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Abstract
We investigate a kinetic model for interacting particles whose masses are integer multiples
of an elementary mass. These particles undergo binary collisions which preserve momentum
and energy but during which some number of elementary masses can be exchanged between
the particles. We derive a Boltzmann collision operator for such collisions and study its
conservation properties. Under some adequate assumptions on the collision rates, we show
that it satisfies a H-theorem and exhibit its equilibria. We formally derive the system of fluid
equations that arises from the hydrodynamic limit of this Boltzmann equation. We compute
the viscous corrections to the leading order hydrodynamic equations on a simplified collision
operator of BGK type. We show that this diffusive system can be put in the formalism of
nonequilibrium thermodynamics. In particular, it satisfies Onsager’s reciprocity relation and
entropy decay.

Keywords Boltzmann equation · Euler equation · Navier–Stokes equation · Onsager’s
reciprocity relation · Entropy

1 Introduction

This paper is devoted to the study of a system of interacting particles whose masses are
integer multiples of an elementary mass. These particles undergo binary collisions which
preserve momentum and energy but during which some number of elementary masses can
be exchanged between the particles. So, this system combines the features of a coagulation-
fragmentation problem and of a classical rarefied gas dynamics system.

Coagulation-fragmentation equations describe the size evolution of particle clusters when
such clusters canmerge or split. There aremany different models of such phenomena depend-
ingonhowmanyclusters orwhat cluster sizes are involved in amerge or split event, orwhether
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the cluster sizes are described by discrete or continuous variables. The emblematic example
of such a model is the so-called Smoluchowski equation. There is an abundant literature
on the mathematical analysis of this equation and its variants, in particular on its dynam-
ics and its equilibria, which will be our main interest here. We refer e.g. to [1–8] as well
as the short review [9] and the book [10] for further references. Coagulation-fragmentation
equations have many applications in aerosol dynamics [11], emulsion polymerization [12],
combustion [13, 14] and animal group-size statistics [5, 15].

Most of the literature deals with spatially homogeneous systems, i.e., systems where the
size distribution of the clusters do not depend on position. Some models though have consid-
ered spatially inhomogeneous situations. In [16], the coagulation-fragmentation dynamics is
coupled with a spatial diffusion. References [17, 18] consider spatially discrete versions of
the transport processes applying to the clusters. In [19], the clusters are transported by a back-
ground fluid and modelled by a kinetic equation of Fokker–Planck type. The authors study
hydrodynamic limits which roughly lead to the model of [16], coupled with the movement
of the fluid. In [20], a spatially inhomogeneous kinetic fragmentation model is considered
and existence of solutions is proved.

In the present paper, we derive a Boltzmann collision operator for particles which have
integer masses and which undergo binary collisions preserving the total mass (i.e. the sum
of the masses of the incoming particles). However, the way the total mass is distributed
among the two particles may be different in the incoming and outgoing particle pairs. We
also assume that the binary collisions preserve the total momentum and total energy. For
this reason, we exclude the case of complete coagulation (i.e. there is only one outgoing
particle) or complete breakup (i.e. there is only one incoming particle), because in such case,
it is impossible to conserve both the total momentum and total energy. We refer to processes
in which two particles exchange mass (without merge or breakup) during a collision as a
mass-exchange process. As a consequence of excluding merge or breakup, the total number
of particles during mass exchange collisions is preserved, which brings a major difference
with coagulagion-fragmentation phenomena described by the Smoluchowski equation.

Collisions with mass exchange may occur for instance in reacting gases [21], sprays [22–
25] or heavy ion collisions [26]. However, in the first case, the masses span a finite set of
integers and, additionally, the collisions are not kinematically elastic as there are potential
energy barriers that the particles must overcome to form reaction products. In the second and
third cases, the particles have some internal energy, reflecting vibrating modes in droplets
or in ions. Moreover, in the case of sprays, most often passive advection by the background
fluid is the main driver of motion.

Here, we construct a simpler model, aiming that both the collision kinetics and mass
exchange processes have similar magnitudes and contribute in a comparable way to motion,
particle statistics, equilibria and ensemble dynamics. So, we assume that the mass exchange
process does not require any potential energy nor does it trigger any internal degrees of
freedom of the particles. These assumptions could be satisfied at leading order when such
potential energies or internal degrees of freedom are small enough to be treated as perturba-
tions. The modelling is based on the construction of a Boltzmann collision operator akin to
that used in rarefied gas dynamics, but which incorporates the mass-exchange phenomenon.
The Boltzmann equation of rarefied gas dynamics has been the subject of numerous mathe-
matical works, see [27–30] for reviews.

Another instance which motivated this study is the description of animal groups move-
ments. Animal group size statistics has been treated so far in a purely spatially homogeneous
way [5, 15]. However, one may be interested in investigating to what extent group merges
and splits influence the displacement of animals during migrations or foraging. Obviously,
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momentum and energy are not conserved during animal movements due to self-propulsion.
However, interaction mechanisms between animals and their collective dynamics are com-
plex, diverse and still poorly known [31]. So, rarefied gas binary collisions appear as a starting
point for the investigation of mass exchange processes. The study of more complex models
with gradually more realistic assumptions will be deferred to future works.

The outline of thiswork is as follows. In Sect. 2, we derive theBoltzmann operator formass
exchange collisions (referred to as the BME operator) and study its properties (conservations,
entropy dissipation, equilibria, etc.). In Sect. 3, we investigate the dynamics of the BME
equation at large spatio-temporal scales compared with the typical collision scales. This
regime is characterized by a small parameter ε (known as the Knudsen number) and the limit
ε → 0 is called the hydrodynamic limit. In this limit, the system is described by the localmass,
momentum and energy densities, as well as the local particle number density (here, since
the particles have different masses, the mass and number densities are not proportional). The
resulting systemwill be referred to as the Euler systemwith mass exchange (EME). Then, we
investigate the O(ε) correction to the EME system using the Chapman–Enskog procedure.
Because computations may be quite complex with the original BME operator, we use a
simpler BGK-type collision operator for this study. This leads to a system called the Navier–
Stokes equations for mass exchange (NSME). Finally, Sect. 4 is devoted to investigating the
entropy properties of the EME and NSME systems. In particular, we show that the NSME
system is consistent with the formalism of nonequilibrium thermodynamics [32]: it satisfies
Onsager’s reciprocity relation and entropy dissipation, and is therefore compatible with the
second principle of thermodynamics. Finally, we end this work by a conclusion in Sect. 5. A
short appendix recalls some basic formulas used throughout this work.

2 Boltzmann Operator for Mass Exchange Collisions

2.1 The Collision Rule

Wefirst consider two particles of massesm andm1 and velocities v and v1 respectively which
interact and give rise to particles with massesm′ andm′

1 and velocities v′ and v′
1 respectively.

Here, we assume that masses are integers in {1, 2, . . . , } and the velocities are vectors in Rn .
The collision obviously preserves the number of particles. We assume that the collision also
preserves mass, momentum and energy, i.e. we have

m + m1 = m′ + m′
1, (1)

mv + m1v1 = m′v′ + m′
1v

′
1, (2)

m|v|2 + m1|v1|2 = m′|v′|2 + m′
1|v′

1|2. (3)

Since zero masses are not allowed, we have m′, m′
1 ∈ {1, 2, . . . ,m +m1 − 1}. We introduce

the center-of-mass velocity vCM. Because of (1) and (2), we have

vCM = mv + m1v1

m + m1
= m′v′ + m′

1v
′
1

m′ + m′
1

. (4)

We then introduce the velocities in the center-of-mass frame

u = v − vCM = m1

m + m1
(v − v1), (5)

u1 = v1 − vCM = − m

m + m1
(v − v1), (6)
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u′ = v′ − vCM = m′
1

m′ + m′
1
(v′ − v′

1), (7)

u′
1 = v′

1 − vCM = − m′

m′ + m′
1
(v′ − v′

1). (8)

Thanks to (1) and (2), Eq. (3) can be written

m|u|2 + m1|u1|2 = m′|u′|2 + m′
1|u′

1|2,
and with (5) to (8), we find

(mm1)
1/2|v − v1| = (m′m′

1)
1/2|v′ − v′

1|. (9)

Following the case of equal masses, we can write

(m′m′
1)

1/2(v′ − v′
1) = (mm1)

1/2[v − v1 − 2(v − v1) · ��
]
, (10)

where � ∈ S
n−1 with � · (v − v1) ≤ 0. Inserting it into (7) and (8), we get

u′ = m′
1

m + m1

(
mm1

m′m′
1

)1/2 [
v − v1 − 2(v − v1) · ��

]
, (11)

u′
1 = − m′

m + m1

(
mm1

m′m′
1

)1/2 [
v − v1 − 2(v − v1) · ��

]
. (12)

This results in the following collision law:

v′ = mv + m1v1

m + m1
+ (mm1)

1/2

m + m1

(
m′

1

m′

)1/2 [
v − v1 − 2(v − v1) · ��

]
, (13)

v′
1 = mv + m1v1

m + m1
− (mm1)

1/2

m + m1

(
m′

m′
1

)1/2 [
v − v1 − 2(v − v1) · ��

]
, (14)

m′
1 = m + m1 − m′, (15)

wherem′ takes any integer value {1, 2, . . . ,m+m1−1} and� in Sn−1 with� ·(v−v1) ≤ 0.
Equation (10) can be inverted into

(mm1)
1/2(v − v1) = (m′m′

1)
1/2[v′ − v′

1 − 2(v′ − v′
1) · ��

]
, (16)

which leads to

v = m′v′ + m′
1v

′
1

m′ + m′
1

+ (m′m′
1)

1/2

m′ + m′
1

(m1

m

)1/2 [
v′ − v′

1 − 2(v′ − v′
1) · �′ �′], (17)

v1 = m′v′ + m′
1v

′
1

m′ + m′
1

− (m′m′
1)

1/2

m′ + m′
1

(
m

m1

)1/2 [
v′ − v′

1 − 2(v′ − v′
1) · �′ �′], (18)

m1 = m′ + m′
1 − m, (19)

with �′ = −� and we note that �′ ∈ S
n−1 satisfies �′ · (v′ − v′

1) ≤ 0.

Remark 1 (About excluding zero masses).
Suppose that one of the outgoing masses were zero, say m′

1 = 0, and consequently m′ =
m + m1. Then, there only remains v′ to determine with the two equation (2), (3), which in
this case read

mv + m1v1 = (m + m1)v
′, m|v|2 + m1|v1|2 = (m + m1)|v′|2.
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Eliminating v′ from the first equation, the second equation leads to v = v1. So, if one of
the outgoing masses is equal to zero, energy conservation can only be achieved when the
two incoming velocities are equal. A similar conclusion would hold if one of the incoming
masses were zero, reverting the roles of incoming and outgoing velocities. Therefore, the
requirement that both momentum and energy are preserved during mass exchange collisions
implies that none of the incoming or outgoing masses can be zero.

Remark 2 (About integer masses).
An alternate modelling framework would consist of allowing the masses to take all non-
negative real values, instead of purely integer values. The concepts developed below could
certainly be extended to that case. We chose the integer setting because of its simplicity.
Within this setting, there is no need, for instance, to discuss the integrability of the mass
distribution near zero. On the other hand, allowing continuous masses would offer more
flexibility to describe possible loss of mass through the zero mass (a phenomenon called
shattering). Finally, the convergence of the integer mass framework to the continuous mass
framework when the elementary mass tends to zero would certainly be interesting to study.
We leave these questions to future works.

2.2 The Boltzmann Operator with Mass Exchange (BME Operator)

Let fm(x, v, t) be the distribution function of particles of mass m, and f = ( fm)m=1,....
We define a Boltmann collision operator for collisions with mass exchange (in short BME
operator) in weak sense. Let ϕm(v) be a sequence of test functions of the variable v. Then,
we write

d

dt

( ∞∑

m=1

∫

Rn
fm ϕm dv

)
=

∞∑

m=1

∫

Rn
Qm( f )(v)ϕm dv

= 1

2

∞∑

m,m1=1

m+m1−1∑

m′=1

Am,m1;m′
∫

(v,v1,�)∈R2n×Sn−1 | (v−v1)·�≤0

B
( m m1

m + m1
|v − v1|2,� · v − v1

|v − v1|
) (

ϕm′ + ϕm′
1
− ϕm − ϕm1

)
fm fm1 dv dv1 d�,(20)

where ϕm = ϕm(v), ϕm1 = ϕm1(v1), ϕm′ = ϕm′(v′), ϕm′
1

= ϕm′
1
(v′

1), and similarly for
fm , fm1 , fm′ , fm′

1
and v′, v′

1, m
′
1 related to v, v1, m, m1, m′ and � through (13)–(15).

