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Abstract

Linear response theory is a fundamental framework studying the macroscopic response of a
physical system to an external perturbation. This paper focuses on the rigorous mathemati-
cal justification of linear response theory for Langevin dynamics. We give some equivalent
characterizations for reversible overdamped/underdamped Langevin dynamics, which is the
unperturbed reference system. Then we clarify sufficient conditions for the smoothness and
exponential convergence to the invariant measure for the overdamped case. We also clarify
those sufficient conditions for the underdamped case, which corresponds to hypoellipticity
and hypocoercivity. Based on these, the asymptotic dependence of the response function on
the small perturbation is proved in both finite and infinite time horizons. As applications,
Green-Kubo relations and linear response theory for a generalized Langevin dynamics are
also proved in a rigorous fashion.

Keywords Onsager’s principle - Hypocoercivity - Fluctuation-dissipation relation -
Non-equilibrium system - Asymptotic behaviors

1 Introduction

Linear response theory is a general framework for studying the behavior of a physical sys-
tem under small external perturbations. While the microscopic fluctuations in a physical
system are usually complex and sustained, linear response theory provides a way to charac-
terize or predict the corresponding macroscopic behaviors of the system. For instance, the
famous Einstein relation [7] for Brownian motion fits within the framework of linear re-
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sponse theory, using the correlation of Brownian particles to predict macroscopic diffusion
coefficients.

Linear response theory not only bridges the microscopic first physical principles with
macroscopic properties (e.g., electrical, thermal, transport, and mechanical properties), but
it also helps in understanding or predicting a nonequilibrium system, which deviates from
equilibrium states, using only the information of the original equilibrium system. Thus, it
plays a fundamental role in theoretical physics and statistical mechanics.

Given these important applications, linear response theory has been extensively studied,
and various versions of response formulas for different physical contexts have been devel-
oped, cf. [4, 5, 8, 20, 28].

In this paper, we do not attempt to propose new linear response relations. Instead, we fo-
cus on clarifying mathematical conditions and collecting further properties with quantitative
estimates for the well-known linear response results for Langevin dynamics. Specifically, in
a mathematically rigorous way, we study the asymptotic dependence of the solution to the
perturbed Fokker-Planck equation concerning the small external force added to the original
reversible Langevin dynamics.

We begin with an overdamped or underdamped Langevin dynamics, initially in a re-
versible form or with a detailed balanced invariant measure known as the Gibbs measure.
Under mild assumptions on the conservative drift, the probability distribution will exponen-
tially converge to the invariant measure as time tends to infinity. To study the nonequilib-
rium system perturbed by a small non-conservative external force in the long-time regime,
the existence, smoothness, and exponential stability of the perturbed invariant measure are
essential preliminaries. These involve semigroup theory, Harris’ theorem, and, particularly,
hypoellipticity and hypocoercivity for the Fokker-Planck equation in the underdamped case.

In Sect. 2, we first provide the reversibility conditions in five equivalent forms for over-
damped and underdamped Langevin dynamics, and generalized Langevin dynamics.

In Sect. 3, we first clarify the existence and uniqueness of positive invariant measures for
perturbed irreversible Langevin dynamics. The smoothness and exponential convergence of
the solution to the Fokker-Planck equation for the perturbed irreversible Langevin dynamics
are also summarized, with proofs provided in the Appendix. After these preparations, we
give a rigorous verification of linear response theory for overdamped Langevin dynamics.
We analyze the asymptotic behavior of the response function, which is defined as the dif-
ference (in weak form with respect to any observation test function) between the perturbed
dynamics of the probability distribution and the initial data given by the unperturbed Gibbs
measure py(q)

1
R(t,e;9) = - (fRd e(q)p°(q, t)dq — /Rd w(q)po(q)dQ> .

In Theorem 3.2, we prove the convergence of the response function R(z,¢; ¢) for
either fixed ¢ or fixed e, as well as the double limits for both lim,_ ¢+ lim,_ , and
lim,_, 4 oo lim,_, o+. Moreover, we also obtain the uniform convergence of the response func-
tion for &€ < g in time ¢ € [0, +00). In the special case where the external perturbation is
a conservative force VW for some potential W, we derive the Green-Kubo formula, which
connects the long-time behavior of the response function to the autocorrelation function over
an infinite time horizon for the original unperturbed dynamics

