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Abstract. These are notes from courses on automorphic representations given by Jayce R. Getz.
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Introduction

The goal of this course is to introduce and study automorphic representations. Given a
global field F and a reductive algebraic group G over F , then an automorphic representation of G
is a (g, K)×G(A∞F )-module which is isomorphic to a subquotient of L2(G(F )\G(AF )). The first
part of the course is dedicated to explicating the objects in this definition. The next goal is to state a
rough version of the Langlands functoriality conjecture, motivated by the description of unramified
admissible representations of reductive groups over nonarchimedian local fields. The discussion of
unramified representations is complemented by a discussion of supercuspidal representations. Next
we recall the notion of distinguished representations in global and local settings; this has emerged
as an important concept, especially in relation to arithmetic-geometric applications of automorphic
forms. The trace formula in simple settings is then desribed and proved. Finally, we end the course
with a discussion of the relationship between automorphic representations and the cohomology of
locally symmetric spaces.

The author thanks Francesc Castella, Andrew Fiori and Cameron Franc for typsetting the first
draft of these notes, and thanks B. Conrad, M. Kim, L. Saper, and C. Schoen for many useful
corrections and comments. The errors that remain are of course due to the author.

1. Background on adele rings

1.1. Adeles. The arithmetic objects of interest in this course are constructed using global fields.
They can be defined axiomatically, but we take a more pedestrian approach. For more information
consult chapter 5 of [RV99].

Definition 1.1. A global field F is a field which is a finite extension of Q or of Fq(t) for some
prime power q = pr. Global fields over Q are called number fields while global fields over Fq(t)
are called function fields.

To each global field F one can associate an adele ring AF . Before defining this ring, we recall
the related notions of a valuation a place of a global field.

Definition 1.2. Let F be a global field. A (non-archimedian) valuation on F is a map

v : F −→R ∪∞
such that for all a, b ∈ F

• v(a) =∞ if and only if a = 0.
• v(a) + v(b) = v(ab).
• v(a+ b) ≥ min(v(a), v(b)).

These axioms are designed so that if one picks 0 < α < 1 then

| · |v : F −→R≥0(1.1.1)

x 7−→ αv(x)

is a non-archimedian absolute value on F , in other words, it is a map to R≥0 satisfying the
following axioms:

(1) |a|v = 0 if and only if a = 0
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(2) |ab|v = |a|v|b|v

(3) |a+ b|v ≤ max(|a|v, |b|v) (the non-archimedian triangle inequality).

A function | · | : F −→R≥0 that does not satisfy (3), but satisfies (1-2) and the following
weakening of (3):

(3’) |a+ b|v ≤ |a|v + |b|v (the usual triangle inequality)

is known as an archimedian absolute value. These absolute values all induce metrics on F , the
metric induced by | · |v is known as the v-adic metric. The completion of F with respect to this
metric is denoted Fv.

Definition 1.3. A place of a global field F is an equivalence class of absolute values, where
two absolute values are said to be equivalent if they induce the same topology on F . A place is
(non)archimedian if it consists of (non)archimedian absolute values.

The places of a global field F fall into two categories: the finite and infinite places. In the
function field case these are all nonarchimedian. If F is a number field then the finite places are
in bijection with the prime ideals of its ring of integers OF ; these are all non-archimedian. The
infinite primes of a number field are in bijection with the embeddings F ↪→ C up to complex
conjugation; these are all archimedian.

The place v associated to a prime $v of OF is the equivalence class of a absolute value attached
to the valuation

v(x) := max{k ∈ Z : x ∈ $k
vOF}.

and the place v associated to an embedding ι : F ↪→ C is the equivalence class of the absolute
value

|ιx|[ι(F ):R].

In the first case by convention we define |x|v := q−v(x) where q := |OF/$|, and in the second
|x|ι := |ιx|[ι(F ):R].

If v is finite, then the ring of integers of Fv is

OFv := {x ∈ Fv : |x|v ≤ 1};

it is a local ring with maximal ideal

$Fv = {x ∈ Fv : |x|v < 1}

denotes the unique maximal ideal of OFv . We will often write Ov and $v for OFv and $Fv ,
respectively.

Example 1.4. If F = Q and p ∈ Z is a finite prime, then completing Q at the p-adic absolute
value gives the local field Qp. Its ring of integers is Zp and the maximal ideal is pZp. The residue
field is Zp/pZp ∼= Z/pZ ∼= Fp.

Definition 1.5. Let F be a global field. The ring of adeles of F , denoted AF , is the restricted
direct product of the completions Fv with respect to the rings of integers Ov:

AF =

{
(xv) ∈

∏
v

Fv : xv ∈ Ov for all but finitely many places v

}
.

The restricted product is usually denoted by a prime:

AF =
∏′

v

Fv.
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Note that the adeles are a subring of the full product
∏

v Fv. If S is a finite set of places of F
then we write

ASF =
∏′

v 6∈S

Fv, FS := AF,S =
∏
v∈S

Fv

We endow AF with the restricted product topology. This is defined by stipulating that open
sets are sets of the form

US ×
∏
v 6∈S

Ov

where S is a finite set of places of F including the infinite places and US ⊆ FS is an open set.
This is not the same as the topology induced on AF by regarding it as a subset of the direct

product
∏

v Fv. While
∏

v Fv is not locally compact, for AF one has the following:

Proposition 1.6. The adeles AF of a global field F are a locally compact hausdorff topological
ring.

Proof. We argue that AF is locally compact and leave the other details to the reader. For any
finite set of places S, the subset ∏

v∈S

Fv ×
∏
v 6∈S

Ov

is an open subring of AF for which the induced topology coincides with the product topology. The
above subring is thus locally compact. Every x ∈ AF is contained in some such subring, which
shows that AF is locally compact. �

There is a natural diagonal embedding F ↪→ AF .

Lemma 1.7. The subspace topology on F arising from the embedding F ↪→ AF is the discrete
topology.

Proof. Let x ∈ F×. For each finite place v of F let nv = v(x), so that x ∈ $nv
v but x 6∈ $nv+1

v for
all v. Note that nv = 0 for all but finitely many places. For each infinite place v let Uv ⊆ Fv be
the open ball of radius

∏
v<∞ |x|

−1
v about x. Consider the open subset of AF defined by

U =
∏
v|∞

Uv ×
∏
v<∞

$nv
v .

Of course x ∈ U by construction; suppose y ∈ F is also contained in U . Recall that the product
formula from algebraic number theory says that for any global field F and any z ∈ F×,∏

v

|z|v = 1.

Apply this to x− y; note that |x− y|v ≤ |x|v for all finite places v. Thus∏
v

|x− y|v ≤
∏
v<∞

|x|v ×
∏
v|∞

|x− y|v < 1

since y ∈ Uv. The product formula thus shows that we must have x−y = 0, and hence F∩U = {x}.
This shows that F obtains the discrete topology from AF . �

We often identify F with its image in AF .

Theorem 1.8 (Approximation). For every global field F , one has a decomposition

AF = F∞ +
∏
v<∞

Ov + F.

Proof. See Theorem 5-8 of [RV99]. �
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Claim 1.9. For every global field F ,(
F∞ +

∏
v<∞

Ov

)
∩ F = OF .

Proof. One inclusion is obvious. For the other, if x ∈ F satisfies x ∈ Ov for all finite places v then
xOF is a proper ideal of OF , and not just fractional, since

xOF =
∏
v<∞

$v(x)
v .

Thus x ∈ OF , which concludes the proof. �

Remark 1.10. The fact that AF is a topological ring for the adelic topology relies on the fact that
the local rings Ov are one dimensional. In higher dimensional settings, say for function fields of
algebraic surfaces, one must be more creative when defining appropriate analogues of the adeles.

1.2. Adelic points of affine schemes. Let Ring denote the category of commutative rings with
identity. If R ∈ Ring then we obtain a functor

Spec(R) : Ring−→Set(1.2.1)

A 7−→ HomRing(R,A).

A affine scheme is can be defined to be a functor of this form, although alternate definitions are
possible and often desirable. Thus the category of affine schemes is anti-equivalent to the category
of rings. If S is a functor then we say it is representable by a ring R if S = Spec(R). In this
case we write

O(S) := R.

If R ∈ Ring, then an R-scheme is a scheme S with a map S−→ Spec(R). A morphism S1−→S2

is a morphism commuting with the maps to R. An R-scheme S = Spec(A) is of finite type if it is
finitely generated as an R-algebra.

We state the following theorem on topologizing the points of affine schemes points of schemes
of finite type over a topological ring R.

Theorem 1.11. Let R be a topological ring and let X be an affine scheme of finite type over R.
Then there exists a unique way to topologize X(R) such that:

(1) the topology is functorial in X; that is if X → Y is a morphism of affine schemes of finite
type over R, then the induced map on points X(R)→ Y (R) is continuous;

(2) the topology is compatible with fibre products; this means that if X → Z and Y → Z are
morphisms of affine schemes, all of finite type over R, then the topology on X ×Z Y (R) is
exactly the fibre product topology;

(3) closed immersions of schemes X ↪→ Y correspond to topological embeddings X(R) ↪→ Y (R);
(4) if X = Spec(R[T ]) then X(R) is homeomorphic with R under the natural identification

X(R) ∼= R.

Explicitly, if A = Γ(X,OX) then X(R) = HomR−alg(A,R) can be embedded in the product RA.
Give X(R) the topology induced by the product topology on RA.

If R is Hausdorff or locally compact, then so is X(R).

Proof. See Conrad’s note [Con] for the proof. The basic idea is to verify the statement in the case
where X = Ak and then reduce to this case. �
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2. Algebraic Groups

2.1. Group schemes. For a nice introduction to affine group schemes, consult Waterhouse’s book
[Wat79]. The notes [Mil12] handle more general situations. Fix a commutative ring k.

Definition 2.1. An affine group scheme over k is a functor

k-algebra−→Group

representable by a k-algebra. A morphism of affine group schemes H −→G is a natural trans-
formation of functors from H to G.

In these notes we will only be interested in affine group schemes (as opposed to, say, elliptic curves),
so we will often omit the word “affine.”

Concretely, a natural transformation H → G is just a collection of group homomorphisms

H(R)−→G(R)

for all k-algebras R such that if R′ → R is a k-algebra homomorphism then the following diagram
commutes:

H(R′) −−−→ G(R′)y y
H(R) −−−→ G(R)

Example 2.2. The additive group Ga is the functor assigning to each k-algebra R its additive
group, Ga(R) = (R,+). It is representable by the polynomial algebra k[X]:

Homk (k[X], R) = R.

Example 2.3. The multiplicative group Gm is the functor assigning to each each k-algebra R its
multiplicative group, Gm(R) = R×. It is representable by k[X, Y ]/(XY − 1).

Example 2.4. The general linear group GLn for n ≥ 1 is the functor taking a k-algebra R to the
group of invertible matrices with coefficients in R. It is an affine group scheme represented by the
k-algebra k[Xi,j : 1 ≤ i, j ≤ n][Y ]/(det(Xi,j) · Y − 1). Note that GL1 = Gm.

Example 2.5. If one wishes to be coordinate free, then for any finite rank free k-module V one
can define

GLV (R) := {R-module automorphisms V → V }.
A choice of isomorphism V ∼= kn induces an isomorphism GLV ∼= GLn.

It is useful to have a isolate a few types of morphisms:

Definition 2.6. A morphism H → G is injective or an embedding if O(G)→ O(H) is surjec-
tive.

More concretely, this means that H = Spec(R), where

R = O(G)/I

for some ideal I ≤ O(G).

Remark 2.7. If H → G is injective, then H(R) → G(R) is injective for all k-algebras R (this
is an easy exercise). However, the converse is not true in general. It is true over a field [Mil12,
Proposition 2.2].

We isolate a particularly important class of morphisms with the following definition:
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Definition 2.8. A representation of an affine group G is a morphism G→ GLV . It is faithful
if it is an injection

Definition 2.9. A group scheme G is said to be linear if it admits a faithful representation
G→ GLV for some V .

We will usually be concerned with linear algebraic groups. We shall see below in Theorem 2.13
that this is not much loss of generality if k is a field.

2.2. Extension and restriction of scalars. Let k → k′ be a homomorphism of k-algebras.
Given a k-algebra R, one obtains a k-algebra R ⊗k k′. Moreover, given a k′ algebra R′, one can
view it as a k-algebra in the tautological manner. This gives rise to a pair of functors

⊗kk′ : k-alg−→ k′-alg

k′-alg−→ k-alg

known as base change and restriction of scalars, respectively.
Analogously, we have a base change functor

k′ : AffSchk−→AffSchk′

given by Xk′(R
′) = X(R′).

Under certain circumstances we also have a (Weil) restriction of scalars functor

Resk′/k : AffSchk′ −→AffSchk

given by

Resk′/kX
′(R) := X ′(k′ ⊗k R).

For example, it is enough to assume that k′/k is finite and locally free [BLR90, Theorem 4, §7.6].
These constructions allow us to change the base ring k, and are quite useful. We note that the

reason for care in the case of restriction of scalars is that it is not always the case that if X is an
affine scheme then Resk′/kX is again an affine scheme.

Example 2.10. The Deligne torus is

S := ResC/R GL1 .

We have S(R) = C× and S(C) = C× ×C×. Let V be a real vector space. To give a representation
S→ GL(V ) is equivalent to giving a Hodge structure on V .

Example 2.11. Let d be a square free integer and L = Q(
√
d). Taking the regular representation

of L acting on L with basis {1,
√
d} we see that ResL/k(Gm)(Q) ∼=

{(
a db
b a

)
|ab − db2 6= 0

}
.

For a good reference see for example [BLR90].

2.3. Algebraic groups over a field. We now assume that k is a field and let ksep ≤ k̄ be a
separable (resp. algebraic) closure of k. Much of the theory simplifies in this case.

One has the following definition:

Definition 2.12. An (affine) algebraic group over k is an affine group scheme of finite type over
k.

Concretely, G is algebraic if G is represented by a quotient of k[x1, . . . , xn] for some n.
One manner in which the theory simplifies in this case is exhibited by the following:

Theorem 2.13. An algebraic group over k admits a faithful representation, and hence is linear.
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Proof. [Mil12, Theorem 9.1]. �

We now discuss the Jordan decomposition.

Definition 2.14. Let k be a perfect field. An element x ∈Mn(k) is said to be:

• semi-simple if there exists g ∈ GLn(k) such that g−1xg is diagonal
• nilpotent if there exists n ∈ N such that xn = 0
• unipotent if (x− id) is nilpotent

For an arbitrary linear group we say that an element g ∈ G is semi-simple, (resp nilpotent, resp
unipotent) if φ(g) is so for some (any) faithful representation φ : G−→GLn.

Theorem 2.15. (Jordan decomposition) Let G be an algebraic group over a perfect field k. Given
x ∈ G(k) there exist xs, xu ∈ G(k) such that xs is semi-simple, xu is unipotent, x = xsxu = xuxs.
Moreover, this decomposition is unique.

Proof. [Mil12, Theorem 2.8]. �

We should point out that, in the theorem above, even though x may be a k point, neither xs nor
xu need be.

At this point it is useful to introduce another condition on our algebraic groups, namely that of
smoothness. Rather than take a digression to define this, we will use the following theorem to
give an ad-hoc definition:

Theorem 2.16. An algebraic group G over a field k is smooth if it is geometrically reduced, that
is, if O(G)⊗k k̄ has no nilpotent elements.

Proof. [Mil12, Proposition 8.3]. �

We will also require the notion of connectedness:

Definition 2.17. An affine scheme X is connected if the only idempotents in O(X) are 0 and 1.
A group scheme is connected if its underlying affine scheme is connected.

If k = Q, then G is connected if and only if G(C) is connected as a topological space.

Definition 2.18. Let k be a perfect field and let G be a smooth algebraic group. The unipotent
radical Ru(G) of G is the maximal connected normal subgroup of G such that G(k̄) consists of
unipotent elements. The (solvable) radical is the maximal connected normal subgroup of Gk̄

such that G(k̄) is solvable.

We remark that since a unipotent subgroup is always solvable we always have Ru(G) ⊆ R(G).

Remark 2.19. If k is not perfect then these definitions must be modified. See [Mil12] or [CGP10].
In fact, even if k is perfect, there are alternate, and perhaps better, definitions (see [Mil12]).

Definition 2.20. A smooth connected algebraic group G over a perfect field k is said to be
reductive if Ru(G) = {id} and semi-simple if R(G) = {id}.

Example 2.21.

• GLn is reductive but not semi-simple since its center is normal.
• SLn is semi-simple (which implies reductive)
• The group of upper triangular matrices in GLn is not reductive (as it is solvable). We

remark that unipotent groups are always upper-triangularizable (as groups) [Bor91, I.4.8].
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Suppose that k is a perfect field and G is a reductive group over k. Then

G = ZGG
der

where ZG ≤ G is its center and Gder ≤ G is the derived subgroup of G. It is the algebraic
subgroup such that

Gder(k̄) = {xyx−1y−1 : x, y ∈ G(k̄)}
We note that since G is reductive, Gder is semisimple. One can alternately define Gder as the
intersection of all normal subgroups N ≤ G such that G/N is commutative. We also note that

ZG ∩Gder

is the (finite) center of Gder [Mil12, XVII.5].

2.4. Lie Algebras. Now that we have defined reductive groups, we could ask for a classification
of them, or more generally for a classification of morphisms H → G of reductive groups. The first
step in this process is to linearize the problem using objects known as Lie algebras.

Definition 2.22. Let k be a ring. A Lie algebra (over k) is a k-module g together with a pairing,
called the Lie bracket

[·, ·] : g× g −→ g

which satisfies the following:

(1) [·, ·] is bilinear.
(2) [x, x] = 0 for all x ∈ g.
(3) [·, ·] satisfies the Jacobi-identity, that is [[x, y], z]+ [[y, z], x]+ [[z, x], y] = 0 for all x, y, z ∈ g

Morphisms of Lie algebras are simply k-module maps preserving [·, ·].

Remark 2.23. If k′ is a k-algebra then g⊗k k′ inherits a Lie algebra structure in a natural manner.

Let LAGk denote the category of linear algebraic groups over k and let LieAlgk denote the
category of Lie algebras over k.

There exists a functor
Lie : LAGk −→ LieAlgk

defined by:
Lie(G) = ker(G(k[t]/t2)→ G(k))

where the map G(k[t]/t2)→ G(k) is induced by the map k[t]/t2 → k sending t to 0. We will define
the bracket operation shortly. Usually one uses gothic German letters to denote Lie algebras, e.g.

g := Lie(G).

Example 2.24. The kernel of the map GLn(k[t]/t2)→ GLn(k) is easily seen to be id +tA where
A ∈Mn(k). Thus

gln = Lie(GLn) 'Mn.

One can define the bracket in an ad-hoc manner as

[X, Y ] := XY − Y X.

We define the bracket in an ad-hoc manner for any linear algebraic group G by choosing a
faithful representation

G ↪→ GLn
and hence a map

Lie(G)−→ gln
and defining the bracket on Lie(G) to be the restriction of the bracket on gln. This is of course an
unsatisfactory definition as it is not intrinsic to g, but it will do for our purposes.
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Example 2.25.

• The special linear group SLn has lie algebra sln = {X ∈Mn|Tr(X) = 0}.
• Let k be a field of characteristic not equal to 2 and let SOn,n be the orthogonal group whose

points in a k-algebra R are given by

SO2n(R) = {g ∈ GLn(R) : gtSg = S}

where S is the symmetric matrix

(
0 id
id 0

)
has Lie algebra

so2n = {X ∈Mn|X tS + SX = 0}

2.5. Tori. Throughout this subsection we assume that k is a field.

Definition 2.26. An algebraic torus is a linear algebraic group T such that Tksep ∼= Gn
m for

some n. The integer n is called the rank of the torus.

Definition 2.27. A character of an algebraic group G is an element of X∗(G) = Hom(G,Gm).
A co-character or one parameter subgroup is an element of X∗(G) = Hom(Gm, G).

For k-algebras k′ one usually abbreviates X∗(G)k′ := X∗(Gk′), etc.
One indication of the utility of the notion of characters is the following theorem:

Theorem 2.28. The association

T 7−→ X∗(T )ksep

defines a contravariant equivalence of categories between the category of algebraic tori defined over
k and finite dimensional Z-torsion free Z[Gal(ksep/k)]-modules.

Example 2.29.

• We define a special orthogonal group SO2 by stipulating that for Q-algebras R one has

SO2(R) =

{(
a b
−b a

)
: a, b ∈ R and a2 + b2 = 1

}
Over any field containing a square root of −1 we can diagonalize this via:

1

2

(
1 i
i 1

)(
a b
−b a

)(
1 −i
−i 1

)
=

(
a− bi 0

0 a+ bi

)
In other words, SO2Q(i)

∼= Gm.
• If L/k is any (separable) field extension then ResL/k(Gm) is an algebraic torus. Moreover

one can show that:

X∗(ResL/k(Gm))L '
⊕
τ

Zτ

where the summation runs over the embeddings τ : L → k̄ of L into an algebraic closure
of k; this has a natural Galois action. In particular this example illustrates the connection
between the “descent data” for etale algebras and that for the tori coming from their
multiplicative group (see [BLR90], for example, for the definition of descent data).
• Let L/k be a separable extension and let

NL/k : ResL/kGm−→Gm

be the norm map; it is given on points by x 7→
∏

τ∈Homk(L,k̄) τ(x). Then the kernel of NL/k

is an algebraic torus. When L = Q(i) and k = Q this torus is isomorphic to the group SO2

constructed above.
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In the above examples we see that though an algebraic torus T satisfies Tksep ∼= Gn
m, it may not

be the case that T ∼= Gn
m. The following definitions are therefore useful.

Definition 2.30. An algebraic torus T over a field k is said to be split if T ' Gn
m over k or if

equivalently X∗(T )k ∼= Zrank(T ). An algebraic torus T is said to be anisotropic if X∗(T )k = {id}.
Any torus T can be decomposed as T = T aniT spl where T spl ≤ T is the maximal split subtorus,

T ani ≤ T is the maximal anisotropic subtorus, and T ani ∩ T spl is finite.

2.6. Maximal tori in reductive groups. Let G be a reductive group over a perfect field k. It is a
remarkable fact, known informally as Cartan-Weyl or highest weight theory, that the representation
theory of G can be recovered by restricting representations to large abelian subgroups of G, namely
maximal tori:

Definition 2.31. A torus T ≤ G is maximal if Tk̄ is maximal among all tori of Gk̄.

We will not discuss the highest weight theory, but the principle of studying representations of G
by restricting various objects to maximal tori will play a role in what follows. We will also recall
in the following subsection how one can recover Gk̄ from a maximal torus in G along with certain
auxilliary data (see Theorem 2.42).

Theorem 2.32. Every reductive group over has a maximal torus [Spr09, CH2 3.1.1]. All maximal
tori in G(k) are conjugate under G(k) [Bor91, IV.11.3].

In view of the second assertion of Theorem 2.32, the rank of a maximal torus of G is an invariant
of G; it is known as the rank of G.

For the remainder of lecture G is a connected reductive group and T ≤ G is a maximal torus.

Definition 2.33. The Weyl Group of T in G is W (G, T ) := NG(T )/ZG(T ), where NG(T ) is the
normalizer of T in G and ZG(T ) is the centralizer of T in G.

Remark 2.34. The group NG(T ), ZG(T ) ≤ G are algebraic subgroups. The Weyl group is a finite
group scheme in the sense that W (G, T )(k̄) = NG(T )(k̄)/ZG(T )(k̄) is finite.

Example 2.35.

• One maximal torus in GLn is the torus of diagonal matrices. In this case we have that
W (G, T ) ∼= Sn; it acts on the torus of diagonal matrices by by permuting the entries.
• If F/k is an etale k-algebra of rank n (for example a field extension of degree n) then

choosing a basis for k we obtain an embedding

ResF/kGm ↪→ GLn .

In this case W (GLn, T )(k) ∼= Aut(F/k). Every maximal torus in GLn arises in this manner
for some F/k.

2.7. Root data. Let G be a reductive group over a perfect field k and let T ≤ G be a maximal
torus. Our next goal is to associate to such a pair (G, T ) a root datum Ψ(G, T ) = (X, V,Φ,Φ∨)
that will characterize Gk̄.

Let g denote the Lie algebra of G. The natural action of G on g is known as the adjoint
representation of G on g:

Ad : G→ GL(g)

For example, when G = GLn/k this is the usual action of GLn on Mn by conjugation.
If G contains a maximal torus that is split we say that G is split. Assume that G is split.

Then Ad(T ) consists of commuting semisimple elements, and therefore the action of T on g is
diagonalizable. For a character α ∈ X∗(T ), let

gα := {X ∈ g | Ad(t)X = α(t)X for all t ∈ T (k)}.(2.7.1)
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Definition 2.36. The nonzero α ∈ X∗(T ) such that gα 6= 0 are called the roots of T in G. We let
Φ(G, T ) be the (finite) set of all such roots α, and call the corresponding gα root spaces.

Theorem 2.37. Let T ⊂ G be as above, and let t = Lie(T ). Then

g = t⊕
⊕

α∈Φ(G,T )

gα.

Furthermore, each of the root spaces is one-dimensional [Spr09, Corollary 8.1.2].

Let V be the real vector space 〈Φ〉 ⊗Z R, where 〈Φ〉 ⊂ X∗(T )(k) denote the (Z-linear) span of
Φ = Φ(G, T ). Then the pair (Φ, V ) is a root system, according to the following:

Definition 2.38. Let V be a finite dimensional R-vector space, and Φ a subset of V . We say that
(Φ, V ) is a root system if the following three conditions are satisfied:

(R1) Φ is finite, does not contain 0, and spans V ;
(R2) For each α ∈ Φ there exists a reflection sα relative to α (i.e. an involution sα of V with

sα(α) = −α and restricting to the identity on a subspace of V of codimension 1) such that
sα(Φ) = Φ;

(R3) For every α, β ∈ Φ, sα(β)− β is an integer multiple of α.

A root system (Φ, V ) is said to be of rank dimRV , and to be reduced if for each α ∈ Φ, ±α are the
only multiples of α in Φ. The Weyl group of (Φ, V ) is the subgroup of GL(V ) generated by the
reflections sα:

W (Φ, V ) := 〈sα : α ∈ Φ〉 ⊆ GL(V ).

Remark 2.39. If (Φ, V ) is the root system associated with the split torus T ≤ G then (Φ, V ) is
reduced and

W (Φ, V ) ∼= W (G, T )(k).

Let (Φ, V ) be the root system associated with T ⊂ G. There exists a pairing

( , ) : V × V → C
for which the elements in the Weyl group become orthogonal transformations. Thus if α ∈ Φ there
exists a unique α∨ ∈ X∗(T ) such that

〈−, α∨〉 := α∨(−) =
2(−, α)

(α, α)

as maps X∗(T )→ C. Let Φ∨ := {α∨ | α ∈ Φ}, and V ∨ := 〈Φ∨〉 ⊗Z R.

Lemma 2.40. The pair (Φ∨, V ∨) is a root system. �

A fundamental result to be stated below is that the quadruple Ψ = (X∗(T ), X∗(T ),Φ,Φ∨)
attached to T ⊂ G contains enough information to characterize G, at least over k.

Definition 2.41. A root datum is a quadruple (X, Y,Φ,Φ∨) consisting of a pair of free abelian
groups X, Y with a perfect pairing 〈 , 〉 : X×Y → Z, together with finite subsets Φ ⊂ X, Φ∨ ⊂ Y
in 1-to-1 correspondence (Φ 3 α↔ α∨ ∈ Φ∨) such that

• 〈α, α∨〉 = 2;
• If for each α ∈ Φ, we let sα : X → X be defined by sα(x) = x− 〈x, α∨〉α, then sα(Φ) ⊂ Φ,

and the group 〈sα | α ∈ Φ〉 generated by {sα} is finite.

