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Abstract

We investigate a kinetic model for interacting particles whose masses are integer multiples
of an elementary mass. These particles undergo binary collisions which preserve momentum
and energy but during which some number of elementary masses can be exchanged between
the particles. We derive a Boltzmann collision operator for such collisions and study its
conservation properties. Under some adequate assumptions on the collision rates, we show
that it satisfies a H-theorem and exhibit its equilibria. We formally derive the system of fluid
equations that arises from the hydrodynamic limit of this Boltzmann equation. We compute
the viscous corrections to the leading order hydrodynamic equations on a simplified collision
operator of BGK type. We show that this diffusive system can be put in the formalism of
nonequilibrium thermodynamics. In particular, it satisfies Onsager’s reciprocity relation and
entropy decay.

Keywords Boltzmann equation - Euler equation - Navier—Stokes equation - Onsager’s
reciprocity relation - Entropy

1 Introduction

This paper is devoted to the study of a system of interacting particles whose masses are
integer multiples of an elementary mass. These particles undergo binary collisions which
preserve momentum and energy but during which some number of elementary masses can
be exchanged between the particles. So, this system combines the features of a coagulation-
fragmentation problem and of a classical rarefied gas dynamics system.
Coagulation-fragmentation equations describe the size evolution of particle clusters when
such clusters can merge or split. There are many different models of such phenomena depend-
ing on how many clusters or what cluster sizes are involved in a merge or split event, or whether
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the cluster sizes are described by discrete or continuous variables. The emblematic example
of such a model is the so-called Smoluchowski equation. There is an abundant literature
on the mathematical analysis of this equation and its variants, in particular on its dynam-
ics and its equilibria, which will be our main interest here. We refer e.g. to [1-8] as well
as the short review [9] and the book [10] for further references. Coagulation-fragmentation
equations have many applications in aerosol dynamics [11], emulsion polymerization [12],
combustion [13, 14] and animal group-size statistics [5, 15].

Most of the literature deals with spatially homogeneous systems, i.e., systems where the
size distribution of the clusters do not depend on position. Some models though have consid-
ered spatially inhomogeneous situations. In [16], the coagulation-fragmentation dynamics is
coupled with a spatial diffusion. References [17, 18] consider spatially discrete versions of
the transport processes applying to the clusters. In [19], the clusters are transported by a back-
ground fluid and modelled by a kinetic equation of Fokker—Planck type. The authors study
hydrodynamic limits which roughly lead to the model of [16], coupled with the movement
of the fluid. In [20], a spatially inhomogeneous kinetic fragmentation model is considered
and existence of solutions is proved.

In the present paper, we derive a Boltzmann collision operator for particles which have
integer masses and which undergo binary collisions preserving the total mass (i.e. the sum
of the masses of the incoming particles). However, the way the total mass is distributed
among the two particles may be different in the incoming and outgoing particle pairs. We
also assume that the binary collisions preserve the total momentum and total energy. For
this reason, we exclude the case of complete coagulation (i.e. there is only one outgoing
particle) or complete breakup (i.e. there is only one incoming particle), because in such case,
it is impossible to conserve both the total momentum and total energy. We refer to processes
in which two particles exchange mass (without merge or breakup) during a collision as a
mass-exchange process. As a consequence of excluding merge or breakup, the total number
of particles during mass exchange collisions is preserved, which brings a major difference
with coagulagion-fragmentation phenomena described by the Smoluchowski equation.

Collisions with mass exchange may occur for instance in reacting gases [21], sprays [22—
25] or heavy ion collisions [26]. However, in the first case, the masses span a finite set of
integers and, additionally, the collisions are not kinematically elastic as there are potential
energy barriers that the particles must overcome to form reaction products. In the second and
third cases, the particles have some internal energy, reflecting vibrating modes in droplets
or in ions. Moreover, in the case of sprays, most often passive advection by the background
fluid is the main driver of motion.

Here, we construct a simpler model, aiming that both the collision kinetics and mass
exchange processes have similar magnitudes and contribute in a comparable way to motion,
particle statistics, equilibria and ensemble dynamics. So, we assume that the mass exchange
process does not require any potential energy nor does it trigger any internal degrees of
freedom of the particles. These assumptions could be satisfied at leading order when such
potential energies or internal degrees of freedom are small enough to be treated as perturba-
tions. The modelling is based on the construction of a Boltzmann collision operator akin to
that used in rarefied gas dynamics, but which incorporates the mass-exchange phenomenon.
The Boltzmann equation of rarefied gas dynamics has been the subject of numerous mathe-
matical works, see [27-30] for reviews.

Another instance which motivated this study is the description of animal groups move-
ments. Animal group size statistics has been treated so far in a purely spatially homogeneous
way [5, 15]. However, one may be interested in investigating to what extent group merges
and splits influence the displacement of animals during migrations or foraging. Obviously,
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momentum and energy are not conserved during animal movements due to self-propulsion.
However, interaction mechanisms between animals and their collective dynamics are com-
plex, diverse and still poorly known [31]. So, rarefied gas binary collisions appear as a starting
point for the investigation of mass exchange processes. The study of more complex models
with gradually more realistic assumptions will be deferred to future works.

The outline of this work is as follows. In Sect. 2, we derive the Boltzmann operator for mass
exchange collisions (referred to as the BME operator) and study its properties (conservations,
entropy dissipation, equilibria, etc.). In Sect.3, we investigate the dynamics of the BME
equation at large spatio-temporal scales compared with the typical collision scales. This
regime is characterized by a small parameter ¢ (known as the Knudsen number) and the limit
& — 0Oiscalled the hydrodynamic limit. In this limit, the system is described by the local mass,
momentum and energy densities, as well as the local particle number density (here, since
the particles have different masses, the mass and number densities are not proportional). The
resulting system will be referred to as the Euler system with mass exchange (EME). Then, we
investigate the O(¢g) correction to the EME system using the Chapman—Enskog procedure.
Because computations may be quite complex with the original BME operator, we use a
simpler BGK-type collision operator for this study. This leads to a system called the Navier—
Stokes equations for mass exchange (NSME). Finally, Sect. 4 is devoted to investigating the
entropy properties of the EME and NSME systems. In particular, we show that the NSME
system is consistent with the formalism of nonequilibrium thermodynamics [32]: it satisfies
Onsager’s reciprocity relation and entropy dissipation, and is therefore compatible with the
second principle of thermodynamics. Finally, we end this work by a conclusion in Sect.5. A
short appendix recalls some basic formulas used throughout this work.

2 Boltzmann Operator for Mass Exchange Collisions
2.1 The Collision Rule

We first consider two particles of masses m and m | and velocities v and v respectively which
interact and give rise to particles with masses m’ and m/ and velocities v’ and v] respectively.
Here, we assume that masses are integers in {1, 2, ..., } and the velocities are vectors in R".
The collision obviously preserves the number of particles. We assume that the collision also
preserves mass, momentum and energy, i.e. we have

m—l—ml:m/—i—m/l, (1)
mv + miv :m/v/-i-mllvﬂ, 2
mlv® 4+ milvi [ = m' [V 4 m) V) . 3)
Since zero masses are not allowed, we have m’, m’] e{l,2,...,m+m; — 1}. We introduce

the center-of-mass velocity vey. Because of (1) and (2), we have

vent — mv+mivy  m'v' +mjv @
m 4+ my m’ + m)
We then introduce the velocities in the center-of-mass frame
mi
u=v—vem=——(@W—vy), ©)
m—+mp
m
uy=vy —vem = ———— (@ —vy), (6)
m—+mq
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m/|
/ / 1 / /
u=v—-—uvsgomy=—"-—W —v 7
C m, m/l( 1)7 ()
u) =0 —UCM——i/ W —v) (8)
1 1 7 /1 1)

Thanks to (1) and (2), Eq. (3) can be written
mul® + mylur|* = m'|u'* + m|u) P,

and with (5) to (8), we find

(mm)' 2o —vi| = (m'm)'2 " =] ©)
Following the case of equal masses, we can write
m'm)'2 " = v)) = mm) v — v - 200 —vp) - QQ], (10)

where Q € " ! with Q - (v —v;) < 0. Inserting it into (7) and (8), we get

u = v—v; —2(—vq) - ,
m~+my \m'm : !
12
m’ mm|
A v =2 —v)) - Q€] 12
= <m’m’1> [v—vi—2(v =) ] (12)

This results in the following collision law:

172 /i \ 12
Y = m’:—:_n’:]vl (:nﬂ”:zm (71) [v—vi —20—v)- Q€] (13)

/
172 I\ 172
o = mv +mvy  (mmj) <£> [v—v —20w—v)- 28], (14)

m+m m+mp \m)
m’l =m—+m —m/, (15)
where m' takes any integer value {1, 2, ..., m+m; —1}and Qin S" 1 withQ-(v—v;) < 0.

Equation (10) can be inverted into
(mm)'"? (v —v) = m'm)'[v = v] =20 = v - Q Q] (16)

which leads to

m'v +mv,  m'm)HY? 172
=i o G) T 20 w22 an
1 1
m/v/+m/v/ (m/m/)l/z m 1/2
n = e () W ovim20 @) a
1 1
my =m' +m} —m, (19)

with € = — and we note that Q' € S"~! satisfies Q' - (v/ — v)) <0.

Remark 1 (About excluding zero masses).

Suppose that one of the outgoing masses were zero, say m} = 0, and consequently m’ =
m + my. Then, there only remains v’ to determine with the two equation (2), (3), which in
this case read

mv+mvy = (m+m)v,  m* +milvi? = m+mp)')>
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Eliminating v from the first equation, the second equation leads to v = v;. So, if one of
the outgoing masses is equal to zero, energy conservation can only be achieved when the
two incoming velocities are equal. A similar conclusion would hold if one of the incoming
masses were zero, reverting the roles of incoming and outgoing velocities. Therefore, the
requirement that both momentum and energy are preserved during mass exchange collisions
implies that none of the incoming or outgoing masses can be zero.