e—0t+ t—00

+00
lim lim R(t, &; Log) = —f Kipgcow@)dt, Kap(t) = / (e'EOA)Bpodq,
0 R4
where £ is the unperturbed generator.
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In Sect. 4, we first summarize key well-posedness results and the hypoellipticity and
hypocoercivity of the Fokker-Planck equation in the underdamped case. Villani’s seminal
work on hypocoercivity [29] shows that exponential convergence to the invariant measure
can still be achieved under mild conditions on the original potential. Given that we consider
an external perturbation in a conservative form and with compact support, the perturbed
Fokker-Planck equation in the underdamped case will still converge exponentially to the
new invariant measure. Based on this, we prove parallel results for the response function
R(t, &; ¢) under both fixed ¢ or ¢, and for the double limits behavior in Theorem 4.1. Lastly,
in Sect. 4.3, as an application of Theorem 4.1, we derive the linear response theory for gen-
eralized Langevin dynamics with an exponential kernel using the corresponding augmented
underdamped Langevin dynamics.

Our results on the linear response theory for stochastic dynamics extend the case where
the external force is a general vector field depending on spatial variables. These results are
parallel to those in the comprehensive book by PAVLIOTIS [25], which focuses on the case
where the external force is independent of spatial variables. On the other hand, the abstract
theorem by HAIRER-MAIJDA in [11] provides a general methodology for justifying linear
response theory for abstract Markov evolutions under several assumptions. Our work falls
within the general framework of [11], but we offer self-contained conditions with detailed
verification for Langevin dynamics and prove the uniform convergence of the response func-
tion for small external perturbations ¢ < gy uniformly in time ¢ € [0, +00). For more on
linear response theory for deterministic dynamical systems, see [27].

The remaining sections of this paper are organized as follows: In Sect. 2, we pro-
vide equivalent conditions for reversibility in overdamped, underdamped, and generalized
Langevin dynamics. In Sect. 3, we prove the linear response theory and the Green-Kubo
relation for overdamped Langevin dynamics. In Sect. 4, we prove the linear response the-
ory for underdamped Langevin dynamics and generalized Langevin dynamics. All omitted
proofs for reversibility, hypoellipticity, and hypocoercivity are given in Appendices A and B.

2 Equivalent Conditions of Reversibility of Langevin Dynamics

Before studying the linear response theory for Langevin dynamics in the large-time regime,
we need to first establish the well-posedness and stability of the invariant measure, which
are built on the reversibility of the original unperturbed system. In this section, we provide
several equivalent conditions for the reversibility of both overdamped and underdamped
Langevin dynamics. Although these conditions are classic, some are less well-known but
useful in practice. Therefore, we rigorously clarify these reversibility conditions for the
reader’s convenience.

2.1 Definitions and Preliminaries

We will study the reversibility of both overdamped, underdamped and generalized Langevin
dynamics. In the underdamped and generalized Langevin dynamics case, some physical
variables will have even or odd parities. A typical odd variable is velocity (p), while typical
even variables are position (q), force (f), and acceleration (a). To preserve more flexibility,
we allow different components of x to have different parities.

Another essential difference is the invariant measure (see (2.19)) for the underdamped
case, which involves both kinetic and potential energy, while the kinetic energy is neglected
for the overdamped case. Below, we provide some basic definitions for reversibility.
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Definition 2.1 (Stationary process) A stochastic process {x(t) € R?, ¢ > 0} is stationary if
forall 7,t1,t,...,t, € RY, n € Z*, and Borel sets B; e R, j =1,2,...,n,

Px(tj))eB;,1<j<n)=Px{E;+1)eB;,1<j<n). 2.1
Taking n = 1, we deduce that the law of x(¢) is invariant.

Definition 2.2 (Time-reversed process) Let {x(¢) € R, ¢ > 0} be a stochastic process. Fix
time 7 > 0. The time-reversed process of x(#) (w.r.t. time T') is defined as

X*(@) == (&ix; (T — ) 1<i<n> 2.2)
where

1, if x; is an even variable;
& = . . .
—1, if x; is an odd variable.