We say that a root datum is reduced if α ∈ Φ only if 2α /∈ Φ.

An isomorphism of root data (X, Y,Φ,Φ∨)
∼−→ (X ′, Y ′,Φ′, (Φ′)∨), is a group isomorphism X

∼−→
X ′ inducing dual isomorphisms sending Φ to Φ′ and Φ∨ to (Φ′)∨, respectively.
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Theorem 2.42 (Chevalley, Demazure). Assume k = k. The map isomorphism classes of
connected reductive groups

over k

 −→
{

isomorphism classes of
reduced root data

}
induced by G 7→ Ψ(G, T ) := (X∗(T ), X∗(T ),Φ,Φ∨) is bijective.

If (X, Y,Φ,Φ∨) is a root datum, then so is (Y,X,Φ∨,Φ). The associated reductive algebraic

group over C is denoted Ĝ and is called the complex dual of G. We note that there is an
isomorphism

W (G, T )k̄−̃→W (Ĝ, T̂ )(C)(2.7.2)

sα 7−→ sα∨ .

Remark 2.43. Our original attributions for the above thereom were incorrect. Brian Conrad cor-
rected us as follows: “Demazure introduced the notion of root datum so as to systematically keep
track of a nontrivial central torus in the theory, but over an algebraically closed field all of the
nontrivial content for the existence and isomorphism parts of the story is in the semisimple case,
which is entirely due to Chevalley [Che58]. Demazure’s contribution in [DG74, Expose XXII] was
to solve the Existence and Isomorphism problems over Z (and so over any scheme). Actually,
Chevalley did make constructions of everything over Z, but without an intrinsic characterization
of what he was doing (and without an Isomorphism Theorem) – this was the initial motivation for
Demazure’s work, to figure out the intrinsic significance of Chevalley’s constructon over Z.”

One might ask if one could define in a natural way a morphism of root data, and thereby use root
data to classify morphisms between reductive groups. If such a definition exists, we do not know
it. However, it is the case that a great deal of information about morphisms between reductive
groups can be deduced by considering root data. A systematic account of this for classical groups
is given in Dynkin’s work [Dyn52].

Example 2.44. G = GLn. The group of diagonal matrices

T (R) :=

{( t1
...

tn

)
| ti ∈ R×

}
is a maximal torus in G. The groups of characters and of cocharacters of T are both isomorphic
to Zn via

(k1, . . . , kn) 7−→
(( t1

...
tn

)
7→ tk11 · · · tknn

)
and

(k1, . . . , kn) 7−→

(
t 7→

(
tk1

...
tkn

))
,

respectively. Note that with these identifications, the natural pairing 〈 , 〉 : X∗(T )×X∗(T ) → Z
corresponds to the standard “inner product” in Zn. The roots of G relative to T are the characters

eij :

( t1
...

tn

)
7→ tit

−1
j

for every pair of integers (i, j) ∈ {1, . . . , n}2 with i 6= j, and the corresponding root spaces gln,eij
are the linear span of the n × n matrix with all entries zero except the (i, j)-th component. The
coroot e∨ij associated with eij is the map sending t to the diagonal matrix with t in the ith entry

and t−1 in the jth entry and 1 in all other entries.
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Example 2.45. G = Sp2n. These are the split symplectic groups, whose R-valued points are given
by

G(R) = {g ∈ GL2n(R) | gtJn,ng = Jn,n},

where Jn,n is the block matrix
(

Jn
−Jn

)
, with Jn being the n× n matrix

(
1

�
1

)
. We discuss Sp4.

Its Lie algebra is

sp4 = {X ∈ gl4 |X tJ2,2 + J2,2X = 0}.
The group of diagonal matrices

T (R) =

{
x(t1, t2) :=

( t1
t2
t−1
2

t−1
1

)
| t1, t2 ∈ R×

}
is a maximal torus in G = Sp4. Consider the characters e1 : x(t1, t2) 7→ t1 and e2 : x(t1, t2) 7→ t2.
Then the set of roots of G relative to T is

Φ(G, T ) = {±(e1 − e2),±(e1 + e2),±2(e1 + e2),±2e2}.

The corresponding root spaces are easily computed. For example:

sp4,e1−e2 = {( A A′ ) | A = ( v ) , A′ = ( −v )}
sp4,2e2 = {( B ) | B = ( b )}

sp4,e1+e2 = {( B ) | B = ( c )}.

The coroots are given by (ae1 + be2)∨(t) =

( ta

tb

t−b

t−a

)
We thus have

(e1 − e2)∨(t) =

(
t
t−1

t
t−1

)
, (2e2)∨(t) =

(
1
t2

t−2

1

)
,

etc.

Remark 2.46. There is a complete classification of all the possible reduced irreducible root systems.
This is one of the main outcomes of the Weyl-Cartan theory. The exhaustive list is A` (` ≥ 1), B`

(` ≥ 1), C` (` ≥ 3) and D` (` ≥ 4), corresponding to SL`+1, SO2`+1, Sp2` and SO2`, respectively,
and the exceptional E6, E7, E8, F4 and G2.

2.8. Borel subgroups. We assume in this subsection that G is a reductive group over a perfect
field k.

Definition 2.47. A closed subgroup B ≤ G is a Borel subgroup if Bk̄ ≤ Gk̄ is a maximal connected
solvable subgroup. A closed subgroup P ⊂ G is a parabolic subgroup if it contains a Borel subgroup.

Example 2.48. Conjugacy classes of parabolic subgroups of GLn are parametrized by partitions
of n.

Theorem 2.49. A closed subgroup P ⊂ G is parabolic if and only if the quotient G/P is repre-
sentable by a projective scheme.

Example 2.50. If B ≤ SL2 is the subgroup of upper triangular matrices, then for k-algebras R
one has an isomorphism

SL2 /B(R)−→P1(R)

( a bc d ) 7−→ [a : c]
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Parabolics always admit a Levi decomposition

P = MN

where N is the unipotent radical of P and M ≤ P is a reductive subgroup.

Remark 2.51. The group Gk̄ trivially has Borel subgroups, but G need not have Borel subgroups.
For example, if B is a division algebra over k and G is the algebraic group defined by

G(R) = (B ⊗k R)×,

then G does not have a Borel subgroup.

Definition 2.52. A reductive group G is said to be split if there exists a maximal split torus
T ⊂ G (over k); it is said to be quasi-split if it contains a Borel subgroup.

Note that G is split only if it is quasi-split, but that the converse is not true, as evidenced by
the following:

Example 2.53. Take G = U(1, 1), that is

G(R) = {g ∈ GL2(C⊗R R) : gt
( −1
−1

)
g =

( −1
−1

)
}.

Then the subgroup of upper triangular matrices in G is a Borel subgroup of G. Thus G is quasi-
split. It is not, however, split.

3. Automorphic representations

In this section we give the definitions of admissible and automorphic representations. At this
point the definitions will undoubtably seems opaque and unmotivated to the uninitiated, but we
will spend considerable time in the following sections elaborating on them. We recall that if R is
a Hausdorf, locally compact topological ring and X an affine scheme of finite type over R then
X(R) is endowed with a canonical Hausdorf, locally compact topology by Theorem 1.11; it is the
same as the toplogy obtained by choosing a closed immersion X → Ak and giving X(R) ↪→ Rk

the subspace topology.

3.1. Haar measures. If G is a locally compact group (for example GLn(AF )) then there exists a
positive regular borel measure dLg on G that is left invariant under the action of G. :∫

G

f(xg)dLg =

∫
G

f(g)dLg for all x ∈ G.

Moreover, this measure is unique up to scalars. A left Haar measure is a choice of such a
measure. There is also a right invariant positive borel measure dRg = dL(g−1), again unique up to
scalars. Such a measure is known as a right Haar measure.

Definition 3.1. A locally compact group G is unimodular if there is a (nonzero) constant C
such that dRg = CdLg.

Example 3.2. All abelian groups, reductive groups and unipotent groups are uni-modular.
The points of Borel subgroups are, in general, not unimodular. For example, if B ≤ GL2 is the

Borel subgroup of upper triangular matrices then we can write

B(R) =

{(
u 0
0 u

)(
x

1
2 xy

1
2

0 y
1
2

)
∈ GLn(R)

}
With respect to this decomposition one can take dLg = dxdydu

y2|u| and dRg = dxdydu
y|u| .

For the remainder of this section we fix a Haar measure dg on G(AF ). Some of the constructions
below depend on this choice, but only up to a scalar multiple.
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3.2. Non-archimedian Hecke algebras. For the remainder of this section we let G be an affine
group scheme of finite type over the ring of integers OF of a global field F such that GF is reductive.

Definition 3.3. Let S be a set of nonarchimedian places of F . A function f on G(FS) is smooth
if it is locally constant. Similarly, if S contains all archimedian places of F , then a function on
G(ASF ) is smooth if it is locally constant.

With this definition in mind we can define as usual the space C∞c (G(FS)) of smooth, compactly
supported functions on G(FS), etc. In particular, if F is a number field we define

H∞ := C∞c (G(A∞F )

and if F is a function field we define

H := C∞c (G(AF )).

These are algebras under convolution of functions:

f ∗ h(g) :=

∫
G(AF )

f(x)h(x−1g)dx.(3.2.1)

In the number field case, H∞ is known as the non-archimedian Hecke algebra or the Hecke
algebra away from infinity. In the function field case, H is known as the Hecke algebra. If
S is a set of nonarchimedian places of F then we let

HS := C∞c (G(FS)).

Let 1Y denote the characteristic function of a set Y . In the number field case one has

C∞c (G(A∞F )) = lim−→
S 6⊇∞

C∞c (G(FS))⊗v/∈S∪∞ 1G(Ov) .(3.2.2)

where the limit is over all finite sets of places of F not containing the infinite places, partially
ordered by inclusion. In the function field case the analogous statement is true, though in this
case there is no need to exclude the infinite places.

For the following definition, assume we are in the number field case:

Definition 3.4. A representation (π, V ) of H∞ is admissible if it is nondegenerate and for all
compact open subgroups K∞ ≤ G(A∞F ) the space V K∞ = π(1K∞)V is finite dimensional.

Here an A-module M is nondegenerate if any element of M can be written as

a1m1 + · · ·+ akmk

for ai ∈ A and mi ∈ M . Of course, this would be trivial if H∞ had an identity element, but it
does not. It does however, admit approximations to the identity (see §7.3).

We make the analogous definition in the function field case, and also in the local case, i.e. where
A∞F is replaced by Fv for some non-archimedian place v of F .

3.3. Archimedian Hecke algebras. Assume for the moment that F is a number field. Then
G(R⊗Q F ) is a real reductive Lie group (in other words, the real points of a reductive group over
R). We let

K∞ ≤ G(R⊗Q F )

be a maximal compact subgroup.

Example 3.5. If G = GL2 any maximal compact subgroup is conjugate to K∞ = O2(R).
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Let

H∞ := H(G(R⊗Q F ), K∞)(3.3.1)

be the convolution algebra of distributions of G(R ⊗Q F ) supported on K∞. It is known as the
archimedian Hecke algebra or the Hecke algebra at infinity.

Definition 3.6. A fundamental idempotent in H∞ is an element of the form

1σ =
1

d(σ)meas(K∞)
χσdK∞,

where σ : K∞ → Aut(V ) is a representation of degree d(σ) < ∞, χσ is its character, and dK∞
denotes a Haar measure giving unit volume to K∞.

The convolution of f ∈ C∞c (G(R)) with a fundamental idempotent ξσ ∈ H∞ is given by the
formula

f ∗ ξσ =

∫
K∞

f(κ)ξσ(κ)d(σ)−1dK∞.

Definition 3.7. A continuous representation π of G(F∞) on a Hilbert space V is admissible if
for all irreducible representations σ of K the space π(1σ)V is finite dimensional.

3.4. Global Hecke algebras. In the function field case, the global Hecke algebra is simply H,
defined as above. In the number field case, the global Hecke algebra is

H := H∞ ⊗H∞.
In the number field case, a representation (π, V ) of H evidently decomposes as an exterior ten-
sor product of representations (π∞, V∞) of H∞ and H∞. Such a representation (π, V ) is called
admissible if (π∞, V∞) and (π∞, V ∞) are admissible.

In the number field case, let

AG ≤ ZG(F∞)(3.4.1)

denote the identity component of the real points of the greatest Q-split torus in ResF/Q(ZG). In
the function field case1, choose a single infinite place ∞0 of F and let

AG := ZG(F∞0).

Example 3.8. If G = GL2/Q then AG = R×>0I, where I is the identity matrix.

Consider the space L2(G(F )AG\G(AF )), where the Hermitian pairing is given by

(f1, f2) =

∫
G(F )AG\G(AF )

f1(g)f2(g)dg.

Here the measure is induced by a Haar measure on AG\G(AF ); we will see later that G(F ) acts
properly discontinuously on AG\G(AF ) and hence we obtain a measure on G(F )AG\G(AF ) by
choosing a fundamental domain for the action of G(F ).

Remark 3.9. The reason for introducing AG is that G(F )AG\G(AF ) has finite volume, whereas
G(F )\G(AF ) has finite volume if and only if the center of G is anisotropic.

The space L2(G(F )AG\G(AF )) carries a natural action R of H by convolution:

R : H× L2(G(F )AG\G(AF ))−→L2(G(F )AG\G(AF ))

(f, φ) 7−→
(
g 7→

∫
G(AF )

φ(gh)f(h)dh

)
1there are perhaps better ways to define AG in the function field case
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Here we regard φ as a function on G(AF ) trivial on AG.
An important theorem of Harish-Chandra states that for any ϕ ∈ L2(G(F )AG\G(AF )), the

(dense) subspace of K∞-finite vectors in R(G(AF ))ϕ is admissible. Here the closure is taken with
respect to the Hilbert space topology. We will return to this point, and the definition of K∞-finite,
in later sections.

In any case, we can finally formally state the following definition:

Definition 3.10. An automorphic representation of G(AF ) is an admissible representation of H
which is isomorphic to a subquotient of L2(G(F )AG\G(AF )).

Remark 3.11. One might ask why we restrict our attention to reductive groups G when defining
automorphic representations. To explain this let us recall that a general algebraic group G over
a number field F (not necessarily affine) has a unique linear algebraic subgroup Gaff E G such
that GA := G/Gaff is an abelian variety by a famous theorem of Chevalley. Moreover, GA is the
semidirect product of its unipotent radical U and its maximal reductive quotient. Thus we might
as well start by exploring what one might mean by an automorphic representation of a unipotent
group and an abelian variety.

Consider an abelian variety A. In [Con] one finds a proof of a result of Weil stating that A(AF )
can still be defined as a topological space. Moreover A(F ) ≤ A(AF ) is still a discrete subgroup.
However, it fails to be closed as soon as it is infinite [Con, Theorem 4.4] because A is proper over F .
Thus the quotient A(F )\A(AF ) is not Hausdorff, and dealing with such an object would probably
be complicated.

Regarding unipotent groups, they can be thought of as a group obtained by extending the trivial
group by copies of Ga, the additive group. Let’s consider the adelic quotient Ga(F )\Ga(AF ). The
irreducible representations of this group are all characters, and if we choose one nontrivial character
ψ then via Pontryagin duality one sees that they are in bijection with F :

F −̃→F̂\AF
m 7−→ (x−→ψ(mx)).

More interesting representations can be obtained by considering, for example, the Heisenburg
group, which plays a role in the theta correspondence, an important tool in automorphic repre-
sentation theory that we unfortunately do not cover in these notes. It may be that there is no
fundamental reason for concentrating on the reductive case rather than the affine case, although
one might expect by comparison with the theory of actions of algebraic groups that certain things
become harder if we try to work with general groups.2

4. Nonarchimedian Hecke algebras

In §3.2 we defined the nonarchimedian Hecke algebra F . In this section we discuss this algebra
in more detail.

In this section we assume that F is a number field for notational simplicity; our discussion
goes over with only notational changes in the function field case. In the number field case the
nonarchimedian Hecke algebra was defined to be

H∞ := C∞c (G(A∞F )),

where the subscript c indicates functions of compact support and the superscript ∞ indicates
smooth functions. In this context, smooth means locally constant.

2M. Kim (personal communication, 10/2014) had the following interesting comment: “ One justification for
concentrating on the reductive case is that the groups arising as images of motivic Galois representations are
conjectured to be reductive, but this is just for *pure* motives. Part of the difficulty with mixed motives could well
be the lack of a uniform automorphic theory.”
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Lemma 4.1. Any element f ∈ C∞c (G(A∞F )) can be expressed as a finite linear combination of
characteristic functions

f =
∑
i

ci 1K∞aiK∞

for K∞ ⊆ G(A∞F ) a compact open subgroup, ai ∈ G(AF ) and ci ∈ C. �

Example 4.2. All compact open subgroups of GLn(A∞Q ) are of the form

KS

∏
p 6∈S

GLn(Zp)

for S a finite set of finite primes and KS is a compact open subgroup of GLn(QS). The subgroup

GLn(Ẑ) =
∏

p GLn(Zp) ≤ GLn(A∞Q ) is a maximal compact open subgroup, and all maximal com-

pact open subgroups are conjugate to this maximal compact open subgroup [Ser06, Chapter IV,
Appendix 1]. Examples of nonmaximal compact open subgroups are given by the kernel of the
reduction map

GLn(Ẑ)−→GLn(Z/m)

for integers m.

If a ∈ G(A∞F ), then a ∈ G(ÔSF ) for some finite set of place S. If K∞ ≤ G(A∞F ) is a compact

open subgroup, then, upon enlarging S we can assume that KS = G(ÔSF ). For such a choice of S
we have

1K∞aK∞ = 1KSaSKS ⊗1KS

for some finite set of finite places S. This reduces the study of nonarchimedian Hecke algebras to
the study of the local Hecke algebras

C∞c (G(Fv))

as v varies over nonarchimedian places v of F .

4.1. Convolution. As in (3.2.1) above, if f, h ∈ C∞c (G(Fv)), then

f ∗ h(g) :=

∫
G(Fv)

f(x)h(x−1g)dx.

Assume that v is nonarchimedian. In this case the convolution admits a purely combinatory
definition. To state it, fix a compact open subgroup K ≤ G(Fv). Then for γ ∈ G(Fv) we write

1γ := 1KγK .

We then have

1α ∗ 1β =
∑

KγK∈K\G(Fv)/K

cα,β,γ1γ,

where the cα,β,γ are defined as follows: put Kα = αKα−1 ∩K, which is compact and open. It is
thus of finite index in K. So we can write

K =
∐
i

xiKα

for some finite number of xi ∈ K. Similarly write

K =
∐
j

yjβKβ

Then cα,β,γ is the number of pairs (i, j) such that γxiαyjβ ∈ K. For this see [Shi94, Chapter 3 §1].
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4.2. The spherical Hecke algebra. Let G be a reductive group over Fv, where v is a nonar-
chimedian place of F . In general there can be several conjugacy classes of maimal compact open
subgroups of G(Fv). For example, in Sp4 there are two conjugacy classes.

Definition 4.3. A reductive group G over Fv is unramified if it is quasi-split and splits over an
unramified extension of Fv.

If G is unramified then there is a there exists a canonical conjugacy class of maximal compact
open subgroups of G(Fv): the class consisting of hyperspecial maximal compact subgroups. The
hyperspecial maximal compact subgroup is of the form G(OFv) where G is a flat, linear group
scheme such that GFv = G and GOv/$v are both reductive and have the same “type.” See [Tit79]
and [Yu].

If G is unramified and K ≤ G(Fv) is a hyperspecial subgroup, then

C∞c (G(Fv)//K)

is known as the spherical Hecke algebra.

Example 4.4. Let G = GL2. The spherical Hecke algebra in this case is

C∞c (GL2(Qp) // GL2(Zp)).
Here the double slash means that these functions are invariant under the left and right actions of
GL2(Zp). Examples of functions in the spherical Hecke algebra are given by characteristic functions
of compact open subgroups. Let

1(n,d) = 1
GL2(Zp)

 pn 0
0 pd

GL2(Zp)

.

As n and d vary, these span the spherical Hecke algebra.

Example 4.5. Let G = GLn. The spherical Hecke algebra in this case is

C∞c (GL2(Qp) // GL2(Zp))
and a basis is given by

{1GLn(Zp)λ(p) GLn(Zp)}λ=(λ1,...,λn),λ1≥···≥λn

where
(λ1, . . . , λn)(p) = diag(pλ1 , . . . , pλn).

The Smith normal form for matrices over Qp, from the theory of elementary divisors, gives the
decomposition

GLn(Qp) = GLn(Zp)T (Qp) GLn(Zp)
and it follows from this that the set above is a basis for the spherical Hecke algebra.

5. A bit of archimedian representation theory

Let (π, V ) be a representation of G(F∞) where V is assumed to be a Hilbert space. The example
that one should keep in mind is the space

L2(G(F )\G(AF )).

The fact that this is not a space of smooth functions is often inconvenient. We now indicate
how one can start with such a Hilbert space and end up with a space of smooth functions that
essentially determines the original space and has the virtue that it can be described algebraically.
The first step is to study smooth vectors in V , and the second is to combine this with the action of
a maximal compact subgroup K∞ ≤ G(F∞), thus passing from the analytic notion of an admissible
representation to the algebraic notion of a (Lie(G(F∞)), K∞)-module.
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With the exception of §5.5 in this section G is a reductive group over an archimedian local field
F (i.e. R or C) and K ≤ G(F ) is a maximal compact subgroup. Moreover

g := Lie(ResF/RG)

is the Lie algebra of ResC/RG(R) = G(F ). Here the restriction of scalars is employed so that g is
a Lie algebra over R if F = C, if F = R then this construction just returns Lie(GF ). Finally π is
a (continuous) representation of G(F ) on a Hilbert space V ; we do not assume that π is unitary.
Our basic reference for this section is [Bum97, Chapter 2].

5.1. Smooth vectors. In this subsection we define and discuss smooth vectors. Recall that there
exists an exponential map

exp: g−→G(F ).

Example 5.1. For GLn, the Lie algebra gln is the collection of n× n matrices. The exponential
is simply the matrix exponential in this case.

Given φ ∈ V we write

π(X)φ =
d

dt
π(exp(tX))φ|t=0

whenever this makes sense. We will sometimes simply write Xφ for π(X)φ. We say that a vector
φ ∈ V is C1 if for all X ∈ g, the derivative π(X)φ is defined. We define Ck inductively by
stipulating that φ ∈ V is Ck if φ is Ck−1 and Xφ is Ck−1 for all X ∈ g. A vector φ ∈ V is C∞ if
it is Ck for all k ≥ 1.

Definition 5.2. A vector φ ∈ V is said to be smooth if φ is C∞. The subspace of smooth vectors
is denoted by V ∞ ≤ V .

Note that we can differentiate in V ∞:

Lemma 5.3. The space V ∞ is invariant under G(F ).

Proof. Let g ∈ G(F ) and let X ∈ g. Then

X(π(g)φ) = lim
t→0

1

t
(π(exp(tX)g)φ− π(g)φ)

= π(g) lim
t→0

1

t
(π(exp(tAd(g−1)X)φ− φ)

where Ad(g−1)X = g−1Xg. The limit exists if φ is C1. This implies that π(g)φ is C1. One shows that
π(g)φ is Ck for all k if φ is so by induction. �

Lemma 5.4. Let (π, V ) be a Hilbert space representation of G(F ). Then the action of g defined
above is a Lie algebra representation.

Proof. We will prove this assuming as known that C∞(G(F )) is a representation of the Lie algebra where
the action is given by sending X ∈ g to dX, that is, differentiation in the direction of X. We show how
to reduce the lemma to this case.

Let φ0 ∈ V . We claim that

Lφ(g) := 〈π(g)φ, φ0〉
defines a g-equivariant map

L : V∞ → C∞(G(F )).

To prove that L is an intertwining map it suffices to verify that

(dX ◦ L)φ(g) = ((L ◦X)φ(g).
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For this we compute:

d

dt
(Lφ)(g exp(tX))|t=0 =

d

dt
〈π(g)π(exp(tX))φ, φ0〉|t=0

= 〈π(g)Xφ, φ0〉
= (L ◦X)φ(g).

Since we are assuming that φ is smooth, we see that this function is smooth as well.
In order to verify that V∞ is a representation of g, we must check that

X(Y φ)− Y (Xφ) = [X,Y ]φ

for all X,Y ∈ g and all φ ∈ V∞. By duality, it suffices to prove that

L(X(Y φ))− L(Y (Xφ)) = L([X,Y ]φ)

for all φ0, but this is a consequence of the fact that C∞(G(F )) is a representation of g as explained at
the beginning of the proof.

�

Thus V ∞ affords a representation of the Lie algebra. Note that so far we don’t even know if
V ∞ is nonzero; it ought to be large in order for this notion to be useful. Fortunately, it is indeed
large. To make this precise, if f ∈ C∞c (G(F )) then define

π(f)φ =

∫
G(F )

f(g)π(g)φdg.

Proposition 5.5.

(1) If f ∈ C∞c (G(F )) and φ ∈ V then π(f)φ ∈ V ∞.
(2) The space V ∞ is dense in V .

Proof. Let
X ∗ f(g) := (d/dt)f(exp(−tXg)|t=0.

Then ∫
G(F )

X ∗ f(g)π(g)φdg

=
d

dt

∫
G(F )

f(exp(−tX)g)π(g)φdg|t=0

=
d

dt

∫
G(F )

f(g)π(exp(tX)g)φdg|t=0

=
d

dt
π(exp(tX))π(f)φ|t=0

= Xπ(f)φ.

By induction we see that π(f)φ ∈ V∞.
For the second claim let ε > 0. The map G × V → V given by (g, φ) 7→ π(g)φ is continuous. This

implies that there exists a neighbourhood U ⊆ G(F ) of the identity such that |π(g)φ− φ| < ε for all
g ∈ U . Take f ∈ C∞c (G(F )) to be nonnegative with support in U and such that∫

G(F )
f(g)dg = 1.

Then

|π(f)φ− φ| =

∣∣∣∣∣
∫
G(F )

f(g)(π(g)φ− φ)dg

∣∣∣∣∣
≤
∫
G(F )

f(g) |π(g)φ− φ| dg ≤ ε



24 AN INTRODUCTION TO AUTOMORPHIC REPRESENTATIONS

which implies that π(f)φ is as close to φ as we wish. Hence V∞ is dense. �

5.2. Restriction to compact subgroups. The representation theory of compact groups is much
simpler than the representation theory of noncompact groups. For example, any irreducible rep-
resentation of a compact group is unitarizable and finite-dimensional (see Theorem 5.9 below). A
profitable strategy in the representation theory of general Lie groups is to analyze the restriction
of a given representation to maximal compact subgroups. We discuss this in this section, starting
by recalling the results from the representation theory of compact groups that we require.

Throughout K ⊆ G(F ) is a maximal compact subgroup.

Lemma 5.6. Let (π, V ) be a continuous representation of G(F ) on a Hilbert space V . There exists
a Hermitian inner product 〈−,−〉 : V × V → C which gives the same topology as the given pairing
on V on V but with respect to which π|K is unitary, i.e.

〈π(k)φ1, π(k)φ2〉 = 〈φ1, φ2〉
for all k ∈ K and φ1, φ2 ∈ V .

In particular, taking G(F ) to be compact we see that any representation of a compact Lie group
is unitarizable.

Proof. Let (·, ·) denote the original Hilbert space pairing and | · | the original norm. Define

〈φ1, φ2〉 =

∫
K

(π(k)φ1, π(k)φ2)dk

By construction it is K-invariant so we need only check the claim about the topology. For fixed
φ ∈ V , the map

K −→C
k 7−→ (π(k)φ, π(k)φ)

is continuous with compact domain, and hence has bounded image. Thus by the uniform bound-
edness principle the operator norm of π(k) is bounded independently of k. In particular there is
some C > 0 such that |π(k)φ| < C |φ| for all φ ∈ V . We can likewise find a similar bound for
π(k−1) and so there exists some C > 0 such that

C−1 |φ| ≤ |π(k)φ| ≤ C |φ|
for all φ ∈ V . From this we find that

|φ|2new :=

∫
K

(π(k)φ, π(k)φ)dk

satisfies
C−2meas(K) |φ| < |φ|2new < C2meas(K) |φ| .

