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Abstract

We consider a Hele-Shaw model that describes tumor growth subject to nutrient supply. The model is 
derived by taking the incompressible limit of porous medium type equations, and the boundary instability 
of this model was recently studied in [16] using asymptotic analysis. In this paper, we further prove the 
existence of nonsymmetric traveling wave solutions to the model in a two dimensional tube-like domain, 
which reflect intrinsic boundary instability in tumor growth dynamics.
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1. Introduction

Tumors remain one of the most severe diseases threatening human life and health. The in
stability of the tumor boundary, characterized by the formation and evolution of finger-like 
protrusions, plays a crucial role in tumor invasion and metastasis. These structures enable tumor 
cells to infiltrate surrounding healthy tissues more efficiently, contributing to the aggressiveness 
of malignant tumors [2,7,53]. Consequently, understanding the mechanisms underlying these 
morphological instabilities is of both theoretical and clinical significance. This paper investigates 
these mechanisms within the framework of a mathematical model that has gained increasing at
tention in recent years [11,12,26,35,46]. To highlight the relevance of this model, we first review 
the development and classification of mathematical tumor growth models.

Mathematical modeling has become a powerful tool for studying tumor growth dynam
ics, offering insights into the fundamental mechanisms that drive morphological instabilities 
[3,8,19,23]. Existing tumor growth models can be broadly classified into two main categories. 
The first category consists of reaction-diffusion models, which describe the spatiotemporal evolu
tion of tumor cell density using parabolic-type partial differential equations (PDEs) incorporating 
proliferation, diffusion, and chemotaxis [44,49]. These models effectively capture the macro
scopic dynamics of tumor expansion and have been extensively studied in mathematical oncol
ogy. The second category includes Hele-Shaw-type free boundary models, which were originally 
developed to describe the flow of a viscous fluid confined between two closely spaced parallel 
plates and were first applied to model tumor growth by Greenspan in [24,25]. In this frame
work, the tumor is treated as a saturated domain with a moving free boundary, where the internal 
pressure determines the boundary evolution through Darcy’s law. These models have been par
ticularly useful for studying the formation of finger-like structures observed in tumor invasion.

A fundamental challenge in the mathematical study of Hele-Shaw-type tumor growth models 
is the analysis of their well-posedness and boundary instability. Unlike Stefan problems [17], 
parabolic-type free boundary problems, Hele-Shaw-type models lack time regularization due to 
their elliptic nature. Although local existence results have been established [5], its long-time gen
eral well-posedness remains an open problem. In the past two decades, two major advances have 
been made in addressing the mathematical challenges of these models. For one thing, Friedman 
and his collaborators studied a class of Hele-Shaw-type tumor growth models by perturbing radi
ally symmetric solutions, establishing the existence of nonsymmetric steady-state solutions with 
simple-mode perturbations [3,22]. Their results provided key insights into the mechanisms of 
boundary instability. For another thing, Perthame et al. rigorously derived a class of Hele-Shaw
type free boundary problems as the incompressible limit of porous medium equations (PME), 
bridging the gap between reaction-diffusion models and Hele-Shaw models [46]. This connec
tion offers a unified framework linking two widely used modeling paradigms. In the following, 
we refer to such incompressible-imit models as the PME-derived Hele-Shaw models.

Although the PME-derived Hele-Shaw models share some similarities with those initially pro
posed by Greenspan [24,25] and further developed by Friedman et al. [5,10,18--21], they exhibit 
significant differences. Notably, in the Greenspan-type models, the pressure can take negative 
values and the boundary conditions depend on the curvature of the interface. Moreover, in these 
models, the coefficient in front of the curvature term usually serves as the bifurcation parameter 
in boundary instability studies [4,9,10,27,52]. In contrast, in the PME-derived models, the pres
sure, as the limit of a density power function, must remain nonnegative and vanish at the tumor 
boundary. For a detailed discussion of these differences, we refer the reader to [14]. Importantly, 
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while significant progress has been made in analyzing boundary instabilities in Greenspan-type 
models, the instability properties of PME-derived Hele-Shaw models remain largely unexplored.

The objective of this paper is to investigate boundary instability in a PME-derived Hele-Shaw 
type tumor growth model in dimension two. The model under consideration, first proposed in 
[47], is given by

−Δp = G0c, in D(t), (1.1a)

p = 0, on ∂D(t), (1.1b)

−Δc + λc = 0, in D(t), (1.1c)

−Δc + c = cB, in R2 \ D(t), (1.1d)

where G0, cB,λ > 0, and x ∈ D(t) ⊆ R2 represents the tumor domain at time t , p(x, t) is the 
internal pressure, and c(x, t) denotes the nutrient concentration. The boundary evolution follows 
Darcy’s law:

v|∂D = −∇p · n|∂D, (1.1e)

where n stands for the outer normal vector on the free boundary. The model (1.1) can be inter
preted as follows: G0c is the growth rate function. Within the tumor, nutrients are consumed by 
tumor cells at a rate of λ, while outside the tumor, nutrients are supplied by the vascular network 
in the healthy region, with the supply rate proportional to the concentration difference cB − c for 
the density of the background nutrients cB .

A recent study by Feng et al. [16] investigated the boundary instability of (1.1) using an 
asymptotic analysis approach, which complements the current understanding of this model [15, 
33,38,39,47]. They initialize a small perturbation to (1.1) around the symmetric solutions with 
perturbation profiles given by cosine functions and perturbation amplitude ε(t) small enough, 
which reduced the evolution of the boundary perturbation to the dynamics of the perturbation 
amplitude, in particular, they derived the so-called boundary evolution equation (see [8]):

ε−1 dε

dt 
= E(λ, l),

and characterized the boundary instability by determining the sign of E(λ, l). When it takes a 
positive value, the finger-like structures grow; otherwise, the boundary degenerates to the sym
metric one. The main result in [16] interprets that the nutrient consumption rate λ can trigger 
the boundary instability in (1.1). Specifically, the boundary remains stable for any perturbation 
frequency if λ ≤ 1. However, for λ > 1, there is a threshold value for the perturbation frequency, 
below which the boundary instability occurs, although higher frequencies remain stable. Re
cently, the boundary instability for the same model in dimension three has been explored using 
asymptotic analysis in [40].

In this paper, we further reveal the intrinsic boundary instability of model (1.1) by proving the 
existence of nonsymmetric traveling wave solutions in a tube-like domain. The proof is based 
on linking such traveling wave solutions to the nontrivial bifurcation branches to a nonlinear 
functional equation

F(ξ,λ) = 0,
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where ξ is a function that describes the boundary profile and λ is the parameter of nutrient con
sumption rate in the model. The symmetric traveling wave solutions of (1.1) are naturally linked 
to the branch of trivial solutions (0, λ). Our main result demonstrates that the above functional 
equation admits nontrivial solutions (for which ξ �= 0), and such solutions can be interpreted as a 
curve parameterized by ε in the (ξ, λ) phase plane. We summarize it as follows (see Theorem 3.8
for a more precise version):

Theorem 1.1. For each perturbation frequency l ∈ N , there exists a bifurcation point λl
0 such 

that one can find a bifurcation branch (ξε(y), λε) (parameterized by the small parameter 0 <

ε � 1) starting from (0, λl
0) such that F(ξε(y), λε) = 0. Thus, there exist nontrivial traveling 

wave solutions to the model with the boundary profile given by ξε(y) associated with nutrient 
consumption rate λε .

The proof of the theorem is carried out by investigating the Fréchet derivative of the nonlin
ear map F(ξ,λ) on the line (0, λ), denoted as Fξ(0, λ). In particular, we show that Fξ (0, λ) as 
a bounded linear operator can be characterized in terms of an eigenvalue problem (see Proposi
tion 3.4, Remark 3.5, and Remark 3.5), with the complete basis of eigenfunctions given by cosine 
functions, and the associated eigenvalues coincide with E(λ, l). Finally, utilizing the explicit ex
pression of E(λ, l), we conclude the proof by determining the bifurcation points and verifying 
the assumptions of the celebrated Crandall-Rabinowitz theorem (Theorem 3.7).

As discussed above, model (1.1) is derived from taking the incompressible limit of the PME 
type model (see (2.3)-(2.7) below). Therefore, we provide a detailed literature review of incom
pressible limit studies in tumor growth models. Perthame et al. first generalized related studies to 
tumor growth models in the seminal work [46], which facilitates numerous impressive works 
in this direction [11--13,26,35,37,41]. The Hele-Shaw asymptotic limit of the tumor growth 
model [11,45,46,48] was initially studied. For the tumor growth model with Brinkman’s pres
sure law governing the motion, the authors in [37] established an optimal uniform convergence 
of the density and the pressure, where the optimality says the convergence in L∞

loc norm. The 
two-species case’s Hele-Shaw (incompressible) limits were proved in [12,13]. The Hele-Shaw 
limit of the PME with the non-monotonic (even non-local) reaction terms through the approach 
of the obstacle problem was completed in [26,35]. The existence of weak solutions and the free 
boundary limit of a tissue growth model with autophagy were obtained in [41], respectively. 
The singular limit of the PME with a drift was discussed in [36]. Recently, the convergence 
of free boundaries in the incompressible limit of tumor growth models was considered in [50]. 
In addition, the incompressible limits for chemotaxis, even with growth effect, were shown in 
[6,28,29].

