows us to use the theory of Chevalley groups over a finite field to analyze
G. With this in mind, we put:

Notation 3.16.

Gx = Gx/G
+
x .

Again, the G in Gx is associated with the symbol G, so if M is another generalized Levi
subgroup of Gc, then we put Mx = Mx/M

+
x .

Theorem 3.17. Suppose that x ∈ A. Then Gx is isomorphic to the generalized Levi of G

with root system Φx — in particular, if x is a special vertex of A(G), then Gx = G. The
generators xα(t), hβ(s) ∈ Gx (α ∈ Φx, β ∈ ∆, t ∈ ℘−α(x), s ∈ R×) correspond to the
generators xα(t), hβ(s) ∈ G (t ∈ f = ℘−α(x)/℘1−α(x), s ∈ f× = R×/(1 + ℘)) under this
isomorphism.

Proof.

Suppose first that x is a special vertex. By Proposition 3.7, there is a natural homo-
morphism π : Gx/G

+
x → GL(Vx/V

+
x ) = GL(V f). Writing out the definitions, we find

that image of this homomorphism is generated by π(xα(t)) = xα(t) for α ∈ Φ and
π(hβ(s)) = hβ(s) for β ∈ ∆c, where t is the image of t in the residue field f, which is
identified with ℘−α(x)/℘1−α(x) via our uniformizer ̟, and and s is the image of s in
R×/(1 + ℘) = f×. Therefore imπ = G. It remains to show that π is injective, so that
Gx/G

+
x = Gx is G.

Define a map i : G → Gx by i(xα(t)) = xα(t) and i(hα(s)) = hα(s), where t ∈
℘−α(x) (resp. s ∈ R×) is any lift of t (resp. s), as before. Note that this map is
well-defined on the generators because if t ∈ ℘1−α(x), then xα(t) ∈ G+

x , so xα(t+ u) =
xα(t)xα(u) = xα(u) in Gx; similarly for hα(s). In order to show that i indeed extends to
a homomorphism, we must show that all relations in G are satisfied in Gx as well. This
is not so hard in our case — we have a list of relations in [Ste68, Corollary 3]. These
are a defining set of relations for G as well as G, so they must hold in both groups, at
least formally; for instance,

i(xα(t + u)) = xα(t+ u) = xα(t)xα(u) = i(xα(t)xα(u)).

The other relations are satisfied similarly. Therefore i extends to a homomorphism,
which must be surjective; thus we have a two-sided inverse of π, so π is an isomorphism.

Now suppose that x ∈ A is any point, and let M = M(x) as in Definition 2.33, so
x projects onto a special vertex of M . We therefore want to show that Gx

∼= Mx/M
+
x .
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By checking generators, we find Mx ⊂ Gx; inclusion composed with projection gives a
map Mx → Gx/G

+
x whose kernel is

Mx ∩G
+
x = (M ∩Gx) ∩G

+
x = M ∩G+

x = M+
x

by Proposition 3.10. The generators for Gx have lifts in Mx, so this homomorphism is
surjective; therefore we have Mx/M

+
x

∼= Gx/G
+
x as required.

❒

Corollary 3.18. If x ∈ A and M = M(x), then inclusion Mx = M ∩ Gx →֒ Gx gives a
natural isomorphism Gx = Mx.

Now we can begin to see how As(Gy) looks like a neighborhood of y in A:

Remark 3.19. For y ∈ A, the hyperplanes containing y are exactly the hyperplanes in the
spherical apartment of Gy, so that, locally, the hyperplane structure of A at y is the same
as that of As(Gy), if we think of y as the origin. In other words, we have an identification
of As(Gy) with A such that for any x ∈ A, if α(x) = α(y) ∈ Z (i.e., x and y are both
contained in Hα−α(y)), then x is identified with a point in Hα ⊂ As(Gy). We will often
be sloppy and think of any x ∈ A as an element of As(Gy); this is acceptable because
identifying x ∈ A with x0 ∈ As(Gy), we have Φx = {α ∈ Φ : α(x0) = 0} when x is in a
small enough neighborhood of y.

Example 3.20. Let the notation be as in Example 3.2. Theorem 3.17 tells us that

G0/G
+
0 =

[
f f f
f f f
f f f

]
Gx/G

+
x =

[
f

f f
f f

]
Gy/G

+
y =

[
f

f
f

]

as one would expect. The local hyperplane structure of A at the point x in Figure 3.1
consists only of the hyperplane Hβ+0 in a two-dimensional space; compare this with
the hyperplane structure of As(Gx), which is a two-dimensional vector space with one
hyperplane Hβ . See Figure 3.2.

The identification above will be made much stronger in Theorem 3.28. Before proceeding
along that line, we first prove a proposition relating parabolics over f with parahorics.

Remark 3.21. If x is in some facet F ⊂ A and y is in the closure of F , then we can see
from (3.1) that Gx ⊂ Gy and G+

x ⊃ G+
y because Φx ⊂ Φy. In fact, one can show the

converse, i.e., that Gx ⊂ Gy implies that y is in the closure of the facet containing x,
which justifies calling the parahorics corresponding to vertices maximal. (Cf. the proof
of Proposition 4.22(iii).)

The above remarks motivate the following result:

Proposition 3.22. Let x be in some facet F ⊂ A and y in the closure F ; suppose that
x is identified with x0 ∈ As(Gy) as in Remark 3.19. Then Gx/G

+
y is isomorphic to the

parabolic subgroup Px0 of Gy defined in Proposition 2.13. Furthermore, the image of G+
x

under this isomorphism is the unipotent radical of Px0 , so Gx is isomorphic to a standard
Levi of Gy .

Remark 3.23. It is not true that Gx can always be naturally identified with a standard
Levi subgroup of G — this is only the case when the closure of the facet containing x
contains a special vertex. Consider the vertex v in Example 2.34, Figure 2.6.
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0x

Hβ

∼=

A(G) As(Gx)

Hβ+0

Figure 3.2: The affine apartment of SL3(k), as compared to the spherical apartment of Gx, which is isomorphic to
GL2(f).

Proof of Proposition 3.22.

Inclusion of Gx into Gy composed with projection onto Gy/G+
y gives a map i : Gx →

Gy/G
+
y whose kernel is Gx ∩ G+

y = G+
y . We would like to show that Px :=Gx/G

+
y ⊂

Gy/G
+
y = Gy is a parabolic subgroup. We lose nothing by assuming that y is a special

vertex because we can replace G with M(y).

Let

Θ = {α ∈ Φy : α(y) ≤ α(x)}.

The group Gx/G+
y is generated by the root spaces of roots α such that ⌊α(x)⌋ = ⌈α(y)⌉,

i.e., Gx/G+
y is generated by the root spaces Θ. Comparing this with (2.1) and thinking

of y as the origin, we see that Px is the parabolic subgroup of Gy corresponding to x,
as claimed.

By definition, the group G+
x /G

+
y will be generated by all roots α with α(y) < α(x),

which are exactly the roots α in Θ such that −α /∈ Θ. ThereforeG+
x /G

+
y is the unipotent

radical of Px. By the third isomorphism theorem, then, Gx = (Gx/G
+
y )/(G+

x /G
+
y ) is

isomorphic to a standard Levi of Gy.
❒

Corollary 3.24. If x, y ∈ A are any points, then Gx ∩Gy projects onto a parabolic in both
Gx and Gy. The unipotent radicals are the images of Gx ∩G+

y and G+
x ∩Gy , respectively.

Proof.

If we move along the line in A from x to y and apply Proposition 3.22 every time we
enter a new facet, the result follows.

❒

Example 3.25. Let the notation be as in Example 3.2. By Proposition 3.22, Gy and G+
y
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project onto G0 and Gx as follows:

Gy/G
+
0 =

[
f f f

f f
f

]
G+
y /G

+
0 =

[
1 f f

1 f
1

]

Gy/G
+
x =

[
f

f f
f

]
G+
y /G

+
x =

[
1

1 f
1

]

so Gy projects onto the standard Borel and G+
y projects onto its unipotent radical. We

also have
Gx/G

+
0 =

[
f f f

f f
f f

]
G+
x /G

+
0 =

[
1 f f

1
1

]
.

Identifying a neighborhood of 0 in A with the spherical apartment of SL3(f), the point x
in our example can be identified with the point y in Example 2.14, which explains why
Gx/G

+
0 here is the same as Py there.

In the rest of this section, we will show that not only does As(Gx) have the same hyper-
plane structure as A does in a neighborhood of x, but that the actions of N and N ⊂ G

correspond.

Notation 3.26. Define Nx ⊂ Gx to be the subgroup generated by T and the wα(t) for
α ∈ Φx (so Nx = NGx

(T) if |f| > 3). Put Wx = Nx/T, the Weyl group of Gx, realized as
a group of isometries of As(Gx). Let Nx be the group N ∩Gx.

Lemma 3.27. The image of Nx in Gx is Nx ⊂ Gx.

Proof.

We will assume that |f| > 3; we cheat and refer to standard facts from the theory of
linear algebraic groups for the other two cases. By [Ste68, Exercise, p.36] we know
that NGx

(T) = Nx. If n ∈ Nx, then n normalizes T (R), so the image of n in Gx certainly
normalizes T; therefore the image of Nx is contained in Nx. Conversely, if wα(t) ∈ Nx,
then if t ∈ ℘−α(x) is any lift of t ∈ f, then wα(t) ∈ Nx is a lift of wα(t), so the image of
Nx is all of Nx.

❒

Recall from Remark 3.19 the identification of A in a neighborhood of y with As(Gy).

Theorem 3.28. For any x ∈ A, the group Nx fixes x, and the action of Nx on A is gen-
erated by reflections over the hyperplanes containing x. Identifying A with As(Gx), the
action of n ∈ Nx on A is the same as the action of its image n ∈ Nx on As(Gx).

Proof.

Let n ∈ Nx. First we show that any two lifts of n in Nx act on A in the same way,
i.e., that N ∩ G+

x acts trivially on A. Indeed, let n ∈ N ∩ G+
x . Since G+

x has an
Iwahori decomposition (Proposition 3.12(i)) with respect to a Borel subgroup B with
Levi decomposition TU , we can write n = tuu with t ∈ T, u ∈ U , and u ∈ U . By
Corollary B.2, nt−1 ∈ N ∩ (UU) = {1} so n = t ∈ T ∩ G+

x . Thinking of T as a
generalized Levi subgroup of G, we have T (1 + ℘) = T+

x = T ∩ G+
x , so n ∈ T (R) acts

trivially on A.

Let n = wα(t) ∈ Nx be a generator. If t is a lift of t ∈ f ∼= ℘−α(x)/℘1−α(x) in ℘−α(x)

(cf. the proof of Theorem 3.17), then n = wα(t) is a lift of n. Since the valuation
ω(t) = −α(x), Corollary 2.27(i) tells us that wα(t) acts as rα−α(x). Therefore any lift of
a generator of Nx fixes x, so Nx fixes x as well. This also proves the last claim.

❒
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The above theorem tells us that there is a natural surjective homomorphism of Nx into
Wx given by the action of Nx on As(Gx), and that this is compatible with the projection of
Nx onto Nx:

Corollary 3.29. The group Nx/T (R) is isomorphic to Wx. This isomorphism can be ob-
tained either by projection of Nx onto Nx, or by the action of Nx on As(Gx).

In a sense, then, we have an “Nx-isomorphism” of the spherical apartment of Gx with a
neighborhood of x in A for any x ∈ A, which preserves hyperplane structure.

Corollary 3.30. For any x ∈ A, we have stabN (x) = Nx.

Proof.

We have N = NG(T ) = G ∩ NGc(T ) = G ∩ N c and stabN (x) = G ∩ stabNc(x), so it
suffices to prove the claim when G = Gc. Theorem 3.28 gives N c

x ⊂ stabNc(x).