Here, Am,m1;m′ is the rate of collisions between particles of masses m and m1 giving rise
to particles of masses m′ and m + m1 − m′, while B is the rate of collisions of particles
(m, v) with particles (m1, v1) generating a deflection angle parametrized by �. For hard-
sphere collisions, the number of collisions undergone by a test particle (m, v) against field
particles (m1, v1) during a time interval dt is equal to the number of such field particles
in a collision cylinder whose radius rc is the sum of the radii of the two particles, and of
height equal to |v − v1|dt . The radius of a particle of mass m scales like m1/n , so that we
can suppose that the surface of the section of this cylinder is σ = Cn(m1/n + m1/n

1 )n−1,
where Cn is the volume of the unit ball in an (n − 1)-dimensional euclidean space. We
note that we can aggregate the factor Cn(m1/n + m1/n

1 )n−1 with the constant Am,m1;m′ and
assume that σ = 1. For more general collisions, the number σ is replaced by the so-called
differential scattering cross section, which is classically a function of the kinetic energy of
the reduced particle Ered = m m1

m+m1
|v − v1|2, and of � · v−v1|v−v1| which is the cosine of π/2

plus half the scattering angle. This is exact up to the same multiplicative factor as in the

123



   27 Page 6 of 39 P. Degond, J.-G. Liu

hard-sphere case, which again can be aggregated with the constant Am,m1;m′ . Likewise, we

can write |v − v1| = (m+m1
mm1

)1/2E1/2
red and the prefactor (m+m1

mm1
)1/2 can be aggregated with

Am,m1;m′ . In the end, this shows that we can assume that the collision rate B is a function
of Ered and � · v−v1|v−v1| , without any other dependence on the masses, which is what appears
in (20). Of course, all this assumes factorization between rates for mass exchanges Am,m1;m′
and rates for velocity changes B; in total generality we should have postulated a rate of the
form Bm,m1;m′( m m1

m+m1
|v − v1|2,� · v−v1|v−v1| ). This would lead to further complications that we

wish to avoid in the present work.
Since the partition of m + m1 into m and m1 is the same as that obtained by exchanging

m and m1, and similarly, the partition of m +m1 into m′ and m′
1 is the same as that obtained

by exchanging m′ and m′
1, we have

Am,m1;m′ = Am1,m;m′ = Am,m1;m+m1−m′ , (21)

for all m, m1 ≥ 1, and for all m′ ∈ {1, . . . ,m + m1 − 1}. We also note that the parameter
values (m, v,m1, v1,�,m′) and (m1, v1,m, v,−�,m + m1 − m′) correspond to the same
physical collision. Thus, in the sums and integrals involved in (20), each physical collision
is counted twice, which justifies the factor 1/2 in front of the whole expression.

We now give the strong form of the BME operator given in weak form by (20):

Lemma 1 (BME operator in strong form) We have

d

dt
fm(v) = Qm( f )(v), ∀m ∈ {1, 2, . . . , }, ∀v ∈ R

n,

with

Qm( f )(v) =
∫

(v1,�)∈Rn×Sn−1 | (v−v1)·�≤0
B
( m m1

m + m1
|v − v1|2,� · v − v1

|v − v1|
)

[ ∑

{(m′,m′
1) |m′+m′

1≥m+1}
Am′,m′

1;m fm′ fm′
1

(m m1

m′m′
1

) n
2

−
∞∑

m1=1

m+m1−1∑

m′=1

Am,m1;m′ fm fm1

]
dv1 d�, (22)

Proof The right-hand side of (20) is the sum of four terms labeled 1© to 4© in the same order
as the terms associated with ϕm′ , ϕm′

1
, ϕm , ϕm1 . We immediately get

3© = −1

2

∞∑

m=1

∫

v∈Rn

( ∞∑

m1=1

m+m1−1∑

m′=1

Am,m1;m′
∫

(v1,�)∈Rn×Sn−1 | (v−v1)·�≤0

B
( m m1

m + m1
|v − v1|2,� · v − v1

|v − v1|
)
fm fm1 dv1 d�

)
ϕm dv. (23)

Now, for 4©, we just exchange (m, v) and (m1, v1) on the one hand, and change the sign of�
on the other hand. Since m, m1, v, v1 are dummy variables, the result is unchanged and we
readily see that

4© = 3©. (24)
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Now, we turn ourselves to 1©. Changing the order of the sums in m, m1, m′, we get

1© = 1

2

∞∑

m′=1

∑

{(m,m1) |m+m1≥m′+1}
Am,m1;m′

∫

(v,v1,�)∈R2n×Sn−1 | (v−v1)·�≤0

B
( m m1

m + m1
|v − v1|2,� · v − v1

|v − v1|
)
ϕm′ fm fm1 dv dv1 d�. (25)

We now make the change of variables (v, v1) → (v′, v′
1). We need to compute the Jacobian

J = |det( ∂(v,v1)

∂(v′,v′
1)

)| = |det( ∂(v′,v′
1)

∂(v,v1)
)|−1. From (13), (14), we note that the map (v, v1) 
→

(v′, v′
1) for given � is linear and can be written

v′ = Hv − K (v · �)� + Lv1 + K (v1 · �)�,

v′
1 = H ′v + K ′(v · �)� + L ′v1 − K ′(v1 · �)�,

with

H = α + √
αα1 γ, K = 2

√
αα1 γ, L = α1 − √

αα1 γ,

H ′ = α −
√

αα1

γ
, K ′ = 2

√
αα1

γ
, L ′ = α1 +

√
αα1

γ
,

and

α = m

m + m1
, α1 = m1

m + m1
, γ =

√
m′

1

m′ .

Let (e1, . . . , en) be basis ofRn such that en = �. Then, in this basis, the linearmap (v, v1) 
→
(v′, v′

1) has matrix X given blockwise by:

X =
(A B
C D
)

,

with

A = diag(H , . . . , H , H − K ), B = diag(L, . . . , L, L + K ),

C = diag(H ′, . . . , H ′, H ′ + K ′), D = diag(L ′, . . . , L ′, L ′ − K ′),

where diag(a1, . . . , an) denotes the diagonal matrix with diagonal entries a1, . . . , an . Since
C and D commutent, we have

detX = det
(AD − BC)

= (HL ′ − LH ′)n−1((H − K )(L ′ − K ′) − (H ′ + K ′)(L + K )
)
.

Remarking that α + α1 = 1 and using (1), we compute

HL ′ − LH ′ = −((H − K )(L ′ − K ′) − (H ′ + K ′)(L + K )
)

= √
αα1

(
γ + 1

γ

)
=
√

m m1

m′m′
1
,

which leads to

J = |detX |−1 =
(m′m′

1

m m1

) n
2
.
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Thus, owing to (1) and (9), the change of variables (v, v1) → (v′, v′
1) and � → �′ = −�

in (25) leads to

1© = 1

2

∞∑

m′=1

∑

{(m,m1) |m+m1≥m′+1}
Am,m1;m′

∫

(v′,v′
1,�

′)∈R2n×Sn−1 | (v′−v′
1)·�′≤0

B
( m′ m′

1

m′ + m′
1
|v′ − v′

1|2,�′ · v′ − v′
1

|v′ − v′
1|
)

ϕm′ fm fm1

(m′m′
1

m m1

) n
2
dv′ dv′

1 d�′.

Now, we just rename (m, v) into (m′, v′) and vice-versa, and (m1, v1) into (m′
1, v

′
1) and

vice-versa and rename �′ into �. This gives

1© = 1

2

∞∑

m=1

∫

v∈Rn

( ∑

{(m′,m′
1) |m′+m′

1≥m+1}
Am′,m′

1;m
∫

(v1,�)∈Rn×Sn−1 | (v−v1)·�≤0

B
( m m1

m + m1
|v − v1|2,� · v − v1

|v − v1|
)
fm′ fm′

1

( mm1

m′ m′
1

) n
2
dv1 d�

)
ϕm dv. (26)

Finally, using the same algebra as for 1©, we get

2© = 1

2

∞∑

m=1

∑

{(m′,m′
1) |m′+m′

1≥m+1}
Am′,m′

1;m
∫

(v,v1,�)∈R2n×Sn−1 | (v−v1)·�≤0

B
( m m1

m + m1
|v − v1|2,� · v − v1

|v − v1|
)

ϕm1 fm′ fm′
1

( mm1

m′ m′
1

) n
2
dv dv1 d�,

Now, as for 4©, we exchange (m, v) and (m1, v1) on the one hand and change the sign of �

on the other hand and get
2© = 1©. (27)

Adding (23), (24), (26) and (27), and owing to the fact that the resulting formula is valid
for any sequence of test functions (ϕm)m≥1, we are led to (22). �


Lemma 2 (Equivalent weak form of the BME operator) Eq. (20) is equivalent to the follow-
ing:

∞∑

m=1

∫

Rn
Qm( f )(v)ϕm dv = −1

4

∞∑

m,m1=1

m+m1−1∑

m′=1

(m m1)
n
2

∫

(v,v1,�)∈R2n×Sn−1 | (v−v1)·�≤0
B
( m m1

m + m1
|v − v1|2,� · v − v1

|v − v1|
) (

ϕm′ + ϕm′
1

−ϕm − ϕm1

) [ Am′,m′
1;m

(m′m′
1)

n
2

fm′ fm′
1
− Am,m1;m′

(m m1)
n
2
fm fm1

]
dv dv1 d�. (28)
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Proof The proof is similar to that of the previous lemma. We start with (20) and make the
change of variables (m, v,m1, v1) → (m′, v′,m′

1, v
′
1) and � → �′ = −�. We get

∞∑

m=1

∫

Rn
Qm( f )(v)ϕm dv = 1

2

∞∑

m,m1=1

m+m1−1∑

m′=1

Am,m1;m′

∫

(v′,v′
1,�

′)∈R2n×Sn−1 | (v′−v′
1)·�′≤0

B
( m′ m′

1

m′ + m′
1
|v′ − v′

1|2,�′ · v′ − v′
1

|v′ − v′
1|
)

(
ϕm′ + ϕm′

1
− ϕm − ϕm1

)
fm fm1

(m′m′
1

m m1

) n
2
dv′ dv′

1 d�′.

Now,we rename (m, v) into (m′, v′) and vice-versa, and (m1, v1) into (m′
1, v

′
1) and vice-versa

and rename �′ into �. This gives

∞∑

m=1

∫

Rn
Qm( f )(v)ϕm dv = −1

2

∞∑

m′,m′
1=1

m′+m′
1−1∑

m=1

Am′,m′
1;m

∫

(v,v1,�)∈R2n×Sn−1 | (v−v1)·�≤0
B
( m m1

m + m1
|v − v1|2,� · v − v1

|v − v1|
)

(
ϕm′ + ϕm′

1
− ϕm − ϕm1

)
fm′ fm′

1

( mm1

m′ m′
1

) n
2
dv dv1 d�.

Now, we note that
∞∑

m′,m′
1=1

m′+m′
1−1∑

m=1

=
∞∑

m,m1=1

m+m1−1∑

m′=1

.