Before concluding, we draw the reader’s attention to recent works [32,34], which investigate 
the boundary behavior of models closely related to (1.1), but with nutrient dynamics governed 
by a parabolic type equation. In [32], the authors establish boundary regularity for the coupled 
model and further demonstrate that when nutrient diffusion is absent and cell death is neglected, 
the tumor density exhibits a regularizing effect. Based on this, [34] shows that if nutrient diffusion 
is small, the tumor patch boundary remains within a small neighborhood of the smooth boundary 
obtained in the nondiffusive case studied in [32].

Organization of this paper. In Section 2, we provide a formal derivation of the Hele-Shaw 
model by taking the incompressible limit of a density model in the type of porous medium equa
tion. In Section 3, we prove the existence of nonsymmetric traveling wave solutions to this model 
in a tube-like domain by using the Crandall-Rabinowitz Theorem.
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2. Model derivation

This section is devoted to providing a formal derivation of the model (1.1) by taking the 
incompressible limit of a cell density model of the PME type. We begin by introducing this cell 
density model in the following subsection.

2.1. A cell density model of PME type

We let ρm(x, t) to denote the tumor cell density, start from the initial state ρm,0(x), and Dm(t)

be the supporting set of ρm(x, t) that is

Dm(t) = {x|ρm(x, t) > 0} . (2.1)

Physically, it presents the tumoral region at time t . We assume the pressure inside the tumor 
follows the constitutive relationship of

Pm(ρm) = m 
m − 1

ρm−1
m , (2.2)

and the tumor cell moving velocity is governed by the Darcy’s law V = −∇Pm. Thus, in partic
ular, the boundary expansion is characterized by V |∂Dm = −∇Pm|∂Dm and Dm(t) remains finite 
for any t < ∞ provided D(0) is compact. On the other hand, we employ cm(x, t) to denote the 
nutrient concentration and assume the cells’ production rate is proportional to it. With the above 
assumption, the evolution of ρm satisfies the following porous medium equation (PME) with 
source term:

∂tρm − ∇ · (ρm∇Pm) = G0cmρm, t ⩾ 0, G0 > 0. (2.3)

Regarding the nutrient concentration cm, it is governed by the following reaction-diffusion equa
tion in general:

τ∂t cm − Δcm + Ψ(ρm, cm) = 0, (2.4)

where the parameter τ ≥ 0 characterizes the nutrient change time scale, and the binary function 
Ψ(ρm, cm) describes the overall effects of the nutrient supply outside the tumor and the nutrient 
consumption inside the tumor. Considering the timescale parameter τ � 1 (see, e.g. [1,4]), we 
drop it to get the elliptical form of nutrient equation,

−Δcm + Ψ(ρm, cm) = 0. (2.5)

Then, we focus on the so-called in vivo regime in [16], in which the nutrients are provided by 
vessels of the healthy tissue surrounding the tumor. Mathematically, we assume the nutrient 
is consumed at a rate of λ > 1 in the tumor cell saturated region Sm(t) = {x|ρm(x, t) ≥ 1}. 
While, outside Sm(t), the nutrient supply is determined by the concentration difference from 
the background, cB − cm, with the rate of (1 −ρm)+. Thus, the binary function takes the form of

Ψ(ρm, cm) = λρmcm · χSm − (1 − ρm)+(cB − cm) · χSc , (2.6)

m
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where f+ = max{f,0}. Or equivalently,

−Δcm + λρmcm = 0, for x ∈ Sm(t), (2.7a)

−Δcm = (1 − ρm)+(cB − cm), for x ∈ Rn \ Sm(t). (2.7b)

By now, we have finished introducing the cell density model ((2.3) coupled with (2.6), equiv
alently, (2.7)).

2.2. A formal derivation

In this subsection we derive (1.1) formally. Firstly, by multiplying mρm−1
m on the both sides 

of equation (2.3) one gets the equation for pressure

∂tPm = |∇Pm|2 + (m − 1)Pm (ΔPm + G0cm) . (2.8)

Then, by sending m → ∞ and let (ρ∞,P∞, c∞) denote the limit density, pressure, and nutrient, 
respectively. One can formally obtain the so-called complementarity condition:

P∞(ΔP∞ + G0c∞) = 0. (2.9)

At the same time, the limit density ρ∞ satisfies the following equation in the distributional sense:

∂

∂t
ρ∞ − ∇ · (ρ∞∇P∞) = G0ρ∞c∞, (2.10)

with P∞ compels ρ∞ only take value in the range of [0,1] for any initial date ρ∞,0 ∈ [0,1]. And 
P∞ belongs to the Hele-Shaw monotone graph:

P∞(ρ∞) =
{

0, 0 ⩽ ρ∞ < 1,

[0,∞) , ρ∞ = 1.
(2.11)

Observe that, in general, the supporting set of ρ∞ is larger than that of P∞. However, a transpar
ent regime called ``patch solutions'' exists for a large class of initial data, in which the two sets 
coincide with each other, denoted by D∞(t). At the same time, the limit density evolves in the 
form of ρ∞ = χD∞(t), where χA presents the characteristic function of the set A. In this specific 
regime, (2.7) reduce to

−Δc∞ + λc∞ = 0, for x ∈ D∞(t), (2.12a)

−Δc∞ = cB − c∞, for x ∈ Rn \ D∞(t). (2.12b)

While, (2.9) and (2.11) together yields

−ΔP∞ = G0c∞, in D∞(t), (2.13a)

P∞ = 0, on ∂D∞(t). (2.13b)
6 
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Finally, by dropping the subscripts in (2.12) and (2.13), and replacing P by p in (2.13), one gets 
the desired model (1.1). We emphasize that before taking the incompressible limit, the pressure 
function (2.8) and the nutrient functions (2.7) are coupled strongly to each other. However, for
tunately, by taking the incompressible limit and further restricting ourselves to the patch solution 
regime, the two equations decoupled automatically.

The above derivation can be presented rigorously. For the reader’s convenience, we provide a 
complete proof in Appendix A.

3. Bifurcation analysis

This section is dedicated to proving the existence of nonsymmetric traveling wave solutions 
for (1.1) in a tube-like domain. We begin by introducing the necessary notations in Section 3.1, 
followed by solving symmetric solutions in Section 3.2. In Section 3.3, we describe the nonsym
metric solutions obtained by perturbing symmetric ones and outline our proof strategy. Finally, 
Sections 3.4 through 3.7 present the detailed proof, following the framework established at the 
end of Section 3.3.

3.1. Model set up

To begin with, let Ω denote the entire tube-like domain defined as follows,

Ω = {(x, y) | (x, y) ∈ (−∞,+∞) × [−π,π]} , (3.1)

and we post periodic boundary conditions for the y variable. For any 2π periodic even function 
ξ(y), the tumor region is defined by

Ωξ = {(x, y)|x ≤ ξ(y), y ∈ [−π,π]} , (3.2)

and the associated boundary is given by

Bξ = {(x, y)|x = ξ(y), y ∈ [−π,π]} . (3.3)

We employ the superscripts (i) and (o) to denote the solutions inside and outside the tumor region, 
respectively. Inside the tumor region, the nutrient and pressure (c(i)(x, y; ξ),p(i)(x, y; ξ)) satisfy 
that

−Δc(i) + λc(i) = 0, in Ωξ , (3.4a)

−Δp(i) = G0c
(i), in Ωξ . (3.4b)

In contrast, outside the tumor region, we require (c(o)(x, y; ξ),p(o)(x, y; ξ)) to satisfy

−Δc(o) + c(o) = cB, in Ω \ Ωξ , (3.4c)

−Δp(o) = G0c
(o), at Ω \ Ωξ . (3.4d)

The inner solutions and the outer solutions are matched at the boundary in the following sense
7 
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c(i) = c(o), at Bξ , (3.4e)

∂

∂n
c(i) = ∂

∂n
c(o), at Bξ , (3.4f)

p(i) = p(o) = 0, at Bξ , (3.4g)

where ∂
∂n

represents the outer normal derivative of the tumor region Ωξ on the boundary Bξ . 
Besides, we also require that

c(i) < ∞, at x = −∞, (3.4h)

c(o) = cB at x = +∞, (3.4i)

p(i) < ∞, at x = −∞. (3.4j)

Note that the pressure is extended to the entire domain only for technical purposes and, thus, we 
do not require p(o)(x, y; ξ) to be bounded at x = +∞. And, for notation simplicity we introduce:

c(x, y; ξ) := c(i)(x, y; ξ) + c(o)(x, y; ξ), p(x, y; ξ) := p(i)(x, y; ξ) + p(o)(x, y; ξ). (3.5)

We emphasize that for arbitrary (ξ(y), λ), the boundary profile is not steady in general; it tends 
to evolve according to Darcy’s law, and the normal speed v on the boundary is given by

v|Bξ
= −∇p(i) · n|Bξ

, (3.6)

where n stands for the outer normal vector on Bξ .
Our goal is to demonstrate that perturbing the symmetric solutions, where ξ(y) ≡ 0, of equa

tion (3.4) can result in nontrivial solutions, where the boundary profile ξ(y) �= 0 remains steady 
and propagates to the right at a constant speed. To achieve this, the next subsection is dedicated 
to solving for symmetric solutions.