Let F ⊂ Ac be a maximal facet such that x ∈ F , and let n ∈ stabN (x), so F ′ :=n · F
is also a maximal facet containing x in its closure. Since Wx acts transitively on the
Weyl chambers in As(Gx), which correspond to the maximal facets in A containing x
in their closure, we can find an n′ ∈ N c

x such that n′ ·F = n ·F , i.e., n−1n′ ·F = F . We
will show in Proposition 3.32(ii) that if w ∈ W̃ c and w · F = F , then w = 1, so since
N c/T (R) = W̃ c, we must have n−1n′ ∈ T (R), so n ∈ T (R) ·Nx = Nx.

❒

Example 3.31. Let us continue with the example of G = SL3(k) (see Examples 3.2 and
3.25). Since G0 = SL3(R), we can see immediately that we can find representatives
for the determinant-one permutation matrices in G0, so N0 really does project onto
N0. A neighborhood of the origin in the spherical apartment of SL3(f) looks like a
neighborhood of 0 in A (cf. Example 2.14). By Corollary 2.27(i), the element wα(1) ∈
G0, for instance, acts as a reflection over Hα+0 = Hα, as expected.

At the point x, we have Gx = GL2(f) ⊂ SL3(f) (cf. Example 2.29). The element
wβ(1) ∈ Gx acts as a reflection over Hβ+0 = Hβ , which is the only nontrivial reflection
in As(Gx).

Lastly, at the point y we have Gy = T, which has trivial Weyl group; this corresponds
to the fact that there are no hyperplanes intersecting y.

3.3. Structure theory

The first goal of this section is to find an affine BN -pair contained in G, where “B” is a
minimal parahoric (instead of parabolic) subgroup. In order to do so, we first need to know
what the “simple” reflections are that generate the affine Weyl group. Proposition 3.32(iii)
(resp. 3.32(i,ii)) is the analog of Proposition 2.7(i) (resp. 2.7(ii)).

Let F be any maximal facet in A.

Proposition 3.32. (i) All maximal facets are conjugate to F under W̃ .

(ii) If w(F ) = F , then w = 1 in W̃ .

(iii) The affine Weyl group W̃ of G is generated by the reflections over the hyperplanes
bordering F .
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Proof.

We will assume for convenience that 0 ∈ F , and that Φ spans E∗, so that vertices really
are points — we can do this because W̃ fixes (E∗

Φ)⊥. Throughout this proof, one should
refer to Figure 3.3.

FF ′

Figure 3.3: An illustration of Proposition 3.32 via the example of Sp4(k). The dark triangle is our chosen maximal
facet F , and the shaded region is the neighborhood N(0) of 0. The dots indicate the special vertices at which all
roots take integer values; this lattice is invariant under fW . The arrows indicate the reflections which generate fW .

(i) Suppose that there were some facet F ′ not conjugate to F under W̃ . We may
assume that F ′ shares a hyperplane with a facet F ′′ which is conjugate to F under
W̃ — see Figure 3.3. The reflection over that hyperplane takes F ′′ to F ′, so F ′

cannot exist.

(ii) Let O be the orbit of the origin under W̃ . It is easy to see that α(x) is even for
every root α and every x ∈ O — in other words, the lattice of points x such that
α(x) is even for every α is invariant under W̃ . Every special vertex other than 0
contained in F has α(x) odd for some α, so if w(F ) = F , we must have w(0) = 0.
Therefore w can be thought of as an element of the spherical Weyl group of G, so
using Proposition 2.7(ii), we can conclude that w = 1.

(iii) Let W̃ ′ be the subgroup of W̃ generated by the reflections over the hyperplanes
bordering F . It suffices to show that the orbit C of F under W̃ ′ contains all maximal
facets. Reflections over the hyperplanes bordering a Weyl chamber D generate
the Weyl group, and by Proposition 2.7(ii), the action of the Weyl group on such
chambers is transitive, so C contains all maximal facets whose closure contains 0.
Call this set the neighborhood N(0) of the special vertex 0, and define N(x) for
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any x ∈ A in the same way. Since we can reflect over all hyperplanes bordering F ,
C must contain all neighborhoods borderingN(0) (i.e., all neighborhoods sharing a
hyperplane with N(0)). Given any neighborhood N(x) of a special vertex x, there
is a sequence of neighborhoods N0, N1, . . . , Nn, each bordering the next, such that
N0 = N(x) and Nn = N(0) (consider the line from x to 0 in A). Since all maximal
facets contain a special vertex in their closure, C contains all maximal facets.

❒

Remark 3.33. It is not hard to show (cf. [IM65, Prop. 1.2]) that there is a maximal facet
F in Ac such that the hyperplanes bordering F are

{Hα+0, H1−γ : α ∈ ∆, γ is the highest root of a simple component of g}.

In particular, if Gc comes from a simple Lie algebra, then there is only one other hyper-
plane bordering F .

The proof of this next theorem, which states that Gc has an affine BN -pair, is quite long
and is very similar in spirit to the proof that all Chevalley groups contain a (spherical) BN -
pair — that is, it is mostly Coxeter group theory and root space decompositions. A proof
can be found in [IM65]. It is true that any generalized Levi of Gc has a generalized BN -pair
(see [Iwa66]), but we will not state that version of the theorem. Recall (Definition 3.1) that
an Iwahori subgroup is a minimal parahoric subgroup, that is, a parahoric subgroup GF
corresponding to a maximal facet F .

Theorem 3.34. Let F ⊂ A be a maximal facet, let I be the Iwahori subgroup GcF , and let
S be the set of generators given in Proposition 3.32(iii). Then the data (I, N c, W̃ c, S)
form a BN -pair, or Tits system, in the sense of [Tit62].

Note that this theorem justifies calling the subgroups Gx parahoric subgroups, and ex-
plains in what sense parahoric (resp. Iwahori) subgroups correspond to parabolic (resp.
Borel) subgroups. The existence of a BN -pair implies several corollaries, all of which are
completely analogous to the spherical case and can be found in [Car89]. The following is
the analog of Corollary 2.11:

Corollary 3.35. Let F be a maximal facet and let x ∈ F . Then Gcx = GcFN
c
xG

c
F .

Also, for any generalized Levi subgroup G, we have:

Theorem 3.36 (Affine Bruhat Decomposition). If Gx andGy are any two parahoric sub-
groups, then G = GxNGy.

Proof.

Theorem 3.34 tells us that G = GFNGF when F is any maximal facet and G = Gc;
the same is also true when G has a generalized BN -pair, so we can drop the latter
condition (cf. [Iwa66]). Let F (resp. F ′) be a maximal facet such that x ∈ F (resp.
y ∈ F

′
), and let w ∈ W̃ be the element that takes F to F ′. Let n ∈ N be a lift of w, so

that nGFn−1 = GF ′ . Since GF ⊂ Gx and GF ′ ⊂ Gy, we have

G = GFNGF · n−1 = GFN(nGFn
−1) = GFNGF ′ ⊂ GxNGy.

❒
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Example 3.37. We return to our example of G = SL3(k); see Examples 3.2, 3.25, and
3.31. Consider the point x in Figure 3.1. The group Nx is

([
1

1
1

]
· T (R)

)
∪
([

1
1

−1

]
· T (R)

)

so it is not surprising that

Gx =

[
R R R
℘ R R
℘ R R

]
=

[
R R R
℘ R R
℘ ℘ R

]
·Nx ·

[
R R R
℘ R R
℘ ℘ R

]
.

This is completely analogous to the fact that

Gx/G
+
x =

[
f f f

f f
f f

]
=
[

f f f
f f

f

]
· Nx ·

[
f f f

f f
f

]
.

All of this is due to the fact that x lies on Hα+0 (resp. Hα), which borders a maximal
facet (resp. Weyl chamber).

We will use the rest of this section to establish an important technical result used in the
building, as well as present some very clever reasoning about structure theory. First we need
some new notation.

Notation 3.38. The following notation will be used for the rest of this section.

Let Ω ⊂ A be a nonempty set, and set NΩ = N ∩ GΩ. If D ⊂ As is a Weyl chamber,
we write the corresponding Borel subgroup BD and unipotent radical UD. If −D is the
opposite Weyl chamber, then the Borel subgroup B−D is opposite to BD (with respect to
T ). Set UΩ±D = U±D ∩GΩ, or in the case that Ω = {x}, write Ux±D = U{x}±D.

Lemma 3.39 ([BT72]). For any x ∈ A we have N ∩ (GΩ ·Gx) = NΩ ·Nx.

Proof.

We may assume that x /∈ Ω (otherwiseGΩ ⊂ Gx andNΩ ⊂ Nx; cf. Proposition 3.15(i)).
Fix y ∈ Ω, and find a Weyl chamber D such that x is in y +D. By Proposition 3.12(iii),
we have UΩ+D ⊂ Uy+D ⊂ Ux+D; note that Ux−D, UΩ−D ⊂ U−

D and Ux+D ⊂ U+
D .

Proposition 3.15(ii) therefore gives

GΩ ·Gx = NΩUΩ−DUΩ+DUx+DUx−DNx

= NΩUΩ−DUx+DUx−DNx

= NΩUΩ−DUx−DUx+DNx

⊂ NΩU
−
DU

+
DNx.

If n ∈ N∩(GΩ ·Gx), the above decomposition tells us that there are nΩ ∈ NΩ, u± ∈ U±
D ,

and nx ∈ Nx such that n = nΩu−u+nx. By Corollary B.2, this is true if and only if
n−1

Ω nn−1
x = u−u+ = 1, because the left-hand side is in N and the right-hand side is in

U−
DU

+
D . Therefore n = nΩnx ∈ NΩ ·Nx, as required.

❒

The following result will imply a fundamental property of the building (Proposition 4.10).
The beautiful proof is due to Bruhat and Tits.

Theorem 3.40 ([BT72, Prop. 7.4.8]).
⋂
x∈Ω(Gx ·N) = GΩ ·N and

⋂
x∈Ω(N ·Gx) = N ·GΩ.
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Proof.

The second statement follows from the first by taking inverses. First we will inductively
prove the theorem for all finite subsets Ω of A. The case Ω = {y} is trivial. Suppose
that Ω = Ω0 ∪ {y} where the theorem is true for the finite subset Ω0 ⊂ A. Let

g ∈ (Gy ·N) ∩
⋂

x∈Ω0

(Gx ·N) = (Gy ·N) ∩ (GΩ0 ·N)

so there exist n0, ny ∈ N such that gn0 ∈ GΩ0 and gny ∈ Gy. Therefore n−1
0 ny ∈

N ∩ (GΩ0Gy), so by Corollary 3.39, there exist n′
0 ∈ NΩ0 and n′

y ∈ Ny such that
n−1

0 ny = n′
0(n

′
y)

−1, i.e., n0n
′
0 = nyn

′
y. Let n be this common value, so we have gn =

gn0n
′
0 ∈ GΩ0 ·NΩ0 = GΩ0 , and similarly, gn ∈ Gy. Therefore g ∈ (GΩ0∩Gy)·N = GΩ·N ,

so by induction, the theorem is true for all finite Ω.

Now we move on to the general case. Since A contains countably many facets, we
may assume that Ω = {x0, x1, . . .} is countable. Set Ωk = {x0, x1, . . . , xk}, so by the
above, the theorem is true for each Ωk. Therefore if g ∈ (

⋂
x∈ΩGx ·N), we can find an

nm ∈ N for each m such that gnm ∈ GΩm
⊂ Gx0 , i.e., each n−1

m n0 ∈ N ∩ Gx0 = Nx0 .
By Proposition 3.8, the natural homomorphism Nx0/T (R) →֒ N/T = W is injective, so
the group Nx0/T (R) is finite. Therefore there must be an infinite set {m0,m1,m2, . . .}
for which there exist ti ∈ T (R) with ti = (n−1

m0
n0)(n

−1
mi
n0)

−1 = n−1
m0
nmi

. Therefore
gnm0 = (gnmi

)t−1
i ∈ GΩmi

· T (R) = GΩmi
, i.e.,

g ∈

(
∞⋂

i=0

GΩmi

)
·N = GΩ ·N

because
⋃∞
i=0 Ωmi

= Ω.
❒

4. The Bruhat-Tits building

The weakness of the theory of the affine apartment and its parahoric subgroups is that it is
tied to the choice of the torus T . We would like to understand the representation theory of G
by induction from compact open subgroups, and we want to determine these subgroups up

to conjugacy. From our perspective, then, the building is a way to view the affine structure
of G without being restricted to using only one torus.