Remark 2 (About integer masses).

An alternate modelling framework would consist of allowing the masses to take all non-
negative real values, instead of purely integer values. The concepts developed below could
certainly be extended to that case. We chose the integer setting because of its simplicity.
Within this setting, there is no need, for instance, to discuss the integrability of the mass
distribution near zero. On the other hand, allowing continuous masses would offer more
flexibility to describe possible loss of mass through the zero mass (a phenomenon called
shattering). Finally, the convergence of the integer mass framework to the continuous mass
framework when the elementary mass tends to zero would certainly be interesting to study.
We leave these questions to future works.

2.2 The Boltzmann Operator with Mass Exchange (BME Operator)

Let fu(x, v, t) be the distribution function of particles of mass m, and f = (fin)m=1,....
We define a Boltmann collision operator for collisions with mass exchange (in short BME
operator) in weak sense. Let ¢, (v) be a sequence of test functions of the variable v. Then,
we write

di Z/ f’"w’"d” Z/ Om(f)(W)gm dv

m=1

m+mp—1

Z Z Am ,mypsm’

mm|_1 m'=

mmi UV — U
B(-“2 o — iR L) (0w + Oy — O = 9my) fon fong dV 01 d2(20)
m 4+ my lv — v !

/(v,vl Q)eR2 xS =1 | (v—v1)-Q<0

where @ = on(®). oy = Om V1. G = (V). Gt = ¢y V), and similarly for
s fmys s fm/l and v/, v{, m] related to v, v, m, mi, m’ and Q through (13)—(15).
Here, Ay, i, is the rate of collisions between particles of masses m and m; giving rise
to particles of masses m’ and m + m; — m’, while B is the rate of collisions of particles
(m, v) with particles (m1, v;) generating a deflection angle parametrized by €2. For hard-
sphere collisions, the number of collisions undergone by a test particle (m, v) against field
particles (m1, v1) during a time interval dz is equal to the number of such field particles
in a collision cylinder whose radius r. is the sum of the radii of the two particles, and of
height equal to |[v — vy |dr. The radius of a particle of mass m scales like m'/”, so that we
can suppose that the surface of the section of this cylinder is 0 = C,(m!/" + m}/rz)n_I’
where C,, is the volume of the unit ball in an (n — 1)-dimensional euclidean space. We
note that we can aggregate the factor C, (m'/" + m}/”)”_1 with the constant A, ,,, ., and
assume that 0 = 1. For more general collisions, the number o is replaced by the so-called
differential scattering cross section which is classically a function of the kinetic energy of
the reduced particle Ereq = 22|y — vy|?, and of Q - ‘” :j: which is the cosine of /2

m+m
plus half the scattering angle. Thls is exact up to the same multiplicative factor as in the
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hard-sphere case, which again can be aggregated with the constant A,, ,,,,.,. Likewise, we
can write |v — vy| = (mm;":l )1/2E1/2 and the prefactor (%)1/2 can be aggregated with
Ay ;- In the end, this shows that we can assume that the collision rate B is a function
of Ereq and 2 - 5:3: L without any other dependence on the masses, which is what appears
in (20). Of course, all this assumes factorization between rates for mass exchanges A, ;. m’
and rates for velocity changes B in total generality we should have postulated a rate of the
form B,,, ;. m’(m +m lv—wv1]?, ﬂ:Zh ). This would lead to further complications that we
wish to avoid in the present work.

Since the partition of m + m into m and m is the same as that obtained by exchanging
m and m, and similarly, the partition of m +m into m’ and m/ is the same as that obtained

by exchanging m’ and m’, we have

Am,ml;m’ = Aml,m;m’ = Am,ml;m+ml—m” (21)
for all m, m; > 1, and for all m" € {1, ..., m + m| — 1}. We also note that the parameter
values (m, v, mp, vy, 2, m’) and (my, v, m, v, =, m + my — m’) correspond to the same
physical collision. Thus, in the sums and integrals involved in (20), each physical collision

is counted twice, which justifies the factor 1/2 in front of the whole expression.
We now give the strong form of the BME operator given in weak form by (20):

Lemma 1 (BME operator in strong form) We have

%fm(v):Qm(f)(v), Vme(l,2,...,}, YveR",

with

mm vV—vV
On ()W) =/ B o - @ )
(1,Q)eR xS | (v—vy)-Q<0 M +m v — v

[, e ()

{(m’,m") |m’+m’12m+1}

oo m+mi—1

- Z Z Amomyzm' i fm1j|dvl ds, (22)

mi=1l m'=1

Proof The right-hand side of (20) is the sum of four terms labeled (D to (@ in the same order
as the terms associated with ¢/, s Pms Py - We immediately get

oo m+tmj—

0= [ (X% h |
veR” mi=1 m'=1 (v1,Q)eR" xS"1 | (v—v1)-Q<0
mmjy
B(. v —uil’, @ )fmfmldvldﬂ)sumdv 23)
m+m Tl

Now, for @), we just exchange (m, v) and (m1, v1) on the one hand, and change the sign of €2
on the other hand. Since m, m1, v, v; are dummy variables, the result is unchanged and we
readily see that

®=0. (24)
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Now, we turn ourselves to (T). Changing the order of the sums in m, my, m’, we get

1 o0
©= 2 Z Z A my;m! / N
m'=1 {(m,my)|m+m;>m'+1} (v,v, DR XS | (v—v1)-£2=0
mm;j 2 vV — V]
B( v—ul Q- )ou Fn oy dvdvrd. (25)
m+m v — 1]

We now make the change of variables (v, v1) — (V/, vi). We need to compute the Jacobian

a ) a( /, /)
J = ldet(20)| = det G

(v', vy) for given K is linear and can be written

)|~L. From (13), (14), we note that the map (v, v1)

V=Hv—K@w-QQ+Lv; + K(v - Q)Q,
Vi=Hv+ K- QQ+Lv — K'(v - Q8,

with
H=o+ . a1y, K=2/aary, L=a —.Jauy,
H = Y2 g oYV YOO
14 14 14
and
m mi m}
o= , o] = s Y =4
m—+m m—+m m’
Let (e, ..., e,) bebasis of R” such that e, = 2. Then, in this basis, the linear map (v, v;) —

(v/, v}) has matrix X' given blockwise by:

AB
- (e5)

with
A = diag(H,...,H, H — K), B =diag(L,...,L, L+ K),
C=dag(H',...,H,H +K'), D=dag',...,L,L' —K’),

where diag(ay, ..., a,) denotes the diagonal matrix with diagonal entries ay, ..., a,. Since

C and D commutent, we have

detX = det(AD — BC)
= (HL' — LH)"'((H - K)(L' = K') — (H + K')(L + K)).

Remarking that o« + «; = 1 and using (1), we compute

HL' —LH = —((H—-K)(L' = K')— (H' + K')(L + K))

1 mm
= M(y + 7) = / : ’
Yy m'my
which leads to
1 m'm}\ 5
J = |detx|” = (—) .
mm;j
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Thus, owing to (1) and (9), the change of variables (v, v{) — (v, v/l) and Q - Q' =-Q
in (25) leads to

00
E E Am,ml;m’/ , ) ) ,
/ / - / /
=1 {mmy) | mtmy =m+1) (v, v],Q)eR xS | (v/—v])-Q'<0

/

v1|)(/’m Sm fm (7:/1)%“’ dvldQ

mm
1 2
B(m/—i—m’ v —vj|°, - T
1

Now, we just rename (m, v) into (m’, v') and vice-versa, and (m1, v) into (m}, v}) and
vice-versa and rename €’ into €. This gives

[ I
= - A ’ /.
2,112::1 veRn Z T )R xS | (v—v;)-2<0

{(m”,m}) | m'+m =m+1}

mmj
B( w—u% Q-
m +mj v —vi]

mmi

)fm/ Fou <’ml) dv; dQ) omdv.  (26)

Finally, using the same algebra as for (D, we get
1 oo
=32 2
m=1{(m’ .m}) | m'+m}=m+1}

mmny ) v — V| mmj
B( w—u%Q- )wml Fot o (/7) dvdv, d2,
m+ my v — vy L\m'm

Am’,m’l;m /
(v,v1,Q)eR2 xS | (v—01)-Q<0

Now, as for (@), we exchange (m, v) and (m1, v1) on the one hand and change the sign of <2
on the other hand and get

@=0. 27)

Adding (23), (24), (26) and (27), and owing to the fact that the resulting formula is valid
for any sequence of test functions (¢, )m=>1, we are led to (22). ]

Lemma 2 (Equivalent weak form of the BME operator) Eq. (20) is equivalent to the follow-
ing:

m+m1—1
Z/ Qm(fxv)gomdv—v Z > (mmy)?
mmi=1 m'=1
mmq v — U

B( :
~/(v,v|,52)e]R2"xS”*' [(v—vp)-Q<0 M+ m v — v

) (@m’ + P!,

Am’ m im Am mim
—@m — Qoml) |: i S fm1 - 71fm fml] dvdv, dS2. (28)
(m'm})? (mmy)2
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Proof The proof is similar to that of the previous lemma. We start with (20) and make the
change of variables (m, v, my, vi) — (m', v, m/, v}) and @ — Q' = —Q. We get

| m+mi—1

le/R On(NWgmdv =25 37 > Anmn

mmi=1 m'=1
’ i / /
m m v — UV
1 / 7112 / 1
/ (A g ST
('], Q)ERY xS | (v —v))- Q<0 NI 4y v — )]
m'm

