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Abstract. We present a general mathematical framework for modeling the macroscale behavior
of a multiscale system using only the microscale models, by formulating the effective macroscale
models as dynamic models on the underlying fiber bundles. This framework allows us to carry out
seamless multiscale modeling using traditional numerical techniques. At the same time, they give rise
to an interesting mathematical structure and new interesting mathematical problems. We discuss
several examples from homogenization problems, continuum modeling of solids based on atomistic
or electronic structure models, macroscale behavior of interacting diffusion, and continuum modeling
of complex fluids based on kinetic and Brownian dynamics models.
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1. Introduction
In recent years, there has been a great deal of interests on designing multiscale

modeling strategies that capture the macroscale behavior of a system using only the
microscopic models, bypassing the necessity for making ad hoc modeling assump-
tions [10]. In broad terms, such methods are divided into two categories, sequential
coupling methods and concurrent coupling methods [1]. In sequential coupling meth-
ods, the required constitutive relations for the macroscopic model are precomputed.
The macroscale model is then solved using traditional approaches. In concurrent cou-
pling methods, the required model input to the macroscale simulation is computed
“on-the-fly” as the simulation proceeds. This allows us to probe only the part of the
constitutive relation which is used in the actual computation. If the constitutive re-
lation depends on many parameters, this procedure can be much more efficient than
precomputing the constitutive relation for the entire range of parameters. A very
compelling example of concurrent coupling is the Car-Parrinello molecular dynam-
ics [5].

In addition to the specific algorithms that have been developed for many individ-
ual applications, there have also been some efforts on developing general framework
for concurrent multiscale modeling. Most notable are the multi-grid methods [4], the
heterogeneous multiscale methods (HMM) [9,11] and the equation-free methods [17].
While there are differences in the details, all three share the following features:

1. They use a concurrent coupling strategy.
2. They explicitly go back and forth between the macro and micro models. Note

that the terminologies used are slightly different: Going from the macro to
micro states is called interpolation, reconstruction and lifting in [4, 9, 17] re-
spectively. Likewise, going from the micro to macro states is called projection,
compression and restriction.

3. They all try to take advantage of the scale separation in the system. Time
scale separation is used so that the microscale model is only computed for a
short time, due to the fast equilibration of the microscale variables. Spatial
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2 Seamless multiscale modeling via dynamics on fiber bundles

scale separation is used so that the microscale model is only computed on a
small window or a small computational cell.

These are the basic features that have made “on-the-fly” constitutive modeling an
attractive approach.

From a practical viewpoint, the most difficult step is associated with the fact that
these methods are quite far from being seamless: The requirement of going explicitly
back and forth between the macro and micro models and/or states are often difficult
in practical implementations. In this series of papers, we will develop a strategy for
attacking these problems without the need to go back and forth between the macro
and micro models. We will first focus on the simplest case of type B problems for which
a common mathematical structure will be developed with the help of fiber bundles,
by formulating multiscale models as dynamics on the fiber bundles. In this paper, we
will discuss the general formulation, and the mathematical problems that arise. In a
follow-up paper [13], we will discuss how to make this formulation a practical tool. In
subsequent papers, we will discuss increasingly more complex problems that require
additional ideas.

We note that the relevance of the concept of fiber bundles was noted before
in [8, 11]. Other seamless multiscale modeling ideas are discussed in [22].

2. The general structure of fiber bundle dynamics
We start with a simple example. Consider the nonlinear homogenization problem:

∂tu
ε=∇·(a(uε, x

ε
)∇uε) (2.1)

Here a(u,z) is a smooth and uniformly positive definite tensor function, which is
periodic in z with period Γ. For this problem, the homogenized equation takes the
form:

∂tU =∇·(A(U)∇U), (2.2)

where (I is the identity matrix)

A(U)=
∫
a(U,z)(∇zχ(z;U)+I) dz, (2.3)

and χ(z;U) is the solution of

∇z ·(a(U,z)(∇zχ+I))=0 in Γ (2.4)

with periodic boundary condition.
This example reveals the underlying fiber bundle structure of this type of multi-

scale problems. To be more precise, there are two fiber bundles (see Figure 2.1): The
first is a fiber bundle in the space of independent variables, for which the macroscale
space-time domain of interest is the underlying base manifold, and the domains for
the additional fast variable z which parametrizes the local microstructure are the
fibers. The second is a fiber bundle in the space of dependent variables, for which
the macroscale quantities of interest, the range of the slow variables, are the base
manifold, and the range of the quantities that characterize the microstructure, such
as the probability distribution of the fast variables, are the fibers.