Definition 2.3 (Reversibility) A stationary process {X; € R, t > 0} is reversible if for any
T > 0, the time-reversed process {X,0 <t < T} (w.r.t. T) has the same finite-dimensional
distribution as the original process X;, i.e., for any #(,t,,...,t, € [0, T], n € Z", and Borel
sets B; e RY, j=1,2,...,n,

P(X, €B;,1<j<n)=PX; €B;,1<j=<n). (2.3)
2.2 Reversibility of the Overdamped Langevin Dynamics

We use q; to indicate the stochastic process at time ¢, and we also use q as the displacement
vector in R?, following the convention in mechanics. The overdamped Langevin equation is
given by the following stochastic differential equation (SDE)

dq, =b(q,)dt +0(q,)dB;, q—o = qo, (24)

where b € C*(R?;R?), q, € R, and ¢ € C®(R?; R¥*?) is nonsingular. B, is the d-
dimensional standard Brownian motion, and q,—¢o = qo is a random variable independent
of B;.

To ensure that (2.4) admits a unique strong solution, we assume that coefficients b(q)
and o (q) satisfy certain conditions (see (2.9) and (2.10) below).

The corresponding Fokker-Planck equation and the Fokker-Planck operator £* are given
by

dp(q,1)
ot

1
=(L*p)(Qq.1), L*p:=-V-(pb)+ Evz :(poa’). (2.5)
The corresponding Kolmogorov backward equation is

8f(8(:’ ) =(Lf)(q,t), withgenerator Lf:=b-Vf+ %(007) : sz. (2.6)

Define the probability flux j as
. 1 T
J(p) == _EV - (poa’) + pb.
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Then the Fokker-Planck equation can be written as the continuity equation

ap
— 4+V-.j=0. 2.7
8[Jr J 2.7

According to (2.3), we have the following equivalent definition of reversibility.

Lemma 2.1 Consider (2.4) with initial density function po(q). Then the system is reversible
if and only if. for any g1, g2 € C;*(RY)

Elg1 () 92(q0) | 9o ~ o] = E[@1(qo)v2(q) | qo ~ ool (2.8)

(Proof of Lemma 2.1 can be found in Appendix A.) We will use (2.8) to prove reversibil-
ity.

Theorem 2.1 (Reversibility of the overdamped Langevin dynamics) Consider (2.4) with
initial probability density function po(q) > 0. Suppose that o is constant and nonsingular.
Also, suppose that o and b satisfy

(i) (Local Lipschitz continuity) For any n € Z, there exists K, > 0 such that
[b(x) —b(y)| < Ky|x —yl, (2.9

for any X,y such that |x|, |y| <n;
(ii) (Monotone condition) There exists a constant C > 0 such that for any x € R?:

x'b(x) < C(1+ |x]?). (2.10)

Then the following are equivalent

(1) (Reversibility) The stochastic process determined by (2.4) is reversible in the sense of
Definition 2.3;
(ii) (Symmetry) For arbitrary ¢y, ¢ € C;° (RY),

y (Lo (@e2(q)po(q)dq = fR , (Le2)(@e1(q) po(q)dg; 2.11)

(iii) (Zero flux) The probability flux is zero for all t > 0, i.e., j(p(-,1)) =0;
(iv) (Potential condition) There exists U : RY — R such that

—VU(q) =2(ca 7)™, (2.12)

and po(q) = e V@ with [, e"VVdq < co.
We point out that assumptions (2.9) and (2.10) ensure the well-posedness of the SDE, but
they are irrelevant to the reversibility. We adopt (2.10) instead of the general linear growth

condition as it covers more cases. For instance, b(x) = (1 — |x|?)x does not satisfy the linear
growth condition but does satisfy (2.10).
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2.3 Reversibility of Underdamped Langevin Equation
Now consider the underdamped Langevin equation

dq = pds,

- 2.13)
—_dB.

VB

Here p, q € R, 6 € R¥*¢ is a nonsingular constant matrix, and 8 = 1/(kgT) is the ther-
modynamic beta. The corresponding Fokker-Planck equation (also known as the kinetic
Fokker-Planck equation) and the Fokker-Planck operator £* are

1
dp= —Eaandt +b(q)dr +

dp(q, p. 1) .
= (L7p)(q,p, 1),
{ { (2.14)
Lp:=—p-Vgp—b-Vyp+ EVP . (paan + EO’O'TVpp> .
The corresponding Kolmogorov backward equation is
9f(q.p.1)
- (LH)(q.p. 1),
(2.15)

1 1
Ef::p-qu—i-b.fo—E(GUTp)-fo—i-ﬁ(aaT):st.