)7 dv' dvid<.
1

(‘pm’ + (Pm’] — Om — ‘Pml) I fm1 (

mm

Now, we rename (i, v) into (m’, v') and vice-versa, and (m, vy) into (m/, v}) and vice-versa
and rename ' into €2. This gives

m'+m)—1

oo
2. 2 Awapm
/ m/lzl m=1

m’,

oo l
Z/ Ql’rl(f)(v)(pmdv:_5
m=1 R

mm 2 v —
B( [v—vi|, Q- )
(0,01, Q)R xS | (v—v))-Q<0 M+ m] [v — v
mmi \ %
(‘/)m/ +(pm’1 — Om — </)m1) S fm/1 (ﬁ) dvdv dS2.
m ml

Now, we note that

0o m'+mi—1 oo mtmi—1
m' m’1=1 m=1 mmi=1 m'=1

Thus, we get

[ee) 1 oo m+mi—1

Z/ On(HW)pm dv = _5 Z Z Am’,m’];m

m=1 R? mmi=1 m'=1

v—v
/ (mml |v—v1|2,§2~ 1)
(0,01, Q) €RV xS | (v—v;)-Q<0 M+ m] [v—vq]
mmy \ 7
(P’ + Pt — O — 1) St fo (7/ ,) dvdv dQ. (29
1 1 m ml

Then, adding (20) and (29) leads to (28), which ends the proof. O

2.3 Conservations, Entropy Dissipation and Equilibria

Proposition 1 (Conservations) Let ¢ = (¢n)m>1 be a sequence of smooth functions with
sufficient decay at infinity in m and v such that

Om' (V) + @ (V) = (V) = @m, (v1) =0, (30)

forall (m’, V'), (m}, v)), (m,v), (my, v1) satisfying (1), (2), (3). Then, we have

> /R O ()gmdv =0, (31)

m=1
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for any sequence f = (¢m)m>1 of smooth functions decaying fast enough in v and m.
Proof We apply (28) with ¢ satisfying (30) and immediately get (31). O

Lemma 3 (Collisional invariants) Any sequence ¢ = (¢p)m=>1 of smooth functions R — R
satisfying (30) belongs to the space

C = span{l, m, mvy, ..., mvy, m|v|2},
where
1= ((/)m)mzl with ¢, (V) =1,
m = (‘pm)mzl with @ (V) =m,
mvg = ((pm)mzl with (ﬂm(v) =mv, ke {1’ cee ,I’l},
m|v? = (@n)m=1 with @u(v) =mlv|*.

Proof The proof is divided into four steps.
Step 1. For fixed m = m| = m’ = m/, (30) becomes

©m (V) + @m(v1) = (/’m(v/) + ‘pm(v/l)a

for all v, vy, v/, v} satisfying v + vy = v/ + v} and [v|> + |v1]* = [v'|* + |v}]%. Thanks
to a classical result [33, Prop 28.2], there exist constants C,,, A,, and a constant vector B,
depending on m such that

om () = Cplv* + Dy - v + Ay (32)

Step 2. We demonstrate that A,, = mB + A for some constants A and B. Indeed, by setting
v=uv =v =v| =0,form+m; =m’ +m| and using Eq. (32), (30) becomes

Am+ Amy = Ay + Ay (33)

Form > 2,sincem + 1 = (m — 1) +2 one gets A, = A,,—1 + (A2 — Ay). Recursively, for
m > 3, we get

Ap=Ary+(m—2)(Ay — A1) =m(Ay — Ay) +2A1 — Aj. (34)

This equation is also valid form = 1 and 2. Thus, wecanset B = Ap—Ajand A = 2A;—A».
Step 3. We show that C,,, and D,, are affine functions of m. For m +m| = m’ + m/1 and
v = vy = v/ = v, the conditions (2) and (3) are met. Using Eqs. (32) and (33), then (30)
reduces to

Cnlvl 4 Dy v+ Cony [0 4 Doy - v = Cor V> + Dy - v+ Cpyy [0 4 Dy - 0. (35)
Now, 2v = 2v; = 2v’ = 2v] still satisfy (2) and (3). Thus, we have
4C [V +2Dy - v+4Cp, [P +2Dpn -0 = 4C, [0 +2 D -0 +4C,y [0 42D, -v. (36)
Equations (35) and (36) yield
Cin+ Cmy = Cor + Cop
Dy + Dy = Dy + Dy
Using the same argument as in Step 2, we find

C, =mC+Cy, D,,=mD + Dy. 37
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for some constants C, Cy and some constant vectors D, Dy.
Step 4. We now prove Cp = 0 and Do = 0. Using Egs. (32), (33) and (37) together with (2)
and (3), Eq. (30) is reduced to

Co(vl* + [v11*) + Do - (v 4+ v1) = Co([V/* + [v]*) + Do - (v + v)).
Using again the factor 2 trick as in Step 3, we have
Co(Jvl* + [v11?) = Co(Iv']> + v} %), (38)
Dy - (v+v1) = Do (V' +v)). (39)

We first show that Dy = 0. By subtracting 2vcny (where vewm is given by (4)) to each side of
(39) and using (5)—(8), we get

mp—m

(Do - (v—uy)) = e (Do - (v —v))). (40)

+m

/ /
ml —m
!
m;+m 1
Now, we assume that Dy # 0. We choose m = my, m" # m/ (this requires m > 1), v, v

such that Dg - (v — v1) # 0 and Q such that - (v — v;) = 0 (see collision rule (13), (14)).
Then, according to the collision rule,

r ,_1[
v U1—2(

Thus, the left-hand side of (40) is O while the right-hand side is different from 0 given the
choices made. This yields a contradiction, and it results that Dy = 0. Now, we show that
Co = 0.Indeed, applying (38) with (v, v1, v/, v}) replaced by (w+v, w+vi, w+v', w+v))
where w is an arbitrary vector of R” (we easily check that this quadruple of vectors still
satisfies (2) and (3)), we deduce that Cop must satisfy

’ ’
Y2 ()P v, andso, (Do- (0 = up) #0.
m my

Co(v +v1) = Co(v' + v)).
Taking an arbitrary unit vector n, we deduce that
Con - (v+v1) = Con- (v +v}),

which is (39) with Dg replaced by Con. The proof done for Dg shows that Con = 0 which
in turn, shows that Co = 0.
Combining all the above steps, we derive the following form for ¢,, (v):

om(W) = A+ Bm + Cm|v|* + D - mv.
This completes the proof of the lemma. O
We now make the following

Hypothesis 1 (Multiplicative exchange rates)
We assume that there exists a sequence (¥ )m>1 With y,, € [0, 00), Vm > 1, such that

Am,ml;m’ = ¥Ym VYm» Ym, mp > 1, vm' € {1,...,m+m; —1}. (41)
We remark that A,, ,,,,., given by (41) satisfies (21).

Proposition 2 (Entropy dissipation)

Assuming (41), we get
- Y Som
> [ ontros (M
m=1 R" m?2

dv <0. (42)
)
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Proof Taking

Ym. fm)’ (43)

Pm —IOg(
m2

and using (41), Expression (28) becomes

m+mi—1

Z/Ran(f)(v)wmdvz Z Z (mm)?
m=1

mmllm

mmy v —
B( |v — v1| )
(0,01, Q) eR2 xS1-1 | (v—py)-Q<0 M +m DY

Yo' ' ym/lfm’l _ Y fm lefml ]
[IOg((mfﬂ it 1°g< )
|:ym’fm’ Vi, fml J/mfm lefml

m)H: m)s  m? (my)?

n n
m2  (my)2

]dvdvldQ (44)

and we obtain (42) owing to the fact that the logarithm is an increasing function. O
We now make the following assumption about the growth of y,, with m:
Hypothesis 2 (Behaviour of y,, as m — o0)

Let S be the set i
Sz{ﬂeR‘ y <oo}. (45)

Ym

m>1
We assume that S # ¢.
Remark 3 As a consequence of Hypothesis 2, there exists Sy € R U {400} such that S is of
the form S = (—o00, Bp) or S = (—o0, Bol.

Proposition 3 (Equilibria)
(i) Let f having finite mass, momentum and energy, i.e. such that

f Fn@)ym(1 + [v[*) dv < oo. (46)
m>1

Under Hypotheses 1 and 2, we have Q(f) = 0 if and only if A(p, B, u, ®) € [0, 00) X S X
R" x [0, 00) such that

f=pMuo.p (47)
with
e V) = ——— - ), m>1, v ,
O pm Z(B.©) vm 20
where
me
Z(p.0) =210y (49)
= vm
(ii) We have
1 pm™1)p
m o
> [ oo, | v |e=l 20 [ o
m=l mlv — ul? n,o@(m’l)ﬁ

@ Springer



Binary Particle Collisions... Page130f39 27

where for a sequence ay, of real numbers, we denote by (an,)g the average

i meﬂm

=R

=1
i mePm

— Vm

(am>ﬂ =

3

We note that (ay,)g does not depend on m and that it is a function of p.