Remark 4.1. We are only concerned with the Bruhat-Tits building, which represents the
affine structure of G; however, one can analogously define a spherical building of G
which parameterizes much of the spherical structure of G, up to conjugacy. Indeed,
for any point x in the affine building, the spherical building of Gx is isomorphic to a
neighborhood of x in the affine building, in the same sense as in Section 3.2.

4.1. Definition and basic properties

We are now in a position to define the full building and prove some of its basic properties.
We give the full example of SL2(k) in Section 4.2. Almost all of this material is based on
[BT72] and [BT84].
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Definition 4.2. Put the following equivalence relation on G × A: (g, x) ∼ (h, y) if there
exists an n ∈ N such that nx = y and g−1hn ∈ Gx. Define the Bruhat-Tits building of G
to be B = B(G) = G ×A / ∼, and write [g, x] for the equivalence class of (g, x). Define
an action of G on B by g · [h, x] = [gh, x].

The relation nGxn−1 = Gn·x for n ∈ N implies that ∼ is indeed an equivalence relation,
and it is immediate that the action is well-defined. Perhaps the most basic fact about the
building is that the apartment remains intact. This fact is an immediate consequence of
Theorem 3.28:

Proposition 4.3. The map x 7→ [g, x] from A → B is an injection for any g ∈ G.

In this section we will implicitly identify A with its image 1×A ⊂ B. Note that the action
of N on the building is compatible with its action on the apartment, i.e., if n ∈ N , then
n[1, x] = [1, nx]. Note also that since [g, x] = g[1, x], the orbit of the apartment A under G
is all of B(G).

Notation 4.4. In this section, letters like x, y, . . . will denote both elements of A(G) and
elements of B(G); we will always specify which. Note that if x ∈ A and g ∈ G, then
g · x = [g, x] which is not necessarily in A.

Our next task is to define Gx for any x ∈ B(G). In order to do this, we first need two
lemmas.

Lemma 4.5. For x ∈ A, we have Gx = stabG(x).

Proof.

It is immediate from the definitions that Gx fixes x. If g[1, x] = [g, x] = [1, x], then, by
definition, there is some n ∈ N such that nx = x and g−1n ∈ Gx, so g ∈ stabN (x) ·Gx,
which is Nx ·Gx = Gx by Corollary 3.30.

❒

Lemma 4.6. If g ∈ G, x ∈ A, and gx ∈ A, then gGxg−1 = Ggx.

Proof.

By definition, we have an n ∈ N such that nx = gx, i.e., n−1gx = x, so by Lemma 4.5,
n−1g ∈ Gx, so (n−1g)Gx(n

−1g)−1 = Gx, i.e.,

gGxg
−1 = nGxn

−1 = Gnx = Ggx.

❒

Now we can define Gx for any x ∈ B(G).

Definition 4.7. If g ∈ G and x ∈ A, then we define Gg·x := gGxg
−1 and G+

g·x := gG+
x g

−1.

The above two lemmas imply that if x ∈ A and gx = hx, then Ggx = Ghx, and if gx ∈ A,
then the above definition of Ggx agrees with the one given previously. Note also that we
have defined Gy for any y ∈ B(G).

Remark 4.8. Note that Lemma 4.5 holds true for any x ∈ B(G). Also, any x ∈ B(G)
is conjugate to a y ∈ A, so that Gx/G+

x
∼= Gy/G

+
y = Gy; in particular, Theorem 3.17,
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Proposition 3.22, and Corollary 3.24 hold, in a sense. However, all of these isomorphisms
are dependent on the element g such that gx = y; in other words, the isomorphism
Gx/G

+
x
∼= Gy is only defined up to an inner (by Lemma 4.5) automorphism.

From the definitions it is easy to see that:

Lemma 4.9. The element [g, x] ∈ A if and only if g ∈ N ·Gx.

The following proposition is an important sanity check. It says that G acts on A by affine
isometries, when this makes sense.

Proposition 4.10. For all g ∈ G, there is an n ∈ N such that gx = nx for all x ∈ A∩g−1A.

Proof.

Set Ω = A ∩ g−1A. By Lemma 4.9, we have g−1 ∈
⋂
x∈Ω(Gx · N), which is GΩ · N

by Theorem 3.40. Thus there is an n ∈ N such that g−1n ∈ Gx for every x ∈ Ω. By
definition, then, gx = nx for every x ∈ Ω.

❒

Corollary 4.11. If gA ⊂ A or gA ⊃ A, then gA = A.

The above corollary allows us to define arbitrary apartments. Recall [Hum75, §21.3, Cor. A]
that all maximal tori are conjugate in G.

Definition 4.12. If gT = gTg−1 ⊂ G is any maximal torus then, we define the apartment

A(gT ) = A(G, gT ) associated with gT to be g · A.

Since any apartment is conjugate to the standard apartment A, then, we may treat any
apartment as the standard apartment. In order to make sense of the above definition, we
need a proposition.

Proposition 4.13. We have g · A = h · A if and only if gT = hT . Equivalently, stabG(A) =
N .

Proof.

We will prove the second (equivalent) statement. As remarked before, N ⊂ stabG(A),
so we need only show that if gA = A, then g ∈ N = NG(T (R)). By Proposition 4.10,
there exists an n ∈ N such that gx = nx for every x ∈ A. Therefore gn−1 fixes A, so by
Lemma 4.5, gn−1 normalizes every Gx. Therefore gn−1 normalizes

⋂
x∈AGx = T (R),

so gn−1 ∈ N and g ∈ N .
❒

Thus we have more or less defined the apartment of gT to be the standard apartment of
gGg−1, and defined the parahorics corresponding to the apartment g ·A to be the conjugates
of the standard parahorics Gx (x ∈ A) under g. The building has allowed us to do this in
such a way that it does matter which element g we choose to obtain gT . One can define
the apartment and associated parahorics for an arbitrary torus without the building, but it
is difficult to do so in a consistent manner.

Note that if [g, x] ∈ B is any point, then [g, x] ∈ g · A = A(gT ), so the union of all
apartments is the whole building — in other words, the building is many apartments glued



44 THE BRUHAT-TITS BUILDING AND REPRESENTATION THEORY

together. In fact, a stronger result is true:

Corollary 4.14 (to Bruhat Decomposition). For any two elements of B(G), there is an
apartment A′ containing both of them.

Proof.

Suppose that x′ = [g, x] and y′ = [h, y] are any two elements of B. By Bruhat Decompo-
sition (Theorem 3.36), we know that g−1h = pxnpy for px ∈ Gx, py ∈ Gy , and n ∈ N .
Set a = gpx, so g−1a = px ∈ Gx and h−1an = h−1gpxn = py ∈ Gy. Thus a−1g ∈ N ·Gx
and a−1h ∈ N ·Gy , so by Lemma 4.9, a−1x′, a−1y′ ∈ A so x′, y′ ∈ a · A.

❒

Corollary 4.14 allows us to make the following important observation:

Proposition 4.15. If M ⊂ G is a generalized Levi subgroup, then B(M) ⊂ B(G) canoni-
cally.

Proof.

We know that the standard apartments A(M) and A(G) agree, which gives an inclusion
i : M ×A(M) →֒ G×A(G).11 We must show that this inclusion is compatible with the
equivalence relations, i.e., if g, h ∈ M and x, y ∈ A, then (g, x) ∼M (h, y) in M if and
only if (g, x) ∼G (h, y) in G. If (g, x) ∼M (h, y), then there is an n ∈ NM (T ) ⊂ NG(T )
such that nx = y and g−1hn ∈Mx ⊂ Gx; thus (g, x) ∼G (h, y). Therefore i descends to
a well-defined map i : B(M) → B(G). We claim that i is injective.

Let x, y ∈ B(M) be arbitrary, and suppose that i(x) = i(y). By Corollary 4.14, we can
choose an apartment A′ ⊂ B(M) containing x and y. Proposition 4.3 tells us that i|A′

is an injection, so we have x = y, as required.
❒

Having defined arbitrary apartments, we would also like to define arbitrary facets:

Definition 4.16. A subset F ⊂ B(G) is a facet if F = g · F ′ where F ′ ⊂ A is a facet and
g ∈ G.

By Proposition 4.10, the facets contained in A are the same facets we defined before. It
follows immediately from Proposition 3.32(i) that:

Proposition 4.17. The action of G on the set of maximal facets in B(G) is transitive.

We will also make use of the following fact:

Proposition 4.18. If x ∈ B(G) is arbitrary, then there are only finitely many facets F ⊂
B(G) such that x ∈ F . In other words, B(G) is locally finite.

Proof.

By Proposition 4.15, we may assume that G = Gc. Let F(x) be the set of facets whose
closure contains x. If y is a vertex contained in the closure of the facet containing x,
then F(y) ⊃ F(x), so it suffices to prove the proposition for vertices. Assume without
loss of generality that x is a vertex in the standard apartment A, and let F ∈ F(x).
By definition, there is some facet F ′ ⊂ A and some g ∈ G such that gF ′ = F . By
Proposition 4.10, we can find an n ∈ N such that nF ′ ∈ F(x), so as in the proof of

11Technically, this inclusion is non-canonical, but its image is canonical.
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Proposition 3.32(ii), we may assume that g fixes x, i.e., g ∈ Gx. Therefore the orbit
of F in F(x) corresponds to the quotient space Gx/ stabG(F ), so it suffices to prove
that the latter is finite, because F(x) ∩ A is finite. But stabG(F ) = GF ⊂ Gx, which
is the inverse image in Gx of a parabolic subgroup PF of Gx, so Gx/GF = Gx/PF ,
which is finite. In other words, the facets conjugate to F in F(x) are in one-to-one
correspondence with the parabolic subgroups conjugate to PF in Gx.

❒

The building comes equipped with a natural metric. In order to define this metric, we
need a lemma:

Lemma 4.19. Let x, y ∈ B(G), and let A1 be an apartment containing x and y. Any
apartment A2 containing x and y also contains the line segment xy ⊂ A1, and the
length of this line in A1 (that is, the norm of the vector x− y) is the same as that in A2.

Proof.

Assume without loss of generality that A1 = A is the standard apartment, and that
A2 = g · A for some g ∈ G. By Lemma 4.9, we have g ∈ (N · Gx) ∩ (N · Gy), which is
N · (Gx ∩Gy) by Theorem 3.40. But Gx ∩Gy =

⋂
z∈xyGz , so

g ∈ N ·
⋂

z∈xy

Gz =
⋂

z∈xy

(N ·Gz),

or equivalently, xy ⊂ A2. The invariance of the length is immediate from Proposi-
tion 4.10.

❒

Lemma 4.19 allows us to make the following definition:

Definition 4.20. We define a metric d on B(G) as follows. Let x, y ∈ B(G), choose an
apartment A′ containing x and y, and let g be an element such that gA′ = A. Define
d(x, y) to be the norm of the vector gx− gy ∈ As, and give B(G) the metric topology.

By Proposition 4.10, d(x, y) is well-defined and G-invariant. One can prove [BT72] that
the triangle inequality is satisfied, so d indeed defines a metric. (This proof is harder and
not vital to us, so we omit it.) Proposition 4.18 easily shows that:

Corollary 4.21. For any positive r ∈ R and x ∈ B(G), the closed r-ball around x is
compact, and therefore intersects only finitely many facets.