This implies the result. �

We now prepare for a proof of the Peter-Weyl theorem, which says that all of the representation
theory of a compact Lie group K is contained in L2(K).

Definition 5.7. Let (π, V ) be a continuous representation of a group G on a Hermitian vector
space V . A matrix coefficient of π is a function of the form

m : G−→C
g 7−→ (π(g)φ1, φ2)

for some φ1, φ2 ∈ V .
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Proposition 5.8. Suppose K is a compact Lie group and (π1, V1) and (π2, V2) are two represen-
tations of K with π2 unitary. If there exist matrix coefficients m1,m2 for π1, π2 respectively that
are not orthogonal in L2(K) then there exists a non-trivial intertwining operator L : V1 → V2.

Proof. Write (·, ·)i for the Hermitian pairing on Vi. Let x1, y1 ∈ V1 and x2, y2 ∈ V2 be such that:∫
K

(π1(k)x1, y1)1(π2(k)x2, y2)2dk 6= 0

Let

L(φ) =

∫
K

(π1(k)φ, y1)1π2(k−1)(y2)dk.

We claim that L gives an intertwining map

L : V1−→V2.

Indeed,

π2(g) ◦ L(φ) =

∫
K

(π1(k)φ, y1)1π2(gk−1)(y2)dk

If we change variables k 7→ kg this becomes L ◦ π1(g)φ and so L is an intertwining operator. We
now verify that it is nonzero. One has

(L(x1), x2)2 = (

∫
K

(π1(k)x1, y1)1π2(k−1)y2dk, x2)2

=

∫
K

(π1(k)x1, y1)1(π2(k−1)y2, x2)2dk

=

∫
K

(π1(k)x1, y1)1(π2(k)x2, y2)2dk (V2 is unitary)

6= 0.

Thus L is nonzero.
�

Theorem 5.9 (Peter-Weyl Theorem). Let K ⊂ GLn(C) be a compact Lie group.

(1) The matrix coefficients of finite dimensional unitary representations of K are dense in
C(K) and Lp(K) for all 1 ≤ p ≤ ∞.

(2) Any irreducible unitary representation of K is finite dimensional.
(3) If (π, V ) is a unitary representation of K, then V decomposes into a Hilbert space direct

sum of irreducible unitary subrepresentations.

Proof. We may regard K as a subset of Mn(R) for some n. We shall further identify this with Rn2
.

We call a function on K polynomial if it is the restriction of a polynomial in Rn2
to K.

We claim that every polynomial function φ is a matrix coefficient for some finite dimensional
representation. Indeed, let r ∈ Z>0 and let ρr be the representation of K on the polynomials
of degree less than r via right multiplication (so ρr(g)φ(x) = φ(xg)). By Lemma 5.6 we can
find a hermitian metric on the space of ρr making this representation unitary. By the Riesz
representation theorem there exists some φ0 in the space of ρr such that φ(1) = 〈φ, φ0〉. We then
have that φ(g) = ρ(g)φ(1) = (ρ(g)φ, φ0). This implies the claim. The first assertion of the theorem
then follows from the Stone-Weierstrass theorem (density of polynomials in Lp(K)).

We now claim that if (π, V ) is a non-zero unitary representation of K then V admits a non-zero
finite-dimensional invariant subspace. Let ψ(g) = (π(g)x, x) be a non-zero matrix coefficient. We
can approximate ψ by polynomials. This implies there exists a polynomial not orthogonal to ψ
in L2(K), say of degree r. Letting ρr be the representation in the previous paragraph we obtain
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a non-zero intertwining map L : ρr → V which implies we have a finite-dimensional invariant
subrepresentation of V as claimed. Since (π, V ) is unitary, this finite dimensional subspace admits
a complement if it is not the whole space V , proving the section assertion of the theorem.

For assertion 3 we use Zorn’s Lemma to construct a maximal subspace which is a direct sum
of finite subrepresentations. It then follows from 2 that this is the whole space as the orthogonal
complement has finite subrepresentations. �

5.3. (g, K)-modules. Let (π, V ) be a representation of G(F ) on a Hilbert space and let K ≤ G(F )
be a maximal compact subgroup. We assume without loss of generality that π|K is unitary. For
each equivalence class of irreducible representation σ of K we write:

V (σ) = {v ∈ V : 〈π|Kv〉 ∼= σ}
This is the σ-isotypic subspace. A vector in V (resp. a subspace) of V is said to have K-type
σ if it is an element (resp. a subspace) of V (σ). We note that V is admissible if and only if
dim(V (σ)) <∞ for all σ.

Definition 5.10. The algebraic direct sum

Vfin := ⊕σ∈K̂V (σ)

is the space of K-finite vectors in V .

In the definition we have used the useful notation K̂; it denotes the set of all equivalence classes

of irreducible representations of K. Since all of these representations are unitarizable, the set K̂
is also refered to as the unitary dual of K.

Remark 5.11. We will later show in Proposition 5.15 that Vfin is dense in V , and hence V is the
Hilbert space direct sum of the V (σ).

We record the following proposition [Bum97, §2.4].

Proposition 5.12. Let k = Lie(K). The following are equivalent:

(1) The vector φ ∈ V is K finite.
(2) The space 〈π(k)φ|k ∈ K〉 is finite dimensional.

If φ is smooth, then this is equivalent to

(3) The space 〈π(x)φ|x ∈ k〉 is finite dimensional.

Thus K-finiteness can be detected using the Lie algebra of K.

Remark 5.13. We show in Proposition 5.15 that K-finite vectors are always smooth.

Definition 5.14. A (g, K)-module is a vector space V with a representation of π of g and K
which satisfy the following:

(1) The space V is a countable algebraic direct sum V = ⊕iVi with each Vi a finite dimensional
K-invariant vector space.

(2) For X ∈ k and φ ∈ V we have:

π(X)φ = Xφ =
d

dt
exp(tX)φ|t=0 = lim

t→0

1

t
(π(exp(tX)φ)− φ).

(3) For k ∈ K and X ∈ g we have π(k)π(X)π(k−1)φ = π(Ad(k)X)φ.

We say that the (g, K)-module is admissible if we can choose the Vi to have have distinct K-types.

We prove in the following proposition that an admissible representation of G(F ) on a Hilbert
space gives us a (g, K)-module:

Proposition 5.15. Let (π, V ) be an admissible Hilbert space representation of G(F ). Then:
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• The K-finite vectors are smooth.
• The space of K-vectors Vfin ≤ V is dense and invariant under the action of g.

Thus the space of K-finite vectors in an admissible Hilbert space representation of G(F ) is in a
natural manner an admissible (g, K)-module.

Remark 5.16. The K-finite vectors are even real analytic in the sense that if φ ∈ V (σ) for some
irreducible representation σ, then g 7→ π(g)φ is a real analytic function of g [HC53].

We say that two Hilbert space representations are infinitesimally equivalent if their underly-
ing (g, K)-modules are isomorphic. The notion of infinitesimal equivalence is strictly coarser than
that of equivalence [Bum97, Exercise 2.6.1].

Proof. We assume without loss of generality that π|K is unitary. Write V0 := V ∞ ∩ V fin.
We first prove that V0 is dense in V . Let U be a neighborhood of 1 in G(F ) and let ε > 0.

Suppose that f is a smooth function on G(F ) with support in KU such that∫
G(F )

f(g)dg = 1 and

∫
G(F )−U

|f(g)|dg < ε.(5.3.1)

By making U and ε sufficiently small we can make π(f)φ as close as we like to φ for all φ in V
(see the proof of Proposition 5.5).

It therefore suffices to show that for arbitrary U and ε > 0 we can choose an f satisfying
(5.3.1) such that π(f)φ is K-finite. To construct such an f , let let U1 ⊂ G(F ) and W ⊂ K be
neighborhoods of 1 such that WU1 ⊂ U , and let f1 be a nonnegative smooth function supported
in U1 such that

∫
G(F )

f1(g)dg = 1. By the Peter-Weyl theorem, there exists a matrix coefficient f0

of a finite dimensional representation of K such that
∫
K
f0(k)dk = 1 and

∫
KrW |f0(k)|dk < ε. Let

f(g) :=

∫
K

f0(k)f1(k−1g)dk

Clearly, f has support contained in KU1 ⊂ KU . Moreover, since WU1 ⊂ U , if k ∈ K is such
that there exists g ∈ G(F ) r U with f1(k−1g) 6= 0 then k 6∈ W (since otherwise would have
g = k(k−1g) ∈ WU1 ⊂ U). Therefore:∫

G(F )rU
|f(g)|dg ≤

∫
G(F )rU

∫
K

|f0(k)| · |f1(k−1g)|dkdg

=

∫
G(F )−U

∫
KrW

|f0(k)| · |f1(k−1g)|dkdg

≤
∫
K−W

|f0(k)|
∫
G(F )

f1(k−1g)dgdk

=

∫
K−W

f0(k)dk < ε.

Thus f satisfies (5.3.1).
We now show that π(f)φ is K-finite. Let ρ be a finite dimensional unitary representation of

which f0 is a matrix coefficient. Thus f0(k) = 〈ρ(k)ξ, ζ〉 for some ξ, ζ in the space of ρ. Then if



28 AN INTRODUCTION TO AUTOMORPHIC REPRESENTATIONS

k1 ∈ K:

f(k−1
1 g) =

∫
K

f0(k)f1(k−1k−1
1 g)dk

=

∫
K

〈ρ(k)ξ, ζ〉f1(k−1k−1
1 g)dk

=

∫
K

〈ρ(k−1
1 )ρ(k)ξ, ζ〉f1(k−1g)dk

=

∫
K

〈ρ(k)ξ, ρ(k1)ζ〉f1(k−1g)dk.

Therefore, the linear span of the functions f(k−1
1 g), is contained in the linear span of the functions

g 7→
∫
K
〈ρ(k)ξ, ζ〉f1(k−1g)dk for varying ξ, ζ in the space of ρ, and this space is finite dimensional.

Thus the space spanned by the vectors π(k1)π(f)φ =
∫
G(F )

f(g)π(k1g)φdg =
∫
G(F )

f(k−1
1 g)π(g)φdg

as k1 varies over K is finite dimensional, so π(f)φ ∈ V fin. Moreover, π(f)φ is smooth for any
vector φ by Proposition 5.5. It follows that V0 is dense in V ∞, which is dense in V .

We now prove that V fin ≤ V ∞. First observe that V0 is K-invariant since V ∞ is by Proposition
5.12. Let σ be an irreducible unitary representation of K. Then V0(σ) ≤ V (σ). Since Vfin is an
algebraic direct sum of the V (σ) it suffices to show that V0(σ) = V (σ).

Since V (σ) is finite-dimensional by admissibility, V0(σ) admits a well-defined orthogonal com-
plement in V (σ) (this is the only part of the proof where admissibility is used). If φ is in this
orthogonal complement then φ is orthogonal to all of V0, because it is orthogonal to V (τ) for
every τ 6= σ. Therefore φ = 0, since V0 is dense. This establishes that V0(σ) = V (σ), and hence
V0 = Vfin ≤ V ∞.

Finally, must show that Vfin is invariant under g. Let φ ∈ Vfin, let R be the span of φ under K,
and let

R1 := 〈Y φ | Y ∈ g and φ ∈ R〉,
which is clearly finite dimensional. We claim that R1 is fixed by K.

Indeed, if X ∈ k = Lie(K), and Y φ ∈ R1, then X(Y φ) = [X, Y ]φ+ Y (Xφ), which is an element
in R1. Therefore the elements of R1 are K-finite by Proposition 5.12, and hence Y φ is K-finite for
all Y ∈ g.

�

Remark 5.17. One motivation for introducing (g, K)-modules is that they can be classified, and,
at least in special cases, the action of g and K can be given explicitly. This gives important
information on automorphic representations, our primary object of study. We refer the reader to
§6.5 for a statement of the classification in the case of GL(2).

5.4. The archimedian Hecke algebra. Recall that H∞ denotes the algebra of distributions on
G(F ) with (compact) support contained in K. Let

U(kC) and U(gC)

denote the universal enveloping algebras of the complexifications kC := k⊗RC (resp. gC := g⊗RC)
of k (resp. g). Here we regard the Lie algebra g as a Lie algebra over the real numbers via the
canonical identification g = Lie((ResF/QG)R). Since k ≤ g is a subalgebra, it inherits the structure
of a real Lie algebra.

Let HK denote the convolution algebra of finite measures on K. One has an isomorphism

H ∼= HK ⊗U(kC) U(gC)

The category of admissible (g,K)-modules and the category of admissible H∞-modules are equiv-
alent.
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5.5. An alternate definition. Let G be a connected reductive group over a number field F .
Recall that if ϕ ∈ L2(G(F )AG\G(AF )), then R(G(AF ))ϕ is a G(F∞)-representation, and it is a

result due to Harish-Chandra that the K-vectors in this space form an admissible H∞ ×G(A∞F )-
module.

Therefore, the K∞-finite vectors in R(G(AF ))ϕ form an admissible (g, K) × G(A∞F )-module.
Thus an alternate formulation of the definition of an automorphic representation is the following:

Definition 5.18. An automorphic representation of G(AF ) is an admissible (g, K∞) × G(A∞F )-
module isomorphic to a subquotient of L2(G(F )AG\G(AF )).

Here, of course, an admissible representation of (g, K∞)×G(A∞F ) is an exterior tensor product of
an admissible representation of (g, K∞) and G(A∞F ).

6. Automorphic forms

In this section we explain how automorphic representations relate to automorphic forms on
locally symmetric spaces.

6.1. Approximation. We assume throughout this section that F is a number field. The appro-
priate analogues hold in the function field case, but they require different proofs.

Let G be a connected linear algebraic group (so we do not assume G to be reductive). Recall
that F× embeds into A×F diagonally as a discrete subspace with non-compact quotient. In other
words GL1(F )\GL1(AF ) is non-compact, and actually it has infinite volume with respect to the
Haar measure. An analogous phenomenon occurs for other groups, and this motivates the following
definition:

G(AF )1 :=
⋂

χ∈X∗(G)

ker(| · | ◦ χ : G(AF )→ R×>0).

Here |x| := |x|AF =
∏

v |x|v. Note that G(F ) is contained G(AF )1 in virtue of the product formula.
Moreover, G(Q) is discrete in G(AF )1 (this follows from the fact that G admits an embedding into
affine space together with Lemma 1.7).

As above, let AG be the identity component of the R-points of the greatest Q-split torus in
ResF/QZG. Then

AGG(AF )1 = G(AF ),

and the product is direct. We now discuss the topological features of the quotient

G(F )\G(AF )1.

For a proof of the following two theorems see [Bor63].

Theorem 6.1 (Borel). The group G(AF )1 is unimodular. The quotient G(F )\G(AF )1 has finite
volume with respect to the measure induced by a Haar measure on G(AF )1, and G(F )\G(AF )1 is
compact if and only if every unipotent element of G(F ) belongs to the radical of G.

The following refinement of this result goes by the name of weak approximation:

Theorem 6.2 (Borel). The set G(F )\G(AF )/K∞ is finite.

Remark 6.3. In the special case G = GL1, K∞ := Ô×F the set above can be identified with the
class group of F , and hence the theorem implies the finiteness of the class group.

Let
h := h(K∞) = |G(F )\G(A∞F )/K∞|,

let t1, . . . , th denote a set of representatives for G(F )\G(AF )/K∞, and let

Γi(K
∞) := G(F ) ∩ ti.AG\G(F∞)K∞.t−1

i .
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We then have a homeomorphism

h∐
i=1

Γi(K
∞)AG\G(F∞)−→G(F )AG\G(AF )/K∞(6.1.1)

given on the ith factor by

Γi(K
∞)g 7−→ G(Q)(g, ti)K

∞.

Notice that the Γi(K
∞) are discrete subgroups of G(F ); they are moreover arithmetic in the

following sense:

Definition 6.4. Let G ≤ GLn be a linear algebraic group. A subgroup Γ ≤ G(F ) is arithmetic
if it is commensurable with G(OF ), where G is the schematic closure of G in GLn/OF .

Remark 6.5. One can show that the notion of arithmeticity does not depend on the choice of
representation G ≤ GLn.

Example 6.6. Consider G = GL2/Q. Then K∞ = GL2(Ẑ) is a maximal compact open subgroup,

where Ẑ =
∏

p Zp is the profinite completion of Z. Moreover, if we denote by

K0(N) : = {( a bc d ) ∈ GL2(Ẑ) : N |c}
Γ0(N) : = K0(N) ∩GL2(Z)

then
Γ0(N)\GL2(R) = GL2(Q)\GL2(AQ)/K0(N).

Thus if φ is a complex function on the double coset space GL2(Q)\GL2(AQ)/K0(N), then it gives
rise to a complex function on the quotient Γ0(N)\GL2(R), and viceversa.

If we let K∞ = SO2(R) then :

Γ0(N)\(C− R)→̃GL2(Q)\GL2(AQ)/K0(N)K∞ = GL2(Q)\(C− R)×GL2(AQ)/K0(N).

where on the left Γ0(N) acts via Möbius transformations.

6.2. Classical automorphic forms. In the previous subsection we discussed a homeomorphism

G(F )AG\G(AF )/K∞−̃→
∐
i

Γi(K
∞)AG\G(F∞).

for certain (discrete) arithmetic subgroups Γ ≤ G(F ). Clearly automorphic representations are
related to functions on the left side. Automorphic forms, classically, were defined to be certain
classes of functions on the right. We recall the definition in this section. In the next section
we recast this definition adelically and show how automorphic forms give rise to automorphic
representations.

Definition 6.7. A norm ‖·‖ on G(F∞) is a function of the form

‖g‖ = tr(σ(g)∗σ(g))1/2

where σ : G(F∞)→ GL(E) is a finite dimensional representation with finite kernel such that σ|K∞
is unitary with respect to some Hermitian inner product. Here ∗ denotes the adjoint with respect
to the given inner product.

Definition 6.8. A function φ : G(F∞)→ C is said to be slowly increasing if there exists a norm
‖·‖, a constant C and a positive integer r such that

|f(x)| ≤ C‖x‖r

for all x ∈ G(F∞).
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The definition is independent of the choice of norm. Note somewhat paradoxically that a rapidly
decreasing function is also slowly increasing.

Definition 6.9. Let Γ ⊆ G(F ) be an arithmetic subgroup. A function φ : G(F∞) → C is an
automorphic form for Γ if

(1) φ is smooth;
(2) φ is slowly increasing;
(3) φ(γx) = φ(x) for all x ∈ G(F∞), γ ∈ Γ;
(4) there exists an elementary idempotent ξ ∈ H∞ such that ξφ = φ. (This says φ has a

particular K-type and is K-finite);
(5) there exists an ideal J ⊆ Z(gC) of finite codimension such that Xφ = 0 for all X ∈ J .

Here Z(gC) is the center of the universal enveloping algebra U(gC), where g = Lie((ResF/QG)R).

We denote the space of automorphic forms, with notations as above, by

A(Γ, ξ, J).

We will also put

A(Γ, J) : =
⋃
ξ

A(Γ, ξ, J)

which is a (g, K∞)-modules.

Theorem 6.10. [HC68] The space A(Γ, J) is an admissible (g, K∞)-module and hence
A(Γ, ξ, J) is finite dimensional for each ξ �

Remark 6.11. Automorphic forms in A(Γ, ξ) define sections of vector bundles over Γ\G(F∞)/K∞
defined using the representation attached to ξ [?]. At least for certain ξ these sections can be
viewed as differential forms with coefficients in vector bundles, and this explains why they are
called “forms.”

6.3. Automorphic forms on adele groups. The adelic definition of an automorphic form is
analogous to the classical one:

Definition 6.12. An automorphic form on G(AF ) is a function φ : G(AF )→ C such that

(1) for all y ∈ G(AF ), x 7→ φ(xy) is slowly increasing and smooth;
(2) φ(γx) = φ(x) for all γ ∈ G(F ) and for all x ∈ G(AF );
(3) There exists a fundamental idempotent ξ such that ξφ = φ;
(4) there exists an ideal J ⊆ Z(g) such that Xφ = 0 for all X ∈ J ;
(5) φ(ag) = φ(g) for all a ∈ AG and g ∈ G(AF ).

We let
A(ξ, J)

be the space of functions satisfying the assumptions above.
If ξ = ξ∞ ⊗ ξK∞ then one has a bijection

A(ξ∞ ⊗ ξK∞ , J)−̃→ ⊕i=1 A(Γi(K
∞), ξ∞, J)(6.3.1)

φ 7−→ (xi 7→ φ(xiti))

with notation as in (6.1.1).

Definition 6.13. An automorphic form φ is said to be cuspidal if∫
N(AF )

φ(ng)dn = 0

for all parabolic subgroups P ⊆ G with Levi decomposition P = MN , and for all g ∈ G(AF ).
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Let A0(ξ, J) ⊆ A(ξ, J) denote the subspace of cuspical automorphic forms. Analogously, the
cuspidal subspace

L2
0(G(F )AG\G(AF )) ⊆ L2(G(F )AG\G(AF )).

is the space of functions φ such that
∫
N(AF )

φ(ng)dn = 0 for almost every g ∈ G(AF ).

Remark 6.14. The space of smooth vectors in L2
0(G(F )AG\G(AF )) subspace is preserved by g.

Definition 6.15. A cuspidal automorphic representation is an automorphic representation equiv-
alent to a subrepresentation of L2

0(G(F )AG\G(AF )).

Note that we do mean subrepresentation above, and not just subquotient as we had for auto-
morphic representations.

One has ⋃
ξ,J

A0(ξ, J) ⊆ L2
0(G(F )AG\G(AF ))

and this subspace is dense.

6.4. From modular forms to automorphic forms. We make the constructions above more
explicit in a special case when G = GL2Q. Let Γ ⊆ GL2(Z) be a congruence subgroup. For
example, we could set Γ equal to

Γ0(N) := {( a bc d ) ∈ GL2(Z) : N |c} .(6.4.1)

Recall the following definition:

Definition 6.16. Let k ∈ Z>0 The space of weight k modular forms for Γ is the space Mk(Γ)
of functions f : H→ C satisfying the following conditions:

(1) f(γz) = (cz + d)kf(z) for all γ =

(
a b
c d

)
∈ Γ ∩ SL2(Z);

(2) f is holomorphic;
(3) f extends holomorphically to the cusps (see [Shi94] for details).

If f additionally vanishes at the cusps (see loc. cit.) we say that f is a cusp form. The space of
weight k cusp forms is denoted Sk(Γ0(N)).

Remark 6.17. If k is even, Mk(Γ) can be identified with a subspace of the space of holomorphic
differential forms H0(Γ\H,Ω⊗k/2). Likewise, the space Sk(Γ) can be identified with the space

H0(Γ\H,Ω⊗k/2), where the bar denotes the Baily-Borel compactification.

We now relate the space Mk(Γ0(N)) to a space of automorphic forms. The idea is to pull back
an automorphic form on h along the quotient map

GL2(R)−→GL2(R)/AGO2(R) = H

here AG is the collection of matrices

(
r 0
0 r

)
with r > 0 and H is the complex upper half plane.

We set
j(g, z) = det(g)−1/2(cz + d)

for

(
a b
c d

)
= g ∈ GL2(R)+. This is an example of an automorphy factor (see [?] for details).

Set
φf (g) = j(g, i)−kf(gi) : GL2(R)+−→C

where g acts on i by fractional linear transformations. This will give us an automorphic form, but
to specify the type we require further notation.
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Let ξk ∈ H∞ be the elementary idempotent attached to the induction of the representation(
cos θ − sin θ
sin θ cos θ

)
7−→ e2πikθ(6.4.2)

of SO2 to O2. For the remainder of this section, set

gC := gl2 ⊗R C.

Lemma 6.18. One has Z(gC) = 〈C∆, Z〉 where Z =

(
1 0
0 1

)
and

∆ = (1/4)(H2 + 2XY + 2Y X)

where

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
.

Proof. [Bum97, §2.5]. �

The element ∆ is called the Casimir element.

Lemma 6.19. For each integer k ≥ 1 the C-linear map f 7→ ϕf induces an isomorphism

Sk(Γ)−→A0(Γ, ξk, 〈∆−
1

4
(k2 − 1), Z〉)

f 7−→ ϕf .

Remark 6.20. Let

K0(N) := Γ̂0(N) =
{

( a bc d ) ∈ GL2(Ẑ) : N |c
}

where theˆdenote profinite completion. Composing the isomorphism of Lemma 6.19 with (6.3.1)
we obtain an isomorphism

Sk(Γ)−→A0(ξk ⊗ ξK0(N), 〈∆−
1

4
(k2 − 1)〉)

Proof. One computes that

(1) φ(γg) = φ(g) for all g ∈ GL2(R)+ and γ ∈ Γ;
(2) φ(gwθ) = eikθφ(g) for wθ =

(
cos θ − sin θ
sin θ cos θ

)
.

These immediately imply that φ is K∞-finite, Γ-invariant and AG-invariant. One also computes
that ∆φ = (1/4)(k2 − 1)φ for φ as above using the fact that φ is holomorphic. So φ is annihilated
by

J = 〈∆− (1/4)(k2 − 1) id, Z〉.
�

6.5. Digression: (g,K∞)-modules. In this subsection we discuss the classification of (g, K∞)-
modules when

g := gl2 and K∞ := O2(R).

All irreducible admissible (g, K∞)-modules are isomorphic to exactly one of the types described in
the following three subsections.

Finite dimensional representations. Every finite-dimensional irreducible representation of GL2(R)
affords an irreducible admissible (g, K∞)-module
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Discrete series and limits of discrete series. Suppose k ≥ 1 and µ ∈ R. Then one has a (g, K∞)-
module πk whose space is

Vk =
⊕

|`|≥k, `≡k (mod 2)

Cvl

with the following action:

(1) πk(wθ)v` = ei`θvl and πk

(
1 0
0 −1

)
v` = v−`

(2) Xv` = 1
2
((k + `)v`+2),

(3) Y v` = 1
2
((k − `)v`−2),

(4) Y vk = 0, Xv−k = 0,

(5) ∆v` = k(k−2)
4

v`,
(6) Zv` = µv`.

Then πk is an irreducible admissible (g, K∞)-module. If k ≥ 2 then these modules are known
as the discrete series of weight k and when k = 1 they are known as the limit of discrete
series. Any irreducible sub-(g, K∞)-module of A0(Γ, ξk, 〈∆− 1

4
(k2 − 1)〉) is equivalent to Dk(0).

Principal series. Let s1, s2 ∈ C and let ε ∈ {0, 1}. Let

s :=
1

2
(s1 − s2 + 1), λ := s(1− s), and µ = s1 + s2.

and suppose that there is no k ≡ ε (mod 2) such that λ = (k/2)(1− k/2). Consider the space of
functions

V =

f ∈ C∞(GL2(R))

∣∣∣∣∣ f
((

y1 x
0 y2

)
g

)
= y

s1+1/2
1 y

s2+1/2
2 f(g) and

f

((
1 0
0 −1

)
g

)
= (−1)εf(g)

 .

This is certainly a smooth representation of GL2(R), and hence affords a (g, K∞)-module. It is
irreducible and admissible and is known as the principal series. One can compute that ∆ acts
by −λ/4 and Z acts by µ. The SO2(R)-types are the characters corresponding to the integers
congruent to ε (mod 2).

7. Factorization

We have already studied automorphic representations (even defined them) as tensor products
of representations of objects at the infinite places and at the finite places. It is useful to push
this idea further. In fact, if π is an admissible representation of H∞ × H∞ one can write π as a
restricted direct product:

π = π∞ ⊗′v-∞ πv
where the πv are irreducible admissible representations of G(Fv). We now explain what this means.