To proceed further, it is helpful to introduce some terminologies. We will call
the first fiber bundle the domain bundle. The base manifold in the domain bundle
will be called the domain base manifold. The fibers in this bundle will be called the
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Fig. 2.1. Fiber bundle structure.

parametrization fibers. We will call the second fiber bundle the state bundle. The
base manifold in the state bundle will be called the state base manifold. The fibers in
this bundle will be called the microstate fibers.

The effective macroscopic model is a mapping from the domain bundle to the state
bundle. These effective models share the following common structure. The macroscale
model (2.2) maps the domain base manifold to the state base manifold, with model
input given by the associated microstructure model such as (2.3). The microstructure
model (2.4) maps the parametrization fibers to the microstate fibers, the value of the
local macrostate (or slow variable) enters as parameters in the microstructure model.

To be more concrete, in what follows, unless otherwise noted, we will use x or
(x,t) to denote variables on the domain base manifold, and z to denote variables on
the parametrization fibers. We will use U to denote the variables on the state base
manifold, and u or ρ to denote the variables on the microstate fibers. We will use Ω
to denote the domain base manifold, and γx to denote the parametrization fiber over
x, x∈Ω. Similarly, we will use S to denote the state base manifold and ΓU to denote
the microstate fiber over U for U ∈S.

Fiber bundle dynamics generally consists of the following three components:
1. A macroscale model with unspecified model input, that maps the domain

base manifold to the state base manifold

L(U ;A(U))=0. (2.5)

Here U =U(x),A is the unspecified model input, which depends on U , the
macrostate variables.

2. A microstructure model that maps γx to ΓU(x), for any x∈Ω:

L(u;U(x))=0. (2.6)

Here U(x) enters as parameters or constraints to the microscale model.
3. A formula that specifies the missing input to the macroscale model in terms

of the solutions to the microstructure model:

A(U)=A(U,u(·;U)). (2.7)
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For the example discussed above, the first component is given by (2.2). The second
component is given by (2.4). The third component is given by (2.3).

At this point, the fiber bundle model described above is nothing but a refor-
mulation of homogenization or averaging theory [20]. We will see in [13] that this
reformulation can be made into a very useful practical tool. However, before we pro-
ceed to the practical issues, let us discuss a few examples in which the fiber bundle
structure gives rise to interesting new mathematical models.

3. Modeling macroscopic elastic deformation of solids using atomistic
models

In traditional models of nonlinear elasticity, we formulate a variational problem
of the type

min
U

∫

Ω

W (∇U(x)) dx (3.1)

for the elastic energy of the material, subject to certain boundary (loading) condi-
tions. Here x is the reference coordinate in the undeformed state, U =U(x) is the
displacement field, y=x+U(x) is the position of the material point indexed by x in
the deformed state. The stored energy density W is assumed to be a function of the
deformation gradient A=∇U , and this function characterizes the elastic properties
of the material. In continuum mechanics, this function is usually obtained via some
constitutive assumptions with the help of symmetry considerations. The purpose of
multiscale modeling is to bypass such ad hoc assumptions and obtain the function W
from microscopic models, which are closer to the first principle models, even though
they themselves are not necessarily first principle models.