We say that (2.13) satisfies the fluctuation-dissipation theorem because the dissipative part
corresponding to Ornstein—Uhlenbeck process in £* can be rewritten as

1 1 1 Ipll> | logp
EVP . (pGUTp + EUUTVPIO> = EVP . <aaT (,on < 2 + 5 .

As with the overdamped Langevin equation, we consider an equivalent condition for
reversibility using test functions. Recall that momentum p is an odd variable, so the equiv-
alent characterization below also uses parity-reversed test functions @,(p) = ¢»(—p) and

U2 (p) = Y2 (—p).

Lemma 2.2 Consider (2.13) with the initial density function py(q). Then it is reversible if
and only if. for any @1, ¢2 € C* (RY),

E [¢1(a(0)@2(p(0) Y1 (q(1) ¥2(p(1)) | (@(0), p(0)) ~ o]

~ (2.16)
=E[01(@()@: (1) Y1 (a0)¥2(p(0)) | (@(0), p(0)) ~ po] -

The proof of Lemma 2.2 is given in Appendix A.
Next, we provide the equivalence theorem for the reversibility of the underdamped
Langevin dynamics.

Theorem 2.2 (Reversibility of the underdamped Langevin) Consider (2.13) with the initial
probability density function py(q,p) > 0. Suppose that o is a constant and nonsingular
matrix, and that o and b satisfy (2.9) and (2.10). Then the following are equivalent

(i) (Reversibility) The stochastic process determined by (2.13) is reversible.
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(ii) (Symmdetry) p0(q, P) = po(q, —p) and, for arbitrary ¢i(q), p2(p), ¥1(qQ), ¥2(p) €
Co°(RY)

f / o1 (@Qe2(P) L (Y1 (@ ¥2(p)) po(q, p) dgq dp
_ / f £ (@1 @F()) Y1 (@ T2(p)oo(q. p) dg dp. 2.17)

where $,(p) = ¢2(—p) and Y2(p) = ¥2(—p).
(iii) (Potential condition) There exists U : RY — R such that

—VqU(q) =b, (2.18)
and
po(q. p) = %e’ﬁ”(‘“”, zZ= // e~ PP dqdp < oo, (2.19)
where
H(q,p) = % +U(q). (2.20)

(iv) (Evenness in p variable) po(q,p) = po(q, —p) and py is stationary, i.e., it solves
,C*,O() =0.

(v) (Separation of variables) py(q, p) = Ui (qQ)Uz(p), where Uy > 0 and U, > 0, and py is
stationary, i.e., it solves L* py = 0.

‘We remark here that the conclusions of Theorem 2.1 and Theorem 2.2 also hold for non-
constant o. However, in this case, the SDE should be written in the backward 1t6’s integral
sense [13]. For the overdamped Langevin equation

dq = b(q)dr + o (q)dB,
the Fokker-Planck equation is given by

dp(q, 1)
ot

1
— (L)@, L=V <§aaTV,0 - pb) .

For the underdamped Langevin equation, the SDE should be written as

dq = pdt,

g ~

1
dp=—~00"pdt +b(q)dt + —dB,
2 VB

with the Fokker-Planck equation

p(q,p. 1)

Y, :([' p)(‘l?p’t)y

1 1
Lip:=—p-Vgp—b-Vpp+ EVP . (,ooan + EGGTVP,O> .
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2.4 The Reversibility of Generalized Langevin Dynamics with Memory

Let n > 1 be a fixed integer. Now consider the following generalized Langevin equation
with memory

n t
q(0)=b@ — Y AA] / eI q(s)ds + AL (1),
i=1 0 2.21)
dfi(l‘):—(){,'f,'dl—f—\/ 2,3_10{,'dB,', i=1,2,...,n.

Here, for each i = 1,2,...,n, A; € R¥*? is a constant matrix, ;; > 0 is a constant, and
B, () € RY is a standard Brownian motion. Additionally, B;(z) fori = 1,2, ..., n are inde-
pendent. Reversibility can also be considered for (2.21) if we reformulate it.