Proof Suppose Q(f) = 0. Then,

/ O (f) log (V"’f’")dv:o. (51)

We compute the left-hand side of (51) thanks to (44). Because the function inside the sum
over m and the integral over v in (44) is nonnegative, (51) implies that the function ¢,, given
by (43) satisfies (30). Hence, by Lemma 3, there exist A, B, C € R and D € R” such that

log(ym{m>=A+Bm+Cm|v|2+mD-v, vm > 1, VveR" (52)
m?2

Integrability of f,, with respect to v € R" requires C < 0. We deduce that

m3ePm mlv — ul?
exp ( - 7>

fm() =« . 26
with )
|D| 1 D
— 0, B—""" ' @=—— >0, u=——r. 53
a=e'>0 p= ac’ 2w~ "TTac (53)

Then, using (A 1) from Appendix 1 with p =0, 1, we have

Lm
Z/ Fa@m(1+ v —uP)dv = (276)? Zey—(mn@).
m>1 m=>1 "
Thus, we have
/ fm(v)m(1+|v—u|)dv<oo — peS. 54)
m>1

The statement at the left-hand side of the equivalence symbol in (54) is clearly equivalent to
the statement (46). Now, using (A 1) with p = 0 again together with (49), we get

p= / Fu() dv = a Z(B, ©), (55)
m>1

which leads to the expression (48) of f,,, as well as to the second line of the vector equa-
tion (50). By antisymmetry, we immediately get

S| faym@—uydv=0,

m=1 R~
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which directly leads to the third line of (50). Again, using (A 1) with p = 1, we get

—ul“dv=n0® 2 — =npO(m .
n;/ Jm () mlv u| v=n Z(,B @) 4C) Z =np )5
Finally, the first line of (50) is obtained in the same way, using (A1) with p = 0. O

3 Hydrodynamics of Mass Exchange Processes
3.1 The Euler System for Mass Exchange Processes

The Boltzmann equation for mass exchange processes (or BME equation) is written

1
O fog +v-Vafrm = ng(fs), VYm>1, YveR", (56)

where f* = (f)m>1 and where Q,, is defined as in Sect.2.2. Throughout this section, we
assume that Hypotheses 1 and 2 are fulfilled. Furthermore, we suppose that f°|,—o = f} is
independent of e. The goal of this section is to study the hydrodynamic limit ¢ — 0. We
have the following

Theorem 1 (EME system in conservative form) Suppose f*¢ exists on a time-interval [0, T]
independent of € and depends smoothly on €. Then, as ¢ — 0, f® — f = pM, o p where
(p,u,®,B): R" x [0, T] — [0,00) x R" x [0, 00) x S satisfies the following system of
PDE:

pim™)p pu(m=)g
P pu _
O pu + pu @ u+ pO(m=")4l, =0 6D
plul> +np®m=")g plulPu + (n +2)pO(m~") pu

where 1, stands for the n x n identity matrix. This system will be referred to as the Euler
system for mass exchange processes (EME).

Proof From (56), we have Q(f¢) = O(e). So, in the limit ¢ — 0, we have Q(f) = 0,
hence, f = pM,. e,p, where (p, u, ®, ) may depend on (x, ¢). Then, owing to Prop. 1, we
have

1 1
m £ m —
(Z/fm . dv>+Vx (Z R"fm . vdv)-O,
m>1 2 m>1 2
mv| m|v|

and, taking the limit ¢ — 0, we get

1
(Z/ /O(MuOﬂ)m n’;nv dU)
m=>1 2
m|v|

1

<Z/ p(My.0.p)m m’:)1® Udv> =0.

>1
m m|v|2
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Thanks to (50), the first term gives the first term of (57). For the second term, we have the
following:

First line. Since (M, @,s)n is even with respect to v — u, we have by antisymmetry with
respect to v — u:

/ My,0.8)m()vdv = u/ (My,0,8)m(v) dv,
R~ R~

and

Z/Rn p(My.e.8)m@)dv = '0("1*1)#;,

m>1
by (48), (49) and (A 1) with p = 0.

Second line. The second line of the second term is identical with the third line of the first
term, so, its value is pu.

Third line. We have
v@uv=Ww—u)®W—u)+u®u+ oddterms in (v — u).

By antisymmetry, upon multiplication by (M, e ), (v) and integration with respect to v,
only the even terms with respect to v — u in the expression of v ® v are non-zero. With (48),
(49) and (A 2) used with p = 0, we have

> /R p(My0 p)m(@)mv —u) ® (v —u)dv = pO(m~")4l,,
m>1

while

> /R My g () mdv = p,

m=>1
by the second line of (50). So, the third line is p(u ® u) + ,o@(m_l),gl,,.
Fourth line. We write
[w[*v = v — ul?u +2((v — u) ® (v — u))u + |ul*u + odd terms in (v — u),

and use again antisymmetry with respect to v — u to eliminate the contribution of the odd
terms. By the second and fourth lines of (50), we have

> [ o0t miuPudy = plu
=1 Rn

and
Z/ p(My0.p)m @) mlv = uludv = np®(m™=")u,
RIL

m>1

respectively. Finally, using (A 2) with p = 0, we get

2 Z [l‘@” p(Mu,('),ﬂ)m(U)m((U — M) ® (U — M))Mdl) = 2p®(m—l>u

m>1

So, the fourth line equals p|u I2u + (n + 2) p© (m 1 )u, which ends the proof. ]
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Now, introducing O =0m" > we can re-write the second to fourth lines of (57) into

P pu
0r pu |+ V- ou @ u+ pOI, 3 =0, (58)
plul* +np® plul?u + (n +2)pOu

which is nothing but the standard gas dynamics equations for a perfect gas. Furthermore,
combining the first and second line of (57), the equation for § reads

dim™Nyg +u-Veim™lyp =0,

In fact, since the function 8 — (m~!) g is smooth, this equation can be turned into a direct
equation for :
B +u-Veg=0. (59)

Hence, the equations for the hydrodynamic quantities (p, u, O) are decoupled from the
equation for the mass statistics : once u is known from the resolution of (58), B is obtained
by solving (59). Of course, (59) is ill-behaved at shocks and in such case, the use of the
conservative equation resulting from the first line of (57) is preferable. The mass statis-
tics though is crucial at initialization since it is needed to construct the initial value of the
pseudo-temperature ®. Also, note that formulation (58), (59) tells us that the EME system
is hyperbolic. The additional equation (59) only increases the multiplicity of the eigenvalue
u by 1.
After some classical manipulations, we have the following

Proposition 4 (EME system in nonconservative form) For smooth solutions, the EME system
(57) is equivalent to the following system

B+ u-Vy)B =0, (60)
0rp+ (u-Vi)p+p(Vy-u)=0, (61)
u+ (u-Vou + %vx(p®<m—‘>ﬁ) =0, (62)
8t®+(u-Vx)®+%®(Vx ‘u) =0, (63)

whichwill be later referred to as the EME system in non-conservative form (while the original
one (57) is the EME system in conservative form).

3.2 The Navier-Stokes Mass-Exchange Model

We now seek to compute the order ¢ corrections to the EME model (57) using the Chapman-
Enskog procedure. This procedure leads to diffusive terms. Compared with the classical
Navier—Stokes equation, we expect additional diffusive corrections proportional to the gradi-
ents of the quantity 8 involved in the equilibrium distribution M, g, g. Since the computations
can be quite tedious, we replace the BME operator by a BGK-type relaxation operator
(below referred to as the BGKME operator) which has the same equilibria. So, for a given
f = (fu(v))m=1, the quadruple (o7, u s, Br, O r) is uniquely defined by the identity

of <m_l>ﬂ_/' 1
of _ m
prits =2 / ZICON I (64)

m>1

n,of®f(m_1)ﬂf m|v—1,tf|2
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and we consider the following BGKME equation:

1
U fou + vV = E(pfs (Muge 0 p7e)  — fé)’ vm z 1. (65)

More complex BGK models for gas mixtures have been considered in the literature (see e.g.
[34] and references therein), such as sums of binary BGK operators with mean velocities
and temperatures depending on the pair of involved species. Here, our choice is essentially
dictated by simplicity and explicit computability because our focus will be more on the
structure of the resulting Navier—Stokes system rather than in greater model generality. Of
course, in view of practical applications, it would be interesting to generalize this work to
more complex and hopefully more realistic models. This will be the subject of future research.

We introduce the Navier—Stokes mass-exchange model (NSME), of unknowns (p, u, ©, B):
R* x [0, T] — [0, 00) x R" x [0, 00) x S, as follows:

a(pm=")p) + Vi - (plm™gu) = & Vi - (v Vi), (66)
0o+ Vi (pu) =0, (67)
3 (ou) + Vi - (pu @ u) + Vi (pO(m~")g) = & Vi - (o w)), (68)
3 (plul® +np©im=")g) + Vi - (plulPu + (0 +2)pOm ™" )5 u)
=eVy- (n+2)vOVyx + 2k Vi® +2u0u)u), (69)
where
w=pOim')g, (70)
k=1 er 2 00 m 2, 1)
v=p0 ((m )5 — (m~")3), (72)
and where 5
o) = Vau+ (Va' = =(V - )1, (73)

is the traceless rate-of-strain tensor (the exponent “7” standing for the matrix transpose
operation) and

n+2

@ n @T

x=log | —2——— | =1og [ 2% 2 : (74)
e, me Z(8, 0)

is akin to a “population potential”. The coefficients i, x and v are the viscosity, heat conduc-
tivity and population diffusivity respectively. The dependence of (o, u, ®, §) on ¢ is omitted
for simplicity. We first note the following

Lemma4 (Positivity of v, k, u) We have
v >0, Kk >0, n > 0. (75)
Proof The positivity of k and u are obvious. We can express v as

(EE(EE)-(55)

o Ym m =l Ym =1 Ym

(Z5)
m=1 /M
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with D > 0 and

oy S rm L T pm
mpey Ym Yp oM Zm,pzl Y Vp m P
1 ePm oBp (p—m)2
== —— >0,

2.k 2y Ym Yp o mp
which shows that v > 0. O
Next, we have the following theorem:

Theorem 2 (NSME is a higher order approximation to BGKME).
Let f* beasolutionto (65) and define (p e, u e, © re, B re) via(64). Then, (e, u e, © pe, Bre)
satisfies the NSME system (66)—(69) up to terms of order O(&?).

Proof We will denote (pyre,uype, ®pe, Bre) simply by (p,u,®, ) and we show that
(p,u, ®, p) satisfies system (66)—(69) up to terms of order 0O(e?). We introduce gt =
(g5, )m>1 such that

& = é(f,i —p(My0.p)m). Ym=>1. (76)
We also introduce the short-hand notation
D=0;+v-V,.