It has been fully established that if thermal effects can be neglected, then the
stored energy density can be obtained from atomistic models via the Cauchy-Born
rule, under sharp stability conditions [3, 14, 15]. Let us assume that the atomistic
potential energy takes the form:

E=E(y1,y2,··· ,yN ) (3.2)

where y1,y2, ·· · ,yN are the positions of the atoms. A simplest, although rarely satis-
factory, example of E is given by

E(y1,y2, ··· ,yN )=
∑

i6=j
V (|yi−yj |) (3.3)

where V is some empirical pair potentials such as the Lennard-Jones potential. Later
we will also consider the case when E is given by more accurate models from quantum
mechanics. Geometrically, the crystal lattice is described by its unit cell, plus some
shift vectors if the lattice is a complex lattice. In the undeformed configuration, the
crystal is a periodic structure. Sometimes it is more convenient to view simple lattices
artificially as complex lattices. For example, the face centered cubic lattice (FCC)
is a simple lattice, but it is more convenient to view it as a complex lattice consists
of the union of the simple lattice L with basis vectors {(a,0,0),(0,a,0),(0,0,a)} and
its shift with shift vectors p1 =(a/2,a/2,0), p2 =(a/2,0,a/2), p3 =(0,a/2,a/2). The
advantage of this viewpoint is that the underlying simple lattice L is the standard
cubic lattice. Each unit cell has four atoms, i.e., the origin and the three additional
atoms at the centers of the faces connected with the origin.
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Given a matrix A and the shift vectors p=(p1, ·· · ,ps), we can form a deformed
unit cell by deforming the lattice vectors according to y=x+Ax, and letting the shift
vectors be p. This then forms a deformed lattice. Knowing the position of the atoms
on the deformed lattice, we can compute the energy density according to the atomistic
model, and we call this value W (A,p). Strictly speaking, this value is obtained in an
infinite volume limit:

W (A,p)= lim
n→∞

1
|nD|

∑
V (|yi−yj |), (3.4)

where D is a smooth but otherwise arbitrary domain in space and the summation is
carried out for

yi,yj ∈ (nD)
⋂ s⋃

k=0

((I+A)L+pk).

Here we have set p0 =(0,0,0) to simplify the notation.
According to the Cauchy-Born rule, the stored energy density for the deformed

crystal is given by

WCB(A)=min
p
W (A,p)=W (A,p(A)) (3.5)

where p=p(A)=(p1(A), ··· ,ps(A)) satisfies

∇pjW (A,p(A))=0, j=1, ·· · ,s. (3.6)

Of course there is an issue whether the solution to this equation is unique. For
simplicity of discussion, we will assume it is.

We can formulate this as a model on the fiber bundle. The domain base mani-
fold is the reference configuration of the crystal. The state base manifold is R3×3 =
{A,A∈R3×3}, the space of deformation gradients. The parametrization fibers γx=
{1,2,··· ,s} consist of the indices for the additional atoms in the unit cell. The mi-
crostructure fibers ΓA={p1,p2, ··· ,ps}. (3.1) gives the macroscale model, (3.6) gives
the microstructure model and (3.5) gives the macroscale model input in terms of the
microstate fiber.

This structure can be used to examine the dynamics of crystalline solids as well.
The model then becomes





∂2
tA=∇(∇·F (A)),
∇pjW (A,p)=0, j=1,··· ,s,
F (A)=∇AW (A,p).

(3.7)

This structure also exists when the atomistic model is given by models of quan-
tum mechanics that describe the electronic structure of the material. Let us first
consider the case when the electronic structure model is given by the Thomas-Fermi-
von Weiszäker (TFW) model:

E(y1,y2, ·· · ,yN )= inf
ρ

(∫
ρ5/3 dy+

∫
|∇√ρ|2 dy

+
1
2

∫∫
(ρ−m)(y)(ρ−m)(y′)

|y−y′| dydy′
)
. (3.8)
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Here ρ is the electron density and m is the charge distribution due to the ions

m(y)=
N∑

i=1

ma(y−yi), (3.9)

ma is the pseudopotential of a single ion. ρ satisfies the normalization constraint:
∫
ρ dy=nN, (3.10)

where we assume that each atom has n valence electrons.
In this case, the structure of the fibers needs to be modified. For simplicity, we

only discuss the case of simple lattice. The parametrization fiber γx=Γ, where Γ is
the undeformed unit cell, the microstate fibers ΓA=ρ(·).