3.2. Symmetric solutions

For symmetric solutions, the tumor occupies the left half of the tube and we denote it by Ω0
as follows

Ω0 = {(x, y)|x ≤ 0} , (3.7)

and the corresponding boundary is given by

B0 = {(x, y)|x = 0} . (3.8)

Provide any λ > 0, by solving (3.4) but with Ωξ and Bξ replaced by Ω0 and B0, respectively, we 
get symmetric solutions as follows:
8 
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c
(i)
0 (x) = cB√

λ + 1
e
√

λx, for x ≤ 0, (3.9a)

c
(o)
0 (x) = cB − cB · √λ√

λ + 1 
e−x, for x ≥ 0, (3.9b)

p
(i)
0 (x) = G0 · cB

λ(
√

λ + 1)
− G0 · cB

λ(
√

λ + 1)
e
√

λx, for x ≤ 0, (3.9c)

p
(o)
0 (x) = G0cB

(
−x2

2 
+

√
λ√

λ + 1
e−x + λ − 1 √

λ(
√

λ + 1)
x −

√
λ√

λ + 1

)
, for x ≥ 0, (3.9d)

and the associated traveling speed is given by

v0(λ) = −∂p
(i)
0

∂x 
(0) = G0 · cB√

λ(
√

λ + 1)
. (3.9e)

Finally, we define (c0(x),p0(x)) in the same way as (3.5).

3.3. The perturbed system

This subsection aims to clarify the type of nonsymmetric solution we are looking for and 
introduce the corresponding notations.

In the previous subsection, we demonstrated that the Hele-Shaw problem can be easily solved 
under the symmetric assumption. In the subsequent subsections, we aim to show that by per
turbing the vertical boundary with profiles possessing a certain symmetry, such as cos ly (with 
l ∈ N), and a small amplitude 0 < ε � 1, nonsymmetric traveling wave solutions can be found 
near a specific nutrient consumption rate λl

0 (which depends on l). These solutions satisfy the 
boundary value problem (3.4), where the boundary profile is approximately ε cos ly.

We aim to establish the existence of a perturbed tumor region Ωε with its boundary Bε , along 
with a corresponding consumption rate λε , such that the solution to (3.4) under (Ωε,Bε, λε)

remains a steady traveling wave propagating to the right at a constant speed v0(λε) (recall (3.9e)). 
We denote this solution by (c(i)

ε , c
(o)
ε ,p

(i)
ε ,p

(o)
ε ), and define (cε,pε) in the same way as (3.5).

In fact, such nontrivial solution (ξε, λε, cε,pε) can be constructed explicitly in terms of an 
elegant infinite series solution by using the boundary transformation technique in [22]. However, 
the construction and proof of convergence of such infinite series are very complicated. To avoid 
this tedious procedure, but justify the existence of such a nonsymmetric traveling wave solution, 
we adopt the Crandall-Rabinowitz framework proposed in [3].

The Crandall-Rabinowitz theorem is developed to study the bifurcation behavior in nonlinear 
equations. It provides conditions under which solutions branch off from trivial solutions in non
linear functional equations. As an effective analysis tool, the Crandall-Rabinowitz theorem has 
been widely applied to study the existence and stability of solutions in nonlinear systems, see, 
e.g., [3,30,31,51]. In particular, the framework of utilizing the Crandall–Rabinowitz theorem to 
study the bifurcation behavior of free boundary models was initially proposed by Friedman in 
[3], then extensively employed to study the bifurcation phenomenon in different tumor growth 
models, see [3,19,43,54,55].

The advantage of the Crandall-Rabinowitz theorem is that instead of constructing all the terms 
inductively in the infinity series, we only need to investigate the linear part of the perturbation 
9 
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problem. More specifically, we construct a nonlinear functional map (see (3.28) for a more pre
cise version):

F : X ×R→ Y, (ξ, λ) �→ F(ξ,λ)

based on the leading order of the perturbation problem. Here, the periodic even function ξ(y)

represents the boundary profile, and the parameter λ > 0 represents the nutrient consumption 
rate in the model. Moreover, X and Y are the function spaces for ξ and F(ξ,λ) that will be 
specified more clearly later. The map ensures that the symmetric solution (0, λ) corresponds to 
the trivial solution of this map, that is, F(0, λ) = 0 for all positive λ. While, the nonsymmetric 
solution

F(ξε, λε) = 0,

which we seek, corresponds to a bifurcation branch parameterized by the perturbation amplitude 
ε. That is, it shall be viewed as a curve in the phase plane (ξ, λ) originating from some bifurcation 
point (0, λ0) with a tangent vector denoted by (τ (y), τ0) for now. Equivalently,

ξε(y) = ετ(y) + O(ε2), λε = λ0 + ετ0 + O(ε2). (3.10)

It should be noted that to ensure the existence of such a branch, a necessary condition is that

d

dε
F (ξε, λε)

∣∣∣
ε=0

= ∂F

∂ξ 
(0, λ0)τ (y) + ∂F

∂λ 
(0, λ0)τ0 = 0. (3.11)

Otherwise, the Implicit Function Theorem can be applied by viewing ε as the independent vari
able to show that the trivial (symmetric) solution has to be the unique solution. Observe the fact 
that F(0, λ) = 0 for all λ > 0 yields ∂F

∂λ (0, λ0) ≡ 0. Thus, condition (3.11) reduces to

∂F

∂ξ 
(0, λ0)τ (y) = 0. (3.12)

The Crandall-Rabinowitz Theorem provides conditions on ∂F
∂ξ (0, λ0) such that ensure the exis

tence of the desired branch. The main steps for applying the Crandall-Rabinowitz Theorem are 
as follows:

(1) Fix any λ > 0, determine the Fréchet derivative of F(ξ,λ) with respect to ξ ∈ X at (0, λ), de
note it as Fξ (0, λ) := ∂

∂ξ
F (0, λ); and show that the Fréchet derivative Fξ(0, λ), as a bounded 

linear operator that maps X to Y , can be characterized in terms of an eigenvalue problem 
(see equation (3.32)), with the complete basis of eigenfunctions are given by {cos ly}∞l=1
(the Shauder basis of X), and associated eigenvalues, given by E(λ, l) (see (3.23) for the 
expression), are distinct, non-degenerate, and real.

(2) According to the last step, for any λ > 0 and when τ(y) coincide to a single basis function 
cos ly, we have

Fξ (0, λ) cos ly = E(λ, l) cos ly.
10 
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Thus, by utilizing the explicit expression of the eigenvalues, for each perturbation frequency 
l ∈ N , one can determine a specific consumption rate λl

0 > l2 (see Proposition 3.1) such that 
E(λl

0, l) = 0, so that (3.12) holds.
(3) To conclude that 

{
(0, λl

0)
}∞
l=1 are indeed bifurcation points that give rise to the desired non

trivial branch of the functional equation F(ξ,λ) = 0, we verify that the Fréchet derivative 
at these points, Fξ (0, λl

0), satisfies the assumptions in the Crandall–Rabinowitz theorem. 
Roughly speaking, the way of choosing λl

0 ensures that E(λl
0, k) = 0 if and only if k = l.

We establish the details of the above procedures in the following subsections.

3.4. The linearized system

We devote this subsection to studying the linearization of (3.4) under a small perturbation. 
More specifically, we expand the solution in terms of the perturbation amplitude 0 < ε � 1, and 
derive the equations with boundary conditions for the first-order terms.

To begin with, we fix arbitrary λ > 0 and take ξ(y) = εξ̃ (y), here ξ̃ (y) characterize the per
turbation profile. Since the amplitude of the perturbation is small, the corresponding solution of 
(3.4), (c(x, y; εξ̃ ),p(x, y; εξ̃ )), processes the following formal expansion with respect to ε:

c(x, y; εξ̃ ) = c0(x) + εc1(x, y; εξ̃ ) + O(ε2), (3.13a)

p(x, y; εξ̃ ) = p0(x) + εp1(x, y; εξ̃ ) + O(ε2), (3.13b)

with the zero-order terms represent the solutions to the symmetric solution solved in Subsection 
3.2. When there is no ambiguity, for simplicity of notation we hide the dependence of εξ̃ in the 
latter section. Also recall that the solutions are the combination of the inner part and outer part, 
i.e. c = c(i) + c(o), p = p(i) + p(o), and analogously for

c0 = c
(i)
0 + c

(o)
0 , c1 = c

(i)
1 + c

(o)
1 , p0 = p

(i)
0 + p

(o)
0 , p1 = p

(i)
1 + p

(o)
1 . (3.14)

Also notice that in this set up, the outer normal vector n on the free boundary Bξ is given by

n(εξ̃ (y), y) =
⎛
⎜⎝ 1 √

1 + (εξ̃ ′(y))2
,

−εξ̃ ′(y) √
1 + (εξ̃ ′(y))2

⎞
⎟⎠ =

(
1 + O(ε2),−εξ̃ ′(y) + O(ε3)

)
.