7.1. Restricted tensor products of modules. We start by defining a restricted direct product
of vector spaces. Let Ξ be a countable set, let Ξ0 ⊂ Ξ be a finite subset, let

{Wv : v ∈ Ξ}
be a family of C-vector spaces and for each v ∈ Ξ− Ξ0 let φ0v ∈ Wv − 0. For all sets

Ξ0 ⊆ S ⊆ Ξ

of finite cardinality set WS :=
∏

v∈SWv. If S ⊆ S ′ there is a map

WS −→WS′(7.1.1)
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defined by
⊗v∈Swv 7→ ⊗v∈Swv ⊗⊗v∈S′−Sφ0v.

Consider the vector space
W := ⊗′Wv := lim−→

S

WS

where the transition maps are given by (7.1.1). This is is the restricted tensor product of the
Wv with respect to the φ0v. Thus W is the set of sequences

(wv)v∈Ξ ∈ ⊗vWv

such that wv = φ0v for all but finitely many v ∈ Ξ. We note that if we are given for each v ∈ Ξ a
C-linear map

Bv : Wv−→Wv

such that Bvφ0v = φ0v for all but finitely many v ∈ Ξ then this gives a map B = ⊗vBv : W → W
defined by

B(⊗wv) = ⊗Bvwv.

We now define a restricted directed product of algebras. Suppose we are given C-algebras (not
necessarily with unit) {Av : v ∈ Ξ} and idempotents a0v ∈ Av for all v ∈ Ξ− Ξ0. If S ⊆ S ′ there
is a map

AS −→AS′(7.1.2)

defined by
⊗v∈Sav 7→ ⊗v∈Sav ⊗⊗v∈S′−Sa0v.

Consider the algebra
A := ⊗′Av := lim−→

S

AS

where the transition maps are given by (7.1.2). This is the restricted tensor product of the Av
with respect to the a0v. Finally, if Wv is an Av-module for all v ∈ Ξ such that a0vφ0v = φ0v for
almost all v, then ⊗′vWv is an A-module.

Remark 7.1. The isomorphism class of W as an A-module in general depends on the choice of {φ0v}.
However, if we replace the φ0v by nonzero scalar multiples we obtain isomorphic A-modules.

Example 7.2. The ring C[X1, X2, . . .] = ⊗′iC[Xi] with a0i the identity in C[Xi].

Example 7.3. One has
C∞c (G(A∞F )) ∼= ⊗′C∞c (G(Fv))

with respect to the idemponts eKv := 1
Vol(Kv)

1Kv where Kv is a (choice of) hyperspecial subgroup.

Implicit in this statement is the result that hyperspecial subgroups exist for almost all places (see
[Tit79] for a precise statement).

7.2. Flath’s theorem. Let Ξ0 be a finite set of places of F including the infinite places. Enlarging
Ξ0 if necessary we assume that if v 6∈ Ξ0 then GFv is unramified. If v 6∈ Ξ0 we let Kv ≤ G(Fv) be
a choice of hyperspecial subgroup; it is unique up to conjugacy [Tit79].

Definition 7.4. A C∞c (G(A∞F ))-module W is factorizable if we can write

W ∼= ⊗′vWv(7.2.1)

where the restricted direct product is with respect to elements φ0v ∈ WKv
v , dim(WKv

v ) = 1, and
the isomorphism (7.2.1) intertwines the action of C∞c (G(A∞F )) with the action of ⊗′vC∞c (G(Fv)),
the restricted direct product being with respect to the idempotents eKv .
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In view of the assumption that dim(WKv
v ) = 1 the module ⊗′vWv only depends on the choice of

the φ0v up to isomorphism. Note that in this case W is admissible and irreducible if and only if
the Wv are for all v.

Theorem 7.5 (Flath). Every admissible irreducible representation W of C∞c (G(A∞F )) is factoriz-
able.

We will prove Flath’s theorem below. The most interesting part is proving that dim(WKv
v ) = 1

for almost all v; this is accomplished via Gelfand’s lemma. We postpone discussion of Gelfand’s
lemma until §8 below.

7.3. Proof of Flath’s theorem. For the remainder of this section we let G be a locally compact
totally disconnected group. The basic example of interest to us is the case where G is the points
of a reductive group in a local nonarchimedian field.

Definition 7.6. A representation of G on a complex vector space V is smooth if the stabilizer
of any vector in V is open in G.

Equivalently, V is smooth if and only if V =
⋃
K≤G V

K where the union is over all compact
open subgroups K ≤ G.

Remark 7.7. In this definition we do not assume that the representation V is continuous, or for
that matter even give a topology on V . In fact, V is smooth if and only if the representation is
continuous if we give G(F ) its usual topology and V the discrete topology.

The Hecke algebra

C∞c (G)

is the convolution algebra of compactly supported smooth functions on G; this is consistent with
our earlier definition in the case whereG is the points of a reductive group in a local nonarchimedian
field.

Recall the notion of a non-degenerate C∞c (G)-module from after Definition 3.4. For the following
lemma, see [Car79]:

Lemma 7.8. There is an equivalence of categories between non-degenerate C∞c (G)-modules and
smooth representations of G. �

Using this equivalence we prove the following irreducibility criterion:

Proposition 7.9. A smooth G-module V is irreducible if and only if V K is an irreducible C∞c (G//K)-
module for all compact open subgroups K ≤ G.

To prove the proposition we recall some properties of C∞c (G). As mentioned after (3.4), the
condition of non-degeneracy has content because C∞c (G) has no identity element. However, it has
approximate identities in the following sense. For each compact open subgroup K ≤ G let

eK :=
1

meas(K)
1K .

Then eK acts as the identity on

C∞c (G//K) = eKC
∞
c (G)eK

and on V K := eKV . This observation is in fact the key to proving Lemma 7.8.

Proof of Proposition 7.9. Suppose W = W1 ⊕W2 as C∞c (G)-modules. Then

WK = WK
1 ⊕WK

2
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as C∞c (G//K)-modules for some compact open K ≤ G by smoothness. Conversely, if WK =
WK

1 ⊕WK
2 for some compact open K ≤ G then

(C∞c (G)W1)K = eKC
∞
c (G)W1 = eKC

∞
c (G)eKeKW1 = C∞c (G//K)WK

1 6= W

hence C∞c (G)W1 6= W . �

An admissible representation of C∞c (G) is a nondegenerate C∞c (G)-module V such that eKV
is finite dimensional for all compact open subgroups K ≤ G (this is consistent with the definition
of §3.4. In view of Lemma 7.8 there ought to be a way to phrase this condition in the context of
the associated smooth G-module. This is accomplished by the following definition:

Definition 7.10. A representation V of G is admissible if it is smooth and V K is finite dimen-
sional for every compact open subgroup K ≤ G.

It is immediate that a representation V of G is admissible if and only if its associated C∞c (G)-
module is admissible.

We are now in a position to prove a weak version of Theorem 7.5:

Theorem 7.11. Let G1, G2 be locally compact totally disconnected groups and let G = G1 ×G2.

(1) If Vi is an admissible irreducible representation of Gi for 1 ≤ i ≤ 2 then V1 ⊗ V2 is an
admissible irreducible representation of G.

(2) If V is an admissible irreducible representation of G then there exists admissible irreducible
representations Vi of Gi for 1 ≤ i ≤ 2 such that V ∼= V1 ⊗ V2. Moreover the isomorphism
classes of the Vi are uniquely determined by V .

Proof. We first prove (1). By the irreducibility criterion Proposition 7.9 for every compact open
subgroup K1 × K2 ≤ G1 × G2 the representation V K1

1 ⊗ V K2
2 of C∞c (G1//K1) × C∞c (G2//K2) is

irreduble. But

(1) C∞c (G1 ×G2) = C∞c (G1)× C∞c (G2),
(2) C∞c (G1 ×G2 //K1 ×K2) = C∞c (G1 //K1)× C∞c (G2 //K2), and
(3) (V1 ⊗ V2)K1×K2 = V K1

1 ⊗ V K2
2 ,

so this implies that V1 ⊗ V2 is admissible and irreducible.
Conversely, let W be an admissible G-module. Choose K = K1 ×K2 such that WK 6= 0 (this

is possible by smoothness). Then since WK is finite dimensional there exists finite-dimensional
C∞c (Gi//Ki)-modules Wi(Ki) and an isomorphism of C∞c (G//K) modules WK → W1(K1) ⊗
W2(K2). Varying K, we obtain a decomposition

W ∼= W1 ⊗W2

as C∞c (G) ∼= C∞c (G1 ×G2)-modules, where

W1 := lim−→
K1

W1(K1) and W2 := lim−→
K2

W2(K2).

�

Proof of Theorem 7.5. For each finite set of finite places S containing the (finite) set of places v
where GFv is ramified let KS :=

∏
vKv ≤ G(ASF ) be a fixed compact open subgroup with Kv

hyperspecial for every v.
Choose an isomorphism

C∞c (G(A∞F )) ∼= ⊗′vC∞c (G(Fv))(7.3.1)
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where the restricted direct product is constructed using the idempotents eKv for hyperspecial
Kv ≤ G(Fv). Use (7.3.1) to identify these two algebras for the remainder of the proof. We then
have a well-defined subalgebra

AS := C∞c (G(F∞S ))⊗ eKS ≤ C∞c (G(A∞F )),

where eKS = ⊗v 6inSeKv is 1
meas(KS)

1KS (see Example 7.3). By corollary 8.9 below and Theorem

7.11 above, as a representation of AS we have an isomorphism

WKS ∼= ⊗v∈SWv ⊗W S

where W S is a one-dimensional C-vector space on which eKS acts trivially. Hence, by admissibility,

W =
⋃
S

WKS ∼= lim−→
S

⊗v∈SWv ⊗W S.(7.3.2)

with respect to the obvious transition maps (compare §7.1). On the other hand, (7.3.1) induces
an identification

C∞c (G(A∞F )) =
⋃
S

AS = lim−→
S

AS(7.3.3)

where the direct limit is taken with respect to the obvious transition maps (again, compare §7.1),
and it is clear that (7.3.2) is equivariant with respect to (7.3.3). �

8. Gelfand pairs

In the proof of Theorem 7.5 above we used without proof the fact that if G is a connected
reductive group over a nonarchimedian local field F , V is an irreducible admissible representation
of G(F ) and K ≤ G(F ) is a hyperspecial subgroup then dim(V K) = 1. This important result is
proven via an application of Gelfand’s lemma (see Corollary 8.9), which is a lemma used to establish
the existence of so-called Gelfand pairs. Since this notion is incredibly useful in representation
theory, we devote this section to it. Throughout G is a totally disconnected locally compact
group.

Definition 8.1. If V is a representation of G, then the contragredient representation V ∨ is
the representation afforded by all linear forms V → C that are fixed by some open subgroup in G.

Note that the contragredient of an admissible representation is admissible.

Definition 8.2. Suppose H ⊂ G is a closed subgroup. The pair (G,H) is a Gelfand pair if for all
irreducible admissible representations V of G we have that dim HomH(V,C) dim HomH(V ∨,C) ≤ 1.

Studying representations of G by studying their restrictions to subgroups H is often a profitable
strategy in representation theory. If (G,H) is Gelfand, this is especially true. One can think of
the multiplicity one property as an analogue of Schur’s lemma in a sense we now explain. Since
we have not proven Schur’s lemma in the context of admissible representations, we provide a proof
now:

Lemma 8.3 (Schur’s lemma, extended to smooth irreducibles by Jacquet). Let (π, V ) be a smooth
irreducible representation of G. Assume that the topology of G has a countable basis. Then any
endomorphism of V commuting with π is necessarily scalar.

Remark 8.4. The hypothesis on G is valid if G is the F -points of a reductive group over a local
nonarchimedian field F .
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Proof. Let T : V → V be a nonzero intertwining map. Assume for the sake of a contradiction that
T 6= λ Id for all λ ∈ C. Then for all λ ∈ C, the map T − λ Id : V → V is a nonzero intertwining
map since it is nonzero and π is irreducible. Let Rλ = (T − λ Id)−1. Then we claim that the Rλ

are linearly independent over C as λ varies. Indeed, suppose λ1, . . . , λn ∈ C are distinct and let
a1, . . . , an ∈ C×. The linear combination

∑
aiRλi decomposes as a product∑

i

aiRλi =

(∏
i

Rλi

)
P (T ),

where P (X) =
∑

i ai
∏

j 6=i(X − λj). Factor P (X) = a
∏

i(X −mi) for a ∈ C× and mi ∈ C. Then

since P (T ) is invertible each T −mi Id is invertible. Thus
∑
aiRλi is invertible, and the Rλi are

thus linearly independent. This proves the claim, which implies that the endomorphisms of π form
a C-vector space of uncountable dimension.

Now let φ ∈ V −{0}, so that V is generated by φ. Thus V is generated by {π(g)φ : g ∈ G} over
C. By smoothness, φ is stabilized by a compact open subgroup stabilizer K ≤ G. Since G/K is
countable by assumption, it follows that V has countable dimension.

On the other hand there is an injective map from the C-algebra of intertwining maps T : V → V
to V given by T 7→ T (φ). Thus the C-algebra of intertwining maps T : V → V has countable
dimension. This contradiction implies the proposition. �

As an easy corollary, we have that if the topology of G has a countable basis and π is an
irreducible admissible representation of G, then there is a quasi-character ω : ZG−→C× such that
π(z) acts via multiplication by ωπ(z) for z ∈ ZG. The character ωπ is called the central character
of π. As another application, we have the following lemma:

Lemma 8.5. Regard G as a subgroup of G×G via the diagonal embedding. Then (G×G,G) is a
Gelfand pair if and only if for all irreducible admissible representations (π, V ) of G any intertwining
map V → V is a scalar.

This explains our earlier claim that the Gelfand property can be thought of as an analogue of
Schur’s lemma. It is in fact a generalization of this property.

In order to give the proof, we observe that for any representation V of G the space

End(V ) := Hom(V, V )

is naturally a G × G-module, where one copy of G acts via precomposition and the other via
postcomposition. Let

Endsm(V ) ≤ End(V )

denote the subspace consisting of smooth endomorphisms, that is, endomorphisms that are left
and right invariant by a compact open subgroup K ≤ G.

Proof. The space of Endsm(V ) isomorphic as a representation of G×G to V ⊗V ∨, and the subspace
of intertwining maps V → V is naturally isomorphic to

(V ⊗ V ∨)G,

where here we regard G as embedded diagonally in G×G. �

One important characterization of Gelfand pairs in a special case is the following:

Proposition 8.6. If K ⊂ G is compact and open then (G,K) is a Gelfand pair if and only if
C∞c (G//K) is commutative.

For an application of this proposition, see §9.1 below.
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Proof. If C∞c (G//K) is commutative then dim(V K) = 1 for all irreducible admissible represen-
tations V by Proposition 7.9 so (G,K) is a Gelfand pair. Conversely, note that we have an
equivalence of categories

{reps V of G generated by V K}−→{C∞c (G//K)-modules}
V 7−→ V K

which sends irreducible representations to irreducible representations. Moreover, one can check
that any representation of G that is generated by V K is in fact admissible since we are in a
nonarchimedian setting. If (G,K) is Gelfand, then dimV K = 1 for all irreducible admissible
representations V , and hence every irreducible representation of C∞c (G//K) is one-dimensional.
It follows that C∞c (G//K) is commutative. �

Gelfand’s lemma gives a method for proving that a given pair is Gelfand. To state it we use the
following definition:

Definition 8.7. The space of distributions D′(G) on G is the linear dual of C∞c (G).

Note that in contrast to the archimedian case we place no conditions of continuity on the linear
functions. We have that G×G acts on D′(G) via its left and right actions on functions of C∞c (G).

Lemma 8.8 (Gelfand’s Lemma). Assume the topology of G has a countable basis and let H ≤ G
be a closed subgroup. If there is an involution ι of G which stabilizes H and acts trivially on
D′(G)H×H then (G,H) is a Gelfand pair.

Proof. Assume that the topology of G has a countable basis and let V be an irreducible represen-
tation of G, and let ` : V → C and m : V ∨ → C be nonzero H-invariant linear forms. Define linear
maps

F` : C∞c (G)−→V ∨

Fm : C∞c (G)−→V

by

F`(f)(v) =

∫
G

f(g)`(gv)dg

Fm(f)(v∨) =

∫
G

f(g)m(gv∨)dg

respectively. Since V ∨ and V are irreducible, by Schur’s lemma [Car79, §1.4(c)] these maps are
determined up to scaling by their kernels. We consider the composite map:

B : C∞c (G)× C∞c (G)
Fm×F`−−−−→ V × V ∨ 〈 , 〉−−→ C,

where 〈 , 〉 is the tautological (G-invariant) pairing. Note that B(f1, f2) = m(F`(f1 ∗ f2)). Ex-
tending linearly B defines a distribution on G×G right invariant under H ×H and left invariant
under G (embedded diagonally). For f ∈ C∞c (G), define f̃ := f(ι(g−1)). Since f 7→ m(F`(f)) is

bi-H-invariant, it is fixed by ι. Thus m(F`(f)) = m(F`(f̃)). We now take f = f1 ∗ f2, and we have

f̃ = f̃2 ∗ f̃1, since ι is an involution. Thus we see that B(f1, f2) = B(f̃2, f̃1), so the left kernel of
B determines the right kernel of B. Hence m determines ker(F`), and therefore determines ` up
to scaling. But since m was arbitrary, we must have dimHHom(V,C) ≤ 1. A symmetric argument
implies that dimHHom(V ∨,C) ≤ 1. �

We close this section with the application of Gelfand’s lemma that motivated our discussion in
the first place:
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Corollary 8.9. If F is a nonarchimedian local field, G a connected reductive F -group, and K ≤
G(F ) a hyperspecial subgroup, then (G(F ), K) is a Gelfand pair. More generally, if G is a connected
reductive group over a global field F unramified outside of S and KS :=

∏
v 6∈S ≤ G(ASF ) is a

subgroup with Kv ≤ G(Fv) hyperspecial for all v, then (G(ASF ), KS) is a Gelfand pair.

Proof. In [Car79, Theorem 4.1] one finds a sketch of a proof that C∞c (G(F )//K) is commutative,
which implies the first statement by Proposition 8.6.

For the adelic statement we note that

C∞c (G(ASF )//KS) ∼= ⊗′v 6∈SC∞c (G(Fv)//Kv)

so the algebra C∞c (G(ASF )//KS) is commutative, hence the pair (G(ASF ), KS) is Gelfand.
In the special case of G = GLn(F ), K = GLn(OF ), recall that any double coset KgK is equal

to KaK with a a diagonal matrix by the structure theorem for finitely generated modules over a
principal ideal domain. Thus we can show that (G,K) is Gelfand using Gelfand’s lemma. �

9. Unramified representations

By Flath’s theorem, if π is an automorphic representation of G(AF ), then

π ∼= ⊗′vπv

where for almost every v the representation πv is unramified in the sense that it contains a (unique)
vector fixed under a hyperspecial subgroup K ≤ G(Fv). In this section we discuss the classification
of unramified representations. It turns out that they can be explicitly parametrized in terms of
conjugacy classes in the dual group of G (see Theorem 9.3). This fundamental fact will later be
used in §10 to formally state the Langlands functoriality conjecture.

In this section we let G be a connected reductive group over a nonarchimedian local field F .

9.1. Unramified representations. Our purpose here is to study unramified representations.
Recall that G is unramified if G is quasi-split and split over an unramified extension of F .

Definition 9.1. An admissible irreducible representation (π, V ) of G(F ) is called unramified or
spherical if G is unramified and V K 6= 0 for some (any) hyperspecial subgroup K ≤ G(F ).

Let K ≤ G(F ) be a hyperspecial subgroup. Then the subalgebra

C∞c (G(F )//K) ≤ C∞c (G(F ))

is known as the spherical Hecke algebra of G(F ) (with respect to K). Let f ∈ C∞c (G(F )//K)
and let π be unramified. Then π(f) acts via a scalar on V K and hence on all of V . It is sensible
to denote the scalar by tr(π(f)). The map

C∞c (G(F )//K)−→C
f 7−→ tr(π(f))

is called the Hecke character of π.

Proposition 9.2. An unramified representation π is determined up to isomorphism by its Hecke
character.

Proof. Recall that a smooth representation of G(F ) generated by V K is determined by the action
of C∞c (G(F )//K) on V K (compare the proof of Proposition 8.6). �
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9.2. The Satake isomorphism. If we don’t know anything about C∞c (G(F )//K), then we could
hardly count this result as useful. However, it turns out that C∞c (G(F )//K) has a simple descrip-
tion:

Theorem 9.3 (Satake). Assume that G is split. There is an isomorphism of algebras

S : C∞c (G(F )//K)−→C[T̂ ]W (Ĝ,T̂ )(C)

where Ĝ is the complex connected reductive algebraic group with root datum dual to that of G and

T̂ ≤ Ĝ is a maximal torus. �

Remark 9.4. A similar, but more complicated statement is true for any unramified group G, see
[Car79, §4.2].

To have a feeling for this result, let us consider the special case of GLn following [Tam63]. The
Hecke algebra C∞c (GLn(F )//GLn(OF )), as a C-module, has a basis given by

1λ := GLn(OF )

$
λ1
1

. . .

$λn
n

GLn(OF )

with λ := (λ1, . . . , λn) ∈ Zn, λi ≥ λi+1 for all 1 ≤ i ≤ n − 1 (this follows from the theory of
elementary divisors). As a C-algebra it is generated by 1λ(r) with λ(r) = (1, . . . , 1, 0, . . . , 0) (r ones
and n− r zeros) for 1 ≤ r ≤ n and λ = (−1, . . . ,−1).

On the generating set above the Satake isomorphism is given by

S(1λ(r)) = qr(n−r)/2tr (∧rCn)(9.2.1)

where Cn is the tautological representation of GLn(C) and tr (∧rCn) is the trace of a diagonal
matrix in GLn(C) acting on the given representation.

We now record the following consequence of Proposition 9.2 and Theorem 9.3:

Corollary 9.5. Assume that G is split. There is a bijection
semi-simple

conjugacy classes

in Ĝ(C)

↔
 isomorphism classes

of irreducible unramified
representations of G(F )

 .

Proof. We have

HomC-algebras(C[T̂ ]W (Ĝ,T̂ )(C),C) = T̂ (C)/W (Ĝ, T̂ )(C)

On the other hand every semisimple conjugacy class in Ĝ(C) intersects T̂ (C) and two elements of

T̂ (C) are conjugate in G if and only if they are in the same W (Ĝ, T̂ )(C)-orbit. �

This result is our first example of a functorial correspondence in the sense of Langlands. We will
return to functorial correspondences in §10 below. By way of terminology the semisimple conjugacy
class attached to an isomorphism class of unramified representations is called its Langlands class.
The eigenvalues of a representative of the conjugacy class are called its Satake parameters.

9.3. Principal series. We now explain how to explicitly realize unramified representations. Let
P ⊂ G is a parabolic subgroup, M ⊂ P is its Levi subgroup, and N its unipotent radical, so that
we have P = MN .

Letting
n := Lie(N)

we obtain a representation
Adn : M(F )−→GL(n)
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by restricting the adjoint action of G(F ) on Lie(G). The modular character

δ := δP : M(F )→ C(9.3.1)

is defined by

δ(m) := | det(Ad(m))|.
Let (σ, V ) be a smooth irreducible representation of M(F ). Using the modular character we define
the induced representation I(σ) := IndGP (σ) to be the (smooth) representation of G(F ) on the
space of functionsf : G(F )−→V :

f(mng) = δ(m)1/2σ(m)f(g) for all (m,n, g) ∈M ×N ×G(F ),
and there exists a compact open K ≤ G
such that f(gk) = f(g) for all g ∈ G(F )


Here G acts via right translation:

I(σ)(g)f(x) = f(xg).

This is an example of an induced representation. The factor of δ1/2 is present so that if σ is
unitarizable then I(σ) is also unitarizable (see Lemma 9.6). We note that this procedure yields a
functor

IndGP : SmRepM(F ) SmRepG(F ),

from smooth representations of M(F ) to smooth representations of G(F ).

Lemma 9.6.

(1) If σ is admissible then I(σ) is admissible.
(2) One has I(σ)∨ ∼= I(σ∨)
(3) If σ is unitary then I(σ) is unitarizable.

Proof. There is a compact open subgroup K ≤ G(F ) such that

G(F ) = KP (F )

by the Iwasawa decomposition [Tit79, §3.3.2]. Thus G(F )/P (F ) is compact and (1) follows.

Let V denote the space of I(σ), W the space of I(δ
1/2
P ) Define a map

Π : C∞c (G(F ))−→W

f 7−→
∫
M(F )

∫
N(F )

f(mg)dmdn.

It is surjective and intertwines the natural action of G(F ) on C∞c (G(F )) by right translation with
the action of I(δ). Consider assertion (2). For φ1 ∈ V, φ2 ∈ V ∨ choose f such that Π(f) = φ1φ2 ∈
W . One can check that the pairing

〈φ1, φ2〉 :=

∫
G(F )

f(g)dg(9.3.2)

is well-defined. It is trivially G(F )-invariant and nondegenerate, and this realizes I(σ∨) as the
contragredient of I(σ). This proves assertion (3). The proof of assertion (3) is similar; one
assumes that φ1, φ2 ∈ V and replaces φ1φ2 with φ1φ

∨
2 , where the φ∨2 denotes the dual vector with

respect to the given Hermitian pairing. �

We now isolate a particular case of the construction above. Let A ≤ G be a maximal split torus,
let M = CG(A) be its centralizer, and let P ≤ G be a minimal parabolic containing M . There is
a map

ordM : M(F )→ X∗(M)
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defined by

〈ordM(m), χ〉 = |χ(m)|.
where | · | is the norm on F . Denote by Λ(M) ⊂ X∗(M) the image of ordM and let M(F )o be the
group fitting into the exact sequence:

(9.3.3) 1→M(F )o →M(F )→ Λ(M)→ 1.

By definition, m ∈M(F )o if and only if λ(m) ∈ O×F for all λ ∈ X∗(M). Thus M(F )0 is open.

Definition 9.7. A quasi-character χ : M(F )→ C is said to be unramified if χ|M(F )o is trivial.

Definition 9.8 (Unramified principal series). Assume that G is unramified and that χ is an
unramified character of M . Then the representation

I(χ) := IndGP (χ)

is an unramified principal series representation.

Remark 9.9. Of course, we have not checked that I(χ) is unramified, or even irreducible. In fact,
it is sometimes reducible. When I(χ) is irreducible it is indeed the case that I(χ) is unramified.

Let

W = N(A)(F )/M(F ).

It acts on X∗(M) and leaves X∗(A) ⊂ X∗(M) and Λ(M) invariant. For w ∈ W , define the character
χw by χw(m) := χ(x−1

w mxw), where xw represents w in V (A). We say that χ is regular if χw = χ
only when w = 1. One has the following fundamental theorem:

Theorem 9.10. The following hold:

(1) The representations I(χ) and I(χw) are isomorphic for all w ∈ W , and these account for
all the possible isomorphisms among the I(χ).

(2) Every unramified representation is isomorphic to a unique subquotient of a unique I(χ).

Consider now the following concrete instance of the above construction. Let χ1, χ2 : Q×p → C×
be characters (not-necessarily unitary). Then I(χ1, χ2) is the space of locally constant functions

f : GL2(Qp)→ C

with f(( a1 ∗a2 ) g) = χ1(a1)χ2(a2) |a1|
1/2

|a2|1/2
f(g). Note that χ1, χ2 are unramified if and only if they

restrict trivially to Z×p , in which case they are completely determined by the value at a uniformizer
$, thus by the complex number si such that χi($) = qsi (i = 1, 2). By part (1) of Theorem
9.10, the parameters (s1, s2) and (s2, s1) correspond to the same representation, so by part (2) of
Theorem 9.10, we obtain a bijection

semi-simple
conjugacy classes

in ĜL2(C) = GL2(C)

↔
 isomorphism classes

of irreducible unramified
representations of GL2(Qp)

 .