Thus, we get

∞∑

m=1

∫

Rn
Qm( f )(v)ϕm dv = −1

2

∞∑

m,m1=1

m+m1−1∑

m′=1

Am′,m′
1;m

∫

(v,v1,�)∈R2n×Sn−1 | (v−v1)·�≤0
B
( m m1

m + m1
|v − v1|2,� · v − v1

|v − v1|
)

(
ϕm′ + ϕm′

1
− ϕm − ϕm1

)
fm′ fm′

1

( mm1

m′ m′
1

) n
2
dv dv1 d�. (29)

Then, adding (20) and (29) leads to (28), which ends the proof. �


2.3 Conservations, Entropy Dissipation and Equilibria

Proposition 1 (Conservations) Let ϕ = (ϕm)m≥1 be a sequence of smooth functions with
sufficient decay at infinity in m and v such that

ϕm′(v′) + ϕm′
1
(v′

1) − ϕm(v) − ϕm1(v1) = 0, (30)

for all (m′, v′), (m′
1, v

′
1), (m, v), (m1, v1) satisfying (1), (2), (3). Then, we have

∞∑

m=1

∫

Rn
Qm( f )ϕm dv = 0, (31)
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for any sequence f = (ϕm)m≥1 of smooth functions decaying fast enough in v and m.

Proof We apply (28) with ϕ satisfying (30) and immediately get (31). �

Lemma 3 (Collisional invariants) Any sequence ϕ = (ϕm)m≥1 of smooth functions Rn → R

satisfying (30) belongs to the space

C = span{1,m,mv1, . . . ,mvn,m|v|2},
where

1 = (ϕm)m≥1 with ϕm(v) = 1,

m = (ϕm)m≥1 with ϕm(v) = m,

mvk = (ϕm)m≥1 with ϕm(v) = mvk, k ∈ {1, . . . , n},
m|v|2 = (ϕm)m≥1 with ϕm(v) = m|v|2.

Proof The proof is divided into four steps.
Step 1. For fixed m = m1 = m′ = m′

1, (30) becomes

ϕm(v) + ϕm(v1) = ϕm(v′) + ϕm(v′
1),

for all v, v1, v
′, v′

1 satisfying v + v1 = v′ + v′
1 and |v|2 + |v1|2 = |v′|2 + |v′

1|2. Thanks
to a classical result [33, Prop 28.2], there exist constants Cm , Am and a constant vector Bm

depending on m such that

ϕm(v) = Cm |v|2 + Dm · v + Am . (32)

Step 2.We demonstrate that Am = mB + A for some constants A and B. Indeed, by setting
v = v1 = v′ = v′

1 = 0, for m + m1 = m′ + m′
1 and using Eq. (32), (30) becomes

Am + Am1 = Am′ + Am′
1
. (33)

For m ≥ 2, since m + 1 = (m − 1) + 2 one gets Am = Am−1 + (A2 − A1). Recursively, for
m ≥ 3, we get

Am = A2 + (m − 2)(A2 − A1) = m(A2 − A1) + 2A1 − A2. (34)

This equation is also valid form = 1 and 2. Thus, we can set B = A2−A1 and A = 2A1−A2.
Step 3. We show that Cm and Dm are affine functions of m. For m + m1 = m′ + m′

1, and
v = v1 = v′ = v′

1, the conditions (2) and (3) are met. Using Eqs. (32) and (33), then (30)
reduces to

Cm |v|2 + Dm · v + Cm1 |v|2 + Dm1 · v = Cm′ |v|2 + Dm′ · v + Cm′
1
|v|2 + Dm′

1
· v. (35)

Now, 2v = 2v1 = 2v′ = 2v′
1 still satisfy (2) and (3). Thus, we have

4Cm |v|2+2Dm ·v+4Cm1 |v|2+2Dm1 ·v = 4Cm′ |v|2+2Dm′ ·v+4Cm′
1
|v|2+2Dm′

1
·v. (36)

Equations (35) and (36) yield

Cm + Cm1 = Cm′ + Cm′
1
,

Dm + Dm1 = Dm′ + Dm′
1
.

Using the same argument as in Step 2, we find

Cm = mC + C0, Dm = mD + D0. (37)
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for some constants C , C0 and some constant vectors D, D0.
Step 4.We now prove C0 = 0 and D0 = 0. Using Eqs. (32), (33) and (37) together with (2)
and (3), Eq. (30) is reduced to

C0(|v|2 + |v1|2) + D0 · (v + v1) = C0(|v′|2 + |v′
1|2) + D0 · (v′ + v′

1).

Using again the factor 2 trick as in Step 3, we have

C0(|v|2 + |v1|2) = C0(|v′|2 + |v′
1|2), (38)

D0 · (v + v1) = D0 · (v′ + v′
1). (39)

We first show that D0 = 0. By subtracting 2vCM (where vCM is given by (4)) to each side of
(39) and using (5)–(8), we get

m1 − m

m1 + m

(
D0 · (v − v1)

) = m′
1 − m′

m′
1 + m′

(
D0 · (v′ − v′

1)
)
. (40)

Now, we assume that D0 �= 0. We choose m = m1, m′ �= m′
1 (this requires m > 1), v, v1

such that D0 · (v − v1) �= 0 and � such that � · (v − v1) = 0 (see collision rule (13), (14)).
Then, according to the collision rule,

v′ − v′
1 = 1

2

[(m′
1

m′
)1/2 + (m

′

m′
1

)1/2]
(v − v1), and so,

(
D0 · (v′ − v′

1)
) �= 0.

Thus, the left-hand side of (40) is 0 while the right-hand side is different from 0 given the
choices made. This yields a contradiction, and it results that D0 = 0. Now, we show that
C0 = 0. Indeed, applying (38) with (v, v1, v

′, v′
1) replaced by (w+v,w+v1, w+v′, w+v′

1)

where w is an arbitrary vector of Rn (we easily check that this quadruple of vectors still
satisfies (2) and (3)), we deduce that C0 must satisfy

C0(v + v1) = C0(v
′ + v′

1).

Taking an arbitrary unit vector n, we deduce that

C0n · (v + v1) = C0n · (v′ + v′
1),

which is (39) with D0 replaced by C0n. The proof done for D0 shows that C0n = 0 which
in turn, shows that C0 = 0.

Combining all the above steps, we derive the following form for ϕm(v):

ϕm(v) = A + Bm + Cm|v|2 + D · mv.

This completes the proof of the lemma. �

We now make the following

Hypothesis 1 (Multiplicative exchange rates)
We assume that there exists a sequence (γm)m≥1 with γm ∈ [0,∞), ∀m ≥ 1, such that

Am,m1;m′ = γm γm1 , ∀m, m1 ≥ 1, ∀m′ ∈ {1, . . . ,m + m1 − 1}. (41)

We remark that Am,m1;m′ given by (41) satisfies (21).

Proposition 2 (Entropy dissipation)
Assuming (41), we get

∞∑

m=1

∫

Rn
Qm( f ) log

(γm fm

m
n
2

)
dv ≤ 0. (42)
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Proof Taking

ϕm = log
(γm fm

m
n
2

)
, (43)

and using (41), Expression (28) becomes

∞∑

m=1

∫

Rn
Qm( f )(v)ϕm dv = −1

4

∞∑

m,m1=1

m+m1−1∑

m′=1

(m m1)
n
2

∫

(v,v1,�)∈R2n×Sn−1 | (v−v1)·�≤0
B
( m m1

m + m1
|v − v1|2,� · v − v1

|v − v1|
)

[
log
(γm′ fm′

(m′) n
2

γm′
1
fm′

1

(m′
1)

n
2

)
− log
(γm fm

m
n
2

γm1 fm1

(m1)
n
2

)]

[
γm′ fm′

(m′) n
2

γm′
1
fm′

1

(m′
1)

n
2

− γm fm

m
n
2

γm1 fm1

(m1)
n
2

]
dv dv1 d�, (44)

and we obtain (42) owing to the fact that the logarithm is an increasing function. �

We now make the following assumption about the growth of γm with m:

Hypothesis 2 (Behaviour of γm as m → ∞)
Let S be the set

S =
{
β ∈ R

∣∣∣
∑

m≥1

meβm

γm
< ∞
}
. (45)

We assume that S �= ∅.
Remark 3 As a consequence of Hypothesis 2, there exists β0 ∈ R ∪ {+∞} such that S is of
the form S = (−∞, β0) or S = (−∞, β0].
Proposition 3 (Equilibria)
(i) Let f having finite mass, momentum and energy, i.e. such that

∑

m≥1

∫

Rn
fm(v)m(1 + |v|2) dv < ∞. (46)

Under Hypotheses 1 and 2, we have Q( f ) = 0 if and only if ∃(ρ, β, u,�) ∈ [0,∞) × S ×
R
n × [0,∞) such that

f = ρMu,�,β (47)

with

(Mu,�,β)m(v) = 1

Z(β,�)

m
n
2 eβm

γm
exp
(

− m|v − u|2
2�

)
, ∀m ≥ 1, ∀v ∈ R

n, (48)

where

Z(β,�) = (2π�)
n
2
∑

m≥1

meβm

γm
. (49)

(ii) We have

∑

m≥1

∫

Rn
ρ
(
Mu,�,β

)
m(v)

⎛

⎜⎜
⎝

1
m
mv

m|v − u|2

⎞

⎟⎟
⎠ dv =

⎛

⎜⎜
⎝

ρ〈m−1〉β
ρ

ρu
nρ�〈m−1〉β

⎞

⎟⎟
⎠ , (50)
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where for a sequence am of real numbers, we denote by 〈am〉β the average

〈am〉β =

∞∑

m=1

meβm

γm
am

∞∑

m=1

meβm

γm

.

We note that 〈am〉β does not depend on m and that it is a function of β.

Proof Suppose Q( f ) = 0. Then,

∞∑

m=1

∫

Rn
Qm( f ) log

(γm fm

m
n
2

)
dv = 0. (51)

We compute the left-hand side of (51) thanks to (44). Because the function inside the sum
over m and the integral over v in (44) is nonnegative, (51) implies that the function ϕm given
by (43) satisfies (30). Hence, by Lemma 3, there exist A, B, C ∈ R and D ∈ R

n such that

log
(γm fm

m
n
2

)
= A + Bm + Cm|v|2 + mD · v, ∀m ≥ 1, ∀v ∈ R

n . (52)

Integrability of fm with respect to v ∈ R
n requires C < 0. We deduce that

fm(v) = α
m

n
2 eβm

γm
exp
(

− m|v − u|2
2�

)
,

with

α = eA > 0, β = B − |D|2
4C

, � = − 1

2C
> 0, u = − D

2C
. (53)

Then, using (A 1) from Appendix 1 with p = 0, 1, we have

∑

m≥1

∫

Rn
fm(v)m(1 + |v − u|2) dv = α

(
2π�
) n
2
∑

m≥1

eβm

γm
(m + n�).

Thus, we have

∑

m≥1

∫

Rn
fm(v)m(1 + |v − u|2) dv < ∞ ⇐⇒ β ∈ S. (54)

The statement at the left-hand side of the equivalence symbol in (54) is clearly equivalent to
the statement (46). Now, using (A 1) with p = 0 again together with (49), we get

ρ =:
∑

m≥1

m
∫

Rn
fm(v) dv = α Z(β,�), (55)

which leads to the expression (48) of fm as well as to the second line of the vector equa-
tion (50). By antisymmetry, we immediately get

∑

m≥1

∫

Rn
fm(v)m(v − u) dv = 0,
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which directly leads to the third line of (50). Again, using (A 1) with p = 1, we get

∑

m≥1

∫

Rn
fm(v)m|v − u|2 dv = n�

ρ

Z(β,�)

(
2π�
) n
2
∑

m≥1

eβm

γm
= nρ�〈m−1〉β .

Finally, the first line of (50) is obtained in the same way, using (A 1) with p = 0. �


3 Hydrodynamics of Mass Exchange Processes

3.1 The Euler System for Mass Exchange Processes

The Boltzmann equation for mass exchange processes (or BME equation) is written

∂t f
ε
m + v · ∇x f

ε
m = 1

ε
Qm( f ε), ∀m ≥ 1, ∀v ∈ R

n, (56)

where f ε = ( f ε
m)m≥1 and where Qm is defined as in Sect. 2.2. Throughout this section, we

assume that Hypotheses 1 and 2 are fulfilled. Furthermore, we suppose that f ε|t=0 = f ε
I is

independent of ε. The goal of this section is to study the hydrodynamic limit ε → 0. We
have the following

Theorem 1 (EME system in conservative form) Suppose f ε exists on a time-interval [0, T ]
independent of ε and depends smoothly on ε. Then, as ε → 0, f ε → f = ρMu,�,β where
(ρ, u,�, β): Rn × [0, T ] → [0,∞) × R

n × [0,∞) × S satisfies the following system of
PDE:

∂t

⎛

⎜⎜
⎝

ρ〈m−1〉β
ρ

ρu
ρ|u|2 + nρ�〈m−1〉β

⎞

⎟⎟
⎠+ ∇x ·

⎛

⎜⎜
⎝

ρu〈m−1〉β
ρu

ρu ⊗ u + ρ�〈m−1〉β In
ρ|u|2u + (n + 2)ρ�〈m−1〉βu

⎞

⎟⎟
⎠ = 0, (57)

where In stands for the n × n identity matrix. This system will be referred to as the Euler
system for mass exchange processes (EME).