(3.15)
Utilizing the expansion (3.13), expression (3.15), and Taylor expansion, one can evaluate c(i) in 
the following way

c(i)|Bξ
= c(i)(εξ̃ , y) (3.16a)

= c
(i)
0 (εξ̃ ) + εc

(i)
1 (εξ̃ , y) + O(ε2)

= c
(i)
0 (0) + εξ̃

∂

∂x
c

(i)
0 (0) + εc

(i)
1 (0, y) + O(ε2),

and the normal derivative ∂ c(i) is given by

∂n

11 
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∂

∂n
c(i)|Bξ

=
(

∂

∂x
c(i)(εξ̃ , y),

∂

∂y
c(i)(εξ̃ , y)

)
· n(εξ̃ (y), y) (3.16b)

=
(

∂

∂x
c

(i)
0 (εξ̃ ) + ε

∂

∂x
c

(i)
1 (εξ̃ , y) + O(ε2), ε

∂

∂y
c

(i)
1 (εξ̃ , y) + O(ε2)

)
· n(εξ̃ (y), y)

= ∂

∂x
c

(i)
0 (0) + εξ̃

∂2

∂x2 c
(i)
0 (0) + ε

∂

∂x
c

(i)
1 (0, y) + O(ε2).

Similarly, for c(o), p(i), and p(o) we have

c(o)|Bξ
= c

(o)
0 (0) + εξ̃

∂

∂x
c

(o)
0 (0) + εc

(o)
1 (0, y) + O(ε2), (3.16c)

∂

∂n
c(o)|Bξ

= ∂

∂x
c

(o)
0 (0) + εξ̃

∂2

∂x2 c
(o)
0 (0) + ε

∂

∂x
c

(o)
1 (0, y) + O(ε2), (3.16d)

p(i)|Bξ
= p

(i)
0 (0) + εξ̃

∂

∂x
p

(i)
0 (0) + εp

(i)
1 (0, y) + O(ε2), (3.16e)

∂

∂n
p(i)|Bξ

= ∂

∂x
p

(i)
0 (0) + εξ̃

∂2

∂x2 p
(i)
0 (0) + ε

∂

∂x
p

(i)
1 (0, y) + O(ε2), (3.16f)

p(o)|Bξ
= p

(o)
0 (0) + εξ̃

∂

∂x
p

(o)
0 (0) + εp

(o)
1 (0, y) + O(ε2), (3.16g)

∂

∂n
p(o)|Bξ

= ∂

∂x
p

(o)
0 (0) + εξ̃

∂2

∂x2 p
(o)
0 (0) + ε

∂

∂x
p

(o)
1 (0, y) + O(ε2). (3.16h)

Plugging the expansion (3.13) into (3.4), the zero-order terms are canceled out, and we collect the 
terms of order O(ε). Regarding the nutrient, the first order terms solve the following boundary 
value problem

−Δc
(i)
1 + λc

(i)
1 = 0, (3.17a)

−Δc
(o)
1 + c

(o)
1 = 0, (3.17b)

c
(i)
1 (0, y) = c

(o)
1 (0, y), (3.17c)

ξ̃ · ∂2

∂x2 c
(i)
0 (0) + ∂

∂x
c

(i)
1 (0, y) = ξ̃ · ∂2

∂x2 c
(o)
0 (0) + ∂

∂x
c

(o)
1 (0, y), (3.17d)

c
(i)
1 (−∞, y) < ∞, (3.17e)

c
(o)
1 (+∞, y) < ∞. (3.17f)

While, for the pressure, the first order terms solve

−Δp
(i)
1 = G0c

(i)
1 , (3.18a)

−Δp
(o)
1 = G0c

(o)
1 , (3.18b)

ξ̃ · ∂
p

(i)
0 (0) + p

(i)
1 (0, y) = ξ̃ · ∂

p
(o)
0 (0) + p

(o)
1 (0, y) = 0, (3.18c)
∂x ∂x

12 
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ξ̃ · ∂2

∂x2 p
(i)
0 (0) + ∂

∂x
p

(i)
1 (0, y) = ξ̃ · ∂2

∂x2 p
(o)
0 (0) + ∂

∂x
p

(o)
1 (0, y), (3.18d)

p
(i)
1 (−∞, y) < ∞. (3.18e)

By now, we finished deriving the equations and boundary conditions for the first-order terms.
In the next section, we further show that when the boundary profile ξ̃ (y) is close to cos ly, the 

first-order terms can be solved explicitly, from which one can figure out the so-called boundary 
evolution function.

3.5. Single mode perturbation

We further investigate the situation when the perturbed profile is in the form of ξ̃(y) = cos ly+
O(ε). In this context, the first-order terms presented in the last subsection, (c(i)

1 (x, y),p
(i)
1 (x, y), 

c
(o)
1 (x, y),p

(o)
1 (x, y)), can be solved explicitly, and from this, we further determine the boundary 

evolution equation (see (3.23) for specific formula). This evolution function characterizes the 
boundary evolution tendency, and the properties of it play a critical role in determining the bifur
cation point (see equation (3.24)) and verifying the conditions in Crandrall-Rabinowitz Theorems 
in the later sections. Thus, we investigate it at the end of this subsection (see Proposition 3.1).

The first-order terms capture the main reaction to the perturbation. When ξ(y) = ε cos ly +
O(ε2), the first order terms in (3.13) can be separated in the following way (see Section 3.2 in 
[16] for a more rigorous justification):

c
(i)
1 (x, y; εξ̃ ) = c̃

(i)
1,l(x) cos ly, c

(o)
1 (x, y; εξ̃ ) = c̃

(o)
1,l (x) cos ly, (3.19a)

p
(i)
1 (x, y; εξ̃ ) = p̃

(i)
1,l(x) cos ly, p

(o)
1 (x, y; εξ̃ )= p̃

(o)
1,l (x) cos ly. (3.19b)

By plugging (3.19) into (3.17) and (3.18), the equations reduce to

−∂2
x c̃

(i)
1,l + (λ + l2)c̃

(i)
1,l = 0, for x ≤ 0, (3.20a)

−∂2
x c̃

(o)
1,l + (1 + l2)c̃

(o)
1,l = 0, for x ≥ 0, (3.20b)

−∂2
x p̃

(i)
1,l + l2p̃

(i)
1,l = G0c̃

(i)
1,l , for x ≤ 0, (3.20c)

−∂2
x p̃

(o)
1,l + l2p̃

(o)
1,l = G0c̃

(o)
1,l , for x ≥ 0, (3.20d)

and the boundary conditions reduce to

∂xc
(i)
0 (0) + c̃

(i)
1,l(0) = ∂xc

(o)
0 (0) + c̃

(o)
1,l (0), (3.20e)

∂2
x c

(i)
0 (0) + ∂x c̃

(i)
1,l(0) = ∂2

x c
(o)
0 (0) + ∂x c̃

(o)
1,l (0), (3.20f)

∂xp
(i)
0 (0) + p̃

(i)
1,l(0) = ∂xp

(o)
0 (0) + p̃

(o)
1,l (0) = 0, (3.20g)

∂2
xp

(i)
0 (0) + ∂xp̃

(i)
1,l(0) = ∂2

xp
(o)
0 (0) + ∂xp̃

(o)
1,l (0), (3.20h)

and with,
13 
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c
(i)
1 (−∞) < ∞, c

(o)
1 (+∞) < ∞, p

(i)
1 (−∞) < ∞, (3.20i)

recall that we do not require p(o)
1 (+∞) < ∞ as mentioned before. Finally, by solving the above 

boundary value problems, we get:

c̃
(i)
1,l(x) = −

√
λ · cB√

λ + l2 + √
1 + l2

e

√
λ+l2x, (3.21a)

c̃
(o)
1,l (x) = −

√
λ · cB√

λ + l2 + √
1 + l2

e−
√

1+l2x, (3.21b)

p̃
(i)
1,l(x) = G0cB√

λ

((
1 √

λ + 1
− 1 √

λ + l2 + √
1 + l2

)
elx + e

√
λ+l2x

√
λ + l2 + √

1 + l2

)
, (3.21c)

p̃
(o)
1,l (x) = −G0c̃

(o)
1,l (x) + C1e

lx + C2e
−lx , (3.21d)

where C1 and C2 are some constants that can be solved explicitly and do not contribute to the 
proofs later, so we omit their expressions here.

Observe that, when ξ(y) = εξ̃ (y) = ε cos ly + O(ε2), the normal speed on the boundary, 
v(ξ(y), y), is governed by Darcy’s law as follows:

v(ξ(y), y) = −∂p(i)

∂n 
(ξ(y), y) (3.22)

= −∂xp
(i)
0 (0) −

(
∂2
xp

(i)
0 (0) + ∂xp̃

(i)
1,l(0)

)
ε cos ly + O(ε2)

= v0(λ) + E(λ, l)ε cos ly + O(ε2),

where v0(λ) was defined in (3.9e), and the expression of E(λ, l) is given by

E(λ, l) := G0cB√
λ

( √
λ − l √
λ + 1

+ l − √
λ + l2

√
λ + l2 + √

1 + l2

)
. (3.23)

Intuitively, the zero-order term v0(λ) represents the propagation speed of the wave, while E(λ, l)

is the so-called boundary evolution equation, which describes the evolution of the perturbation 
amplitude. If E(λ, l) > 0, the amplitude tends to grow, and if it takes negative values, the am
plitude will decay, as discussed in Section 4 of [16]. Therefore, for a suitable λl

0 (which will 
later serve as the bifurcation point) such that E(λl

0, l) = 0, the perturbation amplitude is sta
ble up to O(ε). It is thus reasonable to expect that nonsymmetric solutions can be found near 
ξ(y) = ε cos ly and λ = λl

0 by performing higher-order corrections. To substantiate the existence 
of such λl

0 and verify some useful properties for the Crandall-Rabinowitz theorem later, we plot 
E(λ, l) in Fig. 1. Based on the graphs, we conclude that E(λ, l) exhibits the following properties.