Lastly, we prove a result that we will use later.

Proposition 4.22. Suppose thatX ⊂ B(G) is any minimal facet (i.e., πG(X) is one point).
Then

(i) If y ∈ B(G) and Gy ∩GX surjects onto GX , then y ∈ X .

(ii) NG(GX) = stabG(X) = stabN(X) ·GX = C ·GX .

Proof.

Keep in mind that Gy = Gz for any y, z ∈ X , and that stabG(X) does not necessarily
fix every y ∈ X .
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(i) Suppose that Gy ∩ GX surjects onto GX . Choose an apartment A containing X
and y. We claim that y ∈ X . If not, consider the line from any vertex x in X to y
in A. Since GX is a maximal parahoric, we see that at any z /∈ X on this line, we
have GX ∩Gz projecting onto a proper parabolic subgroup of GX , so

Gy ∩GX =
⋂

z∈xy

Gz

will also project onto a proper parabolic of GX , a contradiction. Therefore y ∈ X .

(ii) We will prove that

NG(GX) ⊂ stabG(X) ⊂ stabN (X) ·GX ⊂ C ·GX ⊂ NG(GX).

(NG(GX) ⊂ stabG(X)): If g ∈ NG(GX), then GX = gGXg
−1 = GgX , so GX ∩

GgX surjects onto GX , whence gX = X and g ∈ stabG(X).

(stabG(X) ⊂ stabN (X) · GX): If g ∈ stabG(X), then Proposition 4.10 tells us
that there is an n ∈ N such that gy = ny for all y ∈ X , so n ∈ stabN (X). But g−1n
fixes every y ∈ X , so g−1n ∈ GX , i.e., g ∈ stabN (X) ·GX .

(stabN (X) · GX ⊂ C · GX): Let n ∈ stabN (X), and suppose πG(X) = {x0}.
Since n stabilizes X = {x0} × (E∗

Φ)⊥, n must act as a translation in (E∗
Φ)⊥. By

definition, then, there is a λ ∈ ΛC such that n is translation by c := λ̌(̟) ∈ C.
Thus n−1c fixes every point in X , i.e., n−1c ∈ GX . Therefore n ∈ C ·GX .

(C ·GX ⊂ NG(GX)): Clear.
❒

4.2. Example: the building of SL2(k)

As an illustration, we analyze the full building of G = SL2(k). It turns out that B is the
infinite tree12 whose vertices all have order q + 1 = |f| + 1 — that is, B is the homogeneous
tree of degree q + 1. The apartments are all of the lines (i.e., infinite reduced paths) in this
graph. See Figure 4.1. We will use the notation in Example 2.28.

We start by defining the graph structure of B.

Definition 4.23. Let the set of vertices be the 2-facets (i.e., the special vertices) and let
the edges be the 0-facets, in the sense of Definitions 4.16 and 2.31. (Note that “vertices”
and “special vertices” are the same thing.) If F is an edge, then the endpoints of F are
F \ F .

By Lemma 4.19, the graph structure is well-defined. Corollary 4.14 tells us that B is a
connected graph.

Definition 4.24. If x, y ∈ B are vertices, then a (reduced) path from x to y is a finite
sequence F1, . . . , Fn of edges such that (i) x ∈ F i ⇐⇒ i = 1 and y ∈ F i ⇐⇒ i = n,
(ii) each F i∩F i+1 consists of only one vertex, and (iii) F i ∩F j = ∅ if i 6= j± 1. In other
words, the path does not cross itself or double back. A line in B is an infinite sequence
of edges . . . , F−1, F0, F1, . . . satisfying (ii) and (iii) above; i.e., a line is an infinite path.

12In fact, all Bruhat-Tits buildings are contractible.
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Figure 4.1: The building of SL2(Q2).

Note that if x and y are contained in an apartment A, then there is exactly one path in
A connecting x and y (namely, the interval [x, y] ⊂ A ∼= R). Our next goal is to show that
B is a tree. We know from Lemma 4.19 that if x and y are vertices both contained in two
apartments A and A′, then the line segment xy in A is also contained in A′, so that there
is only one path contained in an apartment that connects x and y. It therefore suffices to
show that any path between x and y is contained in some apartment.

Lemma 4.25. If . . . , F−1, F0, F1, . . . is a line in B, then there is an apartment A containing
each Fi (so A =

⋃
i∈Z

F i). In particular, if x, y ∈ B are vertices and F1, . . . , Fn is a path
connecting x and y, then there is some apartment containing x, y, and each Fi.

Proof.

We prove the second statement first. We will proceed by induction on n. The base
case is clear. Assume that F1, . . . , Fn−1 are contained in the standard apartment A, and
assume for simplicity that Fn−1 ∩ Fn = {0} ⊂ A, and that α(y) < 0 for every y ∈ Fi
with i < n. Let F be the edge in A adjoining 0 that is not Fn−1. See Figure 4.2. It
suffices to find a g ∈ G such that g ∈ GFi

(so that gFi = Fi) for every i < n, and such
that gF = Fn, because then our path is contained in gA.

Let Ω = {x ∈ A : α(x) ≤ 0}, so that GΩ ⊂ GFi
for i < n. (We will find g ∈ GΩ.) We

see that

GΩ =
⋂

m≥0

[
R ℘m

℘−m R

]
=

[
R× 0
R R×

]
.

From Proposition 4.17, we can find an h ∈ G such that hF = Fn, and Proposition 4.10
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α̌

Fn−1 F

Fn

Fn−2

A

0

︷ ︸︸ ︷
Ω

Figure 4.2: The setup in Lemma 4.25.

tells us that h0 = 0 because there is no element of n that sends Hα−1 to 0 = Hα+0 (cf.
Example 2.28). Lemma 4.5 tells us that h ∈ G0, so we can write h =

[
a b
c d

]
∈
[
R R
R R

]
.

We will find a g ∈ GΩ such that h−1g ∈ GF , i.e., gF = hF = Fn.

Note that GF =
[
R R
℘ R

]
. If a ∈ ℘, then

[
0 1
−1 0

]
h =

[
c d
−a −b

]
∈ GF , so h ∈ N · GF and

hF ⊂ A, so hF = F or hF = Fn−1 (since h fixes 0). In the first case, we are done,
and we are assuming the second case cannot happen. Therefore we may assume that
a /∈ ℘. Let y be an element of R such that ya = c mod ℘, and let g =

[
1 0
y 1

]
∈ GΩ. Then

we have

h−1g =

[
d −b
−c a

] [
1 0
y 1

]
=

[
d− by −b
−c+ ay a

]
∈ GF

so we are done.

Now for the first statement. Let . . . , F−1, F0, F1, . . . be any path, and number the
maximal facets in the standard apartment A in order as . . . , F ′

−1, F
′
0, F

′
1, . . .. Let

Ωn =
⋃

−n≤i≤n

F i and Ω′
n =

⋃

−n≤i≤n

F
′
i.

By the above, we know that for each n we can find a hn with hnF
′
i = Fi for each

−n ≤ i ≤ n (we may have to renumber the F ′
i in order to do this, because not all

vertices are conjugate). The set of h ∈ G with this property is thus Kn :=hnGΩ′
n
. We

have that Kn ⊂ Km when n ≥ m, so K0 ⊃ K1 ⊃ K2 ⊃ · · · is an infinite decreasing
sequence of nonempty closed sets contained in K0. If the intersection K =

⋂∞
n=0Kn

were empty, then {K0 \Kn}∞n=1 would form an open cover of K0. Since K0 = h0GF ′

0
is

compact, this cover would have a finite subcover, which would imply that someKn = ∅,
a contradiction. Therefore K 6= ∅, so if h ∈ K, then hF ′

i = Fi for all i ∈ Z. Therefore
our line is contained in h · A.

❒

Now we know that B is a tree whose lines are the apartments. It remains to find the order
of the vertices.

Lemma 4.26. The order of any vertex in B is |f| + 1 = q + 1.

Proof.

Let x ∈ B be a vertex, and assume for simplicity that x is the origin in the standard
apartment A. Let F be the edge adjoining x such that α(y) > 0 for y ∈ F , as in the
proof of Lemma 4.25. Note that Gx =

[
R R
R R

]
and GF =

[
R R
℘ R

]
⊂ Gx. The edges

adjoining x correspond to the cosets Gx/GF , as follows: if gF adjoins x, then as in the
proof of Lemma 4.25, gx = x, so g ∈ Gx; also, gF = hF iff g−1hF = F iff g−1h ∈ GF .
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Therefore it suffices to find coset representatives of Gx/GF .13

We claim that
[

0 1
−1 0

]
and

[
1 0
t 1

]
for t ∈ R/℘ are such coset representatives. Let

g =
[
a b
c d

]
∈ Gx be arbitrary. If a ∈ ℘, then

[
0 1
−1 0

][
a b
c d

]
=
[
c d
−a −b

]
∈ GF . If a /∈ ℘, then

let t ∈ R be an element such that ta = cmod ℘, so that
[

1 0
−t 1

][
a b
c d

]
=
[

a b
c−ta d−tb

]
∈ GF .

An easy calculation shows that none of our coset representatives is equivalent mod GF ,
so we are done.

❒

In summary, we have:

Theorem 4.27. The building B(SL2(k)) is the infinite tree whose vertices all have order
q + 1 = |f| + 1. The apartments are the lines in this graph, which are therefore in
one-to-one correspondence with the conjugates of T .

5. An application of the building to representation theory

The Bruhat-Tits building offers us a more detailed understanding of the structure theory of
our groups, and gives us a convenient way to visualize that structure. This in turn enables
us to think in new ways about anything relating to our groups; in particular, about p-adic
representation theory. Moy and Prasad found one of the first important applications of the
theory of the building to the representation theory of p-adic Chevalley groups. They defined
a notion of the depth of an irreducible admissible complex representation of G, and were
able to classify all depth-zero irreducible super-cuspidal representations of G via Bruhat-Tits
theory. In this chapter, we present this classification, along with the full example of SL2 in
Section 5.3.

For an alternate approach, see Morris [Mor99], who has proved the same result using
Hecke algebras.

5.1. The depth of a representation

We have been stating that our goal is to find super-cuspidal representations of G by inducing
from compact open subgroups. Moy and Prasad’s theory of unrefined minimal K-types is one
attempt at determining from which representations we should be inducing. In summary, the
depth of a representation of G is how “deep” we must look into a filtration of the subgroups
Gx before we find nontrivial fixed vectors. Most of the material presented in this section is
for context; we will only be interested in depth-zero representations.

First we must define the Moy-Prasad filtration of the parahoric subgroups.

Definition 5.1. In the notation of Definition 3.1, for any nonnegative real number r and
any x ∈ A, we define

Gx,r = 〈T (1 + ℘⌈r⌉), Xα(℘−⌊α(x)−r⌋) : α ∈ Φ〉 ⊂ Gx.

Gx,r+ = 〈T (1 + ℘⌊r⌋+1), Xα(℘1−⌈α(x)−r⌉) : α ∈ Φ〉 ⊂ Gx,r.

13Note that Gx/GF
∼= G/B, where B is the image of GF in G, and is thus a Borel subgroup. Thus Lemma 4.26

really follows from the fact that G/B is isomorphic as an algebraic variety to the projective space P1(f). (In
general, a parabolic subgroup of an algebraic group G of the type that we are considering is a subgroup P such
that the quotient G/P is projective.)
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Example 5.2. Consider G = SL2(k), with root space Xα =
[

1 k
0 1

]
(cf. Example 2.28).

Some of the filtration subgroups Gx,r are given in Figure 5.1. Note that in general, the
group Gx,r does not depend only on the facet containing x; rather, the group changes
when one crosses a line at which r ± α(x) is an integer. Also note that Gx,r+ = Gx,r+ǫ,
where ǫ is very small. As for the groups Gx,r with (x, r) on the lines: at the points
(x, r), (y, s), and (z, t) in the Figure, we have

Gx,r =

[
1 + ℘ ℘2

R 1 + ℘

]
Gy,s =

[
1 + ℘ ℘
℘2 1 + ℘

]
Gz,t =

[
1 + ℘2 ℘2

℘2 1 + ℘2

]
.