We are led to ask if this is the same bijection as that given by Corollary 9.5. This is indeed the
case. We will not prove it is the same bijection, but we will describe how to set up the bijection
using principal series instead of Hecke characters.

Assume for simplicity that G is split. We wish to construct another bijection between the two
sets in Corollary 9.5.

Recall the exact sequence (9.3.3), and consider the complex torus

T̂ := Spec(C[Λ(T )]).
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Thus T̂ (C) = Hom(Λ(T ),C). Let X0 denote the set of unramified characters of M(F ). Thus any

element of X0 is a character of M(F )/M(F )0 ∼= Λ(M), and hence defines a point in T̂ (C). If two

characters are conjugate under W , then the two points are conjugate under W (Ĝ, T̂ )(C), where Ĝ
is the dual group of G (see §2.7). Using Theorem 9.10 we therefore obtain a bijection isomorphism classes

of irreducible unramified
representations of G(F )

−→ T̂ (C)/W (Ĝ, T̂ )(C) =


semi-simple

conjugacy classes

in Ĝ(C)

 .(9.3.4)

sending χ to the corresponding point of T̂ (C). To check that this is the same bijection as that
of Corollary 9.5, one must compute the effect of an element of the spherical Hecke algebra on an
unramified representation, but we will not go into this here.

10. Statement of the Langlands conjectures and functoriality

Let G be a connected reductive group which is unramified over a nonarchimedian local field Fv.
In Corollary 9.5 we set up a bijection

{semisimple conjugacy class in Ĝ(C)} ←→ {isom. classes of unramified reps of G(Fv)}.
In this section we describe the (mostly conjectural) generalization of this, first to ramified rep-
resentations and second to global fields. These generalizations are what is known as Langlands
functoriality.

10.1. The Weil group. Let F be a global or local field, let F̄ be an algebraic closure of F and
let

GalF := Gal(F̄ /F )

be the absolute Galois group of F . It is endowed with the profinite topology.
A continuous homomorphism GalF → GLn(C) necessarily has finite image. On the other hand,

there are many continuous homomorphisms GalF → GLn(Q`) with infinite image.

Example 10.1. If E is an elliptic curve over Q without CM, then the Tate module of E gives
give a representation with image containing SL2(Z`) for almost every ` [Ser72].

Example 10.2. A more elementary example is given by the cyclotomic character, it is the char-
acter

χ` : GalQ−→Z×`
defined as follows. If σ ∈ GalQ and ζn is a primitive `nth root of unity then σ(ζn) = ζ

aσ,n
n for some

aσ,n ∈ (Z/`n)×. We then define
χ`(σ) = lim←−

n

aσ,n.

One can check that if p 6= ` then χ`(Frobp) = p.

It would be nice to view all of these examples as complex-valued representations of a single
group. Weil and later Deligne introduced refinements of the Galois group to do just this. The
definitions we now give are taken from [Tat79]

Definition 10.3. Let F be a local or global field. Then a Weil group for F is a tuple (WF , φ, {rE})
where WF is a topological group,

φ : WF → Gal(F/F )

is a continuous homomorphism with dense image, and, for each finite extension E/F ,

WE := φ−1(GalE),
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and

rE : CE −→W ab
E(10.1.1)

is an isomorphism, where

CE :=

{
E× if F is local

E×\A×E if F is global.

These data are required to satisfy the following assumptions:

(1) For each finite extension E/F the composite

CE
rE−−−→ W ab

E

induced by φ−−−−−−−→ GalabE

is the reciprocity map of class field theory.
(2) Let w ∈ WF and σ = φ(w) ∈ GalF . For each E the following diagram is commutative:

CE
rE //

σ

��

W ab
E

��
CEσ rEσ

// W ab
Eσ

commutes.
(3) For E ′ ⊆ E

CE′
rE //

inclusion

��

W ab
E′

transfer
��

CE rE′
// W ab

E

commutes.
(4) Finally, the map

WF → lim←−WE/F

is an isomorphism, where WE/F = WF/W ab
E , the bar denoting closure.

If the Weil group exists, it is unique up to isomorphism.

Example 10.4. Let F be a local field and for all finite extensions E/F let kE be the residue field
of E and qE the cardinality of kE. Put k =

⋃
E kE. Then in this case WF is the dense subgroup of

GalF generated by the σ ∈ GalF such that on k, σ acts as x 7→ xq
n
E for some n ∈ Z. Then rE(a)

acts as x 7→ x|a| on k.

Example 10.5. In the global function field case, the Weil group is defined as in the previous
example, but one replaces the residue field above with the constant field.

Example 10.6. For F = C, then WF = C×, φ is the trivial map and rF = id.

Example 10.7. For F = R, then WF = F
× ∪ jF× where j2 = −1 and jcj−1 = c. Here φ takes

F
×

to 1 and jF
×

to the nontrivial element of Gal(C/R).

For number fields one doesn’t have a nice intrinsic description like in the above examples.
Almost by definition of the Weil group, one obtains the following correspondence:
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Theorem 10.8 (The Langlands correspondence for GL1). There is a bijection between

{isomorphism classes of irreducible automorphic representations of GL1(AF )}

and

{continuous representations χ : WF → GL1(C)}

Proof. An irreducible automorphic representation of GL1(AF ) can be identified with a character
of F×\A×F , which is isomorphic to W ab

F by definition of the Weil group. �

Example 10.9. Under this correspondence the cyclotomic character χ` corresponds to the char-
acter | · | (the inverse of the idelic norm), provided that rE is normalized so that uniformizers of
prime ideals are sent to the inverse of the corresponding Frobenius element.

10.2. The Weil-Deligne group. For better or worse the Weil group is still not big enough; we
will make this precise later. The correct enlargement of WF when F is a number field should be
the as yet hypothetical Langlands group. On the other hand, the correct enlargement of WF when
F is a nonarchimedian local field is known, so in this subsection we restrict to this case.

When F is a local field the Weil-Deligne group is

W ′
F := WF × SL2(C).(10.2.1)

We now prepare to define a representation of W ′
F . Let k be the residue field of F , k̄ a choice

of algebraic closure, and Galk := Gal(k̄/k). The action of GalF preserves the ring of integers and
the (unique) prime ideal of the ring of integers of any finite extension field E/F contained in F̄ .
There is thus an exact sequence

1−→ IF −→GalF −→Gal(k̄/k)−→ 1.

where IF is the inertia subgroup, which can be defined as the kernel of the map GalF → Galk.
The Weil group WF is a subgroup of Gal(F̄ /F ) (compare Example 10.4) and contains IF . We

thus have an exact sequence

1−→ IF −→WF −→Gal(k̄/k).

Remark 10.10. The last map is not surjective. Its image is isomorphic to Z, whereas Gal(k̄/k) is

isomorphic to Ẑ, the profinite completion of Z.

Again using Example 10.4 we see that

WF
∼= IF n 〈Fr〉

where Fr is a Frobenius element.
Let G be a reductive group over C.

Definition 10.11. A representation of W ′
F into G(C) is a homomorphism

ϕ : W ′
F −→G(C)

such that ϕ is trivial on an open subgroup of IF , ϕ(Fr) is semisimple, and ϕ|SL2(C) is induced by a
morphism of algebraic groups SL2 → G.

By a representation of W ′
F we mean a representation of W ′

F into GLn(C) for some integer n.

Remark 10.12. There are various equivalent definitions of a representation of the Weil-Deligne
group in the literature, see [GR10].
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10.3. Local Langlands for the general linear group. Let F be a nonarchimedian local field.
The local Langlands conjecture for GLn(F ), now a theorem, can be stated vaguely as follows:

Theorem 10.13 (Local Langlands correspondence). There is a bijection, satisfying certain de-
sirata, between representations of W ′

F into GLn(C) and irreducible admissible representations of
GLn(F ).

When n = 1 this is essentially local class field theory. The theorem was proved by Harris-Taylor
first [HT01], then a simplified proof was found by Henniart [Hen00]. One can find a precise
statement of the theorem in either of these references. The bijections are required to preserve L
and ε factors

Remark 10.14. In the archimedian case there is a bijection between representations of WF into
GLn(C) and irreducible admissible representations of GLn(F ); there is no need for a Weil-Deligne
group in this case.

10.4. The Langlands dual. In Corollary 9.5 we saw that we need to introduce the complex dual

Ĝ(C) of a reductive group G in order to classify representations of G(F ) To obtain analogues of
Theorem 10.13 for other groups, it is necessary to develop the notion of the Langlands dual group,

which is an extension of Ĝ(C) by a Galois group. In Theorem 10.13 this wasn’t necessary because

GLn is split and ĜLn = GLn(C).
For the moment, let G be a connected reductive group over a global or local field F and

let T ≤ G a maximal torus. To these data we associated in §2.7 a root datum Ψ(G, T ) =
(X∗(T ), X∗(T ),Φ,Φ∨). If G is split, then we set

LG := Gal(F̄ /F )× Ĝ(C)

where Ĝ is the complex dual group defined as in §2.7.
In the nonsplit case the definition of the Langlands dual is somewhat complicated. However, it

uses some notions that appear in a variety of contexts, so we will give the full definition. For the
moment, let G be a connected reductive group over C.

Definition 10.15. A set of positive roots Φ+ ⊂ Φ is a set of roots such that

(1) For all elements α ∈ Φ exactly one of α and −α is an element of Φ.
(2) For α, β ∈ Φ+ the sum α + β ∈ Φ+.

A simple root in Φ is a root in Φ+ that cannot be written as a sum of two elements of Φ+.

The set of roots dual to Φ+ in Φ∨ forms a set of positive roots in Φ∨. We denote by ∆ ⊆ Φ the
set of simple roots with respect to some set of positive roots. The set of dual roots ∆∨ ⊆ Φ∨ is a
maximal set of simple roots with respect to the dual set of positive roots. The sets ∆, ∆∨ span Φ
and Φ∨, respectively, as Z-modules and thus determine Φ and Φ∨. A tuple

(X, Y,∆,∆∨)

is called a based root datum if (X, Y,Φ,Φ∨) is a root datum, ∆ ⊆ Φ is a maximal set of simple
roots (with respect to some set of positive roots) and ∆∨ is the dual set. There is an obvious
notion of isomorphism of root data; it is simply a pair of linear isomorphisms on the first two
factors preserving the pairing and the sets of simple roots.

We let Ψ0(G,B, T ) := (X∗(T ), X∗(T ),∆,∆∨) be a choice of based root datum, and Ψ(G, T ) the
root datum it defines. The reason for the B in this notation is the following lemma:

Lemma 10.16. The choice of a set of simple roots ∆ ⊆ Φ is equivalent to the choice of a Borel
subgroup B ≤ G containing T .
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Before giving the proof we recall that for each α ∈ Φ there exists a unique homomorphism

expα : gα → G(C)

such that t expα(x)t−1 = exp(α(t)x) and Lie(expα) is the natural inclusion gα ↪→ g.
For example if G = GLn and α = eij in the notation of (2.44) then

expα(x) =
∑
n≥0

e∨ij(x)n

n!

We denote by
Uα := Im(expα).

Proof. Given a choice of a set of simple roots ∆ the group

B = 〈T, {Uα}α∈∆〉(10.4.1)

is a Borel subgroup, and conversely given a a Borel there exists a unique maximal set of simple
roots ∆ such that such that (10.4.1) is true. �

Definition 10.17. A pinning of G is a tuple

(B, T, {uα}α∈∆)

where T ≤ B ≤ G is a maximal torus and a Borel subgroup, respectively, ∆ is the set of simple
roots with respect to this Borel, and uα ∈ Uα − 1 for all α.

We let Aut((B, T, {uα}α∈∆) be the group of automorphisms of G that preserve B and T and
the set uα. Then it is a fact that restriction defines an isomorphism

Aut((B, T, {uα}α∈∆)) ∼= Aut(Ψ0(G,B, T ))

where we use ∆ to define Ψ0(G,B, T ).
One has a split exact sequence

1−→ Inn(G)−→Aut(G)−→Aut(Ψ0(G,B, T ))−→ 1.(10.4.2)

Splittings of this sequence are in bijection with pinnings.
We now assume that G is a connected reductive group over a local or global field F . To simplify

matters we assume that G is quasi-split, and so has a Borel subgroup B ≤ G and a maximal torus
T ≤ B ≤ G. We obtain a based root datum

Ψ0(G,B, T ) := Ψ0(GC, BC, TC)

and sinceB and T are defined over F there is an action of Gal(F̄ /F ) on Ψ0(G,B, T ) := (X∗(T ), X∗(T ),∆,∆∨).

We note that (X∗(T ), X∗(T ),∆∨,∆) is the based root datum of some tuple Ĝ ≥ B̂ ≥ T̂ , that

is, it is equal to Ψ0(Ĝ, B̂, T̂ ). We therefore obtain an action of Gal(F̄ /F ) on Ψ0(Ĝ, B̂, T̂ ).

Via a choice of pinning of Ĝ we obtain a section of the map

Aut(Ĝ)→ Aut(Ψ0(Ĝ, B̂, T̂ ))

and hence a map Gal(F̄ /F )−→Aut(Ĝ). We define the Langland dual group of G to be the
semidirect product

LG := Ĝ(C)oGal(F̄ /F )

with respect to this action. More colloquially, any group of this form is said to be an L-group. A
morphism of L-groups

LH −→ LG

is simply a homomorphism commuting with the projections to Gal(F̄ /F ) such that its restriction

to the neutral components is induced by a map of algebraic groups Ĥ −→ Ĝ.
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10.5. L-parameters. Let G be a reductive group over a local field F .

Definition 10.18. An L-parameter is a representation of W ′
F into LG that commutes with the

projections to Gal(F̄ /F ). Two L-parameters are equivalent if they are conjugate by an element of

Ĝ(C).

We note that given an L-parameter ϕ : W ′
F → LH and an L-map

LH −→ LG

we obtain an L-parameter ϕ : W ′
F → LG.

10.6. The local Langlands correspondence and functoriality. There is a conjectural parti-
tion of the set of equivalence classes of irreducible representations of G(F ) into disjoint sets called
L-packets. In the case G = GLn the L-packets are singletons, that is, an L-packet is just the
equivalence class of a given irreducible admissible representation.

The analogue of the Langlands correspondence for general groups over local fields is the following
vaguely stated conjectural statement:

Conjecture 10.19 (Local Langlands correspondence). There is a bijection between L-packets and
equivalence classes of L-parameters satisfying various desiderata.

In the last subsection we saw that an L-map induces a map

{L-parameters W ′
F → LH}−→{L-parameters W ′

F → LG}.
Local Langlands functoriality is the statement that there is a corresponding map of L-packets:

Conjecture 10.20 (Local Langlands functoriality). Given an L-map LH → LG there is a corre-
sponding transfer of L-packets compatible with the local Langlands correspondence.

Given these two conjectures, together with the fact that the local Langlands correspondence is
a theorem for GLn, one can often construct an ad-hoc definition of L-packets. More specifically, if
we have an L-map

LH −→ L GLn

that is injective, and we find a natural way to associate to equivalence classes of admissible rep-
resentations of H(F ) equivalence classes of admissible representations of GLn(F ). One can then
define an L-packet on H to be the set of equivalence classes of admissible representations of H(F )
that map to a given admissible representation of GLn(F ) (remember, L-packets on GLn are defined
to be equivalence classes of irreducible admissible representations). This is the approach taken in
forthcoming work of Arthur and Mok.

10.7. Global Langlands functoriality. Let F be a global field. In the global case, it is not
known what group (if any) parametrizes L-packets of (irreducible) automorphic representations,
in analogy with how L-parameters conjecturally parametrize L-packets of admissible representa-
tions in the local setting as in Conjecture 10.19. However, the local functorial correspondence of
Conjecture 10.20 has a natural analogue. Namely, one conjectures the existence of a partition of
equivalence classes of admissible automorphic representations of G(AF ) into disjoint sets called
L-packets such that the following conjecture holds:

Conjecture 10.21. Given an L-map

R : LH −→ LG

there is a corresponding transfer of L-packets of automorphic representations that is compatible
with the local correspondence at all places.
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We leave it to the reader to formulate the appropriate notion of compatibility here.

Remark 10.22. For some applications, both local and global, it may not be the case that L-packets
provide the most natural manner of organizing automorphic representations. For nontempered
representations (a term we have not defined) Arthur packets or A-packets are more appropriate.
For real groups, it also seems that the notion of a Vogan packet is often useful. We will not discuss
these notions here; indeed, even our treatment of L-packets is rather vague.

As a special case, assume that H and G are split at a nonarchimedian place v. In this case it is
expected that if π = ⊗vπv is an element of an L-packet of automorphic representations of H and
πv is unramified, then every element of the L-packet is unramified, and hence the corresponding
local L-packet at v is nothing but the representation trivial on IFv and SL2(C) sending Fr to the

Langlands class A(πv) ∈ Ĥ(C) of πv. Then any transfer of the L-packet of π should also be
unramified at v and have Langlands class R(A(πv)).

10.8. L-functions. It has been said that the reason for studying automorphic representations in
the first place was because of their relation to the theory of L-functions. Unfortunately we will
not be giving adequate space to this subject, in part because there are already useful surveys of
the theory available [?]. W

At least for GLn, there are two ways of associating an L-function to an automorphic represen-
tation. One essentially goes back to Hecke, and was generalized to GLn by Jacquet, Shalika and
Piatetskii-Shapiro (see loc. cit.). There is another way to associate L-functions to automorphic
representations, essentially using the local Langlands correspondence. Part of the content of the
local Langlands conjectures is that these two constructions give the same answer.

To start, we suppose v is a place of F and that we are given an L-parameter ϕ : W ′
Fv
→ LG and

a representation

r : LGFv → GL(V )

we associate an L-function as follows:

L(s, r ◦ ϕ) := det
(
1− Frvq

−s
v |V IFv

)−1
(10.8.1)

We also define an ε factor. If ψ : Fv → C× is an additive character, dx× = |x|−1dx is a Haar
measure on F×v , and r ◦ ϕ is a quasi-character χ, i.e. a homomorphism

χ : WF −→GL1(C),

then we define ε(s, χ, ψ, dx) to be the nonzero complex number such that∫
F×v

f̂(x)χ−1(x)|x|dx×

L(s− 1, χ−1)
= ε(s, χ, ψ, dx)

∫
F×v

f(x)χ(x)dx×

L(s, χ)
(10.8.2)

where f̂(y) :=
∫
Fv
f(x)ψ(xy)dx is the Fourier transform of f . Langlands and Deligne defined in

general a ε-factor ε(s, ϕ ◦ r, ψ, dx) that is invariant under induction.
If an L-packet of an admissible representation πv of G(Fv) corresponds to an L-parameter

ϕ : W ′
F → LGFv we define

L(s, πv, r) := L(s, ϕ ◦ r) and ε(s, πv, r, ψ, dx) = ε(s, ϕ ◦ r, ψ, dx).

Remark 10.23. Note that admissible representations in the same L-packet necessarily have the
same L and ε-functions. This is the reason for the terminology “L-packet.” Sometimes one says
that elements in the same L-packet are L-indistinguishable.
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If r was the localization of an L-map r : LG→ GLn(C) then we set

L(s, π, r) :=
∏
v

L(s, πv, r) and ε(s, π, r) :=
∏
v

ε(s, πv, r, ψv, dxv)

where dx =
∏

v dxv, ψ :=
∏

v ψv,
∫
F\AF

dx = 1 and ψ|F = 1. As the notation indicates, the

global ε-factor does not depend on the choice of ψv and dxv. The basic conjectures regarding these
L-functions are as follows:

Conjecture 10.24. The L-function L(s, π, r) is meromorphic as a function of s, is bounded in
vertical strips, and satisfies the functional equation L(s, π, r) = ε(s, π, r)L(1− s, π∨, r∨).

When r is the tensor product map from L GLn×GLm to GLmn(C) then this theorem is known
(see [Cog07] for a survey). There are now other cases known due to work on converse theory; some
are surveyed in loc. cit. , some fall under the general heading of the Langlands-Shahidi method
(see [CKM04] for a survey). If r : L GLm×GLn → GLmn(C) is the tensor product representation
then we set

L(s, π1 × π2) := L(s, π1 × π2, r) and ε(s, π1 × π2) := ε(s, π1 × π2, r).

These are known as Rankin-Selberg L-functions.

Example 10.25. Assume that G = GLn and that π is a cuspidal automorphic representation of
GLn(AF ). For almost every place v of F the local factor πv is unramified (see Theorem 7.5). Let

A(πv) :=

a1

. . .
an


be its Langlands class (see Corollary 9.5). In this case one has

L(s, ϕv) =
∏
i

(1− aiq−sν )−1

In the case where G = GLn, the local parameters of a cuspidal automorphic representation at
the unramified places determine the representation [JS81b] [JS81a]:

Theorem 10.26 (Jacquet and Shalika). If π1, π2 are cuspidal automorphic representations of
GLn(AF ) such that π1v ' π2v for all but finitely many v then π1 ' π2.

This theorem is known as strong multiplicity one, although it does not imply that a cuspidal
automorphic representation of GLn(AF ) occurs with multiplicity one in the cuspidal subspace of
L2(GLn(F )\1 GLn(AF )), though this latter statement is also true.

For a beautiful generalization of this work we refer the reader to forthcoming work of Dinakar
Ramakrishnan on automorphic analogues of the Chebatarev density theorem.

Remark 10.27. Theorem 10.26 is false for essentially every group that is not a general linear group.

10.9. Nonarchimedian representation theory. For the moment let F be a global field. In
Theorem 7.5 we showed that an admissible representation of G(AF ) factors as a restricted direct
product:

π ∼= ⊗′vπv.
This provides us with a link between automorphic representations and admissible representations
of G(F ) as v varies; automorphic representations are simply products of admissible representations

Remark 10.28. Not every product of admissible representations gives rise to an automorphic rep-
resentation (compare Theorem 10.26).
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It therefore makes sense to study admissible representations place by place. The archimedian
case is better understood from the viewpoint of, e.g. functoriality. We will concentrate on the
nonarchimedian case. Thus for the remainder of this section we let F be a local nonarchimedian
field and G a connected reductive F -group.

11. The philosophy of cusp forms

Let P ≤ G be a parabolic subgroup and let MN = P be its Levi decomposition. We have shown
in §9.3 how to construct a functor

IndGM := IndGP : SmRep(M(F ))−→ SmRep(G(F ))

from the category of smooth representations of M(F ) to the category of smooth representations of
G(F ) (recall that smooth representations are those representations such that every vector is fixed
by an open subgroup). The functor maps irreducibles to irreducibles and unitary representations
to unitary representations by Lemma 9.6.

One is immediately led to ask what subset of the set of irreducible representations of G(F ) are
induced. The answer is part of what Harish-Chandra calls the philosophy of cusp forms. To
state it vaguely, we recall the following definition:

Definition 11.1. A supercuspidal (resp. quasicuspidal) representation of G(F ) is an admis-
sible (resp. smooth) representation such that all matrix coefficients of the representation are com-
pactly supported modulo ZG(F ).

The philosophy of cusp forms states that the only irreducible admissible representations of G(F )
that are not induced are the so-called supercuspidal representations, and every other representation
is induced from a supercuspidal representation of the Levi-subgroup of some parabolic P ≤ G.

Remark 11.2. One should think of supercuspidal representations as being analogous to cuspidal
representations in the global setting; the corresponding statement in that setting was proven
by Langlands in his important and notoriously difficult work [Lan76]. In passing we note that
Langlands has stated that he came to his conjectures on functoriality while working on loc. cit.

We will develop a few basic functors useful for working with representations of reductive groups
over nonarchimedian fields and state a result that makes the philosophy of cusp forms mentioned
above precise in Corollary 11.9 below. We will also discuss the notion of a trace of an admissible
representation, and in addition develop some of the basic properties of supercuspidal representa-
tions, including the fact that they admit coefficients (see Proposition ??), a fact that we will later
use in our treatment of simple trace formulae.

The basic reference for this subject seems to be an unpublished paper of Casselman avail-
able at http://www.math.ubc.ca/ cass/research/pdf/p-adic-book.pdf. The paper [Car79] contains
sketches of proofs and refers to this manuscript for the details.

11.1. Jacquet functors. There are other ways of defining a supercuspidal representation; in order
to describe them we need to describe left-adjoints to the functors IndGM . We define a restriction
functor or Jacquet functor

ResGP : SmRep(G(F ))−→ SmRep(G(F ))(11.1.1)

by assigning to a representation (π, V )

(π|P ⊗ δ1/2
P , V/V (N))

where
V (N) := 〈π(n)φ− φ : φ ∈ V, n ∈ N(F )〉

The following is easy to verify:
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Proposition 11.3. Induction and restriction are exact and transitive. �

The following is a version of Frobenius reciprocity:

Proposition 11.4. Restriction is left adjoint to induction; in other words

HomG(F )(V, IndGP (W )) = HomM(F )(ResGP (V ),W ).

Proof. There is a G(F )-equivariant map

Λ : IndGP (W )−→W

f 7−→ f(1)

where 1 ∈ G(F ) is the identity; it is clearly surjective. Thus we have a G(F )-equivariant map

Λ ◦ (·) : HomG(F )(V, IndGP (W ))−→HomM(F )(ResGP (V ),W )

given by composition with Λ. Here we are using the fact that N acts trivially on IndGP (W ) and
thus any G(F )-equivariant map V → IndGP (W ) factors through ResGP (V ). To construct the inverse,
suppose we are given an M(F )-intertwining map f : ResGP (V )→ W . We define Φ : V → IndGP (W )
to be

Φφ(g) := f(g · φ).

�

One would hope that the functor ResGP takes admissible representations to admissible represen-
tations, and this is indeed the case:

Theorem 11.5 (Jacquet). The restriction functor ResGP takes admissible representations to ad-
missible representations.

Jacquet also proved the following elegant characterization of supercuspidal representations using
these functors:

Theorem 11.6 (Jacquet). A smooth representation π of G(F ) is quasi-cuspidal if and only if
ResGP (π) = 0 for all parabolic subgroups P ≤ G.

Remark 11.7. It is because of these theorems that the restriction maps are often called Jacquet
functors.

We will not prove this result because the reductive group structure theory required is somewhat
notationally intricate. However we will prove some corollaries.

We have the following proposition, whose proof we defer for a moment:

Proposition 11.8. A quasi-cuspidal irreducible representation is supercuspidal.

Jacquet’s results above allow us to deduce the following concrete manifestation of the philosophy
of cusp forms:

Corollary 11.9. If π is a smooth irreducible representation of G(F ) then

(1) There exists a parabolic subgroup P = MN ≤ G, a supercuspidal representation σ of M(F )
and an embedding π ↪→ IndGP (σ).

(2) The representation π is admissible.

Proof. The first assertion implies the second, as induction preserves admissibility by Lemma 9.6.
For the first, we proceed by induction on the dimension of G (as an F -algebraic group, say). If G
has dimension 1 then it is a torus, and so the result is trivial.

Assume that for all proper parabolic subgroups P there is no embedding π ↪→ IndGP (σ) where
σ is a smooth irreducible representation of M(F ). This is equivalent to the statement that there
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is no nonzero G(F )-map π → IndGP (σ) by the irreducibility of π. Applying Frobenius reciprocity
(Proposition 11.4) we see that

HomM(F )(ResGP (π), σ) = 0

for all parabolic subgroups P = MN and all smooth representations σ of M(F ), which implies π
is supercuspidal by Theorem 11.6.

Now assume that there is a proper parabolic subgroup P such that π ↪→ IndGP (σ). By the
exactness of restriction we obtain an injection

ResGP (π) ↪→ σ,

so we can apply our inductive hypothesis.
�

We now prove Proposition 11.8.