Given the matrix A and the electron density ρ, the energy density of the deformed
lattice W (A,ρ) can be computed by the periodic TFW model [6, 12]:

W (A,ρ)=
det(I+A)

|Γ|
(∫

Γ

ρ5/3(z;A) dz+
∫

Γ

|(I+A)−T∇z
√
ρ(z;A)|2 dz

+
1
2

∫∫

Γ×Γ

(ρ−m)(z;A)G(z−z′;A)(ρ−m)(z′;A) dzdz′
)
. (3.11)

Here m is the charge distribution generated by the deformed lattice

m(z;A)=
∑

zi∈L
ma((I+A)(z−zi)). (3.12)

G is the periodic Coulombic kernel [19] which is the solution of

−((I+A)−T∇z)2G(z;A)=4π(δ(z)−1/|Γ|) in Γ (3.13)

with periodic boundary condition and lim
z→0

(G(z;A)−1/|(I+A)z|)=0.
Again, the Cauchy-Born stored energy density is given by

WCB(A)=min
ρ
W (A,ρ)=W (A,ρ(·;A)) (3.14)

where ρ=ρ(·;A) satisfies




δ

δρ
W (A,ρ(·;A))=λ,

∫

Γ

ρ(z;A) dz=n/det(I+A).
(3.15)

Here λ is the Lagrange multiplier for the normalization constraint. The macroscale
model is still given by (3.1), while (3.15) gives the microstructure model and (3.14)
gives the macroscale model input from the microstructure. In this case, the dynamic
model is given by





∂2
tA=∇(∇·F (A)),
δ

δρ
W (A,ρ(·;A))=λ,

∫

Γ

ρ(z;A) dz=n/det(I+A),

F (A)=∇AW (A,ρ).

(3.16)
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Next, we consider the case when the electronic structure model is given by the
Kohn-Sham Density Function Theory (KSDFT):

E(y1,y2, ·· · ,yN )= inf
{ψα}

(∑
α

∫
|∇ψα(y)|2 dy+

∫
εxc(ρ(y)) dy

+
1
2

∫∫
(ρ−m)(y)(ρ−m)(y′)

|y−y′| dydy′
)
. (3.17)

Here ψ={ψα}nNα=1 is a collection of orthonormal wave functions, ρ is the correspond-
ing electron density given by ρ(y)=

∑
α|ψα(y)|2, and εxc is the exchange-correlation

potential with local density approximation used.
In the KSDFT case, the parametrization fiber γx=R3n/2, where we assume that n

is even for simplicity, the factor 1/2 is due to spin degeneracy. The microstate fibers
ΓA={ψ1(·),ψ2(·), ··· ,ψn/2(·)}, where {ψα}n/2α=1 are the wave functions. The energy
density W (A,{ψ}) of the deformed lattice is given by a periodic KSDFT model [12]:

W (A,{ψ})=
det(I+A)

|Γ|
(n/2∑
α=1

∫

R3
|(I+A)−T∇zψα(z;A)|2 dz+

∫

Γ

εxc(ρ(z;A)) dz

+
1
2

∫∫

Γ×Γ

(ρ−m)(z;A))G(z−z′;A)(ρ−m)(z′;A) dzdz′
)
. (3.18)

Here, m and G are defined as in (3.12) and (3.13), ρ is the periodic electron density
given by

ρ(z;A)=2
∑

zi∈L

n∑
α=1

|ψα(z−zi;A)|2. (3.19)

Again, the Cauchy-Born stored energy density is given by

WCB(A)=min
{ψ}

W (A,{ψ})=W (A,{ψ(·;A)}), (3.20)

where {ψ}={ψ(·;A)} satisfy




δ

δψα
W (A,{ψ(·;A)})=

∑

α′,zj∈L
λαα′,zjψα′(z−zj ;A),

∫
ψ∗α(z−zi;A)ψα′(z−zj ;A) dz= δαα′δij/det(I+A).

(3.21)

Here λ={λαα′,zj} are the Lagrange multipliers for the orthonormality constraints.
The macroscale model is still given by (3.1), while (3.21) gives the microstructure
model and (3.20) gives the macroscale model input from the microstructure. In this
case, the dynamic model is given by





∂2
tA=∇(∇·F (A)),
δ

δψα
W (A,{ψ(·;A)})=

∑

α′,zj∈L
λαα′,zjψα′(z−zj ;A),

∫
ψ∗α(z−zi;A)ψα′(z−zj ;A) dz= δαα′δij/det(I+A),

F (A)=∇AW (A,{ψ}).