By (65) and iterating with (76), we have

8m = —Dfy = —D(p(Mu0.p)m) + Oe),
and so

Dfyn = D(p(My,0.8)m + £85)
= D(p(Mu0.9)m = eD(p(Mu0.6)m) ) + O,

Hence, thanks to (64), we get

1
m
0= Zf YA I
m>1 R? 2
m|v|
1
m
= Z/ D(p(Mu,@),ﬁ)m - SD()O(Mu,G)Aﬂ)m)> mo dv + 0(82)- 7
m>1 " m|v|2

The next step is to compute D(p (M, o,5)m) in terms of spatial derivatives of (o, u, ®, B)
only, up to terms of order O(¢). First, we notice that

D(p(Mu0.9)m) = p(Mu0.9)m | Dllog p) + Dllog(Mu0,5)m) }-
From (49), we have

Bol0gZ(B.©) = 35, dplog Z(B.©) = (m). (78)
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Then, with (48), we find

D(p(My.,9)n) = p(My0.2)n | Dlog p) + (m — (m)) DB

mlv — ul? DO v—u
(muout_ )0,
® 20 ®
Now, we note that (p, u, ®, B) satisfies the EME system in non-conservative form (60)—
(63) with O(e) terms at the right-hand side. We use this to replace the time derivatives in

D(p, u, ®, B) by spatial derivatives. We get

. Du ] (79)

Vip

Dlogp =—Vy-u+@w-—u)- + O(e),

DB = (v—u)-Vif+OCe),

DO = (v—u)- VO — %@(Vx u) + O(e),

Du = ((v—u)-Vi)u— %Vx(p(ﬂ(m_l)ﬂ) = O(e).

Inserting these relations into (79) and using that

dm=") _
0 L =1~ (™" tm)p. (80)
and
/0 —1
20— 0n 1)L + 0 1)59,0 + O(1 = (m ™)y (m)3) V.,
we get
D(p(My,0.8)m) = Em + O(e), 81)
with
1
En = P(Mu,®,ﬂ)m { 6 Ty : Viu
Vip V.0
Vo [ F Ve [+ Wt ] @)
and
o2
Ty =m0 ® @)~ n”' L). (83)
V= (1=mm™"Yg) (v—u), (84)
2
Wm:<m|v ®M| —n—Zm(m_l),g)(v—u). (85)

We note that T, and V,u are rank-2 tensor while V,, and W,,, are vectors. The symbol ’:’
denotes the contraction of two rank two tensors. We denote by T = (T},),,>1 and similarly
for Vand W. Let ¢ denote any component of T, V or W. We can check that ¢ satisfies

1

m
> / Muo.pm om | 0 | dv=0. (86)
R?
m>1 2
mv|
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or equivalently that

1
m
Z/R (My,0.8)m Pm dv=0. (87)

m(v — u)
m>1 2
ml|v — u|

Indeed, this is a simple computation using (A 1) and (A 2) from Appendix 1.
Then, we insert (81) into (77) and get

1
3 / (DleMy0.p)m) —eDER) | | dv = 0. (88)

>1
"= mlv|?

We now compute the integrals. The first term D (o (My,0,8)m) gives rise to the left-hand side
of Egs. (66)—(69). Indeed, the computations are the same as those made to show Theorem 1
and are not repeated. Thus, we focus on DE,, = 9;&,, + v - V&, We have

1 1

m m
Z/Rna,gm . dv:B,(Z/nfm . dv>=0,

m>1 m|v|2 m>1 m|v|2
thanks to (86) and
1 v
m mv
Z/"v-vxé'm mv dv:VX-(Z/"f/‘m mv Qv dv),
m>1 2 m>1 2
m|v| m|v|?v

so that we are left to compute the moments of £ = (£,,)m>1 appearing at the right hand side.
We successively compute the different lines.

First line. We write

Z/Rngmvdu=Z/Rngm(u—u)varuZ/Rngm dv

m>1 m>1 m>1

= Zf Em (v —u)dv,

m>1

by the first line of (86). Since T, is even with respect to (v — u), its contribution is O by
antisymmetry. By (48), (49) and (A 2) for p = 0, we have

Z \/R’ ’O(M“’(")sﬁ)m (U - u) ® Vm dv

m>1

P efm

= -1 ! - 2y =1y N2
= Z(.0) (m™" = n ") p) Ly = pO((m ™25 — (m™")p)?) 1.

(2n®)%®z

=1 VYm

Similarly, with (A 2) for p =0 and p = 1, we get

> /R pP(Myo p)m (v —1) @ Wy dv =2p0((m?)g — ((m™"))*) 1.

m>1
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Collecting all these terms and using (72), we get

_ Vx,o vV, 0 _
Wg /n Envdv = V[ o (m)pVy B + 5 ] = [ Vi log(p®) — (m)sViB].

Now, we note that

2,Bm
Zoo=1 e | mebm
(m)pVif = =12V, =V,log| Y )

0o mePm
Zm:l Y 1 Ym

m=

Hence, using (74), we get:

®
Z/ gmUdU:UVXIOg W :VV)CX7

m=>1 m=1 Ym

which yields the right-hand side of (66).

Second line. The second line is just 0 by the third line of (86), which leads to the right-hand
side of (67) being 0.

Third line. We note that

Z/ Smmv®vdv22/ Emmv—u)® W —u)dv
n RY(

m>1 m>1

+Z/ Sm(—mu®u+mv®u+mu®v)dv

= Z/ Enm—u)® (v —u)dv,

by the second and third lines of (86). Since V,, and W,,, are odd with respect to v — u, their
contribution is 0 by antisymmetry. Now, we use (A 3) and (A 2) with p = 1 from Appendix
1 as well as (49) and get:

> /R PMy6 p)m Ty = (Vi) m (v —u) ® (v — u) dv
m>1

0
Z(B, ©)

n pm 2
Cre)t0 Y *— (Vo + (Vo + (Vo wly = =9, wl,)

'm
m>1

= pO(m~")p o) = po(u),
where we have used (70) and (73). This leads to the right-hand side of (68).
Fourth line. Using that
v|v|2 =Ww—u)lv-— ul2 + 2((v —u)® (v— u))u + v — u|2u + v|1,t|2 +2(u-v)u — 2|u|2u,
and the conservation identities (86), (87), we get

Enmuv|v)>dv = / Enm @ —u)lv—ul*dv
> [ e > [ e

m=>1 m>1

+2< Z/ Enm—u)® (v —u) dv)u.
RVI

m>1
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The second term has already been computed when dealing with the third line and gives:

(Z/ Em m(v—u)®(v—u)dv)u_2ua(u)u

m>1

Then, we focus on the first term and notice that the contribution of T, is 0 by antisymmetry.
We have, using (A 2) with p = 1 and (49):

Z/ P(My.o.8)mmVy @ @ —u)|v—ul*dv
m>1

eﬁm

20!’ n+2) Y ( -1 (m—l)ﬁ) I,

Z(ﬂ ) = Vn
= (1 +2p@((m )5 = (™)) L.
Similarly, thanks to (A 2) with p = 1 and p = 2 and (49):

Q27 0):e?

Z/ p(MuOﬁ)mmW ®(U_M)|U—u| dv =

m=>1

P
Z(B, )

Bm

3 Ll((n +2)(n+4) —n(n+2) —2n+ 2)m<m‘1>ﬁ) In
m

m>1 m

=2 + 2)p®2(2<m—2)ﬁ - ((m—‘>,3)2) I,

Collecting all these terms and using the same algebra as for the first line, as well as (71) leads
to

Z/. p(My.0,8)mm Wy ®(U_M)|U—u| dv

m=>1
_ _ Vip V0
= (1 +2)p0? ((m 2)5 — ((m l)5)2) [% ~ m)pVip + =5 ]
+(n+2)pO (m™%)p V, 0
=Mn+2)0vVx +2« V0,
which yields the right-hand side of (69) and ends the proof. O

4 Entropy and Thermodynamics
4.1 Kinetic Entropy
Proposition 5 (Kinetic entropy).

Let f = (fm)m=1 be a solution of the BME equation (56) or the BGKME equation (65).
Define the kinetic entropy by

S(f) = Zf A V’”’f"’)—l]dv, (89)

m=>1
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and the kinetic entropy flux by

¢(f) = Z/ fm y’"{’”) - 1] vdv. (90)
m=>1
Then, we have
N
37 + vx ¢ = 0.

Proof (i) for solutions of (56): we multiply (56) by log(”’" ) and use (42) as well as the

fact that < ar (f(dog(cf) — 1)) =log(cf), for any constant ¢ > 0.

(ii) for solutlons of (65): we proceed in the same way but must prove an analog of (42) for
the BGKME operator. This is classical. We remark that

mlv — ul?

M, @
10g<7/m)0( un,O,ﬂ)m = ’ ©1)

m?2

):logp—logZ+,8m—

is a linear combination of 1, m, mv and m|v|?, so that by the definition (64) of
(pf,ur,®f, Br), we have
M
/ O(f)m 10g<ymp( u%,(@,ﬁ)m)d
m

m=>1

Therefore,

> [ o o () ao

m=>1
o £ [ () [ () (2

m?2

== 3 [ (= s M0 [108 fr = lo& (00, p0m) | v < 0
m=>1

by the fact that log is an increasing function. O
Proposition 6 (Entropy and entropy flux at local equilibrium)
We have
S(oMu0.6) = p(m~" s (logp —log Z = 1= 2) + ). ©2)
d(pMy0.8) = S(PMy0.p) U. (93)

Proof With (91), we get

2 ﬁm b 2 m\wu\z
SoMuon =53 [ T ([logp—top z = 1]+ pm - "SI ) o g
m>1 !