Note that if (x, r) is on a line, then Gx,r = Gx,r−ǫ, where ǫ is very small.

0

1

2

r

[ 1+℘ ℘
℘ 1+℘

]

[
1+℘ R
℘ 1+℘

]

[ 1+℘ R

℘2 1+℘

][
1+℘ ℘2

R 1+℘

]

[
1+℘ ℘2

℘ 1+℘

] [ 1+℘ ℘

℘2 1+℘

]

[ 1+℘2 ℘3

℘ 1+℘2

] [ 1+℘2 ℘2

℘2 1+℘2

] [ 1+℘2 ℘

℘3 1+℘2

]

[ 1+℘2 ℘

℘2 1+℘2

][ 1+℘2 ℘2

℘ 1+℘2

]

[ 1+℘2 ℘3

℘2 1+℘2

] [ 1+℘2 ℘2

℘3 1+℘2

]

[ 1+℘3 ℘3

℘2 1+℘3

] [ 1+℘3 ℘2

℘3 1+℘3

]

[ 1+℘ ℘
R 1+℘

]

r = (α+ 1)(x)

r = α(x)

r = −(α− 2)(x)

[ R ℘

℘−1 R

] [
R R
R R

] [
R ℘−1

℘ R

][
R ℘
R R

] [
R R
℘ R

]

−α̌/2 α̌/20

x

y

z

Figure 5.1: Some Moy-Prasad filtration subgroups for SL2(k). The affine apartment for SL2(k) is the bottom line
in the figure.

Remark 5.3. There are several things to note about Definition 5.1:� Gx,r ⊂ Gx,s when r > s.� Gx,0 = Gx and Gx,0+ = G+
x .� For any g ∈ G, one can put Gg·x,r = gGx,rg

−1 and Gg·x,r+ = gGx,r+g
−1, thus

defining these objects for all x ∈ B(G).� One can show that Gx,r+ is always normal in Gx,r, and that the quotient is always
finite, and is abelian if r > 0.� For any x ∈ B and r ≥ 0, there is an ǫ ≥ 0 such that Gx,r+ = Gx,r+ǫ.



5.2: THE MAIN RESULT 51� It is relatively easy to see that for any x ∈ B(G), the Gx,r form a neighborhood basis
of the identity in G consisting of compact open subgroups.� The obvious analog of Proposition 3.10(ii) holds for any Gx,r; Propositions 3.10(i)
and 3.12(i) hold upon replacing G+

x with Gx,r if r > 0.

The subgroups Gx,r are called the Moy-Prasad filtration subgroups. The minimal r
such that a representation has nontrivial Gx,r+-fixed vectors turns out to be an important
property of the representation:

Theorem 5.4 ([MP94, Theorem 5.2]). If (π, V ) is any smooth representation of G, then
there is a nonnegative rational number r = ̺(π) with the property that r is the minimal
number such that V Gx,r+ is nonzero for some x ∈ B(G).

With the above theorem in mind, we can define:

Definition 5.5. The depth of an admissible irreducible representation π of G is the num-
ber r = ̺(π).

Therefore, a depth-zero irreducible super-cuspidal representation is an irreducible super-
cuspidal representation (π, V ) of G such that V G

+
x 6= {0} for some x ∈ B(G) (see Defini-

tion 1.1).

Definition 5.6. A depth-zero minimal K-type is a pair (Gx, τ), where x ∈ B(G) and τ is
a cuspidal representation (cf. Definition 1.2) of the finite group Gx, inflated to Gx.

It turns out that any depth-zero irreducible super-cuspidal representation (π, V ) with G+
x -

fixed vectors contains a depth-zero minimal K-type on restriction to V G
+
x . This a somewhat

surprising relation between the notion of a super-cuspidal representation of G and a cuspi-
dal representation of G. The relation goes the other way too: we will show that all depth-
zero irreducible super-cuspidal representations (π, V ) of G can be obtained by inducing a
depth-zero minimal K-type from a vertex x.

5.2. The main result

We will classify all depth-zero irreducible super-cuspidal representations (π, V ) of G in two
steps. First we will show that if V G

+
x is nonzero, then x is a vertex, i.e., Gx is a maximal

parahoric. Second, we will show that if (Gx, τ) is a depth-zero minimal K-type and x is a
vertex, then the irreducible super-cuspidal representations which contain τ on restriction to
Gx (which are thus necessarily depth-zero since the space of G+

x -fixed vectors is nonzero)
are exactly those representations obtained by induction from an irreducible representation
of NG(Gx) that contains τ on restriction to Gx.

The first step is as follows. Let Gx be a nonmaximal parahoric subgroup of G (i.e., x is not
a vertex), and choose an apartment A = A(G, T ) containing x. Let M(x) be the generalized
Levi subgroup associated with x and T , and letM ⊂ G be a proper Levi subgroup containing
M(x) (we can find one of these by Lemma B.5). Let P be a (proper) parabolic subgroup
with Levi decomposition P = MU , and assume that P is standard; let P = MU be the
opposite parabolic with respect to M .

During the proof of the following theorem, we will keep this specific example in mind:



52 THE BRUHAT-TITS BUILDING AND REPRESENTATION THEORY

suppose G = SL3(k), with the notation as in Example 2.14. Suppose that x is as in Fig-
ure 5.2, so that M = M(x) ∼= GL2(k), as in Example 2.29. Thus we have

M =
[
∗ ∗
∗ ∗

∗

]
P =

[
∗ ∗ ∗
∗ ∗ ∗

∗

]
U =

[
1 ∗

1 ∗
1

]
P =

[
∗ ∗
∗ ∗
∗ ∗ ∗

]
U =

[
1

1
∗ ∗ 1

]
.

x

x(t1)

x(t2)

Ared(M)

λ

Figure 5.2: The setup in the proof of Theorem 5.7.

Theorem 5.7 ([MP96, Prop. 6.7]). Let (π, V ) be an irreducible admissible representation
of G. Then the natural projection map

J : V G
+
x → V

M+
x

U

onto the Jacquet module is an isomorphism.

Proof.

Since G+
x has an Iwahori factorization with respect to P = MU and since M+

x = M ∩
G+
x , Jacquet’s Lemma [Cas, Theorem 3.3.3] tells us that J is a well-defined surjective

map.

If v ∈ V G
+
x is nonzero, then the goal is to prove that v /∈ V (U). By [BZ76, Lemma 2.33],

v ∈ V (U) if and only if
∫
K π(x)v dx = 0 for some compact open subgroup K ⊂ U . We

observe that if K1 ⊂ K2 are both compact open subgroups of U and
∫
K1
π(x)v dx = 0

then
∫

K2

π(x)v dx =
∑

g∈K2/K1

∫

gK1

π(x)v dx =
∑

g∈K2/K1

π(g)

∫

K1

π(x)v dx = 0
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where the (finite) sum runs over some set of coset representatives forK2/K1. Therefore
if K1 ⊂ K2 ⊂ · · · are compact open subgroups of U such that

⋃
nKn = U , it suffices to

show that
∫
Kn

π(x)v dx 6= 0 for all n.

We will find such Kn using the building. Intuitively, what we will do is the follow-
ing: if we move away from x on a path x(t) in a direction orthogonal to the reduced
apartment of M , then the U part of Gx(t) will grow larger — that is, the compact open
subgroup U ∩Gx(t) will eventually contain every element of U . Then we will only have
to show that ∫

U∩Gx(t)

π(x)v dx 6= 0 (5.1)

for all t. We will prove that the integral (5.1) is never zero by contradiction: we will
suppose that there were some smallest t for which it is zero, then we will use a fact
about the representation theory of finite groups of Lie type to show that, in fact, (5.1)
is nonzero for slightly larger t.

Our first task is to define the path x(t). In our example of SL3(k), choose a λ ∈
A(SL3(k)) orthogonal to Ared(M), such that β(λ) > 0, as indicated in Figure 5.2. Let
x(t) = x + tλ. Since λ ⊥ α, the only generators of Gx(t) that will change with t are
those corresponding to the roots ±β,±(α+ β), so each Gx(t) ∩M = Mx. At the point
x, we have

Gx =
[
R R R
R R R
℘ ℘ R

]
Mx =

[
R R
R R

R

]
.

At times t1 and t2 in the figure, we have

Gx(t1) =

[
R R ℘−1

R R ℘−1

℘ ℘ R

]
Gx(t2) =

[
R R ℘−2

R R ℘−2

℘2 ℘2 R

]

so that

Gx(t1) ∩ U =

[
1 ℘−1

1 ℘−1

1

]
Gx(t2) ∩ U =

[
1 ℘−2

1 ℘−2

1

]
.

In general, we will have

Gx(t) ∩ U =

[
1 ℘−m

1 ℘−m

1

]

with m→ ∞ as t→ ∞, so that
⋃
t→∞Gx(t) ∩ U = U .

It is not hard to find such a path x(t) in the general case. Let ΦM be the root system
of M ; we know that Φ̌M does not span Ared

s by Lemma B.5. Fix a λ ∈ Ared
s such

that 〈α, λ〉 = 0 for every α ∈ ΦM — i.e., λ is orthogonal to Ared
s (M) ( Ared

s — and
such that 〈α, λ〉 > 0 for every α ∈ Φ+ \ ΦM . Note that Φ+ \ ΦM consist of the roots
whose root spaces generate U . Consider the ray x(t) = x + tλ for t ≥ 0, starting at x
and traveling in the λ direction in A. It is important to note that for any nonnegative
t ∈ R, the set Φx(t) will contain Φx because 〈α, x(t)〉 does not change for α ∈ Φx. Since
〈α, x(t)〉 changes linearly with t for α /∈ Φx, we will have Φx(t) = Φx for all t except
for a discrete set t = t1, t2, . . . with ti → ∞. These are the t at which x(t) crosses a
hyperplane. Confer Figure 5.2.

Set Ux(t) = U ∩Gx(t) and Ux(t) = U ∩Gx(t). Proposition 3.10(ii) tells us that if s ≥ t,
then

Ux(s) ⊃ Ux(t) and Ux(s) ⊂ Ux(t).

Since every element of U has a unique expression of the form (3.2), it is easy to see
that, as in the case of SL3(k), U is the union of the nested compact open subgroups
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Ux(t). Note that our Haar measure on U can thus be taken to be bi-invariant (cf. [BZ76,
Prop. 1.19(b)]).

Checking root systems and using Proposition 3.10(ii), we find thatG+
x has an Iwahori

decomposition (Proposition 3.12(i)) into

G+
x = Ux(0)M

+
x Ux(0).

Since v is fixed under G+
x , then, we have

∫
Ux(0)

π(x)v dx 6= 0. Now suppose that there

were some t > 0 such that ∫

Ux(t)

π(x)v dx = 0. (5.2)

One can check that Ux(t) does not change on the regions 0 ≤ t < t1 and ti ≤ t < ti+1

for i ≥ 1. Therefore there is a minimal t — call it s — such that (5.2) holds, and this s
is one of the distinguished times ti.

Let y = x(s), Uy = Ux(s), and Uy = Ux(s). Let Gy− = Gx(t) for t slightly less than s
(so that the facet containing x(t) contains y in its closure), let Gy+ = Gx(t) for t slightly
greater than s, and define Uy− , Uy+ , Uy− , and Uy+ similarly. In our example, if s = t1,
then

Gy =

[
R R ℘−1

R R ℘−1

℘ ℘ R

]
G+
y =

[
1+℘ ℘ R
℘ 1+℘ R

℘2 ℘2 1+℘

]

Gy− =
[
R R R
R R R
℘ ℘ R

]
G+
y− =

[
1+℘ ℘ R
℘ 1+℘ R
℘ ℘ 1+℘

]

Gy+ =

[
R R ℘−1

R R ℘−1

℘2 ℘2 R

]
G+
y+ =

[
1+℘ ℘ ℘−1

℘ 1+℘ ℘−1

℘2 ℘2 1+℘

]
.