Proof From (56), we have Q( f ε) = O(ε). So, in the limit ε → 0, we have Q( f ) = 0,
hence, f = ρMu,�,β , where (ρ, u,�, β) may depend on (x, t). Then, owing to Prop. 1, we
have

∂t

(∑

m≥1

∫

Rn
f ε
m

⎛

⎜⎜
⎝

1
m
mv

m|v|2

⎞

⎟⎟
⎠ dv

)
+ ∇x ·

(∑

m≥1

∫

Rn
f ε
m

⎛

⎜⎜
⎝

1
m

mv⊗
m|v|2

⎞

⎟⎟
⎠ v dv

)
= 0,

and, taking the limit ε → 0, we get

∂t

(∑

m≥1

∫

Rn
ρ(Mu,�,β)m

⎛

⎜⎜
⎝

1
m
mv

m|v|2

⎞

⎟⎟
⎠ dv

)

+∇x ·
(∑

m≥1

∫

Rn
ρ(Mu,�,β)m

⎛

⎜⎜
⎝

1
m

mv⊗
m|v|2

⎞

⎟⎟
⎠ v dv

)
= 0.
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Thanks to (50), the first term gives the first term of (57). For the second term, we have the
following:

First line. Since (Mu,�,β)m is even with respect to v − u, we have by antisymmetry with
respect to v − u: ∫

Rn
(Mu,�,β)m(v) v dv = u

∫

Rn
(Mu,�,β)m(v) dv,

and ∑

m≥1

∫

Rn
ρ(Mu,�,β)m(v) dv = ρ〈m−1〉β,

by (48), (49) and (A 1) with p = 0.

Second line. The second line of the second term is identical with the third line of the first
term, so, its value is ρu.

Third line.We have

v ⊗ v = (v − u) ⊗ (v − u) + u ⊗ u + odd terms in (v − u).

By antisymmetry, upon multiplication by (Mu,�,β)m(v) and integration with respect to v,
only the even terms with respect to v − u in the expression of v ⊗ v are non-zero. With (48),
(49) and (A 2) used with p = 0, we have

∑

m≥1

∫

Rn
ρ(Mu,�,β)m(v)m(v − u) ⊗ (v − u) dv = ρ�〈m−1〉β In,

while ∑

m≥1

∫

Rn
ρ(Mu,�,β)m(v)mdv = ρ,

by the second line of (50). So, the third line is ρ(u ⊗ u) + ρ�〈m−1〉β In .
Fourth line.We write

|v|2v = |v − u|2u + 2
(
(v − u) ⊗ (v − u)

)
u + |u|2u + odd terms in (v − u),

and use again antisymmetry with respect to v − u to eliminate the contribution of the odd
terms. By the second and fourth lines of (50), we have

∑

m≥1

∫

Rn
ρ(Mu,�,β)m(v)m|u|2udv = ρ|u|2u,

and ∑

m≥1

∫

Rn
ρ(Mu,�,β)m(v)m|v − u|2udv = nρ�〈m−1〉u,

respectively. Finally, using (A 2) with p = 0, we get

2
∑

m≥1

∫

Rn
ρ(Mu,�,β)m(v)m

(
(v − u) ⊗ (v − u)

)
udv = 2ρ�〈m−1〉u.

So, the fourth line equals ρ|u|2u + (n + 2)ρ�〈m−1〉u, which ends the proof. �
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Now, introducing �̃ = �〈m−1〉β , we can re-write the second to fourth lines of (57) into

∂t

⎛

⎝
ρ

ρu
ρ|u|2 + nρ�̃

⎞

⎠+ ∇x ·
⎛

⎝
ρu

ρu ⊗ u + ρ�̃In
ρ|u|2u + (n + 2)ρ�̃u

⎞

⎠ = 0, (58)

which is nothing but the standard gas dynamics equations for a perfect gas. Furthermore,
combining the first and second line of (57), the equation for β reads

∂t 〈m−1〉β + u · ∇x 〈m−1〉β = 0.

In fact, since the function β 
→ 〈m−1〉β is smooth, this equation can be turned into a direct
equation for β:

∂tβ + u · ∇xβ = 0. (59)

Hence, the equations for the hydrodynamic quantities (ρ, u, �̃) are decoupled from the
equation for the mass statistics β: once u is known from the resolution of (58), β is obtained
by solving (59). Of course, (59) is ill-behaved at shocks and in such case, the use of the
conservative equation resulting from the first line of (57) is preferable. The mass statis-
tics though is crucial at initialization since it is needed to construct the initial value of the
pseudo-temperature �̃. Also, note that formulation (58), (59) tells us that the EME system
is hyperbolic. The additional equation (59) only increases the multiplicity of the eigenvalue
u by 1.

After some classical manipulations, we have the following

Proposition 4 (EME system in nonconservative form)For smooth solutions, the EME system
(57) is equivalent to the following system

∂tβ + (u · ∇x )β = 0, (60)

∂tρ + (u · ∇x )ρ + ρ(∇x · u) = 0, (61)

∂t u + (u · ∇x )u + 1

ρ
∇x
(
ρ�〈m−1〉β

) = 0, (62)

∂t� + (u · ∇x )� + 2

n
�(∇x · u) = 0, (63)

whichwill be later referred to as the EME system in non-conservative form (while the original
one (57) is the EME system in conservative form).

3.2 The Navier–Stokes Mass-ExchangeModel

We now seek to compute the order ε corrections to the EMEmodel (57) using the Chapman-
Enskog procedure. This procedure leads to diffusive terms. Compared with the classical
Navier–Stokes equation, we expect additional diffusive corrections proportional to the gradi-
ents of the quantityβ involved in the equilibrium distributionMu,�,β . Since the computations
can be quite tedious, we replace the BME operator by a BGK-type relaxation operator
(below referred to as the BGKME operator) which has the same equilibria. So, for a given
f = ( fm(v))m≥1, the quadruple (ρ f , u f , β f ,� f ) is uniquely defined by the identity

⎛

⎜⎜
⎝

ρ f 〈m−1〉β f

ρ f

ρ f u f

nρ f � f 〈m−1〉β f

⎞

⎟⎟
⎠ =
∑

m≥1

∫

Rn
fm(v)

⎛

⎜⎜
⎝

1
m
mv

m|v − u f |2

⎞

⎟⎟
⎠ dv, (64)
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and we consider the following BGKME equation:

∂t f
ε
m + v · ∇x f

ε
m = 1

ε

(
ρ f ε

(
Mu f ε ,� f ε ,β f ε

)
m − f ε

m

)
, ∀m ≥ 1. (65)

More complex BGK models for gas mixtures have been considered in the literature (see e.g.
[34] and references therein), such as sums of binary BGK operators with mean velocities
and temperatures depending on the pair of involved species. Here, our choice is essentially
dictated by simplicity and explicit computability because our focus will be more on the
structure of the resulting Navier–Stokes system rather than in greater model generality. Of
course, in view of practical applications, it would be interesting to generalize this work to
more complex and hopefullymore realisticmodels. Thiswill be the subject of future research.

We introduce theNavier–Stokesmass-exchangemodel (NSME), of unknowns (ρ, u,�, β):
R
n × [0, T ] → [0,∞) × R

n × [0,∞) × S, as follows:
∂t
(
ρ〈m−1〉β

)+ ∇x · (ρ〈m−1〉β u
) = ε ∇x · (ν ∇xχ), (66)

∂tρ + ∇x · (ρu) = 0, (67)

∂t (ρu) + ∇x · (ρu ⊗ u) + ∇x
(
ρ�〈m−1〉β

) = ε ∇x · (μ σ(u)), (68)

∂t
(
ρ|u|2 + nρ�〈m−1〉β

)+ ∇x · (ρ|u|2u + (n + 2)ρ�〈m−1〉β u
)

= ε ∇x · ((n + 2) ν �∇xχ + 2κ ∇x� + 2μσ(u) u
)
, (69)

where

μ = ρ�〈m−1〉β, (70)

κ = n + 2

2
ρ� 〈m−2〉β, (71)

ν = ρ�
(〈m−2〉β − 〈m−1〉2β

)
, (72)

and where

σ(u) = ∇xu + (∇xu)T − 2

n
(∇x · u) In, (73)

is the traceless rate-of-strain tensor (the exponent “T ” standing for the matrix transpose
operation) and

χ = log

⎛

⎝ ρ�
∑∞

m=1
meβm

γm

⎞

⎠ = log

(

(2π)
n
2

ρ�
n+2
2

Z(β,�)

)

, (74)

is akin to a “population potential”. The coefficients μ, κ and ν are the viscosity, heat conduc-
tivity and population diffusivity respectively. The dependence of (ρ, u,�, β) on ε is omitted
for simplicity. We first note the following

Lemma 4 (Positivity of ν, κ , μ) We have

ν > 0, κ > 0, μ > 0. (75)

Proof The positivity of κ and μ are obvious. We can express ν as

ν = ρ�

(∑

m≥1

eβm

γm

1

m

)(∑

m≥1

eβm

γm
m

)
−
(∑

m≥1

eβm

γm

)2

(∑

m≥1

eβm

γm

)2 =: ρ�
N

D
,
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with D > 0 and

N =
∑

m,p≥1

eβm

γm

eβ p

γp

p − m

m
= 1

2

∑

m,p≥1

eβm

γm

eβ p

γp

( p − m

m
+ m − p

p

)

= 1

2

∑

m,p≥1

eβm

γm

eβ p

γp

(p − m)2

mp
> 0,

which shows that ν > 0. �

Next, we have the following theorem:

Theorem 2 (NSME is a higher order approximation to BGKME).
Let f ε bea solution to (65)anddefine (ρ f ε , u f ε , � f ε , β f ε ) via (64). Then, (ρ f ε , u f ε , � f ε , β f ε )

satisfies the NSME system (66)–(69) up to terms of order O(ε2).

Proof We will denote (ρ f ε , u f ε , � f ε , β f ε ) simply by (ρ, u,�, β) and we show that
(ρ, u,�, β) satisfies system (66)–(69) up to terms of order O(ε2). We introduce gε =
(gε

m)m≥1 such that

gε
m = 1

ε

(
f ε
m − ρ(Mu,�,β)m

)
, ∀m ≥ 1. (76)

We also introduce the short-hand notation

D ≡ ∂t + v · ∇x .

By (65) and iterating with (76), we have

gε
m = −Df ε

m = −D
(
ρ(Mu,�,β)m

)+ O(ε),

and so

Df ε
m = D

(
ρ(Mu,�,β)m + εgε

m

)

= D
(
ρ(Mu,�,β)m − εD

(
ρ(Mu,�,β)m

))+ O(ε2).

Hence, thanks to (64), we get

0 =
∑

m≥1

∫

Rn
D f ε

m

⎛

⎜⎜
⎝

1
m
mv

m|v|2

⎞

⎟⎟
⎠ dv

=
∑

m≥1

∫

Rn
D
(
ρ(Mu,�,β)m − εD

(
ρ(Mu,�,β)m

))
⎛

⎜⎜
⎝

1
m
mv

m|v|2

⎞

⎟⎟
⎠ dv + O(ε2). (77)

The next step is to compute D(ρ(Mu,�,β)m) in terms of spatial derivatives of (ρ, u,�, β)

only, up to terms of order O(ε). First, we notice that

D
(
ρ(Mu,�,β)m

) = ρ(Mu,�,β)m

{
D(log ρ) + D(log(Mu,�,β)m)

}
.