(3.22)
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4. Relaxational dynamics on the fibers
The form of the macroscale models discussed so far corresponds to the Born-

Oppenheimer adiabatic approximation in quantum mechanics, in which the electronic
structure is assumed to be in the ground state given by the positions of the nuclei. In
the spirit of Car-Parrinello molecular dynamics [5], we can introduce a relaxational
dynamics to the electronic structure equation. More generally, we can introduce
relaxational dynamics for the fibers. For example, in the TFW case, the dynamics for
the microstructure becomes

m∂2
t ρ+η∂tρ=− δ

δρ
W (A,ρ)(z)+λ. (4.1)

Here m is an artificial electron mass and η is a relaxation parameter. λ is the Lagrange
multiplier for the normalization constraint

∫
Γ
ρ(z;A) dz=n/det(I+A). To determine

the model input F (A), we have

0=∇AW (A,ρ)=∂AW (A,ρ)+
δ

δρ
W (A,ρ)∂Aρ. (4.2)

The derivative can be evaluated using the Hellmann-Feynman theorem which needs
generalized to this setting. For simplicity, let us denote by g(A,ρ) the constraint

g(A,ρ)=
∫

Γ

ρ(z;A) dz−n/det(I+A). (4.3)

The minimizer ρ satisfies

δ

δρ
W (A,ρ)−λ δ

δρ
g(A,ρ)=0. (4.4)

Also, since g(A,ρ)=0 is always satisfied by the minimizer, we have

∇Ag(A,ρ)=∂Ag(A,ρ)+
δ

δρ
g(A,ρ)∂Aρ. (4.5)

Substituting (4.4) and (4.5) into (4.2), we get

∇AW (A,ρ)=∂AW (A,ρ)−λ∂Ag(A,ρ). (4.6)

In the case of TFW model,

∂Ag(A,ρ)=n(I+A)−1/det(I+A). (4.7)

Therefore, (3.16) becomes




∂2
tA=∇(∇·F (A)),

m∂2
t ρ+η∂tρ=− δ

δρ
W (A,ρ)(z)+λ,

∫

Γ

ρ(z;A) dz=n/det(I+A),

F (A)=∂AW (A,ρ)−λn(I+A)−1/det(I+A).

(4.8)

Next we consider some simple examples in order to see explicitly the mathematical
structure of these models. First, let us consider a one-dimensional chain with two
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alternating species of atoms A and B with nearest neighbor interaction. We denote
by V the interaction between the A and B atoms. We assume that the lattice constant
is 1 and the shift vector now is the distance between an A atom and the following B
atom. Then we have

W (A,p)=V (p)+V (1+A−p). (4.9)

Hence,

∇AW (A,p)=V ′(1+A−p), (4.10)
∇pW (A,p)=V ′(p)−V ′(1+A−p). (4.11)

We can write the dynamics as




∂2
tA=∂2

xF (A),

m∂2
t p+η∂tp=−V ′(p)+V ′(1+A−p),

F (A)=V ′(1+A−p).
(4.12)

Next we change the atomistic model to a quantum mechanical model. We consider
a one-dimensional chain of a single kind of atoms A, each atom has one valence
electron. We consider a model whose periodic energy functional is given by

W (A,ψ)=
∫ 1+A

0

(|∂zψ|2 +V (ψ2)) dz. (4.13)

Here ψ satisfies normalization constraint

∫ 1+A

0

ψ2(z) dz=1. (4.14)

V is a general nonlinear potential. We calculate the explicit formula following (4.8).
Notice that we have written the microstructure model using the coordinates in the
deformed state, instead of the reference state as in (3.15) and (3.21). This choice of
coordinates is more convenient in this case.