Proposition 3.1. (1) Given any integer l > 0, there exists unique λl
0 > l2 such that

E(λl
0, l) = G0cB√

λl
0

⎛
⎜⎝

√
λl

0 − l √
λl

0 + 1
+

l −
√

λl
0 + l2√

λl
0 + l2 + √

1 + l2

⎞
⎟⎠ = 0. (3.24)
14 
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Fig. 1. Fix G0 · cB = 100. Left: plot for E(λ, l) with l = 5 and λ ∈ [0,2000]. Right: plot for E(λ, l) with λ = 100 and 
l ∈ [0,20].

(2) Given any λ > 1, there exists a unique l0 > 0, which may not be an integer, such that 
E(λ, l0) = 0. Furthermore, E(λ, l) �= 0 for any l �= 0 or l �= l0.

The fact λl
0 > l2 holds, since one can easily check that

E(λ, l) <
G0cB√

λ

(
l − √

λ + l2
√

λ + l2 + √
1 + l2

)
< 0, for any 0 < λ ≤ l2.

The existence of λl
0 can be shown by checking the limits and applying the intermediate value 

theorem

lim 
λ→0

E(λ, l) = −∞,

lim 
λ→+∞E(λ, l) = lim 

x→0+ E( 1 
x2 , l) = lim 

x→0+ G0cB(
√

1 + l2 − 1)x2 + o(x2) = 0+.

And, the existence of l0 was proved similarly in [16] (see Corollary 3) by checking the asymptote. 
However, to show uniqueness of λl

0 and l0 one needs to study the behavior of the derivatives, 
which are given by

∂λE(λ, l) = −G0cB

2λ3/2

( √
λ − l √
λ + 1

+ l − √
λ + l2

√
λ + l2 + √

1 + l2

)
(3.25)

+ G0cB

2
√

λ

(
l + 1 √

λ(
√

λ + 1)2
− l + √

1 + l2
√

λ + l2(
√

λ + l2 + √
1 + l2)2

)
;

∂lE(λ, l) = G0cB√
λ

(
−1 √
λ + 1

+ (
√

1 + l2 + l)(
√

λ + l2 − l) 

(
√

1 + l2 + √
λ + l2)

√
λ + l2

√
1 + l2

)
. (3.26)

Rigorous verification of the sign of the above expression is difficult, but elementary, and does not 
deepen the understanding of the main content. In addition, it can be easily verified by plotting the 
curves using the above explicit expressions. Therefore, we decided to omit this part of the proof.
15 
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3.6. A nonlinear functional and its Fréchet derivative

We introduce a nonlinear functional map inspired by (3.22), reducing the problem of proving 
the existence of nonsymmetric traveling wave solutions for (3.4) to verifying that the kernel 
of this map contains nontrivial bifurcation branch. To achieve this, we compute its Fréchet 
derivative and demonstrate that it can be formulated as an eigenvalue problem, where the eigen
values coincide with E(λ, l); see (3.32). This facilitates the verification of the assumptions in the 
Crandall-Rabinowitz theorem later.

To begin with, we introduce the functional spaces for the boundary profile ξ(y):

Xm+α = {
f (y) ∈ Cm+α : f (y) is 2π periodic and even

}
, (3.27a)

Xm+α
1 = closure of the linear space spanned by {cos jy, j = 0,1,2, . . . } in Xm+α. (3.27b)

Note that all modes are included. Thus, any ξ(y) ∈ Xm+α
1 can be represented as a Fourier series.

Inspired by the calculations in (3.22), we introduce the following nonlinear functional map:

F : X3+α
1 ×R→ X2+α

1 , (ξ, λ) �→ F(ξ,λ) := −∂p 
∂x

(ξ(y), y; ξ) − v0(λ). (3.28)

Regarding the expression of F(ξ,λ), p(x, y; ξ) stands for the pressure function in (3.4) associ
ated with the boundary profile ξ(y) ∈ X3+α

1 and the nutrient consumption rate λ > 0; and v0(λ), 
defined in (3.9e), represents the travel speed of the solution.

By a computation similar to that in (3.16b), we observe that the normal derivative of p, which 
determines the boundary moving speed, is approximately − ∂p 

∂x
, with an error of order O(ε2). 

Consequently, when the perturbation amplitude is small, F quantifies the difference between 
the boundary moving speed of the perturbed problem and the symmetric traveling wave speed 
associated with λ. Following a similar argument as in [3] (see Equation (3.20)) and [43] (see 
Equation (27)), we assert that (ξ, λ) forms a traveling wave solution to (3.4) if and only if

F(ξ,λ) = 0. (3.29)

The symmetric solutions naturally correspond to the trivial solution (0, λ), while nonsymmetric 
solutions (ξε, λε), as defined in (3.10), correspond to nontrivial solutions of (3.29).

Next, we determine the Fréchet derivative of F(ξ,λ) (with respect to ξ ) at (0, λ), denoted as 
Fξ (0, λ). To do this, one needs to rigorously justify the expansion in (3.13), which is given by 
the following two lemmas.

Lemma 3.2. For any nutrient consumption rate λ > 0, perturbation amplitude 0 < ε � 1, and 
perturbation profile ξ̃ (y) ∈ C3+α(R), let (c,p) be the solution of the corresponding perturbation 
problem defined in (3.13), then∥∥∥c(x, y; εξ̃ ) − c0(x)

∥∥∥
C1+α(Ω)

≤ C|ε|‖ξ̃‖C3+α(R),∥∥∥p(x, y; εξ̃ ) − p0(x)

∥∥∥
C3+α(Ω)

≤ C|ε|‖ξ̃‖C3+α(R),

where C is a constant independent of ε, and (c0,p0) stands for the unperturbed solutions given 
in (3.9).
16 
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Lemma 3.3. For any nutrient consumption rate λ > 0, perturbation amplitude 0 < ε � 1, and 
perturbation profile ξ̃ (y) ∈ C3+α(R), let (c,p) be the solution of the corresponding perturbation 
problem defined in (3.13), then

‖c(x, y; εξ̃ ) − c0(x) − εĉ1(x, y; εξ̃ )‖C1+α(Ω) ≤ C|ε|2‖ξ̃‖C3+α(R),

‖p(x, y; εξ̃ ) − p0(x) − εp̂1(x, y; εξ̃ )‖C3+α(Ω) ≤ C|ε|2‖ξ̃‖C3+α(R),

where C is a constant independent of ε, and (c0,p0) stands for the unperturbed solutions, 
(ĉ1, p̂1) corresponds to the Hanzawa transformation (see (B.7) and (B.8)) of the first-order 
terms.

The proof of the above lemmas is standard but cumbersome. For the sake of exposition, we 
provide a sketch of the proof in Appendix B. Using the above lemmas, one can determine the 
Fréchet derivative Fξ(0, λ), we summarize it in the following proposition.

Proposition 3.4. With the same assumptions as in Lemma 3.2 and Lemma 3.3, and ξ(y) = εξ̃ (y). 
Then, the Fréchet derivative Fξ(0, λ) is given by

[
Fξ (0, λ)

]
ξ̃ = −ξ̃

∂2p0

∂x2 (0) − ∂p̂1

∂x 
(0, y; εξ̃ ), (3.30)

where p0 is given in (3.9), and p̂1(x, y; εξ̃ ) is defined in (B.7). If ξ̃ (y) further belongs to X3+α
1 , 

i.e., ξ̃ (y) can be represented as a Fourier series, denoted as ξ̃ (y) = ∑∞
l=1 al cos ly. Then, (3.30)

reduce to

[
Fξ (0, λ)

]
ξ̃ =

∞ ∑
l=1 

alE(λ, l) cos ly, (3.31)

where the eigenvalue E(λ, l) ∈ R is given by (3.23).

Remark 3.5. The operator defined in (3.30) is linear. In particular, the second term on the right
hand side of (3.30) shall be viewed as a nonlocal linear operator that maps the shape of the 
boundary ξ(y) = εξ̃ (y) to − ∂p̂1

∂x (0, y; εξ̃ ). And the linearity can be seen more clearly when ξ̃
belongs further to X3+α

1 , as shown in (3.31).

Remark 3.6. When ξ̃ (y) ∈ X3+α
1 , the Fréchet derivative Fξ(0, λ) is characterized by the eigen

value problem:

[
Fξ (0, λ)

]
cos ly = E(λ, l) cos ly. (3.32)

In the following, we provide a proof of Proposition 3.4.
17 
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Proof. By using Lemma 3.2 and Lemma 3.3, and the fact that F(0, λ) = 0, one has∥∥∥F(εξ̃ , λ) − F(0, λ) − ε
(
−ξ̃ ∂2

xp0(0) − ∂xp̂1(0, y; εξ̃ )
)∥∥∥

C2+α(R)
≤ Cε2. (3.33)

Moreover, one can easily verify that

sup 
‖ξ̃‖

C3+α(R)
≤1

∥∥∥ξ̃ ∂2
xp0(0) + ∂xp̂1(0, y; εξ̃ )

∥∥∥
C2+α(R)

≤ C. (3.34)

In fact, since p0(x) has an explicit formula, the boundedness of the first term follows directly. 
While, the boundedness of the second follows a similar proof of Lemma 3.3 (apply classical 
elliptic estimates to equation (3.18)). Then, estimates (3.33) and (3.34) together yield the map 
defined in (3.30) is a bounded linear operator and therefore it is indeed a Fréchet derivative.