From (49), we have

∂� log Z(β,�) = n

2�
, ∂β log Z(β,�) = 〈m〉β . (78)
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Then, with (48), we find

D
(
ρ(Mu,�,β)m

) = ρ(Mu,�,β)m

{
D(log ρ) + (m − 〈m〉β) Dβ

+
(m|v − u|2

�
− n
) D�

2�
+ m

v − u

�
· Du
}
. (79)

Now, we note that (ρ, u,�, β) satisfies the EME system in non-conservative form (60)–
(63) with O(ε) terms at the right-hand side. We use this to replace the time derivatives in
D(ρ, u,�, β) by spatial derivatives. We get

D log ρ = −∇x · u + (v − u) · ∇xρ

ρ
+ O(ε),

Dβ = (v − u) · ∇xβ + O(ε),

D� = (v − u) · ∇x� − 2

n
�(∇x · u) + O(ε),

Du = ((v − u) · ∇x
)
u − 1

ρ
∇x
(
ρ�〈m−1〉β

) = O(ε).

Inserting these relations into (79) and using that

∂〈m−1〉β
∂β

= 1 − 〈m−1〉β 〈m〉β, (80)

and

∇x (ρ�〈m−1〉β)

ρ
= �〈m−1〉β ∇xρ

ρ
+ 〈m−1〉β∇x� + �

(
1 − 〈m−1〉β 〈m〉β

)∇xβ,

we get

D
(
ρ(Mu,�,β)m

) = Em + O(ε), (81)

with

Em = ρ(Mu,�,β)m

{ 1

�
Tm : ∇xu

+Vm ·
[ ∇xρ

ρ
− 〈m〉β ∇xβ

]
+ Wm · ∇x�

2�

}
, (82)

and

Tm = m
(
(v − u) ⊗ (v − u) − |v − u|2

n
In
)
, (83)

Vm = ( 1 − m〈m−1〉β
)

(v − u), (84)

Wm =
(
m

|v − u|2
�

− n − 2m 〈m−1〉β
)

(v − u). (85)

We note that Tm and ∇xu are rank-2 tensor while Vm and Wm are vectors. The symbol ’:’
denotes the contraction of two rank two tensors. We denote by T = (Tm)m≥1 and similarly
for V andW. Let ϕ denote any component of T, V orW. We can check that ϕ satisfies

∑

m≥1

∫

Rn
(Mu,�,β)m ϕm

⎛

⎜⎜
⎝

1
m
mv

m|v|2

⎞

⎟⎟
⎠ dv = 0, (86)
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or equivalently that

∑

m≥1

∫

Rn
(Mu,�,β)m ϕm

⎛

⎜
⎜
⎝

1
m

m(v − u)

m|v − u|2

⎞

⎟
⎟
⎠ dv = 0. (87)

Indeed, this is a simple computation using (A 1) and (A 2) from Appendix 1.
Then, we insert (81) into (77) and get

∑

m≥1

∫

Rn

(
D
(
ρ(Mu,�,β)m

)− εDEm
)

⎛

⎜
⎜
⎝

1
m
mv

m|v|2

⎞

⎟
⎟
⎠ dv = O(ε2). (88)

We now compute the integrals. The first term D(ρ(Mu,�,β)m) gives rise to the left-hand side
of Eqs. (66)–(69). Indeed, the computations are the same as those made to show Theorem 1
and are not repeated. Thus, we focus on DEm = ∂tEm + v · ∇xEm . We have

∑

m≥1

∫

Rn
∂tEm

⎛

⎜⎜
⎝

1
m
mv

m|v|2

⎞

⎟⎟
⎠ dv = ∂t

(∑

m≥1

∫

Rn
Em

⎛

⎜⎜
⎝

1
m
mv

m|v|2

⎞

⎟⎟
⎠ dv

)
= 0,

thanks to (86) and

∑

m≥1

∫

Rn
v · ∇xEm

⎛

⎜⎜
⎝

1
m
mv

m|v|2

⎞

⎟⎟
⎠ dv = ∇x ·

(∑

m≥1

∫

Rn
Em

⎛

⎜⎜
⎝

v

mv

mv ⊗ v

m|v|2v

⎞

⎟⎟
⎠ dv

)
,

so that we are left to compute the moments of E = (Em)m≥1 appearing at the right hand side.
We successively compute the different lines.

First line.We write
∑

m≥1

∫

Rn
Em v dv =

∑

m≥1

∫

Rn
Em (v − u) dv + u

∑

m≥1

∫

Rn
Em dv

=
∑

m≥1

∫

Rn
Em (v − u) dv,

by the first line of (86). Since Tm is even with respect to (v − u), its contribution is 0 by
antisymmetry. By (48), (49) and (A 2) for p = 0, we have

∑

m≥1

∫

Rn
ρ(Mu,�,β)m (v − u) ⊗ Vm dv

= ρ

Z(β,�)
(2π�)

n
2 �
∑

m≥1

eβm

γm

(
m−1 − 〈m−1〉β

)
In = ρ�

(〈m−2〉β − (〈m−1〉β)2
)
In .

Similarly, with (A 2) for p = 0 and p = 1, we get

∑

m≥1

∫

Rn
ρ(Mu,�,β)m (v − u) ⊗ Wm dv = 2ρ�

(〈m−2〉β − (〈m−1〉β)2
)
In .
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Collecting all these terms and using (72), we get
∑

m≥1

∫

Rn
Em v dv = ν

[∇xρ

ρ
− 〈m〉β∇xβ + ∇x�

�

]
= ν
[∇x log(ρ�) − 〈m〉β∇xβ

]
.

Now, we note that

〈m〉β∇xβ =
∑∞

m=1
m2eβm

γm
∑∞

m=1
meβm

γm

∇xβ = ∇x log

( ∞∑

m=1

meβm

γm

)

.

Hence, using (74), we get:

∑

m≥1

∫

Rn
Em v dv = ν ∇x log

⎛

⎝ ρ�
∑∞

m=1
meβm

γm

⎞

⎠ = ν ∇xχ,

which yields the right-hand side of (66).

Second line. The second line is just 0 by the third line of (86), which leads to the right-hand
side of (67) being 0.

Third line.We note that
∑

m≥1

∫

Rn
Em mv ⊗ v dv =

∑

m≥1

∫

Rn
Em m(v − u) ⊗ (v − u) dv

+
∑

m≥1

∫

Rn
Em
(− mu ⊗ u + mv ⊗ u + mu ⊗ v

)
dv

=
∑

m≥1

∫

Rn
Em m(v − u) ⊗ (v − u) dv,

by the second and third lines of (86). Since Vm andWm are odd with respect to v − u, their
contribution is 0 by antisymmetry. Now, we use (A 3) and (A 2) with p = 1 from Appendix
1 as well as (49) and get:
∑

m≥1

∫

Rn
ρ(Mu,�,β)m Tm : (∇xu)m (v − u) ⊗ (v − u) dv

= ρ

Z(β,�)
(2π�)

n
2 �
∑

m≥1

eβm

γm

(
∇xu + (∇xu)T + (∇x · u)In − n + 2

n
(∇x · u)In

)

= ρ�〈m−1〉β σ (u) = μσ(u),

where we have used (70) and (73). This leads to the right-hand side of (68).

Fourth line. Using that

v|v|2 = (v − u)|v − u|2 + 2
(
(v − u) ⊗ (v − u)

)
u + |v − u|2u + v|u|2 + 2(u · v)u − 2|u|2u,

and the conservation identities (86), (87), we get
∑

m≥1

∫

Rn
Em m v |v|2 dv =

∑

m≥1

∫

Rn
Em m (v − u) |v − u|2 dv

+2

(∑

m≥1

∫

Rn
Em m(v − u) ⊗ (v − u) dv

)
u.
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The second term has already been computed when dealing with the third line and gives:

2

(∑

m≥1

∫

Rn
Em m(v − u) ⊗ (v − u) dv

)
u = 2μσ(u) u.

Then, we focus on the first term and notice that the contribution of Tm is 0 by antisymmetry.
We have, using (A 2) with p = 1 and (49):

∑

m≥1

∫

Rn
ρ(Mu,�,β)m m Vm ⊗ (v − u) |v − u|2 dv

= ρ

Z(β,�)
(2π�)

n
2 �2(n + 2)

∑

m≥1

eβm

γm

(
m−1 − 〈m−1〉β

)
In

= (n + 2)ρ�2
(
〈m−2〉β − (〈m−1〉β)2

)
In .

Similarly, thanks to (A 2) with p = 1 and p = 2 and (49):

∑

m≥1

∫

Rn
ρ(Mu,�,β)m mWm ⊗ (v − u) |v − u|2 dv = ρ

Z(β,�)
(2π�)

n
2 �2

∑

m≥1

eβm

γm

1

m

(
(n + 2)(n + 4) − n(n + 2) − 2(n + 2)m〈m−1〉β

)
In

= 2(n + 2)ρ�2
(
2〈m−2〉β − (〈m−1〉β)2

)
In .

Collecting all these terms and using the same algebra as for the first line, as well as (71) leads
to

∑

m≥1

∫

Rn
ρ(Mu,�,β)m mWm ⊗ (v − u) |v − u|2 dv

= (n + 2)ρ�2
(
〈m−2〉β − (〈m−1〉β)2

) [∇xρ

ρ
− 〈m〉β∇xβ + ∇x�

�

]

+(n + 2)ρ� 〈m−2〉β ∇x�

= (n + 2)�ν ∇xχ + 2κ ∇x�,

which yields the right-hand side of (69) and ends the proof. �


4 Entropy and Thermodynamics

4.1 Kinetic Entropy

Proposition 5 (Kinetic entropy).
Let f = ( fm)m≥1 be a solution of the BME equation (56) or the BGKME equation (65).
Define the kinetic entropy by

S( f ) =
∑

m≥1

∫

Rn
fm
[
log
(γm fm

m
n
2

)
− 1
]
dv, (89)
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and the kinetic entropy flux by

φ( f ) =
∑

m≥1

∫

Rn
fm
[
log
(γm fm

m
n
2

)
− 1
]
v dv. (90)

Then, we have
∂S

∂t
+ ∇x · φ ≤ 0.

Proof (i) for solutions of (56): we multiply (56) by log( γm fm

m
n
2

) and use (42) as well as the

fact that d
d f ( f (log(c f ) − 1)) = log(c f ), for any constant c > 0.

(ii) for solutions of (65): we proceed in the same way but must prove an analog of (42) for
the BGKME operator. This is classical. We remark that

log
(γmρ(Mu,�,β)m

m
n
2

)
= log ρ − log Z + βm − m|v − u|2

2�
, (91)

is a linear combination of 1, m, mv and m|v|2, so that by the definition (64) of
(ρ f , u f ,� f , β f ), we have

∑

m≥1

∫

Rn
Q( f )m log

(γmρ(Mu,�,β)m

m
n
2

)
dv = 0.

Therefore,
∑

m≥1

∫

Rn
Q( f )m log

(γm fm

m
n
2

)
dv

= −
∑

m≥1

∫

Rn

(
fm − ρ f (Mu,�,β)m

) [
log
(γm fm

m
n
2

)
− log
(γmρ(Mu,�,β)m

m
n
2

)]
dv

= −
∑

m≥1

∫

Rn

(
fm − ρ f (Mu,�,β)m

) [
log fm − log

(
ρ(Mu,�,β)m

)]
dv ≤ 0,

by the fact that log is an increasing function. �

Proposition 6 (Entropy and entropy flux at local equilibrium)
We have

S(ρMu,�,β) = ρ
(
〈m−1〉β

(
log ρ − log Z − 1 − n

2

)+ β
)
, (92)

φ(ρMu,�,β) = S(ρMu,�,β) u. (93)

Proof With (91), we get

S(ρMu,�,β) = ρ

Z

∑

m≥1

∫

Rn

m
n
2 eβm

γm

([
log ρ − log Z − 1

]+ βm − m|v − u|2
2�

)
e−m|v−u|2

2� dv.