The dynamics microstructure model is given by

m∂2
t ψ+η∂tψ=∂2

zψ−V ′(ψ2)ψ+λψ. (4.15)

Herem is an artificial electron mass, η is a relaxation parameter, and λ is the Lagrange
multiplier. We calculate F (A) according to (4.6):

F (A)=∇AW (A,ψ)= |∂zψ(0;A)|2 +V (ψ2(0;A))−λψ2(0;A). (4.16)

Notice that in the case of quasi-static microstructure model when ψ(·;A) is the mini-
mizer of minW (A,ψ) satisfying the constraint, i.e., if

−∂2
zψ+V ′(ψ2)ψ=λψ, (4.17)

then,

S(z)= |∂zψ(z;a)|2 +V (ψ2(z;A))−λψ2(z;A) (4.18)



10 Seamless multiscale modeling via dynamics on fiber bundles

does not depend on z. However, if the model is replaced by (4.15), then this quantity
is no longer independent of z. Therefore, in this case, it is natural to use instead

F (A)=
∫ (|∂zψ(z;A)|2 +V (ψ2(z;A))−λψ2(z;A)

)
dz

=
∫ (|∂zψ(z;A)|2 +V (ψ2(z;A))

)
dz−λ/(1+A).

(4.19)

Therefore, the dynamics for the whole system is




∂2
tA=∇(∇·F (A)),

m∂2
t ψ+η∂tψ=∂2

zψ−V ′(ψ2)ψ+λψ,
∫ 1+A

0

|ψ(z;A)|2 dz=1,

F (A)=
∫ (|∂zψ(z;A)|2 +V (ψ2(z;A))

)
dz−λ/(1+A)

(4.20)

5. Macroscopic behavior of interacting diffusion
Let us consider a Ginzburg-Landau lattice model for interacting diffusion. Let

LN ⊂L be a sublattice of length N with periodic boundary condition and let HN be
a Ginzburg-Landau type of Hamiltonian given by

HN =
1
2

∑

i,j∈LN ,|i−j|=1

|φi−φj |2 +
∑

i∈LN

V (φi), (5.1)

where V is the potential (V (φ)=αφ2 +λφ4 with λ>0, for example). The lattice
function φ is the state variable of the lattice model. One can describe the dynamics
by the stochastic differential equations

dφi=
∑

j∈Ln,|i−j|=1

N2

2

(
∂HN

∂φj
− ∂HN

∂φi

)
dt−

√
N2

β
dWt(i,j). (5.2)

Here Wt(i,j)=−Wt(j,i) is a Wiener process associated with the bond (i,j), indepen-
dent for different bonds. β=1/kBT is a parameter related to temperature.

It has been proved [16, 23] under various assumptions that the the Ginzburg-
Landau dynamics has a macroscopic density U(x,t) satisfying the diffusion equation

∂tU =∇·(D(U)∇U). (5.3)

Here D(U) is the diffusion coefficient given by the second derivative of the free energy
of the microscopic models in the thermodynamic limit.

Recall the definition of free energy for the lattice model LN :

FN (U)=
1

|LN | log
∫

exp(−βHN )δ(φ̄−U) dφ, (5.4)

FN is the ensemble average taken on the constraint manifold φ̄=U where φ̄ is the
average value of φ:

φ̄=
1

|LN |
∑

i∈LN

φi.
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Taking the thermodynamic limit N→∞, FN has unique limit F , and.

D(U)=
1
2
∂2
UF (U). (5.5)

We can formulate this as a model on the fiber bundle. The domain base manifold
is the physical space-time where the diffusion takes place. The state base manifold
is R, the space of density. The parametrization fibers γx,t=LN consist of the lattice
grids. The microstructure fibers ΓU ={φi}i∈LN

. (5.3) gives the macroscale model,
(5.1) gives the microscale model and (5.5) gives the input from the microstate fibers.

The integration (5.4) is difficult to evaluate directly. In practice, it is evaluated
through dynamics such as Langevin equation, molecular dynamics, or overdamped
dynamics, etc. For example, if overdamped Langevin dynamics is used, the model
then becomes





∂tU =∆(A(U)),

dφi=
∑

j∈Ln,|i−j|=1

{
1
2η

(
∂HN

∂φj
− ∂HN

∂φi

)
dt−

√
1
ηβ

dWt(i,j)
}

+λdt,

A(U)=
1
2

1
|LN |

∑

i∈LN

(−β ∂HN

∂φi
).