For the second part, when ξ ∈ X3+α
1 and takes the form ξ(y) = ∑

l al cos ly. By using the 
orthogonality of the Fourier basis, one can solve each Fourier mode in the first-order term sepa
rately in the same manner as in Section 3.5. Then, (3.30) further reduce to

[
Fξ (0, λ)

]
ξ =

∑
l

al

(
−∂2

xp0(0) − ∂xp̃1,l(0)
)

cos ly, (3.35)

=
∑

l

alE(λ, l) cos ly.

By now, we have completed the proof. �
In the following subsection, we show that based on the eigenvalue problem (3.32) and the 

properties of E(λ, l) established in Proposition 3.1, we can determine bifurcation points and 
further conclude the existence of desired bifurcation branches in equation (3.29).

3.7. Existence of nontrivial bifurcation branches

In [3], Borisovich and Friedman applied the Crandall-Rabinowitz theorem to establish the 
existence of nonradially symmetric solutions to a tumor growth model derived from [25]. As 
discussed in the Introduction, the model described by (3.4) is derived from the incompress
ible limit of the PME, which makes it fundamentally different from the models developed from 
[25]. In the latter models, non-radial symmetric solutions are typically sought. In contrast, in 
the PME-derived models, the focus shall shift to finding nonsymmetric traveling wave solutions. 
Fortunately, we are able to show that the bifurcation analysis framework introduced by Fried
man, using the Crandall-Rabinowitz theorem, is still applicable. We carry out the proof in this 
subsection. For the reader’s convenience, we first recall the Crandall-Rabinowitz theorem below.

Theorem 3.7. Let W,Z be real Banach spaces and F(w,μ) be a Cp map, p ≥ 3, which maps 
a neighborhood of (0,μ0) in W ×R into Z. For any ν ∈ R, the Fréchet derivative Fw(0, ν) :=
d

dw
F (0, ν) maps W to Z. Suppose

(1) F(0,μ) = 0 for all μ in a neighborhood of μ0,
18 



Y. Feng, Q. He, J.-G. Liu et al. Journal of Differential Equations 440 (2025) 113433 
(2) The kernel space of Fw(0, ν) is of one dimensional spanned by w0 ∈ W , i.e., Ker{Fw(0,μ0)} 
= span{w0}.

(3) The range of Fw(0,μ0) has codimension 1, that is, dim{Z/Z1} = 1 with Z1 = Img{Fw(0, 
μ0)} ⊆ Z.

(4) The mix derivative Fwμ(w, r), w ∈ W,r ∈ R, satisfies 
[
Fwμ(0,μ0)

]
w0 / ∈ Z1.

Then, (0,μ0) is a bifurcation point of equation F(w,μ) = 0 in the following sense: In a neigh
borhood of (0,μ0), the set of solutions of F(w,μ) = 0 consists of two Cp−2 smooth curves C1
and C2, which intersect only at the point (0,μ0). Moreover, C1 is the curve (0,μ) and C2 can be 
parameterized by a small parameter ε as follows:

C2 : (w(ε),μ(ε)), ε small, (w(0),μ(0)) = (0,μ0), w′(0) = w0.

To apply Theorem 3.7 to the nonlinear map (3.28), the key step is to identify a bifurcation 
point (0, λ0) such that the Fréchet derivative at this point, Fξ(0, λ0), satisfies the conditions out
lined in Theorem 3.7. We demonstrate that this can be achieved using the properties of E(λ, l)

established in Proposition 3.1. Consequently, (3.4) admits nonsymmetric traveling wave solu
tions. This main result is summarized in the following main theorem.

Theorem 3.8. Consider the nonlinear map (3.28), which maps X3+α
1 × R to X2+α

1 . Assume 
0 < ε � 1. Then for each positive integer l, there exists a λl

0 > l2 such that (0, λl
0) is a bifurcation 

point to F(ξ,λ) = 0 in the following sense: In a neighborhood of (0, λl
0), the set of solutions of 

F(ξ,λ) = 0 consists of two smooth curves C1 and C2 that intersect only at the point (0, λl
0). 

Moreover, C1 is the curve (0, λ) and C2 can be parameterized as follows:

C2 : (ξε, λε) := (ξ(ε), λ(ε)), with ε small, (ξ(0), λ(0)) = (0, λl
0), ξ

′(0) = cos ly.

Remark 3.9. As we interpreted before, the nontrivial branch (C2) corresponds to nonsymmetric 
traveling wave solutions to (3.4) with the steady boundary profile ξε(y) and consumption rate 
λε . Moreover, the traveling speed is given by v0(λε) (recall (3.9e)).

Remark 3.10. Note that by applying Crandrall-Rabinowitz theorem, we do not obtain any infor
mation of λ′(0). In fact, it can be computed using Corollary 2.3 in [42], this has been done in 
a recent paper [55] for a different Hele-Shaw type tumor growth model. However, to calculate 
λ′(0), one needs to expand the perturbed solution to the order of O(ε2), which brings much more 
computation. We do not provide such a calculation in this paper, but we point out that similar to 
the calculation in [55], as a two-dimensional model, by using the symmetric of the basis function, 
one can verify similarly that λ′(0) = 0.

Finally, we provide the proof of Theorem 3.8.

Proof. According to Proposition 3.1, given any positive integer l, we can find a unique λl
0 > l2

such that E(λl
0, l) = 0. Then we show that (0, λl

0) is indeed a bifurcation point to (3.29) by 
verifying that the map F(ξ,λ) indeed satisfies the conditions to apply Theorem 3.7 with the 
setting W = X3+α

1 , Z = X2+α
1 , w = ξ , w0 = cos ly, μ = λ, and μ0 = λl

0.
For the differentiability of F , it is equivalent to establishing the regularity of the corresponding 

PDEs. Firstly, note that the structure of the PDEs guarantees that F maps X3+α × R to X2+α . 
1 1
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Secondly, using classical elliptic estimates and the Sobolev imbedding theory, one can justify that 
F(ξ,μ) is differentiable to any order by repeating the process in the same way as Lemma 3.2
and Lemma 3.3. Therefore, F(ξ,λ) is Cp with p ≥ 3.

Next, we verify that assumptions (1) to (4) in Theorem 3.7 hold for Fξ (0, λ). Firstly, (1) 
obviously holds since these trivial solutions correspond to the symmetry solutions solved in 
Section 3.2. Regarding assumptions (2) and (3), recall that X3+α

1 and X2+α
1 share the same set 

of basis functions, and Fξ (0, λ) as a bounded linear operator is characterized by the eigenvalue 
problem (3.32) with real, distinct, and nondegenerated eigenvalues. Thus, to verify (2) and (3), it 
is sufficient for us to check that our choice of λl

0 ensures:

E(λl
0, j) �= 0 for any j �= l; and E(λl

0, l) = 0. (3.36)

Based on Proposition 3.1 and the way chosen λl
0 (recall (3.24)), condition (3.36) is indeed valid. 

Finally, for assumption (4), it suffices for us to show ∂λE(λl
0, l) �= 0. By using condition (3.24), 

expression (3.25) yields,

∂λE(λl
0, l) = G0cB

2
√

λl
0

⎛
⎜⎝ l + 1 √

λl
0(

√
λl

0 + 1)2
− l + √

1 + l2√
λl

0 + l2(

√
λl

0 + l2 + √
1 + l2)2

⎞
⎟⎠ .

Note that the above value represents the slope at the intersection point of the curve with the 
horizontal axis in the left graph of Fig. 1, thus it is always positive, and we conclude that[

Fξλ(0, λl
0)
]

cos ly =
[
∂λE(λl

0, l)
]

cos ly / ∈ Img
[
Fξ (0, λl

0)
]
. (3.37)

By now, we have finished verifying all the assumptions in the Crandall-Rabinowitz theorem. 
Therefore, (0, λl

0) is a bifurcation point to (3.29) and generates a nontrivial solution branch. �
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Appendix A. Incompressible limit

To verify the validity of the Hele-Shaw type free boundary problem (1.1), we provide the 
rigorous derivation of its weak from via the incompressible limit from the PME-type tumor 
growth model. Recall that the PME type density equation of tumor growth writes,⎧⎪⎨

⎪⎩
∂tρm = Δρm

m + G0ρmcm,

τ∂t cm = Δcm − Ψ(ρm, cm), 
c → c , as |x| → ∞,

(A.1)
m B
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where Ψ(ρm, cm) is given by (2.6) and we set χ := χS and χ̃ := χSc for convenience. The pres
sure Pm := m 

m−1ρm−1
m satisfies

∂tPm = (m − 1)Pm(ΔPm + G0cm) + |∇Pm|2. (A.2)

The initial data is given by

(ρm(0),Pm(0)) := (ρm,0,Pm,0), x ∈ Rn.

To align with the Hele-Shaw problem (1.1), we consider τ = 0 for Eq. (A.1).
In the following, we first give some uniform in m a priori estimates of the solution 

(ρm, cm,Pm). Then, we verify the incompressible limit through the weak solution and establish 
the complementarity relation via the viewpoint of obstacle problem inspired by [26].