Thanks to (A 1) and (49), this formula leads to (92). Then, we have

φ(ρMu,�,β) =
∑

m≥1

∫

Rn
(ρMu,�,β)m

[
log
(γm(ρMu,�,β)m

m
n
2

)
− 1
]
v dv (94)

=
(∑

m≥1

∫

Rn
(ρMu,�,β)m

[
log
(γm(ρMu,�,β)m

m
n
2

)
− 1
]
dv
)
u,

by antisymmetry, which leads to (93). �
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4.2 Thermodynamic Entropy

The goal of this section is to introduce the thermodynamic entropy, to prove that it is equal
to the kinetic entropy S and that it is a convex function of the fluid moments (or conservative
variables). We use the framework developed in [35]. We introduce the following notations.
Let

A =

⎛

⎜
⎜
⎝

D
A
B
C

⎞

⎟
⎟
⎠ , (95)

be the vector of parameters of the Maxwellian as written in (52), with A, B, C in R and D
in R

n . Note that we list the components of A in the order depicted in (95). We will denote
the components of A by greek exponents, namely A = (Aα)α=1,...,n+3, while we will keep
latin indices i = 1, . . . , n for spatial coordinates. Specifically,

Aα = Dα, ∀α = 1, . . . , n, An+1 = A, An+2 = B, An+3 = C .

A is called the vector of entropic (or intensive) variables.
Likewise, we introduce µ = (µm)m≥1, where, for each m, µm is the vector of velocity

moments involved in the definition of the equilibrium moments (50), namely

µm =

⎛

⎜⎜
⎝

mv

1
m

m|v|2

⎞

⎟⎟
⎠ , or equivalently µ =

⎛

⎜⎜
⎝

mv
1
m

m|v|2

⎞

⎟⎟
⎠ .

Note that we adopt the same ordering as for the entropic variable A. Thus, we have

µα = mvα, ∀α = 1, . . . , n, µn+1 = 1, µn+2 = m, µn+3 = m|v|2.
Finally, denote by M the vector of equilibrium moments given by (50), i.e.

M =

⎛

⎜⎜
⎝

P
N
ρ

E

⎞

⎟⎟
⎠ =:

⎛

⎜⎜
⎝

ρu
ρ〈m−1〉β

ρ

ρ(|u|2 + n�〈m−1〉β)

⎞

⎟⎟
⎠ . (96)

M is called the vector of conservative (or extensive) variables. Its components are themomen-
tum P , the number of particles (or population) N the mass ρ and the total energy E . Here
again, we have changed the ordering of the components (50) to fit the ordering ofA. Hence,

Mα = ρuα, ∀α = 1, . . . , n,

Mn+1 = ρ〈m−1〉β, Mn+2 = ρ, Mn+3 = ρ(|u|2 + n�〈m−1〉β).

There is a one-to-one onto correspondence between A and M. We can pass from A to M
using (53), (55) and these relations can be easily inverted. Below, we make the structure of
this map more precise.

In the thermodynamic framework, the entropy is the Legendre transform of the Massieu–
Planck Potential [36] which we will denote by �. It is defined as a function of the entropic
variable A as follows:

�(A) =
∑

m≥1

∫

Rn

m
n
2

γm
eµm (v)•A dv,
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where the symbol • is the Euclidean inner product in R
n+3, which we distinguish from the

inner product in Rn denoted by the standard symbol “·”. Given that

µm(v) • A = mv · D + A + mB + m|v|2C,

and owing to the relation (52), we have

m
n
2

γm
eµm (v)•A = ρ(Mu,�,β)m, (97)

with (ρ, u,�, β) related to A through (53), (55), so that

�(A) = ρ〈m−1〉β . (98)

But we stress that ρ〈m−1〉β can only be identified with the Massieu–Planck potential if
considered as a function of A.

Next, we note that

∇A�(A) =
∑

m≥1

∫

Rn

m
n
2

γm
eµm (v)•A µm(v) dv =

∑

m≥1

∫

Rn
ρ(Mu,�,β)m µm(v) dv = M,

by (50). Introducing a vector-valued potential � by

�(A) =
∑

m≥1

∫

Rn

m
n
2

γm
eµm (v)•A v dv, (99)

we likewise see that ∇A�i (A) is the flux in the direction xi of the Euler system (57), so that
the latter can be written as a system for the intensive variables A(x, t) as

∂t

(
∇A�
(A(x, t)

))+
n∑

i=1

∂xi

(
∇A�i

(A(x, t)
)) = 0, (100)

or equivalently (for smooth solutions), as

∇2
A�
(A(x, t)

)
∂tA(x, t) +

n∑

i=1

∇2
A�i
(A(x, t)

)
∂xiA(x, t) = 0. (101)

We have

∇2
A�(A) =

∑

m≥1

∫

Rn

m
n
2

γm
eµm (v)•A µm(v)⊗µm(v) dv, (102)

where the symbol ⊗ stands for the tensor product in R
n+3 (while “⊗” stands for the tensor

product in R
n). This shows that ∇2

A�(A) is a symmetric matrix. A similar observation can
be made for ∇2

A�i (A) for all i = 1, . . . , n. We immediately see that ∇2
A�(A) is a positive

matrix, as for any vector � ∈ R
n+3, we have

�T∇2
A�(A)� =

∑

m≥1

∫

Rn

m
n
2

γm
eµm (v)•A (µm(v) · �)2 dv ≥ 0.

Below, we show that ∇2
A�(A) is positive-definite which makes System (101) a symmetriz-

able hyperbolic system of equations for A.
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Proposition 7 (Strict convexity of the Massieu–Planck potential)
(i) Let ρ and � be positive. Then, ∇2

A�(A) is a positive-definite symmetric matrix.
(ii) � is a strictly convex function of A in the domain of A ⊂ R

n+3 defined by

A =
{
(D, A, B,C) ∈ R

n × R × R × R

∣
∣
∣ C < 0, B − |D|2

4C
∈ S
}
, (103)

where S is the set given by (45).

Proof (i) We write explicitly:

µm(v)⊗µm(v) =

⎛

⎜
⎜
⎝

m2v ⊗ v mv m2v m2|v|2v
mvT 1 m m|v|2
m2vT m m2 m2|v|2

m2|v|2vT m|v|2 m2|v|2 m2|v|4

⎞

⎟
⎟
⎠

where the first column stands for n columns, the first line for n lines, and the upper left block
element for an n × n block. Inserting this into (102) and using (97), we realize that most of
the entries of the resulting matrix are easily computed from previous calculations. The only
one that deserves some further inspection is the lower right term because it is a fourth order
velocity moment which has not been encountered before. We have

|v|4 = (|v − u|2 + |u|2 + 2(v − u).u
)2

= |v − u|4 + |u|4 + 2|v − u|2|u|2 + 4
(
(v − u) · u)2 + even terms in (v − u).

Now, the corresponding integral can be computed by means of (A 1), (A 2). We finally get

ρ−1∇2
A�(A)

=

⎛

⎜⎜
⎝

〈m〉u ⊗ u + �In u 〈m〉u (
(n + 2)� + 〈m〉|u|2)u

∗ 〈m−1〉 1 |u|2 + n〈m−1〉�
∗ ∗ 〈m〉 |u|2〈m〉 + n�

∗ ∗ ∗ (n + 2)�(n�〈m−1〉 + 2|u|2) + 〈m〉|u|4

⎞

⎟⎟
⎠ ,

where we have omitted the subscript β to the averages 〈mk〉 and we have displayed only the
upper triangular part of the matrix, owing to its symmetry. Now, let � = (ζ, ϕ, ξ, η) with
ζ ∈ R

n and ϕ, ξ , η in R.

Assume u �= 0. We define

ζ‖ = u · ζ

|u| , ζ⊥ = ζ − ζ‖
u

|u| .

We remark that ρ−1�T∇2
A�(A)� is a quadratic form in the variables (|ζ⊥|, ζ‖, ϕ, ξ, η, )

whose matrix S is given by

S =

⎛

⎜⎜⎜⎜
⎝

� 0 0 0 0
∗ 〈m〉|u|2 + � |u| 〈m〉|u| (

(n + 2)� + 〈m〉|u|2)|u|
∗ ∗ 〈m−1〉 1 |u|2 + n〈m−1〉�
∗ ∗ ∗ 〈m〉 |u|2〈m〉 + n�

∗ ∗ ∗ ∗ (n + 2)�(n�〈m−1〉 + 2|u|2) + 〈m〉|u|4

⎞

⎟⎟⎟⎟
⎠

.

Provided that ρ > 0, showing that ∇2
A�(A) is positive-definite is equivalent to showing

that S is positive-definite. To show this, we apply Sylvester’s criterion which says that S is
positive-definite if and only if all its leading principal minors are positive. If S = (Si j )

5
i, j=1,
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its leading principal minors are Dk = det Sk for k = 1, . . . , 5 where Sk = (Si j )
k
i, j=1. We

compute successively

D1 = �,

D2 = �(〈m〉|u|2 + �), (104)

D3 = �
[
(〈m−1〉〈m〉 − 1)|u|2 + �〈m−1〉], (105)

D4 = �2 (〈m−1〉〈m〉 − 1), (106)

D5 = 2n�4 〈m−1 〉(〈m−1〉〈m〉 − 1). (107)

We have 〈m−1〉〈m〉 − 1 > 0 by a similar proof to that of Lemma 4. If follows that all
determinants D1, . . . , D5 are positive.

Assume now that u = 0. Then, ρ−1�T∇2
A�(A)� is a quadratic form in the variables

(|ζ |, ϕ, ξ, η) whose matrix S̃ is given by

S̃ =

⎛

⎜
⎜
⎝

� 0 0 0
∗ 〈m−1〉 1 n〈m−1〉�
∗ ∗ 〈m〉 n�

∗ ∗ ∗ n(n + 2)�2〈m−1〉

⎞

⎟
⎟
⎠ ,

We immediately see that its four principal minors D′
i , i = 1, . . . , 4 are such that D′

i =
Di+1/�, where we have made |u| = 0 in the formulas (104) to (107) for the Di+1. It follows
that the D′

i are all positive for i = 1, . . . , 4.

In all cases, this shows that ∇2
A�(A) is a positive-definite symmetric matrix.

(ii) By (i), � is a strictly convex function of A, for A being such that ρ > 0 and � > 0. By
the proof of Prop 3, it is immediate that this domain is the set A given by (103). This ends
the proof of Proposition 7. �


Since � is strictly convex on A the map ∇A�: A → R
n+3, A 
→ M = ∇A�(A) is a

local diffeomorphism. It is also straightforward to see that ∇A� is a one-to-one onto map
A → M, where

M =
{
(P,N , ρ, E) ∈ R

n × R × R × R

∣∣∣ N > 0, ρ > 0, E − |P|2
ρ

> 0

}
. (108)

Thus, ∇A�: A → M is a global diffeomorphism and we denote by (∇A�)−1 its inverse.
Since � is strictly convex, we can define its Legendre transform

S(M) = A • M − �(A) with A such that ∇A�(A) = M, (109)

which is called the thermodynamic entropy. Equivalently, we can write

S(M) = ((∇A�)−1(M)
) • M − �

(
(∇A�)−1(M)

)
.

It is a classical fact, easy to check, that

∇MS(M) = (∇A�)−1(M) = (∇A�)−1(∇A�(A)
) = A, (110)

i.e. the derivatives of S and � are inverse maps one to each other. By differentiating (110),
it follows that the following matrix equality holds:

∇2
MS(M) =

(
∇2
A�
(∇MS(M)

))−1
. (111)
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Since ∇2
A�(A) is positive-definite for all A ∈ A, it follows that ∇2

MS(M) is positive-
definite for allM ∈ M. Hence, S is a strictly convex function ofM. The following statement
establishes that S given by (109) coincides with the fluid entropy (92).

Proposition 8 (Strict convexity of the entropy).
(i) The thermodynamic entropy given by (109) and the kinetic entropy (92) are equal.

(ii) The thermodynamic entropy S is a strictly convex function of the conservative variables
M for all M ∈ M. Its second derivative ∇2

MS(M) is positive-definite for all M ∈ M.

Proof Statement (ii) follows from (i) and the previous discussion. We focus on (i). We com-
pute the Legendre transform of � from (109). We have

S(M) = P · D + N A + ρB + EC − �(A).