Let z;(t) = —AT [; e =9q(s)ds + f;(r) and § = p. Then (2.21) can be reformulated
as

dq = pds,

i=l

dp= (b(q) +> A,-z,-) dr, (2.22)

dz; = —(o;z; + ATp)dr + 28 'e;dB;, i=1,2,...,n.

We will consider (2.22) instead of (2.21) for reversibility. The corresponding Fokker-Planck
equation for (2.22) is given by

ap “
S =L Lpi=—pVep —b@: Vpp - > ((Aiz:) - Vop — Alp- Vi p)
i=1
(2.23)
. 1
+ Z%‘Vz,- : <Zi,0 + —Vz,-/)) .
i=1 ﬁ
The corresponding backward equation is given by
f _ o - T
Sr =Ll Lf =P Vaf D@ Vpf +) ((Az) Vof —Alp-Vy )
= (2.24)

+) a; <—Zf-Vz,-f+%Az,-f>-

i=1

We now state the equivalent theorem characterizing the reversibility of (2.22) in the case
wheren=1and A, =1 R je.,

dq = pdt,
dp=(—VqV(q) +2z)dr, (2.25)
dz = —(az + p)dt + /28~ 'adB.

The proof is given in Appendix A.
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Theorem 2.3 (Reversibility of the generalized Langevin with memory) Consider (2.22) with
initial probability density function po(q, p,z) > 0 satisfying py > 0. Suppose that o is a
constant and nonsingular matrix. Then the following are equivalent

(i) (Reversibility) The stochastic process determined by (2.22) is reversible.
(i) (Symmetry) po(dq,Pp,z) = po(qQ, —P, 2), and for arbitrary ¢\(q), ¥2(p), 3(2), ¥1(q),
Y2 (p), ¥3(2) € C(RY)

/// 01 (@Qe2(p)e3(2) L (Y1 (@2 (p)¥3(2)) po(q, P, Z) dqdpdz

(2.26)
- ///ﬁ(wl(Q)%(p)ws(Z))\/fl(Q)lzz(p)I/f.s(Z)po(q,P, z)dqdpdz,
where $(p) = ¢2(—p) and ¥>(p) = Y2 (—p).
(iii) (Potential condition) There exists U : R? — R such that
—VqU(q) =b, 2.27)
and
po(q, p, 2) = %e_ﬂmq'p’z), zZ= /// e PP dqdpdz < oo, (2.28)
where
. lpl* | lzI°
H(q,p,2):=U(q) + >+t (2.29)

(iv) (Evenness in p variable) py(q, p,z) = po(q, —P, Z) and py is stationary, i.e., it solves
ﬁ*po =0.

(v) (Separation of variables) po(q, p,z) = U1 (qQU,(p)Us(z), where Uy, Uy, Us > 0, and
po IS stationary, i.e., it solves L*py = 0.

3 Rigorous Verification of Linear Response Theory (LRT) and the
Green-Kubo Formula for the Overdamped Langevin

In this section, we rigorously verify the linear response theory (LRT) and the Green-Kubo
relation for overdamped reversible Langevin dynamics with constant diffusion coefficients.
The linear response theory aims to study the asymptotic dependence of the solution p® of the
perturbed Fokker-Planck equation (3.9) in terms of the small external force. Recall the Gibbs
measure po(q) for the original overdamped Langevin dynamics. In the weak formulation,
for any ¢ € C®(R?), we define the response function as follows:

1
R(t,e;9) = - </Rd (q)p°(q,)dq — /Rd w(q)po(q)dq> . 3.

The term e R(t, €; @) represents the leading-order (i.e., O (¢g)) change of an observable ¢
at time ¢ under the external perturbation éeM. Mathematically, LRT focuses on the behavior
of R(t,e;¢) as € — 0 and t — oco. In Theorem 3.2, we will prove the convergence of
R(t, &; @) for fixed ¢ or fixed ¢, as well as the double limits for both lim,_, ¢+ lim,— 4~
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and lim,_, y» lim,_,o+. The main conclusion is the convergence of the response function
R(t, &; ¢) in terms of the small parameter for the external perturbation & < &g, uniformly
for t € [0, +00). In Sect. 3.1, we first give some preparations on the perturbed invariant
measure including the hypoellipticity and the exponential convergence of the Fokker-Planck
equation. Then we study the linear response theory for general external force in Sect. 3.2
and the Green-Kubo relation for conservative external force in Sect. 3.3.