Proof of Proposition 11.8. Fix φ ∈ V − {0}. For all compact open subgroups K ≤ G(F ) one has

V K = π(eK)V = 〈π(eK)π(g)v : g ∈ G(F )〉.
We must show this space is finite dimensional. Assume to the contrary that there exists (gn)n∈Z>0 ⊆
G(F ), all inequivalent modulo ZG(F ), such that π(eK)π(gn)φ are linearly independent. Let W ⊆
V K be an arbitrary C-vector space such that

V K = W ⊕ 〈π(ek)π(gn)v : n ∈ Z>0〉.
As V = V K ⊕ kerπ(eK), we can define φ∨ ∈ Hom(V,C) such that

〈φ∨, π(eK)π(hn)v〉 = n

for all n and φ∨|W⊕ker(eK) = 0. Thus φ∨ is fixed by K and hence an element of V ∨. On the other
hand, by construction the support of the matrix coefficient 〈ṽ, π(g)v〉 is not compact modulo the
center. This implies the claim.

�

11.2. Traces, characters, coefficients. Let π be an admissible representation of G(F ). Then
for all f ∈ C∞c (G(F )) one has an operator

π(f) : V −→V.

There is a compact open subgroup K ≤ G(F ) such that f ∈ C∞c (G(F )//K), and hence π(f)
induces an operator

π(f) : W −→W

for any finite dimensional subspace V K ≤ W ≤ V . We define the trace of π(f) by

tr(π(f)) := tr(π(f)|W )(11.2.1)

for any such W . This defines a distribution

θπ := tr(π) : C∞c (G(F ))→ C
called the character of π. Of course this depends on a choice of Haar measure. Let Greg ≤ G
denote the subscheme consisting of regular semsimple elements; this is the subscheme such that

Greg(R) := {γ ∈ G(R) : C◦γ ≤ G is a maximal torus}.

The following is a fundamental and deep result (see [HC99]):

Theorem 11.10 (Harish-Chandra). The distribution θπ is represented by a locally constant func-
tion with support in Greg(F ). �
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In other words there is a locally constant function θπ on Greg(F ) such that

trπ(f) =

∫
G(F )

θπ(g)f(g)dg

for all f ∈ C∞c (G(F )). This result tells us that we can almost regard θπ as a function.
In most settings, there is a version of linear independence of characters, and this is no exception:

Proposition 11.11 (Linear independence of characters). If π1, . . . , πn is a finite set of admissible
irreducible representations, such that πi ∼= πj implies i = j, then the distributions θπi are linearly
independent.

Proof. As usual, we use compact open subgroups to reduce to a finite dimensional situation. Fix a
compact open subgroup K ≤ G(F ) such that V K

i 6= 0 for all i. This implies that {V K
i } is a finite

family of finite dimensional C-vector spaces with an action of C∞c (G(F )//K). They are all simple,
that is irreducible, for this action. Moreover, they are pairwise nonisomorphic as Hecke-modules.
Let A be the image of C∞c (G(F )//K) in

∏
i EndC(V K

i ). Then A is a finite-dimensional C-algebra
and the V K

i are a finite family of finite-dimensional nonisomorphic simple A-modules. Hence the
traces θπi |C∞c (G(F )//K) are linearly independent (this follows from a standard argument using the
Jacobson density theorem). �

Thus traces can be used to distinguish between a finite set of representations. In particular,
if {π1, . . . , πn} is a finite set of pairwise nonisomorphic irreducible representations then linear
independence of characters implies that we can find an f ∈ C∞c (G(F )) such that

tr(πi(f)) = 0 if and only if i 6= 1,

for example.
One can ask for more. Let π be an admissible irreducible representation. A coefficient of

π is a smooth function fπ ∈ C∞c (G(F )) such that tr π(fπ) 6= 0 and trπ1(fπ) = 0 for π1 6∼= π.
If ZG(F ) is noncompact, we can weaken the last condition to π1 6∼= π ⊗ χ for some character
χ : G(F ) → C×. Thus if a coefficient for π exists, we can use it to isolate π among any set of
irreducible admissible representations, finite or not. For general π, it is not necessarily true that
such f exist. In the archimedian setting, it is good to think of this in terms of the Heizenberg
uncertainty principle, namely that the Fourier transform of a compactly support smooth function
cannot again be compactly supported, so we cannot isolate a particular phase using a compactly
supported function. However, in special cases this principle fails, in particular in the archimedian
case for so-called discrete series representations, and in the nonarchimedian case for supercuspidal
representations, as the following proposition shows:

Proposition 11.12. Assume that ZG(F ) is compact, and let π be a cuspidal representation of
G(F ). Then for all f ∈ C∞c (G(F )) there exists a unique fπ ∈ C∞c (G(F )) such that

π(fπ) = π(f) and

π1(fπ) = 0 if π1 6= π.

Note that, as an immediate consequence, we see that coefficients exist for supercuspidals.
We require some preparation before giving the proof. Given a smooth representation (π, V ) of

G(F ), we have a smooth representation σ of G(F )×G(F ) on

Endsm(V ) ≤ End(V ),

the space of smooth endomorphisms (see below Lemma 8.3). It is given explicitly by

σ(g1, g2)φ = π(g−1
2 ) ◦ φ ◦ π(g1).
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There is an isomorphism of G(F )×G(F )-representations

α : V ∨ ⊗ V −→ (Endsm(π), σ)

given by

α(φ∨ ⊗ φ)(φ1) = 〈φ∨, φ1〉φ,

Assume that π is admssible. Then Endsm(V ) is again admissible, since for any compact sub-
groups K1, K2 ⊂ G(F ), we can find a compact K ⊂ G(F ) with K ×K ⊂ K1 ×K2, and therefore

Endsm(π)K1×K2 ∼= Endsm(V K1×K2
π ) ∼= V K1

π ⊗ (V ∨π )K2 ⊂ V K
π ⊗ (V ∨π )K

is of finite dimension.
One also has a map

β : (Endsm(π), σ) −→ (C∞(G(F )), ρ)

given by

β(φ)(g) := tr(π(g) ◦ φ),

where ρ acts via ρ(g1, g2)(f)(h) = f(g−1
1 hg2).

Proof of Proposition 11.12. Since ZG(F ) is compact by assumption and π is supercuspidal, we
have β(Endsm(π)) ≤ C∞c (G(F )). Since there are φ ∈ V and φ∨ ∈ V ∨ such that

〈φ∨, φ〉 = 〈φ∨, π(1)φ〉 6= 0,

we have that α ◦ β is not identically zero, hence β is not identically zero. It follows from the
irreducibility of π∨ × π that β is an embedding.

Since V ∨ ⊗ V is an irreducible representation of G(F )×G(F ), β is an embedding. Consider

β′ : (C∞c (G(F )), ρ) −→ (End(π)∞, σ)(11.2.2)

f 7−→ π(f).

Then β′◦β is an endomorphism of the irreducible representation Endsm(π) of G(F )×G(F ). Hence
β′ ◦ β is scalar by Schur’s lemma, say β′ ◦ β = λId for some λ ∈ C. We will now show that λ 6= 0
and that we can take

fπ := λ−1β ◦ β′(f).

First,

π(β ◦ β′(f)) = β′ ◦ β ◦ β′(f) = λβ′(f) = λπ(f).

To show that λ 6= 0, note that we can find f ∈ C∞c (G(F )) such that π(f) 6= 0 (take, for example,
f to be the characteristic function of a sufficiently small compact open subgroup). Thus β′(f) =
π(f) 6= 0, and since β is an embedding, we deduce that β ◦ β′(f) 6= 0.

Second, let (π1, V1) be a smooth irreducible representation of G(F ), and let φ1 ∈ V1 be a non-zero
vector. Let

γ1 : (C∞c (G(F )), σ|1×G(F )) −→ (V1, π1)(11.2.3)

f 7−→ π1(f)φ1.

As a representation of G(F ) one has that Endsm(π)|1×G(F ) isomorphic to a direct sum of copies
of π, and thus the same is true of γ1(β(Endsm(π), σ|1×G(F )). Thus γ1(β(Endsm(π))) = 0 unless
π1 = π (since whenever the former is nonzero we obtain an intertwining operator between π1 and
π). It follows that π1(fπ) = 0 if π1 6∼= π. This completes the proof of the proposition. �
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12. Simple trace formulae and relative trace formulae

In this section, let G be a connected reductive group over a number field F and let H ≤ G
be a connected reductive subgroup. In the previous section we encountered traces of admissi-
ble representations of G(Fv) for nonarchimedian representations. We saw in Proposition 11.11
that the trace of a representation determines the representation, just as in the familiar case of
representations of finite groups.

In this section we explore a powerful tool for studying traces in the global adelic setting, namely
the trace formula. We will simultaneously study the relative trace formula, which has emerged as
an important generalization of the usual trace formula.

12.1. Distinction. We require some notation. Let

T ≤ G,P = MN ≥ T

denote a maximal F -split torus in G and and a choice of minimal parabolic containing it. We set
?H :=?∩H. The choice of parabolic P (resp. PH) is equivalent to a set of simple roots ∆ (resp. ∆H)
in the roots of T in G (resp. TH in H). In the case where G is quasi-split, this correspondence is
recalled in §10.4, for the general case a nice brief survey is given in [Mur05, §7].

Set

AG := ResF/QT (R)0/AG

where the 0 denotes the connected component in the real topology. For any positive real number
r we set

AGr := {t ∈ AG : tα > r for all α ∈ ∆}

Definition 12.1. A function

φ : G(F )AG\G(AF )−→C
is rapidly decreasing if it is smooth and for all compact subsets Ω ⊂ G(F )AG\G(AF ) and
r ∈ R>0 there is a constant C such that one has

|φ(tx)| ≤ Ctαp

for all t ∈ AGr and α ∈ ∆.

For ease of notation, let

L2 := L2(G(F )AG\G(AF )) and L2
0 := L2

0(G(F )AG\G(AF ))

respectively. Let χ : H(AF ) → C be a quasi-character trivial on (AG ∩ H(AF )).H(F ). The
following proposition appears in [AGR93].

Proposition 12.2. Then for all rapidly decreasing (smooth) functions φ ∈ L2, the period integral

Pχ(φ) =

∫
(AG∩H(AF )).H(F )\H(AF )

φ(g)χ(g)dg

is absolutely convergent.

We will prove this in a moment.
Let (π, V ) be a cuspidal automorphic representation of AG\G(AF ) and let

L2,cusp(π)

be the π-isotypic subspace. We recall the following basic theorem (see ??):
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Theorem 12.3. If φ ∈ L2,cusp and f ∈ C∞c (AG\G(AF )) then one has an estimate

|R(f)φ(tx)| ≤ Cf t
αp||φ||

for all t ∈ AGr and α ∈ ∆, where the constant Cf is independent of φ. In particular, R(f)φ is
rapidly decreasing.

�

As a corollary, we obtain the following:

Corollary 12.4. In particular, if φ is an automorphic form (that is, K∞-finite and Z(gC)-finite)
then φ is rapidly decreasing. �

In view of this theorem, the following definition is reasonable.

Definition 12.5. A cuspidal automorphic representation π of AG\G(AF ) is said to be (H,χ)-
distinguished if Pχ(φ) 6= 0 for some smooth φ ∈ L2,cusp(π). When (H,χ) is understood, or irrele-
vant, we simply say that it is distinguished.

Example 12.6.

(1) Consider the diagonal embedding ∆ : H → H×H. We ask ourselves which representations
π of H × H(AF ) are H-distinguished. Any such representation π can be decomposed as
π1 × π2 with (π1, V1), (π2, V2) representations of H(AF ). As a map

V1 × V2−→C(φ1, φ2) 7−→ P (φ1 ⊗ φ2)

the period integral is invariant under ∆H(AF ). Thus π = π1 × π2 is distinguished if and
only if π1

∼= π∨2 . That is, the representations π of the form π× π∨ for π a representation of
H(AF ) are the only distinguished representations of ∆H.

(2) Take G = GL2/Q and H = ResK/Q GL1 for a quadratic extension K/Q. This data corre-
sponds to an embedding K ↪→ GL2(Q). Then the notion of distinction is related to Heegner
points. We note that AG ∩H(AF ).H(F )\H(A)/KH is a finite number of points for every
KH ⊂ H(AF ) compact subgroup.

(3) For K/Q a real quadratic extension take G = ResE/Q and H = GL2/Q. Studying distinction
in this case amounts to studying modular curves in Hilbert modular surfaces. It was
the study of this case that led Harder, Langlands, and Rapoport to define the notion of
distinction in [HLR86].

Proof of Proposition 12.2. By reduction theory, there is an 0 < r < 1 such that

H(AF ) = AG ∩H(F∞)H(F )AHr ωKH

where ω is relatively compact subgroup of NH(AF )MH(AF ) and KH ≤ H(AF ) is a maximal
compact subgroup (combine [Bor07, §5.2] and strong approximation).

Thus, since χ is unitary, the integral Pχ(φ) converges absolutely provided that∫
AHr N

o
HMH

|φ(anm)|dadndm

converges. But this follows easily from the definition of a rapidly decreasing function. �

12.2. Studying traces and distinction. We now explain a fundamental idea first applied to the
study of automorphic forms by Selberg. Let

L2 := L2(AGG(F )\G(AF )).
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For f ∈ C∞c (AG\G(AF )) consider the integral operator

R(f) : L2 −→ L2

φ 7→
∫
AG\G(AF )

f(x)φ(gx)dx.

Just manipulating formally for the moment, we see that

R(f)φ(x) =

∫
AG\G(AF )

f(y)R(y)φ(x)dy

=

∫
AG\G(AF )

f(x)φ(xy)dy

=

∫
AG\G(AF )

f(x−1y)φ(y)dy

=

∫
AGG(F )\G(AF )

∑
γ∈G(F )

f(x−1γy)φ(y)dy.

In other words, R(f) is an integral operator with kernel

Kf (x, y) :=
∑

γ∈G(F )

f(x−1γy).

This is the geometric expansion of the kernel. Let

Ω1 × Ω2 ⊂ AG\G(AF )× AG\G(AF )

be compact subsets. If
(x, y) ∈ Ω1 × Ω2

then the only nonzero summands in Kf (x, y) correspond to γ satisfying γ ∈ Ω1Supp(f)Ω2. Thus
Kf (x, y) is smooth as a function of x and y separately, and using this observation the formal
manipulations above can be justified.

There is also a spectral expansion of the kernel, which we explain after recalling some basic
definitions regarding integral operators.

Definition 12.7. Let V be a Hilbert space. An operator A : V → V is Hilbert-Schmidt if A(V )
has a countable basis (φi)

∞
i=1 consisting of eigenvectors for A, say A(φi) = λiφi, such that

∞∑
i=1

|λi|2

is finite. The operator A : V → V is of trace class if it is Hilbert-Schmidt and in the notation
above

∞∑
i=0

|λi| <∞

If A is Hilbert-Schmidt we let

|A| = |A|HS =
∞∑
i=1

|λi|2

this is known as the Hilbert-Schmidt norm of A. If A is trace class we define its trace to be

tr(A) :=
∞∑
i=1

|λi|.

These notions are independent of the choice of basis.
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If Gder is not anisotropic, then R(f) is in general not of trace class. However, if we denote by

Rcusp(f) := L2,cusp−→L2,cusp

its restriction to the cuspidal subspace, this is of trace class [Don82]. In fact even the restriction
of R(f) to the discrete spectrum is of trace class [?]

Thus we can write
tr(R0(f)) =

∑
π

m(π)tr(π(f));

where the sum is over equivalence classes of cuspidal automorphic representations of G(AF ) that
are trivial on AG (or, more briefly, cuspidal automorphic representations of AG\G(AF )) and m(π)
is the (finite) multiplicity of π. Thus R0(f) has kernel

Kcusp
f (x, y) :=

∑
π

Kπ(f)(x, y),

where
Kπ(f)(x, y) = Kcusp

π(f)(x, y) =
∑

φ∈B(π)

π(f)φ(x)φ(y)

for B(π) an orthonormal basis of L2
0(π), the π-isotypical subspace of L2

0.

Remark 12.8. Note that π(f)B(π) need not be finite dimensional in general, but it is if f is
K∞-finite by admissibility.

As defined, Kπ(f)(x, y) is only a function in the L2 sense; it may not make sense to evaluate it at
any point. But integrating Kπ(f)(x, y) along ∆ : AG\G(AF )→ AG\G(AF )×AG\G(AF ) is always
well-defined, as ∑

π

∫
AGG(F )\G(AF )

Kπ(f)(x, y)dx =
∑
π

m(π)tr(π(f)),

because (φ1, φ2) 7→
∫
AGG(F )\G(AF )

φ1(g)φ2(g)dg is the pairing defining the metric on L2.

Selberg’s idea was to use the two different expressions for Kf (x, y) to give a geometric expansion
of

tr(Rcusp(f)) =

∫
AG\G(AF )

Kcusp
f (x, x)dx

in the case G = SL2/Q and use it to give estimates on the number of automorphic forms satisfying
certain properties. Motivated by the work of Langlands on Eisenstein series [Lan76], Arthur has
spent most of his career making this idea work for arbitrary G despite the formidable complications
due to the fact that since G(F )AG\G(AF ) is not compact it is only Kcusp

f (x, y), and not Kf (x, y),
that is integrable along the diagonal. In our treatment we will always make additional restrictive
assumptions that make an appeal to Arthur’s work unnecessary. Of course, to remove the assump-
tions requires Arthur’s work. Moreover, since we will treat relative trace formula simultaneously,
there is removing these assumptions in general would require more than what is currently known.

12.3. The trace formula for compact quotient. We now give an example of a trace formula
in the simplest possible case, that is, when Gder is anisotropic. For F -algebras R and γ ∈ G(R)
let

Gγ(R) := {g ∈ G(R) : gγg−1 = γ}
be the centralizer of γ. One has an absolutely convergent orbital integral

Oγ(f) =

∫
G◦γ(AF )\G(AF )

f(x−1γx)
dg

dt
(12.3.1)
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and a volume term

τ(G◦γ) := measdt(AGG
◦
γ(F )\G◦γ(AF ))(12.3.2)

When dt is chosen appropriately this is a Tamagawa number, which can be regarded as a
generalized class number.

One has the following theorem:

Theorem 12.9. If Gder is anisotropic∑
π

mπtr(π(f)) =
∑
γ

τ(Gγ)Oγ(f)

where the sum on the left is over isomorphism classes of automorphic representations of AG\G(AF )
and the sum on the right is over G(F )-conjugacy classes of γ ∈ G(F ).

Proof. The quotient AGG(F )\G(AF ) is compact. General results in functional analysis imply that
R(f) is therefore a trace-class operator and

tr(R(f)) =
∑
π

mπtr(π(f)) =

∫
AGG(F )\G(AF )

Kf (x, x)dx.

On the other hand, manipulating integrals formally for the moment,∫
G(F )AG\G(AF )

Kf (x, x)dx =

∫
G(F )AG\G(AF )

∑
γ∈G(F )

f(x−1γx)dx

=

∫
G(F )AG\G(AF )

∑
γ/∼

∑
δ∈G◦γ(F )\G(F )

f(x−1δ−1γδx)dx

=
∑
γ/∼

∫
AGG◦γ(F )\G(AF )

f(x−1γx)dx

=
∑
γ/∼

∫
G◦γ(F )\G◦γ(AF )

∫
G◦γ(AF )\G(AF )

f(x−1t−1γtx)dt
dx

dt

=
∑
γ/∼

measdt(G
◦
γ(F )\G◦γ(AF ))

∫
G◦γ(AF )\G(AF )

f(x−1γx)
dg

dt
.

where the ∼ denotes the equivalence relation of G(F )-conjugacy. These formal manipulations can
be justified using the fact that AGG(F )\G(AF ) is compact. �

12.4. Relative traces. In this subsection we introduce a generalization of the notion of a trace
that is due to Jacquet.

Let π be a cuspidal automorphic representation of AG\G(AF ). Let H ≤ G×G be a connected
reductive subgroup and let χ : H(AF )→ C× be a character trivial on H(F )AG ×AG ∩H(F∞). If
f is K∞-finite let

rtr(π(f)) := rtrχ(π(f)) : =

∫
H(F )AG×AG∩H(F∞)\H(AF )

Kπ(f)(h`, hr)χ(h`, hr)dh`hr(12.4.1)

=
∑
φ∈B(π)

∫
H(F )AG×AG∩H(F∞)\H(AF )

R(f)φ(h`)φ̄(hr)dh`hr
||φ||

=
∑
φ∈B(π)

Pχ(R(f)φ× φ̄)

||φ||2
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Any function φ contributing to this sum is necessarily K∞-finite and hence smooth (even real
analytic, since it is also Z(gC)-finite). Using Theorem 12.3 we can also show that it is rapidly de-
creasing. Moreover, since f is K∞-finite the sum over φ has only finitely many nonzero summands.
We conclude that the integral defining rtr(π(f)) is absolutely convergent. We refer to rtr(π(f)) as
a relative trace.

12.5. A simple relative trace formula. Motivated by the computation in §12.3 we will now
give a relative trace formula that is valid under restrictive assumptions on f ∈ C∞c (G(AF )) even if
the quotient G(F )AG\G(AF ) is noncompact. It is a slight generalization of the main theorem of
[Hah09] which in turn follows the tradition of the simple trace formula of Deligne and Kazhdan.
Let H ≤ G×G be a reductive subgroup and let χ : AG×AG ∩H(F∞)\H(AF )→ C× be a unitary
character trivial on H(F ).

We will first state the main theorem and then define the new terminology in the coming sections.

Theorem 12.10. Let v1, v2 be places of F (not necessarily distinct). Let f = fv1v2 ⊗ f v1v2 ∈
C∞c (G(AF )) be a K∞-finite function such that R(f) has cuspidal image and

(1) fv1 is supported on relatively elliptic elements.
(2) fv2 is supported on relatively connected semisimple elements.

Then:

∑
γ

τ(Hγ)ROγ(f) =
∑
π

rtr(π(f))

where the sum on γ is over relatively connected semisimple relevant classes and the sum on π is
over isomorphism classes of cuspidal automorphic representations of AG\G(AF ).

Here we say that a cuspidal automorphic representation of G(AF ) is a cuspidal automorphic
representation of AG\G(AF ) if its central character is trivial on AG.

12.6. Functions with cuspidal image. Lindenstrauss and Venkatesh have defined a large class
of functions with purely cuspidal image that essentially have no kernel when restricted to the
cuspidal spectrum [LV07]. Before their work, there was a standard example of such functions that
was used to good effect in studying local factors of automorphic representations. We recall it now.

Let v be a finite place of F .

Definition 12.11. A function fv ∈ C∞c (G(Fv)) is said to be F -supercuspidal if
∫
N(Fv)

f(gnh)dn =

0 for all proper parabolic subgroups P = MN of G defined over F and all g, h ∈ G(Fv).

Lemma 12.12. If f ∈ C∞c (AG\G(AF )) is F -supercuspidal at some place v then R(f) has cuspidal
image.
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Proof. For ϕ ∈ L2, R(f)ϕ is smooth and hence can be integrated over any compact subset. Let
P = MN be a proper F -rational parabolic. For all x ∈ AG\G(AF ) we have∫

N(F )\N(AF )

R(f)ϕ(nx)dn =

∫
N(F )\N(AF )

∫
AG\G(AF )

f(g)ϕ(nxg)dgdn

=

∫
N(F )\N(AF )

∫
AG\G(AF )

f(x−1n−1g)ϕ(g)dgdn

=

∫
N(F )\N(AF )

∫
AGN(F )\G(AF )

∑
δ∈N(F )

f(x−1n−1δg)ϕ(g)dgdn

=

∫
N(F )\N(AF )

∫
AGN(F )\G(AF )

∑
δ∈N(F )

f(x−1n−1g)ϕ(g)dgdn

=

∫
AGN(F )\G(AF )

∫
N(F )\N(AF )

∑
y∈N(F )

f(x−1n−1g)ϕ(g)dndg

=

∫
AGN(F )\G(AF )

∫
N(AF )

f(x−1n−1g)ϕ(g)dndg

= 0.

�

Essentially all examples of supercuspidal functions are obtained using the following lemma:

Lemma 12.13. Assume that ZG(Fv) is compact for some v and that (πv, V ) is a supercuspidal
representation of G(Fv). If fv is a matrix coefficient of πv then fv is F -supercuspidal.

Remark 12.14. The assumption that ZG(Fv) is compact is not essential; compare the discussion of
truncated matrix coefficients in [HL04].

Proof. Let P = MN be a proper parabolic subgroup of G. If
∫
N(Fv)

f(gnh)dn 6= 0 for some

g, h ∈ G(Fv) then upon realizing V as a subspace of C∞c (G(Fv)) as in the proof of Proposition
11.12 we obtain a nonzero map

Vπv −→Vπv/Vπv(N)

ϕv 7−→
(
g 7→

∫
N(Fv)

f(gnh)dn

)
contradicting the supercuspidality of πv.

�

12.7. Orbits and stabilizers. For this subsection only let F be an arbitrary field of characteristic
zero and let G/F be a reductive group. For H ⊂ G×G we have a natural action of H on G via:

(h`, hr) · g := h`gh
−1
r .(12.7.1)

We assume for simplicity that H is connected and reductive.
If R is an F -algebra and γ ∈ G(R) we let Hγ be the stabilizer of γ. It is a linear algebraic group

over R [MFK94]. Moreover denote by O(γ) the orbit of γ under this action. Finally let

∆ : G−→G×G
denote the diagonal embedding.

Definition 12.15. An element γ ∈ G(R) is said to be:

• relatively semisimple if O(γ) is closed (this implies Hγ is reductive [BR85]).
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• relatively elliptic if Hγ is anisotropic modulo ZH ∩∆(ZG).
• relatively regular if O(γ) has maximal dimension among all γ′ ∈ G(F )).
• relatively connected semisimple if γ is semisimple and Hγ is connected.

Definition 12.16. Let R be an F -algebra. A relative class, or simply a class, is an element of

Γr(R) = H(R)\G(R).

A geometric relative class, or simply a geometric class, is an element of

Γgeomr (R) = Im(G(R)→ (H\G)(R)).

As an important special case, consider the situation when G = H ×H and H is viewed as the
diagonal subgroup of G. We refer to this as the group case. In this case O(γ) is the conjugacy
class of γ and Gγ is the centralizer of γ. In this case all of the notions above reduce to the usual
notions of semisimplicity, and regularity as explained in the classic paper [Ste65]. In this case we
usually omit the adjective “relatively” from the definitions above.

Example 12.17. Assume that we are in the group case with H = GLn. In this case if γ is regular
semisimple, then it is elliptic if and only if Q[γ]/Q is a division algebra. In this case the map

Γr(F )−→Γr(F̄ )

is injective. For most H this is false, and this is what leads to the theory of endoscopy.

12.8. Relative Orbital Integrals. We now revert back to the global setting. Let H and G be
connected reductive F -groups with H ≤ G × G and let χ : H(AF ) → C× be a quasi-character
trivial on H(F )AG × AG ∩H(F∞).

Definition 12.18. A relatively semisimple element γv ∈ G(Fv) is relevant if χv is trivial on
H0
γ(Fv). An element γ ∈ G(AF ) is relevant if γv is relevant for all v.

The point of this definition is that irrelevant elements will not end up contributing to the trace
formula. We note that if χ is trivial then all relatively semisimple elements are relevant.

Definition 12.19. Let v be a place of F . For fv ∈ C∞c (Fv) and γv relevant we define the relative
orbital integral :

ROχ
γv(fv) =

∫
H0
γ(Fv)\H(Fv)

χv((h`, hr))fv(h
−1
` γvhR)

d(h`, hr)

dtγ

We remark that d(h`, hr) is Haar measure on H(Fv) and dtγ is Haar measure on Hγ so the resulting
measure is a Radon measure (inner regular and locally finite).

Proposition 12.20. If γ is relevant relatively semisimple then the integral ROγ(f) is absolutely
convergent.