Thanks to (A 1) and (49), this formula leads to (92). Then, we have

(pMy,0.8)
boMuop) = 3 [ oMo log (ETHED) i ]van o4
m>l m2
(pMy,0,p)
Z[ (PMuo,p)m | log (P22 ) — 1] av) u
m?2
m>1
by antisymmetry, which leads to (93). O
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4.2 Thermodynamic Entropy

The goal of this section is to introduce the thermodynamic entropy, to prove that it is equal
to the kinetic entropy S and that it is a convex function of the fluid moments (or conservative
variables). We use the framework developed in [35]. We introduce the following notations.
Let

A= , (95)

aAw =T

be the vector of parameters of the Maxwellian as written in (52), with A, B, C in R and D
in R". Note that we list the components of 4 in the order depicted in (95). We will denote
the components of A by greek exponents, namely A = (A%)y=1,... n+3, While we will keep
latin indices i = 1, ..., n for spatial coordinates. Specifically,

.....

A*=Dy, Va=1,....n, A'"T'=4A, A"*2=B AP =cC.

A is called the vector of entropic (or intensive) variables.
Likewise, we introduce p = (i,,)m>1, where, for each m, u,, is the vector of velocity
moments involved in the definition of the equilibrium moments (50), namely

mv mv
1
= , or equivalentl =
K m q y ® m
mlv|? m|v/|?

Note that we adopt the same ordering as for the entropic variable .A. Thus, we have

p=mvy, Va=1,....,n, pt'=1p?=m, p3=myv>

Finally, denote by M the vector of equilibrium moments given by (50), i.e.

P pou
-1
M=M= pim=")p . (96)
p o
E p(lul> +n®(m="1)p)

M s called the vector of conservative (or extensive) variables. Its components are the momen-
tum P, the number of particles (or population) A the mass p and the total energy E. Here
again, we have changed the ordering of the components (50) to fit the ordering of .A. Hence,

M* = puy, Ya=1,...,n,
MH = pm g M =po M= p(ul? +n®m ).
There is a one-to-one onto correspondence between .4 and M. We can pass from A to M
using (53), (55) and these relations can be easily inverted. Below, we make the structure of
this map more precise.

In the thermodynamic framework, the entropy is the Legendre transform of the Massieu—
Planck Potential [36] which we will denote by X. It is defined as a function of the entropic

variable A as follows: u
m?2

mm=2/47wmwm
n ¥Ym

m>1
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where the symbol e is the Euclidean inner product in R”*3, which we distinguish from the
inner product in R” denoted by the standard symbol ““-”. Given that

/Lm(v)o.A=mv~D+A—|—mB—|—m|v|2C,

and owing to the relation (52), we have

m3 .
7eﬂm(v) A = ,O(Mu,(:),ﬂ)m, (97)
m

with (p, u, ®, B) related to A through (53), (55), so that
Z(A) = pm™ ). (98)

But we stress that p(m~!) g can only be identified with the Massieu—Planck potential if
considered as a function of A.
Next, we note that

VAZS(A) =) / e"’”(”)'Au Wdv=" / P(Miu0.p)m B (V) dv =
n ¥Ym
m>1 m>1
by (50). Introducing a vector-valued potential ® by
O(A) =) / e"'"(”)'A dv, (99)

m>1 n VYm

we likewise see that V 4 ®; (A) is the flux in the direction x; of the Euler system (57), so that
the latter can be written as a system for the intensive variables A(x, t) as

0 (Vaz (A, 0)) + i 9 (Va®i (A, 0)) =0, (100)
i=1

or equivalently (for smooth solutions), as

n

VAZ(AX, ) A, 1) + Y V3P (Ax, 1)) 0y, Ax, 1) = 0. (101)
i=1
We have
VIS =) f 2 b4 )@t (1), (102)
m>1

where the symbol ® stands for the tensor product in R"*3 (while “®” stands for the tensor
product in R”) This shows that V AE(A) is a symmetric matrix. A similar observation can
be made for V ACD (A) foralli =1, ..., n. We immediately see that V AE(A) is a positive
matrix, as for any vector E € R”” we have

e’ vizwE=Y [ 2 2 b4 (1, 0) - 5 dv = 0
m>1 n Ym
Below, we show that ViE (A) is positive-definite which makes System (101) a symmetriz-
able hyperbolic system of equations for A.
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Proposition 7 (Strict convexity of the Massieu—Planck potential)
(i) Let p and ® be positive. Then, ViE (A) is a positive-definite symmetric matrix.
(ii) T is a strictly convex function of A in the domain of A C R"3 defined by

D2
A:{(D,A,B,C)ER”XRXRXR C <0, B—%ES}, (103)
where S is the set given by (45).
Proof (i) We write explicitly:
mv®uv mv mPv m3v/*v
V)@, (v) = mvT 1 m m|v|2
Ry (V)OI (V) = m2oT m m?  m?|v|?

m2v 2T mv|? m2 > m2v*

where the first column stands for n columns, the first line for # lines, and the upper left block
element for an n x n block. Inserting this into (102) and using (97), we realize that most of
the entries of the resulting matrix are easily computed from previous calculations. The only
one that deserves some further inspection is the lower right term because it is a fourth order
velocity moment which has not been encountered before. We have

i* = (v — ul® + u? + 2 — w).u)’
= v —ul*+ ul* +2/v — u|ul* + 4(( — u) - u)2 + even terms in (v — u).

Now, the corresponding integral can be computed by means of (A 1), (A 2). We finally get

p VAT (A)
Mu@u+0L, u (mu ((n+2)0 + (m)|ul*)u
_ * m=h 1 lul®> +nm1©
- * x  (m) lu|?>(m) +n® ’
* s x  (n+2)0mOm=Y) + 2\ul?) + (m)|ul*

where we have omitted the subscript f to the averages (m*) and we have displayed only the
upper triangular part of the matrix, owing to its symmetry. Now, let E = (¢, ¢, &, ) with
¢ eR"and ¢, &, ninR.

Assume u # 0. We define
u- u

—, {1 =C—
|ul

We remark that p—! ETVJZAZ(A)E is a quadratic form in the variables (||, ¢, ¢, &, n,)
whose matrix S is given by

g =

Jue]

0 0 0 0 0
* (m)|ul> +© |ul (m)|ul ((n +2)© + (m)|u)?)|ul
S=1 = * m=Y 1 lul* +n(m=1)©
* * * (m) |u|2<m) +n®
* * * x  (n+2)0mOm Y +2\ul?) + (m)|ul*

Provided that p > 0, showing that Vi‘)](.A) is positive-definite is equivalent to showing
that S is positive-definite. To show this, we apply Sylvester’s criterion which says that S is
positive-definite if and only if all its leading principal minors are positive. If S = (S; j)f =1
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its leading principal minors are Dy = detS; fork = 1,...,5 where Sy = (S,,)l =1 We
compute successively
D) =0,
= O ((m >|u|2 +0), (104)
D3 = O [((m ") (m) = Dlul* + O(m™")], (105)
= 0% ((m™")(m) — 1), (106)
Ds =2n0" (m ™" )((m ™) (m) — 1). (107)

We have (m~'Y(m) —1 > 0 by a similar proof to that of Lemma 4. If follows that all
determinants Dy, ..., Ds are positive.

Assume now that u = 0. Then, p~'ET V4 S (A)E is a quadratic form in the variables
(¢, @, &, n) whose matrix Sis given by

® 0 0 0
s_|* (m=1 1 nim=1e
Tl ox (m) n® ’
* % % n(n+2)0*m")
We immediately see that its four principal minors le ,i = 1,...,4 are such that le =

D;+1/0, where we have made |u#| = 0 in the formulas (104) to (107) for the D; . It follows
that the D! are all positive fori =1, ...,4.

In all cases, this shows that ViE(A) is a positive-definite symmetric matrix.

(i) By (i), X is a strictly convex function of A, for A being such that p > 0 and ® > 0. By
the proof of Prop 3, it is immediate that this domain is the set A given by (103). This ends
the proof of Proposition 7. O

Since X is strictly convex on A the map V4¥: A — R™3 A > M =V, S(A)isa
local diffeomorphism. It is also straightforward to see that V.4 ¥ is a one-to-one onto map
A — M, where

2
={(P,/\/',,0,E)ER”><]R><]R><]R N>0, p>0, LA 0}. (108)
P

Thus, V4¥: A — M is a global diffeomorphism and we denote by (V4X)~! its inverse.
Since X is strictly convex, we can define its Legendre transform
SIM)=Ae M —3%(A) with A suchthat V4XE(A) =M, (109)
which is called the thermodynamic entropy. Equivalently, we can write
SM) = ((VaZ) (M) e M= Z((VaT) " (M).
It is a classical fact, easy to check, that
VMSM) = (VAD) T M) = (VD) T (VAT (W) = 4, (110)

i.e. the derivatives of S and ¥ are inverse maps one to each other. By differentiating (110),
it follows that the following matrix equality holds:

V2, S(M) = (ViE(VMS(M))yl. (111)
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Since V4 X (A) is positive-definite for all A € A, it follows that V{,S(M) is positive-
definite for all M e M. Hence, § is a strictly convex function of M. The following statement
establishes that S given by (109) coincides with the fluid entropy (92).

Proposition 8 (Strict convexity of the entropy).
(i) The thermodynamic entropy given by (109) and the kinetic entropy (92) are equal.

(ii) The thermodynamic entropy S is a strictly convex function of the conservative variables
M for all M € M. Its second derivative VJZM S(M) is positive-definite for all M € M.