Using (96) to express N , ρ, E , P on the one hand, (53), (55) to express A, B, C , D on the
other hand, and finally using (98), we find

S(M) = ρ〈m−1〉β(log ρ − log Z) + ρ
(
β − |u|2

2�

)

+(ρ|u|2 + nρ〈m−1〉β�
)(− 1

2�

)
+ ρu ·

( u
�

)
− ρ〈m−1〉β

= ρ〈m−1〉β
(
log ρ − log Z − 1 − n

2

)
+ ρβ,

which is nothing but expression (92) and ends the proof. �


4.3 Onsager’s Symmetry

We note that the EME system (57) has a synthetic formulation in entropic variables, given
by (100). Now, we explore if the NSME system has a similar formulation. Before doing so,
we need to introduce additional notations.

For α, β ∈ {1, . . . , n + 3}, we define an n × n matrix X
αβ as follows.

X
αβ = εμ�

(
Inδ

αβ + eβ ⊗ eα − 2

n
eα ⊗ eβ

)
, ∀α, β = 1, . . . , n, (112)

X
α n+1 = X

α n+2 = (Xn+1α)T = (Xn+2 α)T = 0n, ∀α = 1, . . . , n, (113)

X
α n+3 = (Xn+3α)T = 2εμ�

(
uαIn + u ⊗ eα − 2

n
eα ⊗ u

)
, ∀α = 1, . . . , n, (114)

X
n+1 n+1 = ενIn, X

n+1 n+2 = (Xn+2 n+1)T = X
n+2 n+2 = 0n, (115)

X
n+1 n+3 = (Xn+3 n+1)T = (n + 2)εν�In, X

n+2 n+3 = (Xn+3 n+2)T = 0n, (116)

X
n+3 n+3 = ε�

[(
(n + 2)2ν� + 4κ� + 4μ|u|2)In + 4

n − 2

n
μ u ⊗ u

]
, (117)

where 0n is the n × n matrix with all entries equal to 0 and where we recall that (e1, . . . , en)
denotes the canonical basis ofRn . We note thatXαβ = (Xβα)T so that the n(n+3)×n(n+3)
matrix X defined by blocks by X = (Xαβ)α,β∈{1,...,n+3} is symmetric:

X = X
T . (118)

Now, we have the following
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Proposition 9 The NSME system (66)–(69) has the following equivalent formulation (for
smooth solutions):

∂

∂t

( ∂�

∂Aα
(A)
)

+ ∇x ·
( ∂�

∂Aα
(A)
)

= ∇x ·
( n+3∑

β=1

X
αβ∇xAβ

)
, ∀α = 1, . . . , n + 3. (119)

Remark 4 The form (119) shows that the NSME system is consistent with the formalism
of nonequilibrium thermodynamics [32]. Indeed, the contributions of diffusion to the time
derivatives of the conservative variablesMα = ∂�

∂Aα are driven by divergence of fluxes which

are linear combinations of the gradients of the entropic variables ∂Aβ

∂x j
. This linear combination

is described by the matrix X. The fact that this matrix is symmetric reflects a general feature
of nonequilibrium thermodynamics called Onsager’s symmetry. When α �= β, Onsager’s
symmetry states that the contribution of the gradient ofAβ to the time-derivative ofMα is the
adjoint of that of the gradient of Aα to the time-derivative ofMβ . For instance, gradients of
C (generated by temperature gradients) induce temporal changes in the population equation
(i.e. the equation for N ), as the non-zero value of Xn+1 n+3 shows. But then, gradients in
A (generated by gradients in the population N for instance) induce temporal changes in the
energy equation in the exact same amount (asXn+3 n+1 = X

n+1 n+3). Similar considerations
hold true for any pair of components of the vector D, or betwen pairs (Dα,C) where Dα is
any component of the vector D.

Proof As (100) shows, the left-hand sides (66)–(69) can be written in the form of the left-
hand side of (119). So, we are left to prove that the right-hand sides of (66)–(69) can be
written in the form of the right-hand side of (119).

The right-hand sides of Eqs. (68), (66), (67) and (69) correspond to the right-hand side of
(119) for α = 1, . . . , n, α = n + 1, α = n + 2 and α = n + 3 respectively. From the fact
that the right-hand side of the mass conservation equation (67) is identically 0, we conclude
that we can write it in the form of the right-hand side of (119) setting

X
n+2 α = 0n, ∀α = 1, . . . , n = 3.

Now, we consider the population conservation equation (66). Its right-hand side is equal
to ε∇x · (ν∇xχ). Thanks to (74), (55) and (53), we can write

χ = log
ρ

Z(β,�)
+ n + 2

2
log� + n

2
log(2π) = A + n + 2

2
log
(

− 1

2C

)
+ n

2
log(2π).

Hence,

εν∇xχ = εν
(
∇x A + (n + 2)�∇xC

)
. (120)

Comparing with (119) for α = n + 1, we get

X
n+1α = 0n, ∀α = 1, . . . , n and α = n + 2,

X
n+1 n+1 = εν In, X

n+1 n+3 = (n + 2)εν� In .

Now, we turn ourselves to the momentum conservation equation (68). Using (53), we first
observe that

∂u j

∂xi
= −1

2

∂

∂xi

(Dj

C

)
= − 1

2C

∂Dj

∂xi
+ Dj

2C2

∂C

∂xi
= �

∂Dj

∂xi
+ 2�u j

∂C

∂xi
.
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Hence

σαi (u) = �
[∂Dα

∂xi
+ ∂Di

∂xα

− 2

n

n∑

j=1

∂Dj

∂x j
δαi

]

+2�
[
ui

∂C

∂xα

+ uα

∂C

∂xi
− 2

n

n∑

j=1

u j
∂C

∂x j
δαi

]
. (121)

So, we have
εμσαi (u) = a© + b©, (122)

with

a© = εμ�
[∂Dα

∂xi
+ ∂Di

∂xα

− 2

n

n∑

j=1

∂Dj

∂x j
δαi

]
(123)

= εμ�

n∑

j,β=1

[
δi jδαβ + δ jαδiβ − 2

n
δiαδ jβ

]∂Dβ

∂x j
(124)

= εμ�

n∑

j,β=1

[
Inδαβ + eβ ⊗ eα − 2

n
eα ⊗ eβ

]

i j

∂Dβ

∂x j
,

and

b© = 2εμ�
[
ui

∂C

∂xα

+ uα

∂C

∂xi
− 2

n

n∑

j=1

u j
∂C

∂x j
δαi

]
(125)

= 2εμ�

n∑

j=1

[
uiδ jα + uαδi j − 2

n
δiαu j

] ∂C
∂x j

(126)

= 2εμ�

n∑

j=1

[
u ⊗ eα + uαIn − 2

n
eα ⊗ u

]

i j

∂C

∂x j
.

Comparing with (119) for α = 1, . . . , n, it follows that

X
αβ = εμ�

[
Inδαβ + eβ ⊗ eα − 2

n
eα ⊗ eβ

]
, ∀α, β ∈ {1, . . . , n},

X
α n+1 = X

α n+2 = 0n, ∀α ∈ {1, . . . , n},
X

α n+3 = 2εμ�
[
uαIn + u ⊗ eα − 2

n
eα ⊗ u

]
, ∀α ∈ {1, . . . , n}.

Finally, we consider the energy conservation equation (69). From (120), we immediately
get that

ε(n + 2)ν�∇xχ = (n + 2)εν�∇x A + (n + 2)2εν�2∇xC . (127)

Then, using (53), we get
2εκ∇x� = 4εκ�2∇xC . (128)

Finally, thanks to (122), (124) and (126), we have

2εμ
(
σ(u)u
)
i = c© + d©,
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with

c© = 2εμ�

n∑

j,k,β=1

[
δ jkδiβ + δ jβδik − 2

n
δi jδβk

]
u j

∂Dβ

∂xk

= 2εμ�

n∑

j=1

[
u j

∂Di

∂x j
+ u j

∂Dj

∂xi
− 2

n
ui

∂Dj

∂x j

]

= 2εμ�

n∑

j,β=1

[
u jδiβ + uβδi j − 2

n
uiδ jβ
]∂Dβ

∂x j

= 2εμ�

n∑

j,β=1

[
eβ ⊗ u + uβ In − 2

n
u ⊗ eβ

]

i j

∂Dβ

∂x j
,

and

d© = 4εμ�

n∑

j,k=1

[
uiδ jk + u jδik − 2

n
ukδi j
]
u j

∂C

∂xk

= 4εμ�

n∑

j=1

[n − 2

n
uiu j

∂C

∂x j
+ u2j

∂C

∂xi

]

= 4εμ�

n∑

j=1

[n − 2

n
uiu j + |u|2δi j

] ∂C
∂x j

= 4εμ�

n∑

j=1

[
|u|2In + n − 2

n
u ⊗ u
]

i j

∂C

∂x j
.

It follows that

2εμσ(u)u = 2εμ�
{ n∑

β=1

[
eβ ⊗ u + uβ In − 2

n
u ⊗ eβ

]
∇x Dβ

+2
[
|u|2In + n − 2

n
u ⊗ u
]
∇xC
}
. (129)

Then, adding (127), (128) and (129), we get

X
n+3α = 2εμ�

[
uαIn + eα ⊗ u − 2

n
u ⊗ eα

]
, ∀α = 1, . . . , n,

X
n+3 n+1 = (n + 2)εν�In, X

n+3 n+2 = 0n,

X
n+3 n+3 = ε

[
(n + 2)2ν�2 + 4κ�2 + 4μ�|u|2

]
In + 4(n − 2)

n
εμ�u ⊗ u.

Finally, we can check that all the formulas for X
αβ found in this proof coincide with

Eqs. (112)–(117). �


4.4 Entropy Dissipation

Before stating the evolution equation for the entropy, we need the following
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Lemma 5 (Nonnegativity of X).
The matrix X is nonnegative. More precisely, let (Y α)α=1,...,n+3 be n + 3 vectors of Rn, of
components Y α = (Y α

i )i=1,...,n. Denote also the (i, j)-the entry of the n × n matrix Xαβ by

X
αβ
i j . Then, we have

n+3∑

α,β=1

(Y α)TXαβY β = εν
∣
∣Yn+1 + (n + 2)�Yn+3

∣
∣2 + 4εκ�2

∣
∣Yn+3
∣
∣2

+εμ�

2

n∑

i,α=1

∣
∣
∣
∣
(
Y α
i + Y i

α − 2

n

n∑

j=1

Y j
j δiα

)

+2
(
uiY

n+3
α + uαY

n+3
i − 2

n

n∑

j=1

u jY
n+3
j δiα

)∣∣
∣
∣

2

, (130)

and the right-hand side is nonnegative by (75).

Remark 5 The matrix X is not positive definite because (130) offers no control on Yn+2. It
reflects the fact that X is singular because all lines and all columns associated with Y n+2

have entries equal to zero.

Proof Using (112)–(117) and the same computation as in (123) and (125), we get

n+3∑

α,β=1

(Y α)TXαβY β = εμ�
{ n∑

i,α=1

Y α
i

[
Y α
i + Y i

α − 2

n

n∑

j=1

Y j
j δiα

]

+4
n∑

i,α=1

Y α
i

[
uiY

n+3
α + uαY

n+3
i − 2

n

n∑

j=1

u jY
n+3
j δiα

]}

+εν|Yn+1|2 + 2(n + 2)εν� Yn+3 · Yn+1

+ε
[
(n + 2)2ν�2 + 4κ�2 + 4μ�|u|2

]
|Yn+3|2 + 4

(
1 − 2

n

)
εμ� (u · Yn+3)2. (131)

We have

n∑

i,α=1

Y α
i

[
Y α
i + Y i

α − 2

n

n∑

j=1

Y j
j δiα

]
= 1

2

n∑

i,α=1

[
Y α
i + Y i

α

][
Y α
i + Y i

α − 2

n

n∑

j=1

Y j
j δiα

]

= 1

2

n∑

i,α=1

[
Y α
i + Y i

α − 2

n

n∑

j=1

Y j
j δiα

]2
,

where the first equality is due to the fact that the tensor (Y α
i + Y i

α − 2
n

∑n
j=1 Y

j
j δiα)iα is

invariant by exchange of i and α and the second equality come from the trace of this tensor
being zero, i.e.

n∑

i,α=1

[
Y α
i + Y i

α − 2

n

n∑

j=1

Y j
j δiα

]
δiα = 0.
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Thanks to the same algebra, we have

n∑

i,α=1

Y α
i

[
uiY

n+3
α + uαY

n+3
i − 2

n

n∑

j=1

u jY
n+3
j δiα

]

= 1

2

n∑

i,α=1

[
Y α
i + Y i

α − 2

n

n∑

j=1

Y j
j δiα

][
uiY

n+3
α + uαY

n+3
i − 2

n

n∑

j=1

u jY
n+3
j δiα

]
.

and

2

n

n∑

i,α=1

[
uiY

n+3
α + uαY

n+3
i − 2

n

n∑

j=1

u jY
n+3
j δiα

]2

=
n∑

i,α=1

uiY
n+3
α

[
uiY

n+3
α + uαY

n+3
i − 2

n

n∑

j=1

u jY
n+3
j δiα

]

= |u|2|Yn+3|2 +
(
1 − 2

n

)
(u · Yn+3)2.