(5.6)

Here η is a relaxational parameter, and λ is the Lagrange multiplier given by λ=∂tU .
The effective macroscale dynamics of (5.6) is




∂tU =∆(A(U)),

A(U)=
1
2
∂U

( 1
|LN | log

∫
exp(−βHN )δ(φ̄−U) dU

)
.

(5.7)

We remark that the choice of microscopic dynamics and the way to impose constraint
is not unique.

6. Kinetic and Brownian dynamics models of complex fluids
The models discussed above all share the feature that the microstructure models

on different fibers are independent of each other: The states on different microstate
fibers are connected to each other only through the base manifold. This feature is
quite attractive for numerical purpose since it facilitates the implementation of parallel
algorithms and the localization of the microstructure models. For this reason, HMM
has made a point of retaining this feature in the numerical algorithms [11]. However,
there are multiscale models that do not share this feature. We now discuss some
examples of such models.

Let us consider kinetic models for complex fluids such as polymer fluids or liquid
crystal flows [18]. In these kinetic models, besides the velocity field, we also consider
a configuration distribution function ψ for the conformation of the polymers or liquid
crystals. The configuration distribution function is defined on the configuration space
G. For rod-like polymers whose configuration is described by the orientation of the
rods, G is the space of orientations, i.e., the unit sphere S2 with opposite points
identified. For bead-and-spring polymers, G is the space that describes the position
of the beads. In general, the kinetic models for bead-and-spring polymers are of the
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following form:




∂tU+(U ·∇x)U+∇xP =
ν

Re
∆xU+

1−ν
ReDe

∇x ·τp,
∇x ·U =0,

∂tψ+∇x ·(Uψ)=−∇z ·
(
(∇T

xU ·z−
1

2De
f(z))ψ

)
+

1
2De

∆zψ,

τp(x,t)=
∫

G

(f(z)⊗z)ψ(x,z,t) dz.

(6.1)

Here z are the microstate variables describing the position of beads (n vectors if we
have n springs for each polymer), f(z) is the configurational force. If we use more
than one spring to represent each polymer, f(z)⊗z means

∑
j f

(j)(z)⊗z(j), where
z(j) is the vector corresponds to j-th spring. U and P are macroscopic velocity and
pressure respectively. Dimensionless parameters Re,De,ν are Reynolds number, Deb-
orah number, viscosity ratio respectively. For rod-like polymers, we have in general
the following kinetic models:





∂tU+(U ·∇x)U+∇xP =
ν

Re
∆xU+

1−ν
ReDe

∇x ·τp,
∇x ·U =0,

∂tψ+∇x ·(Uψ)=
1
De

R·(Rψ+ψm×f)−R·(m×∇T
xU ·mψ),

τp(x,t)=
∫

G

(
(3m⊗m−I)−(m×m×f)⊗m

+
De

2
(∇T

xU :m⊗m⊗m⊗m)
)
ψ(x,m,t) dm.

(6.2)

Here m is the rotation angel of the polymer and f(m) is the configurational force given
by external field or a mean field interaction potential. R is the rotational operator
given by R=m×∇m. In these models, the expression for τp, the polymer stress, is
usually called Kramers expression [2, 7].

In the language of the fiber bundles, the domain base manifold is the physical
space-time domain Ω, the parametrization fibers γx,t=G, the state base manifold
is the space of velocity and velocity gradients R3×R3×3, the microstate fibers are
ΓU,A={ψ(·)}. However, this model is different from the models we discussed before,
since the microstate on different fibers are linked to each other by the convection term
(U ·∇x)ψ.

In the above form, the microstructure dynamics involved in (6.1) and (6.2) are
expensive to solve since they are Fokker-Planck equations. In practice, it is more
effective to replace solving the Fokker-Planck equations by sampling:





∂tU+(U ·∇x)U+∇xP =
ν

Re
∆xU+

1−ν
ReDe

∇x ·τp,
∇x ·U =0,

∂tzj+(U ·∇x)zj =∇T
xU ·zj−

1
2De

f(zj)+

√
1
De

Ẇj ,

τp(x,t)=
1
N

N∑

j=1

f(zj)⊗zj .