Proof Statement (ii) follows from (i) and the previous discussion. We focus on (i). We com-
pute the Legendre transform of ¥ from (109). We have

SM)=P -D+NA+pB+ EC—X(A).
Using (96) to express NV, p, E, P on the one hand, (53), (55) to express A, B, C, D on the
other hand, and finally using (98), we find

2
S(M) = p(m™")g(log p —log Z) + p(ﬂ — ﬂ)

20
Holul +npm™50) (— 5 ) +pu- (%)~ pim™)
g 20 ) g
_ n
= pm™")p(logp —log Z — 1= 3) + pp.
which is nothing but expression (92) and ends the proof. O

4.3 Onsager’s Symmetry

We note that the EME system (57) has a synthetic formulation in entropic variables, given
by (100). Now, we explore if the NSME system has a similar formulation. Before doing so,
we need to introduce additional notations.

Fora, g € {1,...,n+ 3}, we define an n X n matrix X8 as follows.
2
X — 8/L®(I,,8°‘ﬂ +eg®eq — ;ea ®eﬁ), Ya, B=1,...,n, (112)
xentl = xent? — (xrH T — (xr2eT =0, Va=1,...,n, (113)
2
xent3 — (Xn+3a)T _ 2€H®(ualn tuUQey — —eg ® Lt), Yao=1,...,n, (114)
n
Xn+ln+l — SUIn Xn+ln+2 — (Xn+2n+1)T — Xn+2n+2 — On (115)
Xn+1n+3 — (Xn+3n+1)T =+ 2)8\)@1” Xn+2n+3 — (Xn+3n+2)T =0, (116)
-2
X34 = 60| ((n + 2200 + 4k + dululP)l, + 4 pu@u), (17
n
where 0, is the n x n matrix with all entries equal to 0 and where we recall that (e, ..., ;)

denotes the canonical basis of R”. We note that X% = (X7 5o that the n(n+3) x n(n+3)
matrix X defined by blocks by X = (X”‘ﬁ)m pe(l,....n+3) is symmetric:

X =X7. (118)

Now, we have the following
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Proposition 9 The NSME system (66)—(69) has the following equivalent formulation (for
smooth solutions):

n+3

(A))+Vx~(%(,4))=Vx~(ZX“ﬁVXAﬁ), Va=1,....,n+3. (119
p=1

39T
$<3Aa

Remark 4 The form (119) shows that the NSME system is consistent with the formalism
of nonequilibrium thermodynamics [32]. Indeed, the contributions of diffusion to the time
derivatives of the conservative variables M* = ;’fa are driven by divergence of fluxes which

aAP
dx;
is described by the matrix X. The fact that this matrix is symmetric reflects a general feature
of nonequilibrium thermodynamics called Onsager’s symmetry. When o # 8, Onsager’s
symmetry states that the contribution of the gradient of AP to the time-derivative of M® is the
adjoint of that of the gradient of .A“ to the time-derivative of M¥?. For instance, gradients of
C (generated by temperature gradients) induce temporal changes in the population equation
(i.e. the equation for A/), as the non-zero value of Xn+1n+3 shows. But then, gradients in
A (generated by gradients in the population A for instance) induce temporal changes in the
energy equation in the exact same amount (as X" 371 = X#+1743) Similar considerations
hold true for any pair of components of the vector D, or betwen pairs (D, C) where D, is
any component of the vector D.

are linear combinations of the gradients of the entropic variables . This linear combination

Proof As (100) shows, the left-hand sides (66)—(69) can be written in the form of the left-
hand side of (119). So, we are left to prove that the right-hand sides of (66)—(69) can be
written in the form of the right-hand side of (119).

The right-hand sides of Egs. (68), (66), (67) and (69) correspond to the right-hand side of
(119 fora =1,...,n,a =n+ 1,0 =n+2and o = n + 3 respectively. From the fact
that the right-hand side of the mass conservation equation (67) is identically 0, we conclude
that we can write it in the form of the right-hand side of (119) setting

X”+2a=0n, Voz=1,...,n=3.

Now, we consider the population conservation equation (66). Its right-hand side is equal
to eV, - (vVy x). Thanks to (74), (55) and (53), we can write

] P "2 00t Plogn) = A+ T2 ( )+”1 )
= 10 (0] — 10 ) = (0) —_ — 10 ).
X=8ZpB e T Ty YT, 8 2 B\ T o) T8
Hence,

evVix = ev(Ved + (1 +2)0V,C). (120)

Comparing with (119) for« =n + 1, we get

XY —0, Va=1,...,n and a=n+2,
Xn+ln+l =¢evl,, Xn+ln+3 = +2)8V®I”.

Now, we turn ourselves to the momentum conservation equation (68). Using (53), we first
observe that
duj 10 (Dj)_ 1 0D; D; aC  _9D; aC

__ 2j 9t _ 20u; o=
2C ox; 202 ox; o Mgy

xi  20x;

c
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Hence
() O[aD 5|
Oui =G i
it ax; Bxa 8x]
aC AIC 2~ oC
2@[ i —— —_— == i—3 ]
+ i 0Xgy t e ox; n ZM] ox; “
So, we have
Moy (u) = @ + ®,
with
0D, oD
- cuef 0]
@ =en 0x; axa Bx]
z 2 dDg
—en® Y [5,-,,-3(1,3 + 8jubip = ~Biabip | 5L
; Xj
J.B=1 ’
n
2 oD
=eu® Z [In(sa,g +ep ey — eo, ® eﬂ] et
. ij ax]
J.B=1
and
acC acC . aC
@—2£M®[ula +u aaxl 72 ja ou]
2 @Zn:[ 8jo + Ued 23 ] oC
— 2 y UnS:: u
128 pr i%ja a0ij i 3XJ
- 2 aC
= 2£M®Z [u R eq +uyl, — —eqy ®u] —
= n ij 8xj
Comparing with (119) fora = 1, ..., n, it follows that

2
<o — w@[lnaaﬂ +ep @eu— ey ®eﬂ], Va, B e {l,....n},
xertl — xent2 — 0, Vae(l,...,n},

2
xont3 = 28,u®[ualn +UuRey — —eq @ u], Ya € {1,...,n}.
n

(121)

(122)

(123)

(124)

(125)

(126)

Finally, we consider the energy conservation equation (69). From (120), we immediately

get that
e(n +2)vOVyx = (n+2)evOV, A + (n +2)%evO?V,C.

Then, using (53), we get
2ekV, O = 48K®2VXC.

Finally, thanks to (122), (124) and (126), we have

28;,L(O'(I/t)u)i =00+ @,

@ Springer

(127)

(128)



Binary Particle Collisions... Page310f39 27

with
“ 2 dDg
® =210 Y []ka,,g+a,55,k— =500 Ju; T
Jk,p=1
n
oD; D; 2 8DJ
= 2610 Y [uj - ot
o _Z”fax,»Jrfax n 3x]
j=1
" 2 D
=2eu® Z I:uj&'ﬂ-f—uﬁ&'j —u; 8”3] o B
J.p=1 Y
oD
=2eu0 Z [e;;@u—i—u,gl — u®elg] ﬂ
ij 8)(]
J.B=1
and
" 2 acC
@ = 4en® Z I:ul'(sj'k +ujdix — *Mkaij]ujai
= n X
n
n—2 aC aC
=460 Y ["Suiuy o+ ud ]
el ; " uluJBXj +u ’Bx,
“rn—-2 aC
- 2
:48M®Z[ uij + |ul SU]E/'
j=1 '
- -2 aC
) [ 2 ] o=
e ) (Wl + = Su@ul oo

j=1
It follows that

n
2
2epo (w)u = 28,u®{ E I:e,g Qu+tuply —-u® eﬁ]VxDﬂ
n
B=1

-2
+2[|u|21,,+ u®u]VxC}. (129)
Then, adding (127), (128) and (129), we get

2
XmHe = 28M@[ualn +ea @u— —u®ea], Va=1,...,n,
n

X = (n+2)ev01,, X2 =g,

4n —2
xnt3nt3 _ s[(n +2)200? + 4@ + 4/,L®|u|2]1,, L= eusu
n

Finally, we can check that all the formulas for X%? found in this proof coincide with
Egs. (112)—(117). O

4.4 Entropy Dissipation

Before stating the evolution equation for the entropy, we need the following

@ Springer



27  Page 320f39 P.Degond, J.-G. Liu

Lemma5 (Nonnegativity of X).
The matrix X is nonnegative. More precisely, let (Y*)*=1"+3 be n + 3 vectors of R", of
components Y = (Y{)i=1,...n. Denote also the (i, j)-the entry of the n X n matrix XeB by

Xf‘/ﬁ . Then, we have

n+3
3 @)TXPYE = o[y 4 (0 + 207" 4 dew@? |y
a,Bf=1

a,u(H)n
+22

i,a=1

2
(v ve =23 vou)
n
n

2

3 3 3

—|—2<u,<Yo’lH + uaYl.'H' - E lu.,-Y]’-lJ'_ 8,-0,)
]:

2
. (130)

and the right-hand side is nonnegative by (75).

Remark 5 The matrix X is not positive definite because (130) offers no control on Y21t
reflects the fact that X is singular because all lines and all columns associated with Y12
have entries equal to zero.