Lemma A.1 (A priori estimates). Assume that m > 2 and the initial data (ρm,0,Pm,0) satisfy

‖ρm,0‖L1(Rn) ≤ C, ‖Δρm
m,0 + G0ρm,0cm,0‖L1(Rn) ≤ C, ‖∇ρm,0‖L1(Rn) ≤ C,

Pm,0(x) ≤ C0R
2
0h(

x
R0

), ‖∇Pm,0‖L2(Rn) ≤ C

for some R0,C0 > 0 and h(x) := 1 
2n

(1−|x|2)+. Then, the solution (ρm,Pm, cm) of (A.1) satisfies 
the following uniform in m a priori estimates as

0 ≤ cm ≤ cB, (x, t) ∈ QT , supp(Pm(t)) ⊂ BRT
(0), 0 ≤ t ≤ T , (A.3)

‖Pm‖L∞(QT ) + ‖ρm‖L∞(QT ) ≤ C(T ), (A.4)

sup 
0≤t≤T

[‖cm − cB‖L2(Rn) + ‖∇cm‖L2(Rn) + ‖∂t cm‖L1(Rn)] ≤ C(T ), (A.5)

sup 
0≤t≤T

[‖∂tρm‖L1(Rn) + ‖∇ρm‖L1(Rn)] ≤ C(T ), (A.6)

‖∂tPm‖L1(QT ) + ‖∇Pm‖L2(QT ) ≤ C(T ), (A.7)

where RT = R0e
C0T

n .

Proof. By the comparison principle, we directly obtain

0 ≤ cm ≤ cB, (x, t) ∈ QT . (A.8)

Inspired by [6], let C0 ≥ G0cB and

h(x) := 1 
2n

(1 − |x|2)+.

Then, for given φ := C0R
2(t)h( x ), R(t) := R0e

C0 t

n , it holds on the support of φ that

R(t)
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∂tφ − (m − 1)φ (Δφ + G0cB)︸ ︷︷ ︸
≤0 

−|∇φ|2 ≥ C0R(t)

n 
(R′(t) − C0R(t)

n 
) = 0.

Suppose that Pm,0(x) ≤ C0R
2
0φ( x

R0
) with some R0 > 0, it follows from the comparison principle 

that

Pm(x, t) ≤ φ(x, t), (x, t) ∈ QT .

The above conclusion means

supp(Pm) ⊂ BRT
(0), ‖Pm‖L∞(QT ) ≤ C(T ), (A.9)

and further concludes for m > 2 that

supp(ρm) ⊂ BRT
(0), ‖ρm‖L∞(QT ) ≤ C(T ) (A.10)

with RT = R0e
C0T

n . We multiply (A.1)2 by cm − cB and obtain

∫
Rn

|∇cm|2dx +
∫
Rn

[λχρm + χ̃ (1 − ρm)+]|cm − cB |2dx ≤
∫
Rn

χρmcB |c − cB |dx.

Using the fact λχρm + χ̃ (1 − ρm)+ ≥ min{λχ, χ̃} > 0, the estimate (A.10), and Hölder’s in
equality yields

sup 
0≤t≤T

‖cm(t) − cB‖L2(Rn) + sup 
0≤t≤T

‖∇cm(t)‖L2(Rn) ≤ C(T ). (A.11)

We use the equation (A.1)2 and Kato’s inequality, it holds

0 ≤ Δ|∂t cm| − |∂t cm|(λχρm + χ̃(1 − ρm)+) + |∂tρm|(G0χcm + χ̃ |cm − cB |), (A.12)

which implies ∫
Rn

|∂t cm|dx ≤ C

∫
Rn

|∂tρm|dx, t > 0. (A.13)

By means of Kato’s inequality for (A.1)1, we have

∂t |∂tρm| ≤ Δ|∂tρ
m
m | + G0cB |∂tρm| + G0ρm|∂t cm|. (A.14)

Taking (A.13) into consideration, and integrating the above inequality (A.14) on [0, t] for any 
0 ≤ t ≤ T , we have

sup ‖∂tρm‖L1(Rn) + sup ‖∂t cm‖L1(Rn) ≤ C(T ). (A.15)

0≤t≤T 0≤t≤T
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Parallel to the proof of the above estimate, it holds

sup 
0≤t≤T

‖∇ρm‖L1(Rn) ≤ C(T ). (A.16)

We multiply the inequality equation (A.14)1 by θ(x) ≥ 0 with −Δθ = χBRT +1 and integrate on 
QT , then it yields

‖∂tρ
m
m‖L1(QT ) ≤‖θ‖L∞(Rn)[(‖∂tρm(0)‖L1(Rn) + ‖∂tρm(T )‖L1(Rn))

+ ‖G0cB |∂tρm| + G0ρm|∂t cm|‖L1(QT )] ≤ C(T ).

Hence, we obtain

‖∂tPm‖L1(QT ) ≤ m 
2m−2 ‖∂tρm‖L1(QT ) + 2‖∂tρ

m
m‖L1(QT ) ≤ C(T ). (A.17)

In addition, it holds by integrating (A.2) on QT that

‖∇Pm‖L2(QT ) ≤ m − 1

m − 2
G0cB‖Pm‖L1(QT ) + 1 

m − 1
[‖Pm,0‖L1(Rn) + ‖Pm(T )‖L1(Rn)]

≤ C(T ).

(A.18)

Combining (A.8), (A.9), (A.11), (A.12), (A.15), (A.16), (A.17), and (A.18), we complete the 
proof. �

Based on the basic a priori estimates in Lemma A.1, we derive some convergence results 
for the solution ρm,Pm, cm in m, and then further prove both the incompressible limit and the 
complementarity relation.

Theorem A.2. Under the same initial assumptions of Lemma A.1, there exists a pair of functions 
(ρ∞,P∞, c∞), satisfying ρ∞ ∈ L1(QT ) ∩ L∞(QT ) ∩ BV (QT ), P∞ ∈ L1(QT ) ∩ L∞(QT ) ∩
BV (QT ) ∩ L2(0, T ;H 1(Rn)), c∞ − cB ∈ L2(0, T ;H 1(Rn)) ∩ BV (QT ) with 0 ≤ c∞ ≤ cB , 
such that, after extracting subsequences, as m → ∞, it holds

ρm → ρ∞, in Lp(QT ) with 1 ≤ p < ∞, (A.19)

Pm → P∞, in Lp(QT ) with 1 ≤ p < ∞, (A.20)

cm → c∞, in Lp
loc(QT ) with 1 ≤ p < ∞, (A.21)

(1 − ρm)+ → (1 − ρ∞)+, in Lp(QT ) with 1 ≤ p < ∞. (A.22)

Moreover, the limit (ρ∞, c∞,P∞) satisfies a Hele-Shaw type system as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tρ∞ = ΔP∞ + G0ρ∞c∞, in D′(QT ),

Δc∞ = Ψ(ρ∞, c∞), in D′(QT ),

c∞ → cB, as |x| → ∞.

0 ≤ ρ ≤ 1, P (1 − ρ ) = 0, a.e. in Q ,

(A.23)
∞ ∞ ∞ T
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with the initial data ρ∞,0 ∈ L1(Rn) ∩ L∞(Rn) ∩ BV (Rn). Moreover, the complementarity rela
tion holds as

P∞(ΔP∞ + G0c∞) = 0 in D′(Rn × (0,∞)). (A.24)

Proof. Step 1, proof of (A.23). Based on verified estimates (A.3)-(A.7), then (A.19)-(A.21)
hold by the compactness embedding. Furthermore, (A.19) naturally proves (A.22). Taking 
(A.19)-(A.22) into account, hence (A.23)1−3 holds in the sense of distribution. Since 0 ≤ Pm ≤
C(T ), it holds by passing to limit that

0 ≤ ρ∞ ≤ 1, a.e. in QT . (A.25)

In addition, we have P
m 

m−1
m = ( m 

m−1 )
1 

m−1 ρmPm, which concludes after taking the limit in m that

P∞(1 − ρ∞) = 0, a.e. in QT . (A.26)

Hence, (A.25)-(A.26) prove (A.23)4.

Step 2, proof of (A.24). We set a functional space

Et := {v ∈ H 1(Rn) ∩ L1(Rn) | v ≥ 0, 〈v,1 − ρ∞(t)〉H 1,H−1 = 0}.
Let v be a function in Et0 with t0 > 0, we use the density equation (A.1) and the pressure equation 
(A.2) to obtain ∫

Rn

∇Pm · ∇Pm − ρm∇Pm · v + G0cm(v − Pm)dx

= − 1 
m − 1

[ d

dt

∫
Rn

Pmdx −
∫
Rn

|∇Pm|2dx
]+ d

dt

∫
Rn

vρmdx

+
∫
Rn

G0cmv(1 − ρm)dx.

(A.27)

Integrating on (t0, t0 + δ) for any δ > 0, we have

t0+δ∫
t0

∫
Rn

∇Pm · ∇Pm − ρm∇Pm · v + G0cm(v − Pm)dxdt

= − 1 
m − 1

[ ∫
Rn

(Pm(t0 + δ) − Pm(t0))dx −
t0+δ∫
t0

∫
Rn

|∇Pm|2dxdt
]

+
∫

n

v(ρm(t0 + δ) − ρm(t0))dx +
t0+δ∫ ∫

n

G0cmv(1 − ρm)dxdt.