Proof. Since the measure d(h`, hr)/tγ is a Radon measure on H0
γ(Fv)\H(Fv), to show the integral

is well-defined and absolutely convergent it is enough to construct a pull-back map

C∞c (G(Fv))−→C∞c (H0
γ(Fv)\H(Fv))

attached to the natural map

H0
γ(Fv)\H(Fv)−→G(Fv).

We claim that the image of this map is closed. The orbit of γ in the sense of the algebraic group
action of H on G is closed in the Zariski topology by assumption, and it follows that H(Fv) · γ is
also closed in the v-adic topology [RR96, §2, below B.]. On the other hand,

Hγ(Fv)\H(Fv)−→H(Fv) · γ
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is not only a bijection but also a homeomorphism [Ser06, §II.5]. The existence of the pull-back
follows.

�

12.9. Relative orbital integrals are 1 at almost all places. Let

f =
∏
v

fv ∈ C∞c (G(AF )).

We have shown that ROχ
γ (fv) is well-defined for each v. This, together with the following propo-

sition, shows that the global relative orbital integral ROχ
γ (f) is well-defined:

Proposition 12.21. Suppose that γ ∈ G(F ) is relevant and relatively connected semisimple. Then
for almost every v,

ROχ
γ (1Kv) =

∫
Hγ(Fv)∩Kv×Kv\H(Fv)∩Kv×Kv

d(h`, hr)/dtγ = 1,

where Kv = G(OFv) is hyperspecial and the Haar measures gives volume 1 to the interesction with
Kv ×Kv.

Remarks.
(1) The set of v for which ROχ

γ (1Kv) = 1 depends on γ.
(2) The author does not know how to prove the analogue of this proposition when Hγ is not
connected. In the group case one uses the theory of z-extensions, but the analogue in this setting
is not known, or at least is not in the literature.

We require the following two important results:

Theorem 12.22 (Lang). If G is a connected linear algebraic group over a finite field F then
H1(Gal(F/F), G) is a singleton.

(see [Lan56]).
The following is a general analogue of Hensel’s lemma.

Theorem 12.23. Let v be a nonarchimedian place of F and Fv the residue field of OFv . If X/OFv
is a smooth scheme of finite type, then X(OFv)→ X(Fv) is surjective.

(see [BLR90, §2.3]).

Corollary 12.24. If X is a homogeneous space for a connected group scheme G over OFv then
X(OFv) is nonempty.

Proof. By Theorem 12.23 it suffices to show that X(Fv) is nonempty. Since XFv is a homoge-
neous space for GFv , it is nonempty if and only if the corresponding class in the pointed set
H1(Gal(F/F), G) is the trivial class. Thus we conclude by Theorem 12.22. �

Proof of Proposition 12.21. Let S be a finite set of nonarchimedian places of F . Let G → GLn
be a faithful representation for some n and let G be the schematic closure of G in GLnOSF . Define
H similarly. Upon enlarging S if necessary we can and do assume that H ≤ G are smooth and
H(OFv), G(OFv) are hyperspecial for all v 6∈ S (see [Tit79]). Let γ ∈ G(OSF ) be a relatively
connected semisimple element. We let Hγ be the schematic closure of Hγ in H. Upon enlarging
S if necessary we can assume that Hγ is smooth and is the stabilizer of γ in the scheme-theoretic
sense. We can even assume that

H(OFv) = H(F ) ∩ G × G(OFv) ≤ H(Fv)

Hγ(OFv) = Hγ(Fv) ∩H(OFv) ≤ Hγ(Fv)
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are hyperspecial subgroups [Tit79].
Let O(γ)/OSF be the set-theoretic image of the morphism

H× γ−→G
given by the action of H on γ. It is a constructible subset of (the underlying topological space of)
G. The set

Z := {s ∈ Spec(OSF ) : O(γ)s is closed }
is a constructible subset of Spec(OSF ) [GW10, §E.1]. In other words it is a finite union of subsets of
Spec(OSF ) of the form U ∩V where U is open and V is closed. Since O(γ)F is closed by assumption
Z contains the generic point η ∈ Spec(OSF ), there is an open set U and a closed set V in Spec(OSF )
such that

η ∈ U ∩ V.
On the other hand, the only closed set containing η is the whole of Spec(OSF ). We conclude that
Z contains an open set. Thus, upon enlarging S if necessary, we can assume that O(γ) is closed
and hence equal to its schematic closure.

Since HF is dense in H the orbit O(γ) can also be described as the Zariski closure of O(γ) in G.
Since O(γ)F is homogeneous under the action of H, upon enlarging S again if necessary we can
assume that O(γ) is smooth over OSF and that the map H → O(γ) is also smooth.

Thus for v 6∈ S
O(γ)(OFv) = O(γ)(F ) ∩ G(OFv).

It therefore suffices to show that if γ′ ∈ O(γ)(OFv) then it is in the H(OFv)-orbit of γ. Let
γ′ ∈ O(γ)(OFv) and consider the OFv -scheme whose points in an OFv -algebra R are

X(R) := {(h`, hr) ∈ H(R) : h−1
` γhr = γ′}.

We claim that there is some (h`, hr) ∈ X(OurFv), where OurFv is the ring of integers of the maxi-
mal unramified extension of Fv. Indeed, X may be identified with the fiber of the smooth map
H−→O(γ) over γ’, and hence X is a smooth subscheme of H. The map

X(ÔFv)−→X(F̄v)
is therefore surjective by Theorem 12.23. On the other hand, X(F̄v) is nonempty since the map
H−→O(γ) is surjective, and we conclude that X(OurFv) is nonempty as claimed.

Thus we have a map

HγOurFv
(R)−→XOurFv (R)

t 7−→ (th`, thr)

which realizes X as a trivial HγOurFv
-torsor. Since X was originally defined over OFv we conclude

that X is a Hγ-torsor and apply Corollary 12.24 to deduce the proposition. �

12.10. The geometric side. In view of Proposition 12.20 and Proposition 12.21 for f ∈ C∞c (G(AF ))
and relevant relatively connected semisimple γ ∈ G(F ) the global relative orbital integral

ROχ
γ (f) :=

∫
Hγ(AF )\H(AF )

χ(h`, hr)f(h−1
` γhr)

d(h`, hr)

dtγ
(12.10.1)

is absolutely convergent. Let

AG,H : = AH ∩ AG × AG(12.10.2)

A : = AH ∩∆(AG)

where ∆ : G → G × G is the diagonal embedding. Fix Haar measures daG on AG, d(a`, ar) on
AG,H and da on A.
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We note that A ≤ Hγ(F∞) for all γ ∈ G(F ), and

τ(H◦γ) := measdtγ (H
◦
γ(F )A\H◦γ(AF ))(12.10.3)

is finite if γ is relatively elliptic.
We fix Haar measures on A and define

f 1(x) : =

∫
AG/(AG,H/A)

f(ax)d · a(12.10.4)

f 0(x) : =

∫
AG

f(ax)daG

Here we are abusing notation and viewing AG,H/A as a subgroup of AG via the map

AG,H/A−→A

(a`, ar) 7−→ a−1
` ar

Recall our assumption that H ≤ G × G is connected. The following theorem is roughly half of
Theorem 12.10:

Theorem 12.25. Assume that there exist places v1 and v2 of F such that fv1 is supported on
relatively elliptic elements and fv2 is supported on relatively connected semisimple elements. Then∑

[γ]∈Γγ(F )

τ(Hγ) ROχ
γ (f 1) =

∫
H(F )AH,G\H(AF )

χ(h`, hr)Kf0(h`, hr)d(h`, hr).

Moreover, the sum on the left is finite and the integral on the right is absolutely convergent.

In the theorem we use the notation [γ] for the class of γ; we will continue to use this convention.
To prove the theorem it is convenient to first prove the following proposition:

Proposition 12.26. Let C ⊆ G(AF ) be a compact subset such that Cv is hyperspecial for almost
all v. Then there exist only finitely many [γ] ∈ Γr(F ) with γ relatively connected semi-simple and
H(AF ) · γ ∩ C 6= ∅.

We will first assume this proposition and prove the previous theorem:

Proof of Theorem 12.25. Suppose that γ ∈ G(F ) is relevant and relatively connected semi-simple.
Then ∣∣ROχ

γ (f)
∣∣ <∞

and |τ(Hγ)| < ∞ as observed earlier in this subsection. It is easy to see that this implies that
|ROχ

γ (f 1)| < ∞ as well. Let C be the closure of the support of f , so C ⊆ G(AF ). Then by
Proposition 12.26 the sum ∑

H(F )γ

∣∣τ(Hγ) ROχ
γ (f 1)

∣∣
is finite, hence convergent. This implies that

∑
[γ]

τ(Hγ) ROχ
γ (f) =

∑
[γ]∈Γr(F )

τ(Hγ)

∫
(AG,H/A)Hγ(AF )\H(AF )

χ(h`, hr)f
1(h−1

` γhr)d(h`, hr)/dtγ

(12.10.5)

=
∑
[γ]

τ(Hγ)

∫
AG,HHγ(AF )\H(AF ))

χ(h`, hr)f
0(h−1

` γhr)d(h`, hr)/dtγ



AN INTRODUCTION TO AUTOMORPHIC REPRESENTATIONS 69

where the sums are over relevant relatively connected semisimple classes in Γr(F ) that are also
relatively elliptic. Notice that∫

Hγ(F )AG,H\H(AF )

χ(h`, hr)f
0(h−1

` γhr)d(h`, hr)/dtγ = 0

if γ is not relevant, because in this case∫
AHγ(F )\Hγ(AF )

χ(h`, hr)d(h`, hr)γ = 0.

Thus (12.10.5) is equal to∑
[γ]∈Γr(F )

∫
Hγ(F )AG,H\H(AF )

χ(h`, hr)f
0(h−1

` γhr)d(h`, hr)

=

∫
AG,HH(F )\H(AF )

χ(h`, h
−1
r )

∑
γ∈G(F )

f 0(h−1
` γhr)d(h`, hr)

=

∫
AG,HH(F )\H(AF )

χ(h`, hr)Kf0(h`, hr)d(h`hr).

�

Now we must prove the proposition:

Proof of Proposition 12.26. Let

B : G−→X

where X is the categorical quotient of G by H with respect to the action (12.7.1). Note that if
γ, γ′ ∈ G(F ) are relatively semisimple then B(γ) = B(γ′) if and only if γ and γ are in the same
geometric relative class. Let C ⊂ G(AF ) be a compact such that Cv is hyperspecial for almost all
v. Then B(C) ∩ X(F ) is a finite set, because X(F ) ⊆ X(AF ) is discrete. Thus there are only
finitely many relatively semisimple classes in [γ] ∈ Γgeor (F ) such that H(F̄v)γv ∩ Cv 6= ∅ for all v.

Assume that γ is relatively connected semisimple and that H(F̄v)γv ∩ Cv 6= ∅ for all v. There
exists a finite set of places S such that if v 6∈ S, then γv ∈ Cv and if γ′v is in the geometric class
of γv and its class intersects Cv, then H(Fv) · γv = H(Fv) · γ′v, that is, γv and γ′v define the same
class in Γr(Fv). This can be deduced from the proof of Proposition 12.21.

On the other hand, Galois cohomology implies that there are only finitely many semisimple
elements of Γr(Fv) in a given geometric class, that is, elements of Γr(F v).

In sum, there exists finitely many [γ′] ∈ Γr(AF ) such that H(AF )γ′ ∩ C 6= ∅ and γv ∈ H(Fv)γ
′
v

for all v.
We have a natural map

Γr(F )−→Γr(AF ).

The fiber of this map over a relatively connected semisimple element injects into a group

E(Hγ, H,AF/F )

by [Lab99, Proposition 1.8.4] which is finite by [Lab99, Lemma 1.8.5]. �
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12.11. The spectral side. As above let f ∈ C∞c (G(AF )) and let

f 0(x) :=

∫
AG

f(xa)da.

As above, let

L2,cusp := L2,cusp(AGG(F )\G(AF )).

For any f ∈ C∞c (G(AF )) as above we let

Rcusp(f 0) : L2,cusp−→L2,cusp

denote the operator given by convolution by f 0. We write

Rcusp(f 0) =
∑
π

m(π)π(f 0)

where the sum is over equivalence classes of cuspidal automorphic representations of AG\G(AF )
and m(π) is the multiplicity of π in L2,cusp. Thus, if we let L2,cusp(π) denote the π-isotypic subspace
of L2,cusp, the restriction π(f 0) of Rcusp(f 0) to L2,cusp(π) is

π(f 0) : L2,cusp(π)−→L2,cusp(π).

We let B(π) be an orthonormal basis of L2,cusp(π) with respect to the pairing

〈φ1, φ2〉 =

∫
G(F )AG\G(AF )

ψ1(g)φ2(g)dg.

Then m(π)π(f 0) has kernel

Kπ(f0)(x, y) =
∑
φ∈B(π)

(π(f 0)φ)(x)φ(y).

A priori, this expression only converges in L2, but Arthur proves as a very special case of [Art83,
Lemma 4.5 and 4.8] that there is a unique square-integrable function smooth in x and y separately
that represents Kπ(f0); henceforth we let Kπ(f0) be this function.

In the special case where f is K∞-finite we defined the relative trace rtr(π(f 0)) in (12.4.1)
above. In general we define

rtr(π(f 0)) := rtr(H,χ)(π(f 0)) :=

∫
H(F )AG,H\H(AF )

χ(h`, hR)Kπ(f1)(h`, hr)d(h`, hr).(12.11.1)

We will check in the course of the proof of Proposition 12.28 that this is absolutely convergent.

Remark 12.27. Notice that if rtr(π(f 0)) 6= 0 then π × π∨ is (H,χ)-distinguished.

We now prove the following proposition:

Proposition 12.28. Let f ∈ C∞c (G(AF )), and assume that R(f 0) has image in L2
0. Then∫

H(F )AH,G\H(AF )

χ(h`, hr)Kf0(h`, hr)d(h`, hr) =
∑
π

rtr(π(f 0)).

Moreover, the integral on the left and the sum on the right are absolutely convergent.



AN INTRODUCTION TO AUTOMORPHIC REPRESENTATIONS 71

Proof. By assumption, R(f 0) has image in the cuspidal spectrum, and hence the operator R(f 0)
is of trace class by a result of Donnelly [Don82]. We therefore have the convergent L2-expansion

Kf0(x, y) : =
∑
π

∑
φ∈B(π)

R(f 0)φ(x)φ̄(y)

||φ||2
(12.11.2)

=
∑
π

∑
φ∈B(π)

(R(f 0)φ)(x)φ̄(y)

||φ||2

By the Dixmier-Malliavin lemma [DM78] we can write

f 0 = f1 ∗ f2 ∗ f3

for f1, f2, f3 ∈ C∞c (AG\G(AF )). Letting

f∨(g) := f(g−1)

we note that ∑
φ∈B(π)

(R(f)φ)(x)φ̄(y)

||φ||2∑
φ∈B(π)

φ(x)(R(f∨)φ̄)(y)

||φ||2

because they both represent the same kernel.
Thus the kernel (12.11.2) becomes∑

π

∑
φ∈B(π)

(R(f1 ∗ f2 ∗ f3)φ)(x)φ̄(y)

||φ||2
(12.11.3)

=
∑
π

∑
φ∈B(π)

(R(f2 ∗ f3)φ)(x)(R(f∨1 )φ̄)(y)

||φ||2

= R(f3)×R(f∨1 )

∑
π

∑
φ∈B(π)

(
(R(f3)φ)(x)φ̄(y)

||φ||2

)
In the notation before (12.2), Theorem 12.3 implies that for all compact subsets Ω ⊂ (G(F )AG\G(AF ))2

and r ∈ R>0 one has∣∣∣∣∣∣R(f3)×R(f∨1 )

∑
π

∑
φ∈B(π)

(
(R(f3)φ)(t2x)φ̄(t1y)

||φ||2

)∣∣∣∣∣∣� (t1, t2)αp
∑
π

tr(π(f3 ∗ f ∗3 ))(12.11.4)

for all t ∈ AG×Gr and α ∈ ∆. Note that tr(π(f3 ∗ f ∗3 )) ≥ 0 and
∑

π tr(π(f3 ∗ f ∗3 )) < ∞ since
the operator R(f3 ∗ f ∗3 ) is of trace class by the result of Donnelly cited above. This implies the
proposition.

�

12.12. Some specializations.

Products of reductive subgroups. Assume that H = H1 × H2 ≤ G × G and χ = 1. Then the
spectral side of the simple relative trace formula can be used to study automorphic representations
distinguished by H1 and H2.
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The simple trace formula. Let

Cγ(R) := {g ∈ G(R) : gγg−1 = γ}
be the centralizer of γ.

Assume that H = diag(G). Then

rtr(π(f)) = m(π)tr(π(f))

and ROγ(f) = Oγ(f) where for each place v of F

Oγ(f) =

∫
C◦γ(Fv)\G(Fv)

f(g−1γg)dġ.

The simple twisted trace formula. Let σ be an automorphism of G. Let

H(R) := {(g, τg) ∈ G×G(R) : g ∈ G(R)}.
In this case

rtr(π(f)) = m(π)tr(π(f ◦ τ))

and

ROγ(f) = TOγ(f) :=

∫
(Cσγ )◦(AF )\G(AF )

f(g−σγg)dg

where
Cσ
γ (R) := {g ∈ G(R) : g−σγg = γ}.

Remark 12.29. The theory of twisted endoscopy deals with the comparison of twisted trace formulae
and trace formulae and, at present, is the primary tool that has been used to establish instances
of Langlands functoriality. The last few sections of [Art05] contain a survey.

13. Applications of the simple relative trace formula and related issues in
distinction

In this section we discuss applications of the simple relative trace formula to problems in the
theory of distinguished representations. We restrict ourselves to existence results, which are the
easiest thing to prove using these formulae.

13.1. Applications of the simple trace formula. The least refined application of the relative
trace formula (which is still nontrivial) is the following proposition:

Proposition 13.1. Let G be a (connected) reductive group with ZG(Fvi) compact for v1, . . . , vn,
and let ρv1 , . . . , ρvn be a collection of supercuspidal representations. Then there exists a cuspidal
automorphic representation π of G(AF ) such that ρvi

∼= πvi for all i.

We will prove Proposition 13.1 as a special case of ?? below, at least in the case where the
centralizer Cγ,G is connected for all semisimple γ ∈ G(F ), though this assumption is unnecessary.

13.2. Globalizations of distinguished representations. Proposition ?? implies in particular
that cuspidal automorphic representations always exist. If we fix a reductive group H and a
quasi-character χ : H(F )AG,H\H(AF )→ C× we can also ask if there exists cuspidal automorphic
representations that are (H,χ)-distinguished. That this is a more subtle point is illustrated by the
following theorem [AGR93]

Theorem 13.2 (Ash, Ginzburg and Rallis). If (G,H) is one of the following pairs of groups over
Q then no H-distinguished cuspidal automorphic representations of G(AQ) exist.

(1) (GLn+k, SLn× SLk) for n 6= k.
(2) (GL2n or GL2n+1, Sp2n).
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(3) (SO(n, n), SLn) for n odd.
(4) (Sp2(n+k), Sp2n× Sp2k).
(5) (Sp2n, Sp2(n−l)) with 4l < n.

(6) (O(Q), O(Ql)) where Q = Ql⊕Q⊥l with 2dim(Q⊥L) less than the Witt index (i.e. dimension
of the maximal isotropic subspace) of Q.

Remark 13.3. In the setting of the theorem, there may still be distinquished automorphic repre-
sentations, just not cuspidal ones.

13.3. The local analogue of distinction. Interestingly, despite Theorem 13.2, one can still
obtain a conditional analogue of Proposition 13.1. To state it, we recall the local version of the
notion of distinction. Thus let v be a nonarchimedian place of F , let HFv ≤ GFv be an algebraic
subgroup, and let χv : H(Fv)−→C× be a quasi-character.

Definition 13.4. An admissible representation (πv, V ) of G(Fv) is (H(Fv), χv)-distinguished if
there is a linear functional λ : V → C× such that

λ(h · φ) = χ−1
v (h)λ(φ)

for all h ∈ H(Fv).

Assume now that G = GLn and H is reductive a reductive F -subgroup of GLn. Assume moreover
that χ : H(AF )−→C× is a (unitary) character trivial on H(F ).

Theorem 13.5. Let G be a (connected) reductive group with ZG(Fvi) compact for v1, . . . , vn, and
let ρv1 , . . . , ρvn be a collection of supercuspidal representations.

Assume that πv is supercuspidal and (H(Fv), χv)-distinguished. Then there is an (H,χ)-distinguished
cuspidal automorphic representation σ of G(AF ) such that σv ∼= πv.

Proof. See [HM02]. �

14. More on distinction

Let H ≤ G be a connected reductive subgroup of a connected reductive group G over a number
field F . We would like to make some comments on the problem of understanding automorphic
representations ofG(AF ) distinguished by (H,χ). Currently even a conjectural understaning of this
problem seems out of reach. However, given recent (submitted) work of Sakellardis and Venkatesh
special classes of examples seem to be more tractable. We recall the following definition:

Definition 14.1. An algebraic subgroup H ≤ G is said to be spherical if HomH(V, Vtriv) is at
most one dimensional for all algebraic finite irreducible ρ : G → V . Here Vtriv denotes the trivial
representations.

Notice that this says nothing a-priori about the multiplicity of H(AF )-invariant functionals
on automorphic representations of AG\G(AF ), although it seems to be the case that when H is
spherical these multiplicities can be controlled.

14.1. Symmetric subgroups. We will actually restrict our attention still further. Let σ : G→ G
be an automorphism of order 2 and let

Gσ(R) := {g ∈ G(R) : gσ = g}
be the subgroup fixed by σ. Finally let H = (Gσ)◦. In this case we refer to G/H as a symmetric
space and H as a symmetric subgroup. We have the following theorem of Vust [Vus90]:

Theorem 14.2 (Vust). If G/H is a symmetric space then it is a spherical variety.

We now give a list of examples of involutions σ and Gσ.
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Example 14.3.

• We can take σ to be conjugation by an element of order two. For example by

(
Im 0
0 −In

)
gives GLσm+n = GLm×GLn where Ik is the k by k identity matrix.
• σ(g) := g−t gives the orthogonal group (this represents the unique outer isomorphism of

GLn over the algebraic closure)).

• Composition of conjugation by

(
0 In
−In 0

)
with g 7→ g−t gives Sp2n.

• Let M/F be a quadratic extension and let · be the nontrivial Galois element then have:

Um,n(R) =

{
g ∈ GLm+n(M ⊗R)|

(
Im 0
0 −In

)
g−t
(
Im 0
0 −In

)
= g

}
.

There is a great deal of helpful geometry available in this special case that allows us to make
our earlier definitions of relative classes concrete. The set of relative classes Γr(R) with respect to
the subgroup

H ×H ≤ G×G
is

H(R)\G(R)/H(R).

and the set of geometric relative classes becomes

Γgeor (R) = Im(G(R)−→H\G/H(R))

To study these classes it is useful to introduce the moment map

Bσ : G−→G

given on points by g 7→ gg−σ. We denote by Q the scheme-theoretic image of Bσ. Thus we have
an isomorphism

Bσ : H\G/Gσ−→H\Q(14.1.1)

and the natural map H\G/H → H\G/Gσ is étale. Here H acts on Q via conjugation since

Bσ(h1gh2) = h1Bσ(g)h−1
1

for hi ∈ Gσ(R) and g ∈ G(R). It is not hard to check that projection to the first factor of H ×H
induces an isomorphism

Hγ −→Cγγ−σ ,H(14.1.2)

where the latter group is the intersection of the centralizer in G of γγ−σ with H.
We have the following proposition:

Proposition 14.4. An element γ ∈ G(F ) is relatively semisimple if and only if Bσ(γ) is semisim-
ple. An element γ ∈ G(F ) is relatively ? if Bσ(γ) is ?, where ? ∈ {ellipticsemisimple, semisimple}.

Proof. The first statement is proven in [Ric82], and the secon statement is clear from (14.1.1) and
(14.1.2). �

We have seen that the notion of a maximal torus in a reductive group is absolutely crucial. In
the case of symmetric varieties, the following definition constitutes a substitute:

Definition 14.5. A torus T ⊆ G is said to be σ-split if for all F -algebras R and all t ∈ T (R) one
has t−1 = tσ.

Remark 14.6. Beware that in [Ric82] a σ-split torus is called a “σ-anisotropic torus.”
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It is not hard to see that if T is any σ-split torus then T ≤ Q. Indeed, every element of t is in
the image of the isogeny t 7→ t2 = tt−σ. Moreover, σ-split tori exist. If T is any σ-stable torus then

T = TσT
σ

where Tσ ∩ T σ is a finite group scheme consisting of elements of order 2. Note that Tσ ∩ T σ is a
finite group scheme consisting of elements of order 2. We have a Weyl group attahced to this torus

W (Tσ, H) = NH(Tσ)/CH(Tσ),

sometimes called the little Weyl group. We have the following theorem [Ric82]:

Theorem 14.7 (Richardson). Let Tσ ⊆ G be a maximal σ-split torus. The inclusion Tσ ↪→ Q
induces an isomorphism

Tσ/W (Tσ, H)
∼→ H\Q.

Remark 14.8. Take G = H ×H and σ : G→ G to be the map (h1, h2) 7→ (h2, h1). In this special
case the theorem above reduces to the Chevalley restriction theorem.

In the same paper [Ric82], Richardson proves the following result: given q ∈ Q(F ), it admits
a Jordan decomposition q = qsqn with qs, qn ∈ Q(F ) with qs and qn commuting, qs is semisimple
and qn is unipotent. The orbit Hqs is the unique closed orbit in the Zariski closure of Hq and Hq
is closed if and only if q = qs. Thus we have a fairly explicit description of relatively semisimple
elements in the case of symmetric varieties.

14.2. Cases when one can characterize distinction. Using the exact sequence (10.4.2), one
can classify the involutory automorphisms of a given reductive algebraic group, and hence the
symmetric subgroups. In the case where the group G is GLnF the symmetric subgroups that can
be obtained are all isomorphic over an algebraic closure of F to one of the following:

• GLn1 ×GLn2 where n1 + n2 = n,
• On, and
• Spn.

If the group G is ResM/FGLn for a quadratic extension M/F one can also obtain inner forms of
the unitary group and GLn. Due to a great deal of work spearheaded by Jacquet one now has a
fairly complete understanding of each of these cases with the exception of On; this will be recalled
in this subsection.

Remark 14.9. If the group G is not a general linear group or restriction of scalars of such a
group, much less is known. However, the author and Wambach have outlined a program to
relate distinction of automorphic representations of classical groups to distinction of automorphic
representations of general linear groups. The paper will appear in AJM.

Jacquet originally developed the relative trace formula to prove the following theorem [Jac04],
[Jac05]:

Theorem 14.10 (Jacquet). Let M/F be a quadratic extension, let G = ResM/F GLn and let H be a
quasi-split unitary group. Then a cuspidal automorphic representation π of G(AF ) is distinguished
by H if and only if πσ ∼= π, where 〈σ〉 = Gal(M/F ).

Remark 14.11. The condition that π ∼= σπ is equivalent to the statement that Note that the
condition in the theorem above is equivalent to π being a lift from GLn(AF ), by work of Arthur
and Clozel [AC89].

Similarly, in [FZ95] one finds the following theorem:
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Theorem 14.12. If M/F is a quadratic extension, then an automorphic respresentation of ResM/F GLn(AF )
is distinguished by GLn(AF ) if and only if the Asai L-function has a pole at s = 1.

Remark 14.13. It should follow from recent work of Mok following work of Arthur that automorphic
representations ResM/F GLn(AF ) whose Asai L-function has a pole at s = 1 are precisely those
that are (stable or unstable) lifts from a unitary group.

For another example, take H = GLn×GLn ⊆ GL2n to be the the fixed points of

(
In 0
0 −In

)
.