As the example makes clear, we see that as before, we have Iwahori decompositions

G+
y− = Uy−M

+
x Uy− and G+

y+ = Uy+M+
x Uy+ .

Also, by Proposition 3.22, the image of Gy− in Gy = Gy/G
+
y is a parabolic subgroup

Py, and the image of Gy+ in Gy is the opposite parabolic Py. In addition, G+
y− is the

inverse image in Gy of the unipotent radical Uy of Py, and G+
y+ is the inverse image on

Gy of the inipotent radical Uy of Py. In our example,

Py = Gy−/G
+
y =

[
f f
f f
f f f

]
Uy = G+

y−/G
+
y =

[
1

1
f f 1

]

Py = Gy+/G+
y =

[
f f f
f f f

f

]
Uy = G+

y+/G
+
y =

[
1 f

1 f
1

]
.

Set

w :=

∫

G+

y−

π(x)v dx.

Since Uy− ⊂ Ux(0) ⊂ G+
x , we have that v is fixed by M+

x Uy− , so

w =

∫

U
y−M

+
x Uy−

π(x)v dx = meas(M+
x Uy−)

∫

U
y−

π(x)v dx 6= 0
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since s is the minimal t for which the integral (5.2) is zero. Let (τ,W ) be the natural
(finite-dimensional) representation of Gy obtained by restricting π to V G

+
y and passing

to the quotient Gy = Gy/G
+
y . Since w is fixed by G+

y− , we have that w ∈WUy . There is
a result about the representation theory of finite groups of Lie type, proved in [HL94]
(but cf. [MP96, Prop. 6.1(2)]), which says that integration of τ(x)v over Uy defines an
isomorphism of WUy with WUy . Therefore, since w 6= 0, we have

0 6=

∫

Uy

τ(x)w dx

= (const) ·
∫

G+

y+

π(x)w dx (since G+
y+ projects onto Uy)

= (const) ·
∫

U
y+M

+
x Uy+

π(x)w dx

= (const) ·
∫

U
y+

π(x)w dx (since G+
y− ⊃M+

x Uy+ fixes w)

= (const) ·
∫

U
y+

∫

U
y−

π(xy)v dy dx

= (const) ·
∫

U
y−

∫

U
y+

π(xy)v dx dy (by Fubini’s theorem)

= (const) ·
∫

U
y+

π(x)v dx
(since Uy− ⊂ Uy+ and our Haar
measure is bi-invariant).

This contradicts our assumption that
∫
Ux(s)

π(x)v dx = 0. Therefore

∫

Ux(t)

π(x)v dx 6= 0

for all t ≥ 0, so v /∈ V (U) and the theorem is proved.
❒

Corollary 5.8. Let (π, V ) be a depth-zero irreducible super-cuspidal representation of G.

(i) V G
+
x can only be non-zero when x is a vertex. In other words, the depth-zero

minimal K-types contained in V come from maximal parahorics.

(ii) Any irreducible subrepresentation of the natural finite-dimensional representation
(τ,W ) of Gx obtained by restricting π to V G

+
x is cuspidal.

Proof.

(i) First note that since (π, V ) is irreducible and smooth then by [Jac75], (π, V ) is
admissible. Suppose x ∈ B(G) with Gx nonmaximal. If V G

+
x 6= {0}, then by

Theorem 5.7, VM
+
x

U 6= {0} for a nonmaximal parabolic P with Levi decomposition
MU . But VU = {0} when V is super-cuspidal, so this cannot happen; thereforeGx
is a maximal parahoric.

(ii) Let P be a proper parabolic subgroup of Gx with Levi decomposition MU, and let
v ∈ W . It suffices to show that v ∈ W (U), or equivalently,

∑

u∈U

τ(u)v = 0 (5.3)
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(this result is analogous to [BZ76, Lemma 2.33]; see [Car85, p.293]). Assume
without loss of generality that x is in the standard apartment A of G. Let y0 ∈
As(Gx) be a vector such that P = Py0; note that y0 6= 0 (cf. Proposition 2.13). By
the results in Section 3.2, the vector y0 corresponds to some point y ∈ A near x.
The point y is not a vertex, so by part (i), V G

+
y = {0}. But G+

y is the inverse image
in Gx of U, and the sum (5.3) is U-invariant, so (5.3) must be zero.

❒

Now we can move on to the second step of our classification, i.e., we will actually induce
any depth-zero irreducible super-cuspidal representation of G from a cuspidal representa-
tion of a maximal parahoric. This will require doing quite a bit of representation theory
first.

Notation 5.9. In the rest of this section, we fix a depth-zero minimal K-type (Gx, σ),
where x is a vertex. Let Fx = NG(Gx), and let E(σ) be the irreducible representations of
Fx (up to equivalence) which contain σ on restriction to Gx.

We also remind the reader about our notation for induction and compact induction (cf.
Page 4):

Notation 5.10. We define ind and Ind to be the compact induction and induction functors,
respectively.

Remark 5.11. One can partition E(σ) into finitely many equivalence classes by setting
τ1 ∼ τ2 if there is an unramified character χ of G (cf. [Cas, §1.6]) such that τ1 = τ2 ⊗ χ.
Note that indGFx

(τ ⊗ χ) = (indGFx
τ) ⊗ χ.

Proposition 4.22(ii) implies the following:

Corollary 5.12. If x ∈ B(G) is a vertex, then Fx = C ·Gx is compact mod C, and therefore
it is compact mod its center.

There are several things to note about the elements of E(σ).

Lemma 5.13. Let τ ∈ E(σ).

(i) The elements of E(σ) are exactly the irreducible components of IndFx

Gx
σ.

(ii) τ is finite-dimensional.

(iii) τ is trivial on G+
x . The natural representation τ of Gx satisfies the property

∑

u∈U

τ(u) = 0

when U is the unipotent radical of any proper parabolic subgroup of Gx.

Proof.

The first statement follows from Frobenius reciprocity and the fact that Gx is compact.
Let τ ∈ E(σ), and let Vτ be a representation space for τ . Since Fx is compact modulo
its center and τ is irreducible and smooth, we have Vτ = 〈g · v : g ∈ Fx〉 is finite-
dimensional for any v ∈ Vτ .
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Let (π, V ) be the induced representation IndFx

Gx
σ. It suffices to prove the third state-

ment for π. Let X be the (minimal) facet containing x. We have that if g ∈ Fx =
stabG(X), then gG+

Xg
−1 = G+

X . Therefore if f ∈ V , g ∈ Fx, and h ∈ G+
x , then

(h · f)(g) = f(gh) = σ(ghg−1) · f(g) = f(g)

as required. Therefore (resGx
π, V ) is naturally a representation of Gx. If U ⊂ Gx is the

unipotent radical of any proper parabolic subgroup of Gx, then since σ is cuspidal, we
have [Car85, p.293] ∑

u∈U

σ(u) = 0.

If g ∈ Fx, then Proposition 4.22(ii) says that g = c·h for some c ∈ C and h ∈ Gx. There-
fore the automorphism x 7→ gxg−1 : Gx

∼
−→ Gx is an inner automorphism, so gUg−1 is

the unipotent radical of a proper parabolic subgroup of Gx as well. (Alternately, if U

is the unipotent radical of the parabolic subgroup corresponding to some y0 ∈ As(Gx),
then gUg−1 is the unipotent radical of the parabolic subgroup corresponding to g · y0.)
Thus if f ∈ V , we have

∑

u∈U

(u · f)(g) =
∑

u∈U

σ(gug−1) · f(g) =
∑

u∈gUg−1

σ(u) · f(g) = 0.

❒

An immediate consequence of Lemma 5.13 is the following:

Lemma 5.14. Let τ ∈ E(σ) have representation space Vτ , and let H ⊂ Gx be a subgroup
whose image in Gx contains the unipotent radical of some proper parabolic subgroup.
Then V Hτ = {0}.

Proof.

Suppose that U ⊂ Gx is a unipotent radical of a proper parabolic subgroup contained
in the image of H in Gx, and let v ∈ V Hτ . Then

|U| · v =
∑

u∈U

τ(u) · v = 0

by Lemma 5.13. Therefore v = 0.
❒

Corollary 5.15. Let the notation be as in Lemma 5.14, let y ∈ B(G), and let r ≥ 0.
There is some constant c > 0 independent of y and r such that if V Gx∩Gy,r

τ 6= {0}, then

d(x, y) ≤ c · r. In particular, if V
Gx∩G

+
y

τ 6= {0}, then y = x.

Proof.

First we need to establish a geometric fact. Consider the unit sphere Sℓ−1 ⊂ Ared
s . For

a subset Θ ⊂ ∆ and any ǫ > 0, let

HΘ,ǫ = {x ∈ Ared
s : α(x) < ǫ for all α ∈ Θ.}

and let HΘ = HΘ,0 = Ared
s ∩

(⋂
α∈ΘHα

)
. If Θ ⊂ ∆ with |Θ| = ℓ − 1, then HΘ ∩ Sℓ−1

consists of two points. Therefore if {α} = ∆\Θ, then there is an ǫ > 0 such HΘ,ǫ∩Sℓ−1
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does not intersect H{α},ǫ ∩ S
ℓ−1. Since ∆ is finite, we can choose ǫ such that the above

is true for any α ∈ ∆.

Continuing with the proof, let y ∈ B(G) be arbitrary, and choose an apartment A′

containing x and y. Consider the vector v = y − x ∈ As; let w be the unit vector in the
direction of v. Choose a Weyl chamber D ⊂ As such that y ∈ x +D, and let ∆ be the
set of simple roots corresponding to D, so that α(v) ≥ 0 for all α ∈ ∆. By the previous
paragraph, there is some ǫ > 0 and some α ∈ ∆ such that α(w) ≥ ǫ. Let Θ = ∆ \ {α},
and let P = PΘ as in Section 2.1; write U for the unipotent radical of P . The group U
is generated by root spaces Xβ such that β(w) ≥ ǫ, i.e., β(y − x) ≥ ǫ · d(x, y). But by
Remark 5.3, we know that

Gy,r ∩ U =
∏

β∈Φ+\Θ

Xβ(℘
−⌊β(y)−r⌋) ⊃

∏

β∈Φ+\Θ

Xβ(℘
−⌊β(x)+ǫ·d(x,y)−r⌋)

so if d(x, y) > r/ǫ, then Gy,r ∩ Gx ∩ U = Gx ∩ U . But Gx ∩ U projects onto the
unipotent radical of the parabolic in Gx corresponding to P , so by Lemma 5.14, we
have V Gx∩Gy,r = {0}.

❒

Using the above, we may prove some key facts about indGFx
τ for τ ∈ E(σ).

Lemma 5.16. Let τ ∈ E(σ).

(i) indGFx
τ is an admissible and semisimple G-module.

(ii) If HomFx
(τ, resFx

indGFx
τ) is one-dimensional, then indGFx

τ is irreducible.

Proof.

Let (π, V ) be the induced representation indGFx
τ , and let Vτ be a representation space

for τ .

(i) In order to show admissibility it suffices to show that V Gx,r is finite-dimensional
for any r > 0 (cf. Remark 5.3). One has

(indGFx
τ)Gx,r =

⊕

σ∈Fx\G/Gx,r

V
Fx∩gσGx,rg

−1
σ

τ =
⊕

σ∈Fx\G/Gx,r

V
Gx∩Ggσ·x,r
τ

where gσ is any representative of the double coset σ ∈ Fx\G/Gx,r (cf. [BZ76,
Lemma 2.24]). However, by Corollaries 5.15 and 4.21, only a finite number of
the above summands is nonzero, so since Vτ is finite-dimensional, V Gx,r must be
finite-dimensional as well.