Hence

εμ�
{ n∑

i,α=1

Y α
i

[
Y α
i + Y i

α − 2

n

n∑

j=1

Y j
j δiα

]

+4
n∑

i,α=1

Y α
i

[
uiY

n+3
α + uαY

n+3
i − 2

n

n∑

j=1

u jY
n+3
j δiα

]

+4|u|2|Yn+3|2 + 4
(
1 − 2

n

)
(u · Yn+3)2

}

= εμ�

2

n∑

i,α=1

∣∣∣∣
(
Y α
i + Y i

α − 2

n

n∑

j=1

Y j
j δiα

)

+2
(
uiY

n+3
α + uαY

n+3
i − 2

n

n∑

j=1

u jY
n+3
j δiα

)∣∣∣∣

2

.

Inserting this into (131), we easily get (130). �

We can now prove the

Proposition 10 (Entropy inequality for the NSME system).
Let (ρ, u,�, β) be a smooth solution of the NSME system. Let S be the entropy (equivalently
given by (92) or by (109)). Then, S satisfies the following equation

∂t S + ∇x · φ̃ = −ε
{
ν
∣∣∇xχ
∣∣2 + κ

∣∣∣
∇x�

�

∣∣∣
2 + μ

2�
σ(u) : σ(u)

}
≤ 0, (132)

where the entropy flux at the NSME level φ̃ is given by

φ̃ = φ + ε
{

− ν
(
log ρ − log Z − 1 − n

2

)
∇xχ + κ

∇x�

�

}
, (133)

with φ = Su being the kinetic entropy flux at equilibrium (93). The right-hand side of (132)
is nonpositive because of (75).

123



   27 Page 34 of 39 P. Degond, J.-G. Liu

Remark 6 Setting ε = 0 in (133), we get for smooth solutions of the EME system:

∂t S + ∇x · φ = 0,

showing that S and φ are the entropy and entropy flux pairs of the EME system (of course,
for discontinuous solutions, the left-hand side is only smaller than or equal to 0).

Proof Thanks to (110), we can write

∂S

∂t
(M) = ∇MS(M) • ∂M

∂t
= A • ∂M

∂t
=

n+3∑

α=1

Aα ∂Mα

∂t
.

Then, we use (119) and get

∂S

∂t
(M) +

n+3∑

α=1

Aα∇x ·
( ∂�

∂Aα

)
=

n+3∑

α,β=1

∇x ·
(
X

αβ∇xAβ
)
Aα.

On the one hand, we have

n+3∑

α=1

Aα∇x ·
( ∂�

∂Aα

)
=

n+3∑

α=1

[
∇x ·
(
Aα ∂�

∂Aα

)
− ∂�

∂Aα
· ∇xAα

]

= ∇x ·
( n+3∑

α=1

Aα ∂�

∂Aα
− �(A)

)
.

On the other hand we can write

n+3∑

α,β=1

∇x ·
(
X

αβ∇xAβ
)
Aα = ∇x ·

[ n+3∑

α,β=1

X
αβ∇xAβAα

]
−

n+3∑

α,β=1

(∇xAα)T X
αβ ∇xAβ .

Thus, we can write

∂t S + ∇x · φ̃ = −
n+3∑

α,β=1

(∇xAα)T X
αβ ∇xAβ, (134)

with

φ̃ =
n+3∑

α=1

Aα ∂�

∂Aα
− �(A) −

n+3∑

α,β=1

X
αβ∇xAβAα. (135)

Now, with (130) applied with Y α = ∇xAα and with (120), (121), (128), we have

n+3∑

α,β=1

(∇xAα)T X
αβ ∇xAβ = εν

∣∣∇x A + (n + 2)�∇xC
∣∣2 + 4εκ�2

∣∣∇xC
∣∣2

+εμ�

2

n∑

i,α=1

∣∣∣∣
(∂Dα

∂xi
+ ∂Di

∂xα

− 2

n

n∑

j=1

∂Dj

∂x j
δiα

)

+2
(
ui

∂C

∂xα

+ uα

∂C

∂xi
− 2

n

n∑

j=1

u j
∂C

∂x j
δiα

)∣∣∣∣

2

= εν
∣∣∇xχ
∣∣2 + εκ

∣∣∣
∇x�

�

∣∣∣
2 + εμ

2�
σ(u) : σ(u), (136)
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which, inserted into (134), yields (132).
Now, we compute φ̃ given by (135). Using (99), (93) and (94), we see that

n+3∑

α=1

∂�

∂Aα
Aα − � =

∑

m≥1

∫

Rn

m
n
2

γm
eμm•A (μm • A − 1

)
v dv

=
∑

m≥1

∫

Rn
ρ(Mu,�,β)m

(
log

γmρ(Mu,�,β)m

m
n
2

− 1
)

v dv

= φ(ρMu,�,β) = φ = uS. (137)

Then, because
∑n+3

β=1 X
αβ∇xAβ is another way to write the right-hand sides of the NSME

system (66)–(69), we have

n+3∑

α,β=1

X
αβ∇xAβAα = ε

[
μσ(u)D + νA∇xχ + C

(
(n + 2)ν�∇xχ + 2κ∇x� + 2μσ(u)u

)]

= εν∇xχ
(
log ρ − log Z − n + 2

2

)
− κ

∇x�

�
. (138)

where the second equality comes from (53), (55). Now, inserting (137) and (138) into (135)
leads to (133) and ends the proof. �

Remark 7 It is possible to derive the entropy/entropy-dissipation identities (132), (133)
directly from the NSME system (66)–(69). However, our proof reveals the structure (134),
(135) of these identities. This structure is generic to all systems deriving from thermodynamic
principles.

From Prop. 10, we deduce the following corollary, whose proof is immediate. It shows
that the NSME system is compatible with the second law of thermodynamics.

Corollary 1 (Entropy decay in the NSME system).
Let (ρ, u,�, β) be a smooth solution of the NSME system in a smooth domain � such that
the normal entropy flux φ̃ · n = 0 across the boundary ∂� vanishes (where n is the outward
unit normal to ∂�). Then, the integral of S over � is non-increasing in time, i.e.

t1 < t2 ⇐⇒
∫

�

S(x, t1) dx ≥
∫

�

S(x, t2) dx .

Furthermore, if σ(u), ∇x� or ∇xχ are non-zero over a non-negligible subset of � for all
time within an open subinterval of (t1, t2), then, the previous inequality is strict.

The entropy dissipation inequality has a mathematical consequence which we highlight
on the linearized NSME system about a uniform state described by the entropic variableA0.
By (119), this linearized system can be written

n+3∑

β=1

∂2�

∂Aα∂Aβ
(A0)

∂Aβ

∂t
+

n+3∑

β=1

∂2�

∂Aα∂Aβ
(A0) · ∇xAβ

= ∇x ·
( n+3∑

β=1

X
αβ(A0)∇xAβ

)
, ∀α = 1, . . . , n + 3. (139)

For this system, we have the
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Proposition 11 (Parabolicity of the linearized NSME system).
The linearized NSME system (139) is parabolic. In particular, consider it on a domain �

with Dirichlet boundary conditions A|∂� = 0. Then, we have the following energy identity:

1

2

d

dt

∫

�

(
(∇2

A�)(A0)A
) • A dx =

∫

�

n+3∑

α,β=1

(∇xAβ)TXαβ(A0)∇xAα dx ≤ 0. (140)

There exists a constant C ≥ 1 such that for any 0 ≤ t1 < t2, we have
∫

�

(A • A)(x, t2) dx ≤ C
∫

�

(A • A)(x, t1) dx . (141)

Proof Since the matrix (∇2
A�)(A0) is positive definite, parabolicity is equivalent to the

positivity of the matrix X which was proved in Lemma 5.
We can re-write (139) as

(∇2
A�)(A0)

∂A
∂t

+
n∑

i=1

(∇2
A�i )(A0)

∂A
∂xi

= ∇x ·
( n+3∑

β=1

X
αβ(A0)∇xAβ

)
.

Then, we multiply this equation by Aα componentwise, sum them over α and integrate the
result over the domain �. Owing to the fact that (∇2

A�)(A0) is symmetric, the first term
gives the first term of (140). Because the matrices (∇2

A�i )(A0) (for i = 1, . . . , n) are also
symmetric, the second term leads to

1

2

n∑

i=1

∫

�

∂

∂xi

[(
(∇2

A�i )(A0)A
) • A
]
dx

= 1

2

n∑

i=1

∫

∂�

(
(∇2

A�i )(A0)A
) • A ni dγ (x) = 0,

due to the boundary conditions. Here (ni )ni=1 are the n components of the outward unit normal
n to the boundary ∂� and dγ (x) is the surface measure on ∂�. The computation of the last
term is done in a similar way and this leads to (140).

Finally, since the matrix (∇2
A�)(A0) is positive definite, there exist two constants 0 <

C1 ≤ C2 such that

C1A • A ≤ ((∇2
A�)(A0)A

) • A ≤ C2A • A.

Then, (141) follows with C = C2/C1. �


5 Conclusion

In this work, we have derived a new Boltzmann operator for binary collisions with mass-
exchange.We have investigated its properties, notably entropy dissipation and equilibria, and
derived macroscopic models of Euler or Navier–Stokes types in the hydrodynamic regime.
Finally, we have shown that the Navier–Stokes type macroscopic model complies with the
requirements of nonequilibrium thermodynamics, namely, Onsager’s reciprocity and entropy
dissipation. This work opens many interesting research areas. First, existence and uniqueness
of solutions to this Boltzmann equation or its Navier–Stokes counterpart remain to be proved
even in the spatially homogeneous case (see [27, 29, 30] for reviews on these questions in the
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case of the classical Boltzmann equation and [37–39] in the case of the compressible Navier–
Stokes equation). Then, conducting a rigorous study of the hydrodynamic limit in the spirit
of Caflisch’s seminal work [40] would be of great interest. Other kinds of hydrodynamic
limits could be investigated, such as those leading to incompressible systems [28, 41–43].
This study has been partly motivated by the dynamics of animal groups. So, pursuing in this
direction, one could replace the rarefied gas dynamics Boltzmann collision operator by an
operator modelling collective dynamics such as the Vicsek–Fokker–Planck model [44–48]
or the Bertin–Droz–Grégoire collision model [49, 50]. However, in the latter case, the study
would be made difficult by the non-availability of analytic formulas for the equilibria [51].
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Appendix A : Remarkable Formulas

In this appendix, we recall the following formulas whose proofs are classical.

∫

Rn
e−m|v−u|2

2� |v − u|2p dv =
(2π�

m

) n
2

p−1∏

k=0

(n + 2k)
(�
m

)p
, (A 1)

∫

Rn
e−m|v−u|2

2� |v − u|2p (v − u) ⊗ (v − u)dv

=
(2π�

m

) n
2

p∏

k=1

(n + 2k)
(�
m

)p+1
In, (A 2)

∫

Rn
e−m|v−u|2

2� (v − u)⊗4dv =
(2π�

m

) n
2
(�
m

)2
E (A 3)

where E is the four-rank tensor given by

Ei jk� = δi jδk� + δikδ j� + δi�δ jk .
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