We have a character
χs0 : H(AF )→ C×

given by the formula(
q1 0
0 q2

)
7→ |det q1/ det q2|s0−1/2 χ(det q1/ det q2)η(det q2),

where χ and η are characters of AF . In this setting Jacquet and Friedberg [FJ93] prove the
following:

Theorem 14.14 (Friedberg-Jacquet). A cuspidal automorphic representation π on G(AF ) is
(H,µs)-distinguished if and only if L(s,Λ2π ⊗ η) has a pole at s = 1 and L(s0, π ⊗ χ) 6= 0.

We have actually already dealt with the case GLn1 ×GLn2 ≤ GLn1+n2 where n1 6= n2, see
Theorem 13.2.

Ash and Ginzburg use Theorem 14.14 to construct p-adic L-functions under a technical hypoth-
esis, see [AG94].

Remark 14.15. If η = 1 and π has trivial central character, the condition that L(s,Λ2π) has a
pole at s = 1 is equivalent to the statement that π is a lift of an automorphic representation of
SO2n+1(AF ) [CKPSS04], [GRS01].

Here is another case when we can characterize distinction [JR92].

Theorem 14.16 (Jacquet-Rallis). There are no cuspidal automorphic representations on GL2n

which are distinguished by Sp2n.

It is not clear to the author what is known in the case where Gσ = On and G = GLn. In the
case n = 2 one has a complete result in [Jac86]. In general those representations of GLn(AF )
distinguished by On should be functorial lifts from a metaplectic group.

14.3. The relationship between distinguished representations and functorial lifts. In
each of the cases discussed in the previous subsection, the cuspidal representations of a group G
distinguished by a symmetric subgroup H = (Gσ)◦, if they existed, were those that were functorial
lifts from another group G′ (or metaplectic group) perhaps satisfying some addition desiderata. To
the author’s knowledge there is no exact conjectural recipe for the description of the other group
or the additional desiderata, although it may be contained in forthcoming work of Sakellaridis and
Venkatesh. However, in [JLR93] one finds a rough heuristic for what G′ should be. We close our
discussion of distinction with an explanation of this heuristic.

Assume for simplicity that G is semisimple and simply connected and let Tσ ≤ Q denote a
maximal σ-split torus. Let Φ0 denote the reduced root system attached to the set of roots of TσC
in GC. Then

(X∗(TσC),Φ0)

is a reduced root system and hence is the reduced root system of a semisimple group over F̄ .
Jacquet conjectures that the group G′ should be a form of this group, although what one means
by form should be interpetted somewhat broadly.



AN INTRODUCTION TO AUTOMORPHIC REPRESENTATIONS 77

15. The cohomology of locally symmetric spaces

The topic in this last section is the automorphic description of the cohomology of arithmetic
locally symmetric spaces. In the following subsection we discuss the geometry of locally symmetric
spaces. We then discuss local systems on these spaces in §15.2. One reference for this material,
and its generalization to various compactifications of locally symmetric spaces is [Get12]. The
special case of Shimura varieties is mentioned in §15.4.

We then briefly introduce (g, K∞)-cohomology in §?? and show how it and automorphic rep-
resentations can be used to give a complete description of the cohomology of locally symmetric
spaces with coefficients in local systems as a module under Hecke-correspondences in §??. We
close by describing some applications of this theory.

In this section we set
A := AQ

to ease notation. Unless otherwise specified G is an affine group scheme flat of finite type over Z
such that GQ is connected and reductive (in other words we fix a model of G over Z).

Moreover we let K ≤ G(A∞) is a compact-open subgroup, K∞ ≤ G(R) is a compact subgroup
containing the maximal connected compact subgroup K0

∞ (in the real topology) and

AG ≤ G(R)

is the identity component in the real topology of the maximal Q-split torus in the center of G.
Finally we set

X := AGG(R)/K∞.

15.1. Locally symmetric spaces. With the notation from above, any connected component of
X is a symmetric space; one can essentially take this to be the definition of a symmetric space,
although it is not the most natural definition. We let

ShK := Sh(G,X)K := G(Q)\X ×G(A∞)/K(15.1.1)

and refer to it as a Shimura manifold. As explained in (6.1.1) this is a finite union of locally sym-
metric spaces. Indeed, if we take a set of representatives (gi)i∈I for the finite set G(Q)\G(A∞)/K;
then ∐

i∈I

Γi\X−̃→ShK(15.1.2)

Γix 7−→ G(Q)(x, gi)K

where Γi = g−1
i Kgi ∩G(Q).

It is useful to have in mind the following definitions:

Definition 15.1. A subgroup Γ ≤ G(Q) is arithmetic if it is commensurable with G(Z), and
congruence if it is of the form G(Q) ∩K for some compact open subgroup K ≤ G(A∞).

Remark 15.2. The famous congruence subgroup problem asks whether every arithmetic subgroup
is congruence. The answer is in general no, but the groups G for which an arithmetic subgroup
can be noncongruence are quite limited.

A useful assumption on a subgroup Γ ≤ G(Q) is that it is torsion-free. Unfortunately, the
property of being torsion free is not preserved under certain contstructions, such as intersecting
with a parabolic subgroup and mapping to the Levi quotient. A more robust condition is that of
being neat.

An element g ∈ GLn(Q) is neat if the subgroup of Q̄× generated by its eigenvalues is torsion-free.
An arithmetic subgroup Γ ⊂ G(Q) is neat if given any (equivalently, one faithful) representation
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ρ : G → GLn, ρ(g) is neat for all g ∈ Γ. Clearly, if Γ is neat, then all its subgroups and
homomorphic images are neat.

Lemma 15.3. Any congruence subgroup Γ ≤ G(Q) contains a congruence subgroup of finite index
that is neat.

Proof. When G = GLn, we can take the neat subgroup to be of the form

{g ∈ GLn(Z) : g ≡ I mod N}
for a sufficiently divisible integer N . The general case follows from this case. �

Definition 15.4. A compact open subgroup K ≤ G(A∞) is neat if

G(Q) ∩ g−1Kg

is neat for all g ∈ G(A∞).

In fact, one only has to check this condition for all g ∈ G(Q)\G(A∞)/K, which is a finite set.
An elaboration of the proof of Lemma 15.3 implies the following:

Lemma 15.5. If K ≤ G(A∞), then K contains a neat subgroup of finite index. �

Our motivation for introducing this notion is the following:

Lemma 15.6. If K is neat, the ShK is a smooth manifold.

In fact the conclusion of the lemma is valid under the weaker assumption that g−1Kg ∩ G(Q)
is torsion-free for all g ∈ G(A∞). The proof is a consequence of basic results on discrete group
actions on manifolds.

In §3.4 we defined Hecke operators attached to elements of C∞c (G(A)). We recall that these
functions are finite linear combinations of characteristic functions of double cosets KgK for com-
pact open subgroups K ≤ G(A∞ and g ∈ G(A∞). We now explain how these operators can be
realized geometrically as correspondences. Let K,K ′ ≤ G(A∞) be compact open subgroups, and
g ∈ G(A∞) be such that K ′ ⊂ gKg−1. The we have a map

Tg : ShK
′ −→ ShK(15.1.3)

G(Q)(x, hK ′) 7−→ G(Q)(x, hgK)

On the other hand, if Γ,Γ′ ⊂ G(Q) are arithmetic subgroups, and γ ∈ G(Q) is such that Γ′ ⊂
γΓγ−1, we also have

Tγ : Γ′\X −→ Γ\X
given by Γ′x 7→ Γγ−1x; these are a finite étale maps.

The geometric realization of the characteristic function of the double coset KgK is the corre-
spondence

ShK∩gKg
−1

TIyy Tg %%
ShK ShK

(15.1.4)

It acts on functions via pullback along TI followed by pushforward along Tg. In other words, if we
set

T (g) := Tg∗ ◦ T ∗I(15.1.5)

then for any function ϕ : ShK −→C,

T (g)ϕ = R(1KgK)ϕ.(15.1.6)
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15.2. Local systems. A well-known classical fact is that if Γ is a congruence subgroup of GL2Q
contained in the subgroup of matrices with positive determinant and H is the upper half-plane
then the cohomology group

H1(Γ\H,C)

can be decomposed as a direct sum of three summands, one isomorphic to the vector space S2(Γ)
of §6.4, one isomorphic to the space

{f(z̄) : f ∈ S2(Γ)}

of antiholomorphic forms, and one isomorphic to a certain space of Eisenstein series. In order
to give a geometric interpretation of modular forms of weight bigger than 2, it is necessary to
introduce local systems. We now recall their construction in the case at hand.

Until further notice Γ ≤ G(Q) is a neat arithmetic subgroup. Let V be a left G(Q)-module
equipped with the discrete topology, and form the quotient

V := VΓ = Γ\(V ×X)(15.2.1)

by the diagonal action of Γ on the product. We say that the diagram given by the natural projection

V := VΓ −→ Γ\X(15.2.2)

is a local system. For example, if V is a representation of Γ over C, then this is the total space
of a locally constant sheaf of C-vector spaces. For each open set U ⊆ Γ\X we let

V|U := {s : U −→V}(15.2.3)

be the abelian group of sections of the map (15.2.2). Then the functor

{U ⊆ Γ\X}−→Ab(15.2.4)

U 7−→ V|U

from the category of open sets of Γ\X with morphisms given by inclusions to the category of
abelian groups is a sheaf. It is called the sheaf of sections of V . It’s sheaf cohomology is
denoted

H•(Γ\X,V) := H•(Γ\X,VΓ)(15.2.5)

We now turn to the adelic setting. As above, let V be a representation of G. For K ⊂ G(A∞)
compact open, define

V := VK := G(Q)\V ×X ×G(A∞)/K,

where for γ ∈ G(Q), γ(v, x, gK) = (γ.v, γ.x, γgK). We thus have a natural map VK −→ ShK .
This is again a local system, and we define the associated sheaf of sections as above.

The relationship between the two constructions given above can be described as follows. Fix
g ∈ G(A∞), and let Γ = gKg−1 ∩G(Q). We then have an embedding

ι : Γ\X −→ ShK(15.2.6)

Γx 7−→ G(Q)(x, g)K

and on the corresponding local systems, if V is a representation of G(Q), then ι∗VK ∼= VΓ.
For g ∈ G(A∞), and K,K ′ with K ′ ⊂ gKg−1, we have an isomorphism of sheaves

θ : VK′−̃→T ∗g VK = G(Q)\V ×X ×G(A)/K ×ShK ShK
′

(15.2.7)

(v, (x, hK)) 7−→ (v, (xhgK, xhK)).
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This isomorphism is called a lift of the correspondence. The reason for this is that the isomor-
phism allows us to define a diagram

VK∩gKg−1

π1

yy

Tg◦θ

%%
VK VK

(15.2.8)

and a map of sheaves T (g) := Tg∗ ◦ θ ◦ π∗1. This induces maps

T (g) : H•(ShK ,V) −→ H•(ShK ,V).

15.3. A classical example. We return to the example at the beginning of the previous subsection.
Let G = GL2,Q,

K0(c) : = {g ∈ GL2(Ẑ) : g ≡ ( ∗ ∗∗ ) (mod c)}
Γ0(c) : = G(Q) ∩K0(c)

For k > 2 the Shimura isomorphism yields an injection

ω : Sk(Γ0(c))
ω⊕ω̄−−→ H•(ShK ,V)(15.3.1)

Here

ω(f) := f(z)(−X + zY )k−2dz)

ω̄(f) := f(z̄)(−X + z̄Y )k−2dz̄.

where V is the sheaf attached to the dual of the (k − 2)st symmetric power of the standard
representation C2, which we can regard as homogeneous polynomials of degree k−2 in two variables.
The cokernel can be explained in terms of Eisenstein series. As we have explained, the right hand
side is a module under Hecke correspondences. There are also “classical Hecke operators” indexed
by

γ ∈ {g ∈M2(Z) ∩GL2(Q) : g ≡ ( ∗ ∗0 ∗ ) (mod c)}
defined by

T (γ) : Sk(Γ0(c))−→Sk(Γ0(c))(15.3.2)

f 7−→
∑

γiΓ0(c)∈Γ0(c)γΓ0(c)

f |kγi

where
f |k ( a bc d ) (z) := det(γ)k/2(cz + d)−kf(z)

Then the operator T (γ) on the left of (15.3.1) is intertwined with the operator T ((γ∞)−1 det(γ∞))
on the right. The reason for the inverse is that the Eichler-Shimura isomorphism transforms
invariance properties of a function under the left action of Γ0(c) to invariance properties of a
function under the right action of K0(c). For more details see [?].

15.4. Shimura data. Recall the definition of Deligne torus

S := ResC/R(Gm).(15.4.1)

Note that S(R) = C×. The following definition is due to Deligne.

Definition 15.7. Let G be a connected reductive group and let X be a G(R)-conjugacy class of
homomorphisms h : S→ GR The pair (G,X) is a Shimura datum if

(SV1) For h ∈ X, the characters z/z̄, 1, and z̄/z occur in the representation of S on Lie(Gad)C
defined by h (where Gad := G/ZG is the adjoint group);
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(SV2) ad(h(
√
−1)) is a Cartan involution of Gad;

(SV3) Gad has no Q-factors on which the projection of h is trivial.

The condition (SV2) is equivalent to the statement that

Gad,(θ)(R) := {g ∈ Gad(C) : g = θ(ḡ)}
is compact. Conditions (SV1) and (SV2) together imply that X is a Hermitian symmetric space
for G.

Since ShK is a complex manifold in this case, a natural question is whether Sh(G,X)K can be
realized as the complex points of some variety. This is indeed the case by a basic theorem of Baily
and Borel which states that if K is neat then Sh(G,X)K can be given the structure of the complex
points of smooth quasi-projective scheme over C in a canonical manner. One can say even more.

For each x ∈ X, we have a cocharacter

ux(z) := hxC(z, 1),

where xC denotes be base change of x to C. This certainly defines an element of

G\Hom(Gm−→G)(C)

where the implied action is via conjugation. Let E(G,X) ⊂ C be the field of definition of ux. It
is a number field, independent of the choice of x ∈ X. It is called the reflex field of (G,X).

Theorem 15.8. For each neat K ≤ G(A∞) there exists a smooth quasi-projective variety M(G,X)K

defined over the reflex field E of (G,X) such that

Sh(G,X)K = M(G,X)K(C).

and all the correspondence T (g) are defined over E(G,X). Furthermore, there is a canonical such
model, characterized by the Galois action on certain special points.

Definition 15.9. The Shimura variety attached to (G,X) is the projective limit

M := M(G,X) := lim←−
K

M(G,X)K

of the canonical models of ShK = Sh(G,X)K .

Definition 15.10. A morphism of Shimura data, (G,X) −→ (G′, X ′), is a morphism of algebraic
groups G→ G′ (over Q) sending X to X ′.

Definition 15.11. A morphism of Shimura varieties, Sh(G,X)K −→ Sh(G′, X ′)K , is an inverse
system of regular maps compatible with the action of Hecke correspondences.

Theorem 15.12. A morphism of Shimura data induce a morphism of Shimura varieties over the
compositum E(G,X)E(G′, X ′). Moreover, it is a closed immersion if G→ G′ is injective.

We end with some examples of Shimura data

(1) G = GL2,Q; h(a+ b
√
−1) =

(
a b
−b a

)
.

(2) G = ResF/Q GL2; for example, for F/Q totally real, h =
∏

σ

(
aσ bσ

−bσ aσ
)
. The associated

Shimura varieties are known as Hilbert modular varieties.
(3) G = GSp2n, where

GSp2n(R) = {g ∈ GL2n(R) : gtJg = c(g)J for some c(g) ∈ R×}

for J =
(

1
�

1

)
; h(a+ b

√
−1) =

(
aI −bJ
bJ aI

)
. The associated Shimura varieties are known as

Siegel modular varieties.
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15.5. (g, K∞)-cohomology. As above let V be a finite-dimensional representation of G. A fun-
damental tool for describing H•(ShK ,V) as a Hecke module is (g, K∞)-cohomology. We explain
its definition in this section. The basic reference is [BW00a].

Now, let g ≥ k be the complexifications of the Lie algebras of GR and K∞ respectively. Let A
be a g-module (not necessarily of finite dimension). Let

C•(g,A) = Hom(Λ•g,A) = ∧•g∨ ⊗C A.
We define a differential on the complex by:

(df)(x0, . . . , xg) =
∑

(−1)ix ·f(x0, . . . , x̂i, . . . , xg) +
∑
i<j

(−1)i+jf([xi, xj], x0, . . . , x̂i, . . . , x̂j, . . . , xg)

We then let H•(g,A) denote the cohomology of this complex:

H•(g,A) = H•(C•(g,A), d).

Consider

C•(g, k,A) = {f ∈ C(g, V )|ιxf = θxf = 0 ∀x ∈ k}
where ιx and θx are the interior product and derivative respectively. In other words

(ιxf)(x1, . . . , xg−1) = f(x, x1, . . . , xg−1)(15.5.1)

and

(θxf)(x1, . . . , xg) =
∑
i

f(x1, . . . , [x, xi], . . . , xg) + xf(x1, . . . , xg).(15.5.2)

This implies that

C•(g, k,A) = Homk(Λ
•(g/k),A).

Notice that one has θx = d◦ιx+ιx◦d for x ∈ g and thus this new complex is d stable. Consequently
we can take the cohomology of this complex. This cohomology is called the (g, k)-cohomology of
A; it is denoted by H•(g, k;A).

Because of the fact that LieK∞ = LieK+
∞ this cohomology is insensitive to the connected

components of K∞. It is therefore desirable to refine it.
Assume now that A is a (g, K∞)-module. The group K∞ acts in a natural manner on C(g, k,A)

via the action of K∞ on A and the adjoint action on g. For this action define

C•(g, K∞,A) = C•(g, k,A)K∞ .

Denote by H•(g, K∞;A) the cohomology of this complex.

Definition 15.13. The (g, K∞)-cohomology of the (g, K∞)-module A is H•(g, K∞;A).

15.6. The relationship between (g, K∞)-cohomology and the cohomology of Shimura
manifolds. Let V be a finite dimensional representation of G. We now relate (g, K∞)-cohomology
and the cohomology of ShK with coefficients in V

Fix a basis ωi, 1 ≤ i ≤ m := dimR(X) of left invariant 1-forms on AG\G(R)/K∞. For

I = {i1, . . . , iq} ⊂ {1, . . . ,m}
with ij < in for j < n set

ωI := ωi1 ∧ · · · ∧ ωiq .
Then any differential q-form η on ΓAG\G(R) can be written as

η =
∑
I

fIω
I
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with fI ∈ C∞(ΓAG\G(R)). Let

A := C∞(G(Q)\G(A)/K∞).

Let
Aq(ShK ,V)

denote the space of differential q-forms on ShK with coefficients in V . Any element of Aq(ShK ,V)
can be written as

η =
∑
I

fIω
I

with fi ∈ A⊗ V . This yields an identification

A•(ShK ,V) = C•(g, K∞;A)(15.6.1)

commuting with the differentials, which in turn yields an isomorphism

H•(ShK ,V) ∼= H•(g, K∞,A)

This gives an explicit link between cohomology and automorphic representations. We remark that
this map is Hecke equivaraiant in the sense that for g ∈ G(A∞) the action of the correspondence
T (g) is intertwined with the action of 1KgK .

This whole construction motivates the following definition:

Definition 15.14. A vector φ ∈ C∞(G(Q)AG\G(A))K is cohomological if there exists a repre-
sentation V of G, v ∈ V and ωI on G(R) such that

φωI ⊗ v ∈ C•(g, k∞;C∞(G(Q)AG\G(A))⊗ V )K

defines a non-zero class in H•(g, K∞, C
∞(G(Q)AG\G(A)))K .

If we wish to specify the representation V we could speak of a V -cohomological vector instead.
Now C∞(G(Q)AG\G(A)) is naturally a (g, K∞) × G(A∞)-module. Let us decompose it under

the action of G(A∞).
Let {π} be a set of representatives for equivalence classes of cuspidal automorphic representations

of AG\G(A). Letting

L2,cusp := L2,cusp(G(Q)AG\G(A))

as usual we have
L2,cusp :=

⊕
π

π⊕m(π)

where m(π) is the multiplity of π in L2,cusp. Hence

H•(ShK ,V) ⊃ H•cusp(ShK ,V) = H•(g, K∞; (A ∩ L2,cusp)⊗ V ))K(15.6.2)

=
⊕
π

(
H•(g, K∞; π ⊗ V ))K

)⊕m(π)

The group H•cusp(ShK ,V) is known as the cuspidal cohomology. Its complement is described
in terms of so-called Eisenstein cohomology; for some information about the decomposition of the
whole of the cohomology see [BLS96]. It follows that, as a module under C∞c (G(A∞) //K), one
has

H•cusp(ShK ,V) = ⊕π
(
H•(g, K∞; π∞ ⊗ V )⊗ (π∞)K

)m(π)

We refer to

H•cusp(ShK ,V)(π∞) := ⊕π′:π′∞∼=π∞
(
H•(g, K∞; π∞ ⊗ V )⊗ (π′∞)K

)m(π)
(15.6.3)

as the π-isotypic component of the cohomology.
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Definition 15.15. A cuspidal automorphic representation π of AG\G(A) is cohomological if
there is a representation V of G such that H•(g, K∞, π∞⊗ V ) 6= 0. A vector φ in the space of π is
cohomological if there exists an embedding π → L2,cusp such that the image of φ is cohomological.

Thus if there is a vector in the space of π that is cohomological, then π itself is cohomological.

15.7. The relation to distinction. Usually in the literature one finds references to cohomo-
logical representations but no references to cohomological vectors. Despite this, the notion of a
cohomological vector is of great importance.

Suppose that H ≤ G are connected reductive Q-groups and that their corresponding symmetric
spaces are chosen so that XH ↪→ X. Then there is an embedding

Sh(H,XH)K∩H(A∞) ↪→ Sh(G,X)K .

Assume that one can define a cohomology class attached to this subset (if Sh(G,X)K is compact
this is always possible). Assume that π is a cohomological representation. One would like an
answer to the following question:

If π is H-distinguished, then is there a cohomological vector φ in the space of π such that
PH(φ) 6= 0?

For many reasons, including investigation of the Tate conjecture for Shimura varieties, one would
like to know an answer to this question. Indeed, a positive answer to this question allows us to
construct an explicit nonzero cycle in the π∞-isotypic component of H•cusp(ShK ,V).

In general, the answer to the question is no; for example, there could be no cycles of the
appropriate dimension. However, in special cases it can be answered in the affirmative.

Remark 15.16. Suppose H × H = G. If we take ∆(H) to be the diagonal copy of H, then a
cohomological representation of G(A) that is distinguished by ∆(H) has a cohomological vector
φ in its space such that PH(φ) 6= 0. The proof of this statement is essentially an application of
Schur’s lemma.

15.8. More on (g, K∞)-cohomology. We have seen that the question of whether or not a given
automorphic representation contributes to the cohomology of a Shimura manifold with coefficients
in a local system is completely determined by the (g, K∞)-cohomology of its factor at infinity.
One thing that makes this remark so useful is the fact that (g, K∞)-cohomology is a very pleasant
object with which to work. In this subsection we list some properties of these groups; the canonical
reference is [BW00b].

Suppose that g = g1 ⊕ g2 as Lie algebras and K∞ = K1 × K2, V = V1 ⊗ V2 (exterior tensor
product). Then one has a Künneth forumla:

Theorem 15.17 (Künneth formula). One has natural isomorphisms

Hk(g, K∞, V ) =
⊕
p+q=k

Hp(g1, K1, V1)⊕Hq(g2, K2, V2).

One also has a version of Poincare duality:

Theorem 15.18 (Poincare duality). If m = dimX, then letting a := Lie(AG)⊗R C one has

Hq(a\g, K∞; π ⊗ V ) ∼= Hm−q(a\g, K∞; π∨∞ ⊗ V ∨)∨.

Thus, in particular, to compute the (g, K∞)-cohomology of a (g, K∞)-module it suffices to
understand the case where g is simple over R and when q ≤ dimX/2.
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15.9. The Vogan-Zuckerman classification. Vogan and Zuckerman have provided a classifica-
tion of all (g, K∞)-modules with nonzero cohomology. We briefly recall this result. For simplicity
assume that g is simple and let K∞ is connected. We let

k0 := Lie(K∞).

Since K∞ is compact, the adjoint operator Ad(x) acting on g is diagonalizable for all x ∈ k0, with
real eigenvalues, and complex conjugation switches positive and negative eigenvalues. Let q denote
the sum of the non-negative eigenspaces, let u be the sum of the positive eigenspaces, and let l be
the sum of the zero eigenspaces. Then q ⊆ g is a parabolic subalgebra and

q = l + u.

There is an involutory automorphism θ of g, called the Cartan involution, such that k is the
fixed points of θ. It will preserve a parabolic subalgebra as above. It is convenient to call such a q
simply a θ-stable parabolic subalgebra, though not all parabolic subalgebras stable under θ arise
in this way.

Suppose that V is a representation of g such that the highest weight with respect to a θ-stable
Borel subalgebra is fixed by θ. Attached to this data Vogan and Zuckerman define a (g, K∞)-
module Aq(V ) (in the notation of [BW00b, VI.5]), and explicitly compute its (g, K∞)-cohomology.
They then prove the following result:

Theorem 15.19 (Vogan-Zuckerman). If π∞ is an irreducible admissible (g, K∞)-module and

H•(g, K∞; π∞ ⊗ V ∨) 6= 0,

then π∞ ∼= Aq(V ).

(see [BW00b] and [VZ84]).

15.10. Cohomology in low degree. For motivation, we state the Lefschetz theorem from al-
gebraic geometry. Let X be a smooth projective n-dimensional variety over C, and let Y ⊆ X
denotes a hyperplane section such that X − Y is smooth (this will hold generically). One has the
following result:

Theorem 15.20 (Lefschetz). The induced map on cohomology

Hk(X,Q)−→Hk(Y,Q)

is an isomorphism for k ≤ n− 1 and injective for k = n− 1.

The moral of this theorem is that in low degree, all of the cohomology of a variety comes from a
subvariety of lower dimension in a precise sense. Bergeron and Clozel have proven similar results
for locally symmetric spaces, even which are not of hermitian type. We refer the reader to [BC05]
and more recent work of Bergeron.

In this section we will recall a much more elementary result that state that in low degrees the
cohomology of locally symmetric varieties is very simple. We refer to [BW00b] for the proofs. Let
P < g denote the −1 eigenspace of the Cartan involution θ.

Proposition 15.21. If V is an irreducible finite-rank representation of G then

H•(g, K∞, V ) =

{
0 if V is nontrivial,
(∧•P)K∞ if V is trivial.

}
.

Now suppose that G is semisimple. Then we have injective maps

j : Hq(g, K∞,C)→ Hq(ShK ,C)

These classes represent somewhat trivial parts of the cohomology. In [Bor74] one finds a definition
of an integer m(g) related to the curvature of X and a proof of the following theorem:
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Theorem 15.22 (Matsushima). The map j above is bijective for k ≤ m(g). Moreover if q ≤ m(g)
then every harmonic form in Hq(ShK) is invariant under G(R).

Remark 15.23. Moreover, the assumption that the coefficients are C is also not necessary at the
expense of complicating the statement of the theorem, and in fact nontrivial coefficients tend to
have more vanishing cohomology groups in low degrees (see [BW00b, §II.10, Theorem]).

15.11. Galois representations. Let Sh(G,X) be a Shimura variety. Since it is defined over
a number field, its étale cohomology provides a vital link between automorphic representations
and Galois representations. This link has been exploited notably by R. Taylor, his collaborators,
and students, to prove spectacular results attaching Galois representations to important classes of
automorphic representations and conversely establishing the modularity of Galois representations.
In fact the field is evolving so quickly that we will not attempt to provide references, but instead
invite the reader to search them out for him or herself.
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