Proof Using (112)—(117) and the same computation as in (123) and (125), we get

n+3 n 2 n .
3 v Pyt = gu(a{ 3 Yl-"‘[Y,-"‘ +ri- Y Y]-.’(Sio,]
a.p=1 ia=1 e

n

2 n
+4 Z re [u,-YO’j“ Tl Yin+3 - Zqu7+35ia]}
j=1

i,a=1

+ev|Y"™H P 4 2(n +2)ev@ Y3 Lyl

2),9”@ - Y™ (131

+8[(n +2)200? + 402 + 4;/,@)|u|2]|1/"+3|2 + 4(1 _z
n

We have

n

) 2 n . l n ) ) 2 n )
Yovelvravi- S v =5 X [ve+va][re v - S Y vs]
j=1

i,a=1 j=1 i, 1
2 n . 2
¥+ v - ;ZY}‘SW] :
j=1

I
(S}

[
I

N =

M-

where the first equality is due to the fact that the tensor (Yi“ + Y(f[ — % Z?:l ij Sia)ia 1S
invariant by exchange of i and « and the second equality come from the trace of this tensor

being zero, i.e.
n n

3 [re = 23 Vs =0,

i,a=1 j=1
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Thanks to the same algebra, we have

n

2 n
Z ye I:uiyoi;l+3 T g Yin+3 - Z“-/’ Y}’”S,-a]
Jj=1

i,a=1

1 < . 2 . ; s M I
2 Z I:Yia+Y‘;_;ZYJ!6i“][uiY£+ +”aY,‘n _;X;qu}l (Sia],
]:

ia=1 j=1
and
2 . n+3 n+3 n+3 2
,Z[ulY +uoY; —72 lY SW]
n i,a=1 j=1
n
— Z u; Yn+3[u Yn+3 + g Yn+3 _ 72 ]Yn+38m:|
i,a=1
n
Hence
8,u®{ Z y“[ya +Yi— fZY’ ,a]
i,a=1
+4 Z Kal:ul_yg+3+ua);irz+3 Z JYn+38m:|
i,a=1
2
Falu Py +4(1 - 7) (u - Y"+3)2}
n
EuO 2
e > (Yf"+Y;—;ZY}5m>
i,a=1 j=1
n 2
+2(u~Y"+3 Fugymt Z 2 > uyits, )
o asg n 4 Jtj o
j=1
Inserting this into (131), we easily get (130). O

We can now prove the

Proposition 10 (Entropy inequality for the NSME system).
Let (p, u, ®, B) be a smooth solution of the NSME system. Let S be the entropy (equivalently
given by (92) or by (109)). Then, S satisfies the following equation

8tS+Vx-¢~>:—8{v|Vxx|2+K’ ] +—o—(u) a(u)} 0, (132)

where the entropy flux at the NSME level ¢ is given by

- n V0
¢=¢>+8{—v(logp—logZ—l—E)Vxx-i-lc - } (133)

with ¢ = Su being the kinetic entropy flux at equilibrium (93). The right-hand side of (132)
is nonpositive because of (75).
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Remark 6 Setting ¢ = 0 in (133), we get for smooth solutions of the EME system:
S+ V-9 =0,
showing that S and ¢ are the entropy and entropy flux pairs of the EME system (of course,
for discontinuous solutions, the left-hand side is only smaller than or equal to 0).
Proof Thanks to (110), we can write
n+3

0S8 oM 3/\/1 3/\/10’
— = V = —
o1 (M) MS(M) o 3 Ae E

Then, we use (119) and get

n+3 3b n+3
S+ ZA“VX (Gae) = 2 Ve (xvet?)ac.
a,p=1
On the one hand, we have
n+3 n+3
;Aavx ) (;%) :;[Vx ) (Aaaaj;x) B ;%'VXAQ:I

n+3

(ZA"‘ e CID(A)).

On the other hand we can write

n+3 n+3 n+3
3 V. (X“ﬁvaﬁ)A“ —V, [ 3 xaﬂvaﬂA“] — ) (VA X VAP
a,p=1 a,B=1 a,p=1
Thus, we can write
n+3
US+Vi-g=— Y (VA XV, AP, (134)
o, B=1
with
_ n+3 9D n+3
p=) A—— -0 - Y XPFv AU (135)

0A* wfol

Now, with (130) applied with Y¥ = V,.A4% and with (120), (121), (128), we have

n+3
3 (VAT XY VAP = e0|ViA + (1 +2)OV,C| + 4ec@?|V,C|
a,Bf=1

£,u® oD
Z‘ 8xl 8xa_728x]]1)
2
+2(ul§C +Lta X Z )

‘ +—U(u) o(u), (136)

= 8v|Vxx|2+£/c‘
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which, inserted into (l~34), yields (132).
Now, we compute ¢ given by (135). Using (99), (93) and (94), we see that

n+3 aq)
Z - o= Z/ e“’”‘A /,L e A— 1)vdv
el 8AO[ mal n ¥Ym
M,
_Z/ p(Mu®ﬁ)m<logw—l)vdv
m>1 m?
= ¢(pMy0.8) = ¢ =uS. (137)

Then, because ZE'EI XV, AP is another way to write the right-hand sides of the NSME
system (66)—(69), we have

n+3
> XV AP A = g[,w(u)p + VAV x + C((n +2)vOV, x + 2k VO + 2;w(u)u)]
a,f=1

n—+2 vV,
—8vi)((logp—logZ— . )—K = (138)
where the second equality comes from (53), (55). Now, inserting (137) and (138) into (135)
leads to (133) and ends the proof. O

Remark 7 1t is possible to derive the entropy/entropy-dissipation identities (132), (133)
directly from the NSME system (66)—(69). However, our proof reveals the structure (134),
(135) of these identities. This structure is generic to all systems deriving from thermodynamic
principles.

From Prop. 10, we deduce the following corollary, whose proof is immediate. It shows
that the NSME system is compatible with the second law of thermodynamics.

Corollary 1 (Entropy decay in the NSME system).

Let (p, u, ®, B) be a smooth solution of the NSME system in a smooth domain 2 such that
the normal entropy flux ¢ - n = 0 across the boundary 9 vanishes (where 1 is the outward
unit normal to 02). Then, the integral of S over 2 is non-increasing in time, i.e.

<t <+— /S(x,tl)dxz/ S(x,n)dx.
Q Q

Furthermore, if o (1), V,® or V, x are non-zero over a non-negligible subset of Q2 for all
time within an open subinterval of (11, t2), then, the previous inequality is strict.

The entropy dissipation inequality has a mathematical consequence which we highlight
on the linearized NSME system about a uniform state described by the entropic variable Ajy.
By (119), this linearized system can be written

n+3 n+3
aAP R
.V, AP
;aA"‘aAﬁ (o) =5 +ﬁ§ s Ag AP A0 - VA
n+3
=vx.(ZX“ﬂ(Ao)vaﬂ), Va=1,....,n+3. (139
p=1

For this system, we have the
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Proposition 11 (Parabolicity of the linearized NSME system).
The linearized NSME system (139) is parabolic. In particular, consider it on a domain Q2
with Dirichlet boundary conditions Alyq = 0. Then, we have the following energy identity:

n+3
((VAD)(Ag)A) o Adx = / D (VA Xap(Ag) VeA* dx < 0. (140)
g o, B=1

1d
2dt Jo
There exists a constant C > 1 such that for any 0 < t; < tp, we have

/(AoA)(x,tz)dxSC/(AQA)(x,n)dx. (141)
Q Q

Proof Since the matrix (Vi‘ 3)(Ap) is positive definite, parabolicity is equivalent to the
positivity of the matrix X which was proved in Lemma 5.
We can re-write (139) as

IA o dA s
2 2 %, _ . af B
(VA G + D (VAP (o) g = Vo (ﬁ§=1ﬁx (A0) Vs A?).

Then, we multiply this equation by .A* componentwise, sum them over « and integrate the
result over the domain Q2. Owing to the fact that (ViZ)(.Ao) is symmetric, the first term
gives the first term of (140). Because the matrices (V34¢i)(Ao) (fori =1,...,n) are also
symmetric, the second term leads to

1 & 9 )
2 ;/Q E[((qu)i)(Ao)A) . A] dx

1 n
2 Z/asz ((V3®)(Ap)A) e An; dy (x) =0,
i=1

due to the boundary conditions. Here (n; );7:1 are the n components of the outward unit normal
n to the boundary 02 and dy (x) is the surface measure on 9€2. The computation of the last
term is done in a similar way and this leads to (140).

Finally, since the matrix (ViZ)(Ao) is positive definite, there exist two constants 0 <
Cy < Cj such that

ClAe A < (V4E)(Ap)A) e A < CrAe A
Then, (141) follows with C = C»/Cj. ]

5 Conclusion

In this work, we have derived a new Boltzmann operator for binary collisions with mass-
exchange. We have investigated its properties, notably entropy dissipation and equilibria, and
derived macroscopic models of Euler or Navier—Stokes types in the hydrodynamic regime.
Finally, we have shown that the Navier—Stokes type macroscopic model complies with the
requirements of nonequilibrium thermodynamics, namely, Onsager’s reciprocity and entropy
dissipation. This work opens many interesting research areas. First, existence and uniqueness
of solutions to this Boltzmann equation or its Navier—Stokes counterpart remain to be proved
even in the spatially homogeneous case (see [27, 29, 30] for reviews on these questions in the
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case of the classical Boltzmann equation and [37-39] in the case of the compressible Navier—
Stokes equation). Then, conducting a rigorous study of the hydrodynamic limit in the spirit
of Caflisch’s seminal work [40] would be of great interest. Other kinds of hydrodynamic
limits could be investigated, such as those leading to incompressible systems [28, 41-43].
This study has been partly motivated by the dynamics of animal groups. So, pursuing in this
direction, one could replace the rarefied gas dynamics Boltzmann collision operator by an
operator modelling collective dynamics such as the Vicsek—Fokker—Planck model [44—48]
or the Bertin—-Droz—Grégoire collision model [49, 50]. However, in the latter case, the study
would be made difficult by the non-availability of analytic formulas for the equilibria [51].
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Appendix A : Remarkable Formulas

In this appendix, we recall the following formulas whose proofs are classical.

/‘nefm%mz v — ul?P dv = (27’;@)" H(n+2k)< ) (A1)

Ullz
/e g lv —u|2p(v—u)®(v—u)dv

(2”®) ]_[( +2k)( )’ T a2

fn eiml%{‘2 (v — u)®4dv = (@>% <9>2E (A3)

m m

where [ is the four-rank tensor given by

Eijke = 8ij8ke + 8ix8je + 8iedji.
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