Since τ is irreducible, Schur’s Lemma tells us that the center Z of Fx acts by a
character on τ , and therefore on V . As in [Cas, Lemma 5.2.5], then, one can find a
real-valued character χ of G such that Z acts by a unitary character on χ⊗π. Thus
since taking the tensor product with a character does not affect semisimplicity, we
may assume without loss of generality that τ , and therefore π, is unitary. But any
admissible unitary representation is semisimple (cf. [Cas, Prop. 2.1.14]), so we are
done.

(ii) We continue to assume that π is unitary. Suppose that W ⊂ V is a proper G-
subrepresentation, so HomG(W,V ) = HomG(W, indGFx

τ) 6= {0}. Frobenius reci-
procity thus gives HomFx

(resFx
W, τ) 6= 0, so since V is semisimple, W is too, so τ

embeds into resFx
W . But semisimplicity also gives V = W⊕W⊥ asG-submodules,

so HomFx
(τ, resFx

V ) is at least two-dimensional.
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❒

Now we can prove the main theorem.

Theorem 5.17 ([MP96, Prop. 6.6]). Given τ ∈ E(σ), the representation indGFx
τ is an ir-

reducible super-cuspidal representation of G. Moreover, any irreducible representation
of G which contains σ on restriction to Gx is isomorphic to indGFx

τ for some τ ∈ E(σ).

Proof.

Let (π, V ) be the induced representation indGFx
τ . If π is irreducible, then by [Mau64], it

is super-cuspidal, so by Lemma 5.16, it suffices to show that HomFx
(τ, resFx

π) = C. Let
H = H(G//Fx, τ) be the Hecke algebra, i.e., the space of all ϕ : G→ End(Vτ ) such that
(a) ϕ has compact support mod Fx, and (b) ϕ(hgh′) = τ(h)ϕ(g)τ(h′) for all h, h′ ∈ Fx
and g ∈ G. It is easy to show that the map H(G//Fx, τ)

∼
−→ HomFx

(τ, resFx
π) taking

ϕ 7→ ψϕ given by ψϕ(v)(g) = ϕ(g)v is a natural isomorphism, so it suffices to show
that H(G//Fx, τ) = C. Let H(FxgFx) be the subspace of H consisting of functions
with support in the double coset FxgFx, so that H is the direct sum of all H(FxgFx),
as g ranges through representatives of the double cosets Fx\G/Fx. We will show that
H(FxgFx) = {0} unless FxgFx = Fx; note that H(Fx) is one-dimensional because it
consists of scalar multiples of the map h 7→ τ(h).

Let FxgFx be an arbitrary double coset, and let ϕ ∈ H(FxgFx) be nonzero, so ϕ(g) 6=
0. If ghg−1 is any element of Gx ∩ gG+

x g
−1 = Gx ∩G+

gx, then we have

τ(ghg−1)ϕ(g) = ϕ(gh) = ϕ(g)τ(h) = ϕ(g)

because τ is trivial on G+
x . Therefore ϕ(g) ∈ V Gx∩G

+
gx , so by Corollary 5.15, we must

have gx = x, i.e., g ∈ Fx. Thus H is one-dimensional and π is irreducible and super-
cuspidal.

As for the other direction, suppose that (π, V ) is an irreducible representation of
G which contains σ on restriction to Gx. As in the proof of Lemma 5.16, we can
assume that C acts by a unitary character on V , so integration over C\Fx defines a
Fx-invariant Hermetian form on V . Therefore we may assume that resFx

π is unitary,
so since π is an irreducible G-representation, π is admissible, so resFx

π is semisimple.
Since HomGx

(σ, resGx
π) 6= {0}, it is easy to see that there is some irreducible subrep-

resentation τ of resFx
π containing σ, so, by semisimplicity, there is some τ ∈ E(σ) such

that HomFx
(resFx

π, τ) 6= {0}. By Frobenius reciprocity for the compact induction func-
tor ind [BZ76, 2.29], since Fx andG are both unimodular, we have HomG(π, indGFx

τ) 6=
{0}, so since both are irreducible, they must be equivalent.

❒

Corollary 5.18 (to Theorems 5.17 and 5.7). If τ ∈ E(σ), then the induced representa-
tion indGFx

τ is an irreducible super-cuspidal representation of G (necessarily of depth
zero), and any depth-zero irreducible super-cuspidal representation of G arises from
some vertex x ∈ B in this way.

5.3. Example: depth-zero super-cuspidals of SL2(k)

At this point it is illuminating explicitly to write down the depth-zero irreducible super-
cuspidal representations of G = SL2(k). This is not terribly difficult because C = {1}.
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Throughout this example, keep in mind the results in Section 4.2; in particular, recall that
in B(SL2(k)), all vertices are special.

Notation 5.19. If (π, V ) is a representation of any group G and g ∈ G is any element,
then we define the representation (gπ, V ) by gπ(h)v = π(ghg−1)v.

The map v 7→ π(g)v defines an equivalence π ∼= gπ.

Notation 5.20. If σ is a cuspidal representation of G = SL2(f) and x ∈ B(G) is a vertex,
then we put (πσ,x, Vσ,x) = indGGx

σ.

By Proposition 4.22(ii), we haveGx = NG(Gx) since C = {1}, so the results in Section 5.2
tell us that each πσ,x is an irreducible super-cuspidal representation of SL2(k) (of depth
zero), and that all such representations occur as one of the πσ,x.

Remark 5.21. Let σ be a cuspidal representation of G with representation space Vσ. Let
v0 ∈ Vσ be nonzero, and let f ∈ Vσ,x be the function given by

f(h) =

{
0 if h /∈ Gx

τ(h)v0 if h ∈ Gx.

Then there is an embedding of Vσ into Vσ,x given by v0 7→ f .

The parameters σ, x are in fact the correct ones to use, as the following proposition shows.

Proposition 5.22. The representations πσ,x and πσ′,x′ are equivalent if and only if x is
conjugate to x′ under G and σ ∼= σ′ as representations of G.

Remark 5.23. This proposition has a generalization to any generalized Levi G of a simply-
connected p-adic Chevalley group.

Proof of Proposition 5.22.

(⇐=) Find a g ∈ G such that gx = x′. Then πσ,x ∼= gπσ,x ∼= πσ,x′ (cf. Remark 4.8). Since
σ ∼= σ′, the functorial nature of ind tells us that

πσ,x′ = indGGx′
σ ∼= indGGx′

σ′ = πσ′,x′ .

(=⇒) Suppose that πσ,x ∼= πσ′,x′ . Let Vσ (resp. Vσ′) be a representation space for σ
(resp. σ′). First we will show that x and x′ must be conjugate under G. Let y ∈ B(G)
be any point, and let gσ ∈ G be any representative for the coset σ ∈ Gx\G/G+

y . One
can show that

(indGGx
σ)G

+
y ∼=

⊕

σ∈Gx\G/G
+
y

V
Gx∩gσG

+
y g

−1
σ

σ =
⊕

σ∈Gx\G/G
+
y

V
Gx∩G

+
gσy

σ (5.4)

under the map f 7→ (f(gσ))σ (cf. [BZ76, Lemma 2.24]). If gx 6= x′ for all g ∈ G,

then by Corollary 5.15, we have V
G+

x′

σ,x = {0}. But there is an embedding of Vσ′ →֒

resGx′
Vσ′,x′ , whose image is contained in V

G+

x′

σ′,x′ because Vσ′ = V
G+

x′

σ′ , which contradicts
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the assumption that πσ,x ∼= πσ′,x′ . Therefore x and x′ are conjugate under G, so we
may assume that x = x′.

Let ix : Vσ →֒ resGx
Vσ,x be the embedding given by Remark 5.21. Equation (5.4)

and Corollary 5.15 show that the image of ix is in fact all of V G
+
x

σ,x , so ix restricts to an

isomorphism of resGx
V
G+

x
σ,x with Vσ; similarly, resGx

V
G+

x

σ′,x is isomorphic to Vσ′ . There-
fore the isomorphism of Vσ,x with Vσ′,x restricts to an isomorphism of Vσ with Vσ′ ,
completing the proof.

❒

Example 2.28 and Proposition 4.10 imply that there are exactly two orbits of (special)
vertices in B(SL2(k)), so all that is left to do is to find the cuspidal characters of SL2(f).
Assume from now on that the characteristic of f is odd. The character table of SL2(f) is
given in [Car85, p.155]; using [Car85, Prop. 9.1.1], one finds that an irreducible character
χ is cuspidal if and only if

∑
a∈f

χ
([

1 a
0 1

])
= 0. With this in mind, one calculates that the

only cuspidal characters are as follows:� For every complex character ω of the cyclic group Cq+1 of order q+ 1 such that ω2 6= 1,
there is a cuspidal character R(ω) (called the Deligne-Lusztig virtual character, denoted
−RG

Ts
(ω) in [Car85]). We have R(ω) = R(ω′) if and only if ω′ = ω±1. Therefore there

are q−1
2 such characters.� Associated to the nontrivial character ω0 of Cq+1 such that ω2

0 = 1 are two cuspidal
characters χ±1.

Therefore we have proved that:

Theorem 5.24. If q is odd, then there are exactly q + 1 depth-zero irreducible super-
cuspidal representations of SL2(k).

A. Appendix: Non-simply-connectedness and SO4(k)

It is unfortunately not the case that the Chevalley group generated by a set of Chevalley
data (Lie algebra, representation, etc.) is always the algebraic group associated with those
data. For instance, if we exponentiate the standard representation of so4(C), we would like
to obtain all of SO4(k) (that is, all elements that preserve a quadratic form); unfortunately,
in general we only obtain a subgroup of SO4(k), as we will demonstrate in this appendix.14

The Dynkin diagram of SO4 is of type D2, which agrees with A1 ×A1; i.e., there are two
orthogonal simple roots α and β, and the root system is {±α,±β}. Therefore the Lie algebra
gC = so4 = sl2 × sl2 has a two-dimensional Cartan subalgebra h, spanned by elements Zα
and Zβ , and four root spaces g±α, g±β, spanned by X±α and X±β. The spaces 〈X±α, Zα〉
and 〈X±β , Zβ〉 are two orthogonal standard copies of sl2. Therefore the weight lattice is
ΛW = Z(α/2) ⊕ Z(β/2), and the root lattice ΛR is of course Zα ⊕ Zβ, which is index four
in the weight lattice.

We will realize gC in matrix form as follows. We will take our quadratic form to be
M =

[
0 I2
I2 0

]
, where I2 is the identity matrix. Then, as in [FH91], the Lie algebra gC is given

14However, if k is algebraically closed or we generate the simply-connected form, then the Chevalley group will
agree with the algebraic group — recall that a simply-connected algebraic group of the type that we are considering
is generated by its unipotent elements.
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by block matrices
[
A B
C D

]
, where B and C are skew-symmetric and A = −tD. We may take

Zα =

[
1
−1

−1
1

]
Xα =

[
0 1

0
0
−1 0

]
X−α =

[
0
1 0

0 −1
0

]

Zβ =

[
1

1
−1

−1

]
Xβ =

[
0 1

0 −1
0

0

]
X−β =

[
0

0
−1 0

1 0

]
.

One checks that these span gC, and that they satisfy the appropriate relations — in other
words, this is a Chevalley basis of g. The standard four-dimensional representation V C

is the one that generates SO4. The weight spaces are spanned by the coordinate vectors
e1, . . . , e4; a calculation shows that the weights are ±α± β, so the representation lattice is
index two in the weight lattice — in other words, SO4 is not simply connected.