(6.3)
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and 



∂tU+(U ·∇x)U+∇xP =
ν

Re
∆xU+

1−ν
ReDe

∇x ·τp,
∇x ·U =0,
∂tmj+(U ·∇x)mj =(I−mj⊗mj)

◦(− 1
De

mj×f(mj)+mj×∇T
xU ·mj+

√
2
De

Ẇj),

τp(x,t)=
1
N

N∑

j=1

(3mj⊗mj−I)−(mj×mj×f(mj))⊗mj

+
De

2
(∇T

xU :mj⊗mj⊗mj⊗mj).

(6.4)

where ◦ means the Stratonovich integral is used since the Brownian motion is on the
unit sphere S2.

7. Some practical issues
The main advantage of the fiber bundle dynamics models is that they are now

amendable to standard numerical techniques – the difficulties associated with the
multiscale issues are largely removed. Compared with other multiscale strategies
such as HMM, it has the advantage that the models are seamless, and therefore much
easier to implement. Preliminary numerical results also indicate that the fiber bundle
models are also more efficient [21]. As we discussed above, most of these fiber bundle
dynamics models have the feature that the microstructure models are only linked to
each other through the base manifolds. In this case, parallelization is embarrassingly
simple. In other cases, developing parallel algorithms does not appear to be a difficult
task either. In this regard, fiber bundle dynamics share the same feature as HMM.

From some of the examples discussed above such as the first example, it may
appear that the fiber bundle dynamics is simply a reformulation of the homogenized
equation. This does not have to be the case: One can formulate fiber bundle dynamics
models with much less analytical understanding on the microscale problems. The most
essential ingredients are the links between the macro and micro models – the formula
that expresses the macroscale data in terms of the output of the microscale models. If
the microscale model is molecular dynamics and the macroscale model is continuum
hydrodynamics, then this formula is the Irving-Kirkwood formula that expresses stress
in terms of the atomistic data from molecular dynamics. If the microscale model is
replaced by Brownian dynamics, then this link is replaced by Kramers expression.
From our experience with HMM, we expect that this is a very essential component of
any successful multiscale modeling strategy.

How do we formulate the microstructure model on the fibers? Again our experi-
ence with HMM suggests that this is usually the most difficult step technically. The
basic idea is to constrain the microscale model so that the macroscale variables follow
the dynamics on the base manifolds. To overcome the disparity between spatial and
temporal scales, we may either rescale the microscale model, or as has been suggested
by Weiqing Ren [13], we may formulate the macro and micro simulations using dif-
ferent units. The latter is quite natural since the macro and micro simulations are
conducted on different spaces anyway. There is no reason that they need to use the
same units.

In the fiber bundle dynamics models that we have formulated so far, the macro-
scale data is obtained from the instantaneous results of the microscale model, i.e.,
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we have not made use of the past history of the microscale simulation results. This
might be a disadvantage compared with HMM, since the latter tries to make full use of
the history of the microscale simulation results by performing sophisticated averaging
techniques to extract the needed macroscale data. The same techniques can be used
here. In fact, there is no reason why we have to throw away the time history of the
microscale results. We can make use of it in the same way as in HMM. For example,
we can change (2.7) to

A(Ut)=
∫ t

t−t0
K

( t−τ
t0

)A(Uτ ,u(·;Uτ )) dτ. (7.1)

Here K is an averaging kernel as in [9]. This can potentially improve the accuracy of
the simulation and reduce statistical error.

The practical aspects of these issues are discussed in [13] and [21].
It should also be remarked that the fiber bundle model is only useful when there

is a separation of scales in the system, in which case the local microstructure can be
described by the local fiber. In these cases, the fiber bundle model can be used as
an effective tool to describe the effective macroscopic model. From an algorithmic
viewpoint, it should be considered as an alternative to HMM. Compared with HMM,
it has the advantage of being seamless, thereby eliminating some of the most difficult
steps in HMM, the steps of going back and forth between macro- and micro-states. It
should not be regarded as a closure procedure for systems without scale separation.
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