(A.28)
R t0 R
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Thanks to the lower semi-continuity of L2-norm, it holds

t0+δ∫
t0

∫
Rn

∇P∞ · ∇P∞ − ∇P∞ · v + G0c∞(v − P∞)dxdt

≤ lim inf
m→∞ 

t0+δ∫
t0

∫
Rn

∇Pm · ∇Pm − ρm∇Pm · v + G0cm(v − Pm)dxdt

= lim inf
m→∞ 

∫
Rn

v(ρm(t0 + δ) − ρm(t0))dx +
t0+δ∫
t0

∫
Rn

G0c∞v(1 − ρ∞)dxdt

≤ lim inf
m→∞ 

∫
Rn

v(ρm(t0 + δ) − ρm(t0))dx + G0cB

t0+δ∫
t0

∫
Rn

v(1 − ρ∞)dxdt.

(A.29)

We note that

d

dt

∫
Rn

ρmvdx = −
∫
Rn

ρm∇Pm · ∇vdx +
∫
Rn

G0cmρmvdx.

Then, it follows

| d

dt

∫
Rn

ρmvdx| ≤ C

∫
Rn

|∇Pm||∇v|dx + G0cB

∫
Rn

ρmvdx.

The first term on the right-hand side is bounded in L2(0, T ), and the second term is 
also bounded in L∞(0, T ). We deduce that the function t → ∫

Rn ρmvdx is bounded in 
H 1(0, T ) ⊂ C1/2(0, T ) and therefore converges uniformly in [0, T ]. Since 

∫
Rn vρmdx converges 

to 
∫
Rn vρ∞dx in D′(R+), we have

∫
Rn

v(·)ρm(·, t)dx →
∫
Rn

v(·)ρ∞(·, t)dx locally uniformly in R+.

Consequently,

lim inf
m→∞ 

∫
Rn

v(·)(ρm(x, t0 + δ) − ρm(x, t0))dx

=
∫
Rn

v(·)(ρ∞(x, t0 + δ) − ρ∞(x, t0))dx

=
∫

n

v(·)(ρ∞(x, t0 + δ) − 1)dx ≤ 0.

(A.30)
R
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We insert (A.30) into (A.29), it holds

1

δ

t0+δ∫
t0

∫
Rn

|∇P∞|2
2 

− G0c∞P∞dxdt ≤1

δ

t0+δ∫
t0

∫
Rn

|∇v|2
2 

− G0c∞vdxdt

+ G0cB

δ

t0+δ∫
t0

〈v,1 − ρ∞〉H 1,H−1dt.

Due to the fact P∞ ∈ BV (QT ), the trace theorem supports P +∞ = P∞ for the trace P +∞ of P∞. 
Hence, let δ → 0+, we get

∫
Rn

|∇P∞|2
2 

− G0c∞P∞dx ≤
∫
Rn

|∇v|2
2 

− G0c∞vdx, (A.31)

where G0cB

δ

∫ t0+δ

t0
〈v,1 − ρ∞〉H 1,H−1dt → 〈v,1 − ρ∞(t0)〉H 1,H−1 = 0 as t → 0+ is used since 

1 − ρ∞ ∈ C([0, T ],H−1). We can conclude that P∞(t) is a global minimizer in Et a.e. t > 0.
Given a test function ϕ ∈ C∞

0 (Rn × (0,∞)), we take vε = P∞ + εP∞ϕ = P∞(1 + εϕ) with 
|ε| � 1 so that 1 + εϕ ≥ 0. P∞(1 + εϕ) ∈ Et holds evidently. Due to (A.31), we have

d

dε

∣∣∣
ε=0

[ ∫
Rn

|∇vε |
2 

− G0c∞vεdx
] = 0,

which yields

∫
Rn

∇P∞(t) · ∇(P∞(t)ϕ) − G0c∞P∞(t)ϕdx = 0, a.e. t ∈ R+.

Hence, the complementarity relationship (A.24) holds in the sense of distribution. �
Appendix B. Justification of the expansion

We devote this section to the proof of Lemma 3.2 and Lemma 3.3. To begin with, recall that Ω
is the tube-like domain defined in (3.1). Ω0 and Ωξ correspond to the unperturbed and perturbed 
tumor region, respectively. For concision, we denote the complementary sets as

Ωc
0 = Ω \ Ω0, Ωc

ξ = Ω \ Ωξ . (B.1)

Now, we provide the proof of Lemma 3.2 as follows.

proof of Lemma 3.2. Note that if we denote cδ = c − c0, then it satisfies

−Δcδ + λcδ = 0, in Ωξ ∩ Ω0 := Ω1; (B.2a)
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−Δcδ + λcδ = (1 − λ)c0 − cB, in Ωξ ∩ Ωc
0 := Ω2; (B.2b)

−Δcδ + cδ = (λ − 1)c0 + cB, in Ωc
ξ ∩ Ω0 := Ω3; (B.2c)

−Δcδ + cδ = 0, in Ωc
ξ ∩ Ωc

0 := Ω4. (B.2d)

Write them in a single equation, we get

−Δcδ +
(
λ · χΩξ + χΩc

ξ

)
cδ = ((1 − λ)c0 − cB) · (χΩ2 − χΩ3

)
, in Ω. (B.3)

Observe the fact that λχΩξ + χΩc
ξ

can be treated as a function in L∞(Ω), c0 has already been 

solved explicitly in Ω. Furthermore, the areas |Ω2| and |Ω3| are bounded by ε‖ξ̃‖C3+α(R). Then, 
the classical W 2,q estimate of elliptic equations and Sobolev embedding theory together yield 
the first inequality in Lemma 3.2. More precisely, for any q > 2 and α = 1 − 2/q one has

‖cδ‖C1+α(Ω) ≤ ‖cδ‖W 2,q (Ω) ≤ ‖ ((1 − λ)c0 − cB) · (χΩ2 − χΩ3

)‖Lq(Ω) ≤ C|ε|‖ξ̃‖C3+α(R).

Finally, send q → ∞ to complete the proof.
For the second inequality in Lemma 3.2, one can easily write down the equation for pδ =

p − p0, that is

−Δpδ = G0c
δ, in Ω, (B.4)

Thus, by using Schauder estimate one has

‖pδ‖C3+α(Ω) ≤ G0‖cδ‖C1+α(Ω) ≤ C|ε|‖ξ̃‖C3+α(R). � (B.5)

Next, observe the fact that (c(i), c(o),p(i),p(o)) are defined in Ωξ or Ωc
ξ , respectively. However, 

the first-order terms (c(i)
1 , c

(o)
1 ,p

(i)
1 ,p

(o)
1 ) are only defined in Ω0 or Ωc

0. Therefore, we need to 
transform them to Ωξ or Ωc

ξ by Hanzawa transformation Hξ , which is defined as follows:

(x, y) = Hξ (x
′, y′) = (x′ + I(x′)εξ̃ , y′), (B.6)

where I ∈ C∞ satisfies

I(ζ ) =
{

0, if |ζ | ≥ 3
4δ,

1, if |ζ | < 1
4δ,

with

∣∣∣∣dkI
dζ k

∣∣∣∣ <
C

δk
,

where δ is a small positive scalar. Thus, Hξ maps Ω0 to Ωε , and maps Ωc
0 to Ωc

ε . We denote

ĉ
(i)
1 (x, y; εξ̃ ) = c

(i)
1 (H−1

ξ (x, y); εξ̃ ), ĉ
(o)
1 (x, y; εξ̃ ) = c

(o)
1 (H−1

ξ (x, y); εξ̃ ), (B.7a)

p̂
(i)
1 (x, y; εξ̃ ) = p

(i)
1 (H−1

ξ (x, y); εξ̃ ), p̂
(o)
1 (x, y; εξ̃ )= p

(o)
1 (H−1

ξ (x, y); εξ̃ ). (B.7b)

Then, we further define
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ĉ1(x, y; εξ̃ ) := ĉ
(i)
1 (x, y; εξ̃ ) + ĉ

(o)
1 (x, y; εξ̃ ), (B.8)

ĥ1(x, y; εξ̃ ) := ĥ
(i)
1 (x, y; εξ̃ ) + ĥ

(o)
1 (x, y; εξ̃ ). (B.9)

Now, we turn to the proof of Lemma 3.3. The detail of the proof is cumbersome, but the idea is 
quite simple and in the same manner as the proof of the Lemma 3.2. Therefore, we only provide 
a sketch of it.

proof of Lemma 3.3. The proof is similar to that of Lemma 3.2. Denote cδ := c − c0 − εĉ1
and similarly for pδ := p − p0 − εp̂1, where ĉ1 and p̂1 are defined in the same manner as 
(3.14). Then, one can write the equation for cδ on the whole Ω. Then, employ W 2,q estimate 
of the elliptic equations and embedding theory to obtain the nutrient estimate first, as we did in 
Lemma 3.2. However, to do this, one needs to compute the first and second derivatives of ĉ1
with respect to (x, y), which further requires us to consider the change of variables induced by 
the Hanzawa transformation. This process is cumbersome, but is standard. Therefore, we refer 
the reader to Theorem 4.5 in [43] for a similar proof. Once the nutrient estimate is obtained, the 
pressure estimate can be obtained using the Schauder estimate in the same way as in the proof of 
Lemma 3.2. �
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