Using [Ste68, Corollary 2], one can see that a lattice V invariant under the set (1.4) is
Ze1 ⊕ · · · ⊕ Ze4, so V k = k4, with X±α, X±β acting as the matrices above. Therefore we
calculate

xα(t) = exp(tXα) =

[
1 t

1
1
−t 1

]
x−α(t) = exp(tX−α) =

[
1
t 1

1 −t
1

]

xβ(t) = exp(tXβ) =

[
1 t

1 −t
1

1

]
xβ(t) = exp(tX−β) =

[
1

1
−t 1

t 1

]

wα(t) =

[
0 t

−t−1 0
0 t−1

−t 0

]
hα(t) =

[ t
t−1

t−1

t

]

wβ(s) =

[
0 s

0 −s
s−1 0

−s−1 0

]
hβ(s) =

[ s
s
s−1

s−1

]

so the Cartan subgroup T is given by {diag(st, st−1, s−1t−1, s−1t) : s, t ∈ k×} First note that
when (s, t) = ±(1, 1), then hα(s)hβ(t) = 1, so elements of T cannot be uniquely expressed
as products of hα(s) and hβ(t).

We know that the centralizer in G of T is T itself (cf. Proposition B.3). Thus in order
to show that G 6= SO4(k), it suffices to find a diagonal element of SO4(k) which is not
contained in T . Assume that there exists some a ∈ k× \ (k×)2. Then it is easy to see that
diag(a, 1, a−1, 1) preserves our form M but is not contained in T . Therefore G 6= SO4(k)
(unless k is algebraically closed, for instance).

Remark A.1. Although the Chevalley group SO4 is not simply-connected, one can realize
SO4(k) as a generalized Levi subgroup of G2. Therefore one can use the results in this
paper to analyze SO4(k) after all.

B. Appendix: Chevalley group miscellanea

This thesis is primarily concerned with the affine structure of our groups, but there are a
few slightly nonstandard pieces of spherical structure of G that we should include for com-
pleteness. Therefore, in this appendix, G will be be any Chevalley group over an arbitrary
field k.

Let B ⊂ G be a Borel subgroup containing T with unipotent radical U and opposite
unipotent radical U . For w ∈ W = N/T , let Uw be the product of the root subgroups for
roots α ∈ Φ+ such that w(α) ∈ Φ−. From [Car89, Cor. 8.4.4], we have:
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Theorem B.1. For every g ∈ G, there exist unique u ∈ U, n ∈ N , and uw ∈ Uw, such that
w = nT and g = unuw.

Corollary B.2. N ∩ (UU) = N ∩ (UU) = {1}

Proof.

We have N ∩ (UU) = (N ∩ (UU))−1, so it suffices to show that N ∩ (UU) = {1}.
Suppose that n = uu where n ∈ N and u ∈ U, u ∈ U . Since all positive root systems
are conjugate under W , we can find an n1 ∈ N such that uw :=n−1

1 un1 ∈ U , so nn1 =
un1uw. Since n1uwn

−1
1 ∈ U , both sides of this equation are now written in canonical

form, so we can use Theorem B.1 to conclude that uw = u = 1 and therefore u = n = 1.
❒

Another fact which we use several times is the following:

Proposition B.3. Suppose that k is an infinite field of characteristic zero and that G is
simply-connected. Then the torus T is its own centralizer in G.

Proof.

Let Z be the centralizer in G of T . Since N is the normalizer of T , we have Z ⊂ N .
Suppose that there were some n ∈ Z \ T . Then n projects onto a nontrivial element
w of the Weyl group, so there is some root α ∈ ∆ such that wα 6= α. Therefore by
[Ste68, Lemma 20(b)], nhα(1)n−1 = hwα(±1), which is not equal to hα(1) by simply-
connectedness. This is a contradiction.

❒

We also need a useful fact about root systems. Recall that ΛR is the root lattice, contained
in the Euclidean space E. A sort of “Graham-Schmidt” procedure works on this lattice:

Proposition B.4. Let x1, . . . , xn ∈ ΛR be linearly independent. There is an orthogonal set
y1, . . . , yn ∈ ΛR such that span(x1, . . . , xi) = span(y1, . . . , yi) for each 1 ≤ i ≤ n.

Proof.

We will prove the proposition by induction. The base case n = 1 is trivially true.
Since Φ contains roots of at most two lengths a and b such that a2/b2 ∈ Z, we may
assume that the inner product (x, y) is an integer for every x, y ∈ ΛR (because 〈x, y〉 =
2(x, y)/(y, y) ∈ Z for x, y ∈ Φ).

Suppose that we have some y1, . . . , yn−1 which satisfy the inductive hypotheses. We
claim that there are m ∈ Z \ {0} and a1, . . . , an−1 ∈ Z such that

(mxn − a1y1 − · · · − an−1yn−1, yi) = m(xn, yi) − ai(yi, yi) = 0

for each 1 ≤ i ≤ n− 1; then we may set yn = mxn − a1y1 − · · · − an−1yn−1 ∈ ΛR. It is
certainly possible to find such m and ai because each (xn, yi) ∈ Z and (yi, yi) ∈ Z.

❒

A related fact, used to prove Theorem 5.7, is as follows.

Lemma B.5. If x ∈ A is not a vertex, thenM(x) is contained in a proper (not generalized)
Levi subgroup M of G, whose co-root system ΦM does not span Ared

s .

Proof.

Note that x is not a vertex iff Φx does not span EΦ, which is true iff Φ̌x (the set of
co-roots of the roots in Φx) does not span Ared

s . Let E∗
x ( Ared

s be the span of Φ̌x, and
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choose a nonzero y ∈ (E∗
x)

⊥ ∩ Ared
s . Proposition 2.13 tells us that

M = 〈T, Xα : α ∈ Φ, α(y) = 0〉

is a Levi subgroup of G containing M(x), which is proper because y 6= 0. The root
system ΦM of M is {α ∈ Φ : α(y) = 0}; since M is a proper Levi subgroup, there is
a choice of simple roots ∆ and a proper subset Θ ⊂ ∆ such that Θ is also a system of
simple roots for ΦM ; in particular, Φ̌M does not span Ared

s either.
❒

Remark B.6. Our proof of Theorem 5.7 (which is not substantively different from [MP96,
Prop. 6.7]) holds for any M as in Lemma B.5, which is a slightly stronger result than the
one stated in [MP96]. However, Moy and Prasad offer a more elegant way to construct
such an M in [MP96, §6.3].
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C. Index of Notation

The following notational conventions are in place:� If X is an object associated with a generalized Levi subgroup G of Gc, then Xc is
the corresponding object associated with the full Chevalley group Gc, and X is the
corresponding object defined over the residue field, when this makes sense.� If X ⊂ ΛR is a subset of the root lattice, then X̌ ⊂ Λ̌R is the corresponding subset of
the co-root lattice.� If X is a vector space, then X∗ is its linear dual.

List of symbols, in quasi-alphabetical order:

(·, ·) The inner product on E and E∗. 8

〈·, ·〉 = 2(γ, δ)/(δ, δ) is always an integer for γ, δ ∈ ΛR. 8

〈·, ·〉 The canonical pairing of E with E∗. 8

∼ The equivalence relation on G×A used to make the building. 42

[g, x] The equivalence class of (g, x) ∈ G×A under ∼. 42

As(G) The spherical apartment of G. 16

Ared
s (G) The reduced spherical apartment of G. 16

A(G) The standard affine apartment of G. 20

A(gT ) The apartment in B(G) of the torus gTg−1. 43

Ared(G) The reduced affine apartment of G. 21

B(G) The Bruhat-Tits building of G. 42

C The split center of G. 14

d The metric on B(G). 45

∆ A set of simple roots for Φ. 12

E The Euclidean space containing the abstract root system Φc. 8

EΦ ⊂ E is the subspace of E spanned by the root system Φ. 12

E∗
Φ The dual of EΦ, which can be identified with the subspace of E∗ spanned

by Φ̌.
12

E(σ) The irreducible representations of Fx which contain σ on restriction to Gx. 56

f = R/℘ is the residue field of k. 15

Fx = NG(Gx). 56

g A fixed Lie algebra defined over the integers, coming from a complex
semisimple Lie algebra gC and a Chevalley basis.

8

gγ = Z ·Xγ is the (integer) root space in g defined by the root γ. 8

G The generalized Levi subgroup of Gc associated with Φ. 12

Gx The parahoric subgroup of G associated to the point x ∈ A(G). 28

G+
x The pro-unipotent radical of Gx. 28

GF , G
+
F The parahoric subgroup and its pro-unipotent radical corresponding to a

facet F ⊂ A.
28
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GΩ The “parahoric” subgroup of G associated to a region Ω ⊂ A. 32

Gx,r The Moy-Prasad filtration subgroups of Gx. 50

Gx,r+ =
⋃
s>r Gx,s. 50

Gx The quotient group Gx/G+
x . 33

h The (integer) Cartan subalgebra of g. 8

hγ(t) = wγ(t)wγ(1)−1 for t ∈ k×. 11

Hγ The hyperplane in E∗ fixed by rγ . 15

Hα+n The hyperplane in A killed by the functional α+ n. 20

Hn The union of all n-facets. 26

Ind The induction functor. 56

ind The compact induction functor. 56

k A finite extension of a p-adic field Qp. 15

ℓ = |∆|. 12

L = |Φ|. 12

ΛC = ΛcR ∩ E⊥
Φ . 14

ΛR The root lattice, which is the lattice generated by Φ. 12

M(x) The generalized Levi subgroup of G associated to a point x ∈ A. 26

N The normalizer in G of T if |k| > 3. 14

Nx = N ∩Gx is the inverse image in Gx of Nx. 36

Nx The normalizer in Gx of T if |f| > 3. 36

ω A nontrivial discrete valuation on k. 15

℘ The unique prime ideal in R. 15

Px The parabolic subgroup of G associated with x ∈ As(G). 17

̟ A fixed uniformizing element in k. 15

πG The orthogonal projection map As(G) → Ared
s (G). 16

πG The orthogonal projection map A(G) → Ared(G). 21

Φ ⊂ E is the root system of our generalized Levi subgroup G. 12

Φ± Some choice of positive and negative roots in Φ. 12

Φx The closed sub-root system corresponding to a point x ∈ A. 26

Ψ The affine root system associated to the root system Φ. 28

q = |f|. 15

R The ring of integers in k. 15

rγ The reflection of E or E∗ over the hyperplane orthogonal to the root γ or
the co-root γ̌.

15

rα+n The reflection over the hyperplane Hα+n. 20

R(G) The category of smooth representations of G. 3

̺(π) The depth of the representation π. 51

T The Cartan subgroup of Gc, which is fixed. 11
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T (R) The maximal compact subgroup of T generated by elements of norm 1. 22

Tα The map A → A given by translation by α̌. 21

V Some lattice contained in a faithful complex representation V C of gC which
is invariant under the set (1.4).

10

Vµ The weight space (lattice) of V corresponding to the weight µ. 10

vµ A generator of the weight space Vµ, so the vµ generate V as an integer
lattice.

10

V k = V ⊗Z k. 10

Vx, V
+
x The Chevalley lattices in V k preserved by Gx. 30

V (U) The U -invariant subspace of the representation V of G ⊃ U generated by
all u · v − v for v ∈ V, u ∈ U .

4

W The (spherical) Weyl group associated with the root system Φ. 14

W̃ The affine Weyl group associated with the root system Φ. 22

Wx The Weyl group of Gx. 36

wγ(t) = xγ(t)x−γ(−t−1)xγ(t) for t ∈ k×. 11

xγ(t) = exp(tXγ) for t ∈ k is an element of the root group Xγ corresponding to
the root γ.

10

Xγ = {xγ(t) : t ∈ k} ∼= k+ is the root subgroup corresponding to the root γ. 10

Xγ The element of the Chevalley basis of g that generates the root space gγ . 9

Xψ The subgroup associated to the affine root ψ. 28

Zγ = [Xγ , X−γ ] is an element of the Chevalley basis of g if γ ∈ ∆c. 9
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