3.1 Invariant Measure and the Exponential Convergence for Irreversible
Perturbation

In this subsection, we consider an irreversible perturbation in a form of general external
force eM. Before studying the linear response theory with respect to the external force eM
in Sect. 3.2, we first prepare some preliminary results, including estimates on the perturbed
invariant measure and the well-posedness, hypoellipticity and exponential convergence of
the Fokker-Planck equation.

Consider the following reversible overdamped Langevin system at equilibrium

1
dq, = —0a " VV(q)dr ++20dB, q—o~ po(q) := Ee“/(q), z ::/ eV @dq.
R4
32)

Here, 0 € R?*? is constant and nonsingular.
Let M € C°(R?; RY). For any ¢ > 0, suppose that at time ¢ = 0, an external force ¢éM is
added to the system, which yields the following perturbed SDE

dq¢ =00 " (—=VV(q°) + eM(q))ds + +20dB, (3.3)

with the initial distribution q;_, ~ po. Notice that the initial data for the perturbed SDE is
taken as the equilibrium p, for the unperturbed SDE.

3.1.1 Invariant Measure: Existence, Uniqueness, and Positivity

In this subsection, we clarify some known results on the existence, uniqueness, and positivity
of the invariant measure, i.e., the stationary solution to the corresponding Fokker-Planck
equation. For simplicity in notation related to the Fokker-Planck equation, we will use 2007
as the variance.
From this point on, we impose the following assumptions on the potential V (x)
Assumption (I) There exists « > 0 such that

o . —x-VV(x)
IVV(x)| < Ci[x|* + Ca,  limsup ————— =1y, <0. (3.4)
|x|—00 |X|th
Assumption (IT) There exists A > 0 such that
liminf (|o” VV(®)* = 2tr(e0” V?V (x))) =: A > 0. 3.5)

|x]—00

Assumption (I) ensures the uniqueness of the invariant measure and provides a decay
estimate at infinity [2, Theorem 3.4.3]. According to [6], Assumption (II) ensures that the
measure e~V ™ satisfies Poincaré’s inequality.

@ Springer
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Notice that (3.3) is irreversible, and the Gibbs measure py(q) is no longer the invariant
measure. In fact, even the existence of an invariant measure for an irreversible system is not
trivial.

Under Assumption (I), the potential is a trapping potential with superlinear growth, which
guarantees that both equations (3.2) and (3.3) admit a unique invariant measure with density
functions py and pg_, respectively. In Lemma 3.1, we establish the existence, uniqueness,
and far-field decay estimates for the invariant measure under Assumption (I). Furthermore, if
exponential convergence to the invariant measure over long times is considered, we will also
require Assumption (II). In Proposition 3.1, we recall the result of exponential convergence
for the invariant measure p2, in L'(R?), which is crucial for obtaining the linear response
theory.

For the underdamped case, we restrict our study to perturbations in a potential form.
Assumptions (I) and (I) are also essential for the well-posedness of the invariant measure
and the exponential convergence of the perturbed Fokker-Planck equation in L2(1/ p5); see
Sect. 4.

Lemma 3.1 (Existence, uniqueness, and positivity of the invariant measure) Let V(q) €
C*®(R4; R) satisfy Assumption (I), and let M € Cfo(]R"; R%). For all ¢ € [0, 1), consider
the SDE (3.3). Then it admits a unique invariant measure with density pS, that satisfies

—_ o+1 _ o+1
e~Killal D < pe o o Kalgl* 4D (3.6)
where constants Ky, K, > 0 are uniform in ¢.

The existence and estimate (3.6) can be found in [2, Theorem 3.4.3], and uniqueness is
ensured by the following lemma from [2, Theorem 4.1.6].

Lemma 3.2 (Theorem 4.1.6 in [2]) Suppose that
be C®R:RY), o e COMRYG R, oo is strictly elliptic. (3.7

Let p € C®RY) solve L*p =0, where L* is defined in (2.5). Assume that p > 0 and p €
Ll(Rd). If

T
b
oo | € L (pdx), bl

A e L' (pdx) (3.8)
1+ [x|1? 1+ x|l

holds, then p is the unique non-zero solution of L*u = 0 such that u € L' (RY) and u > 0.
3.1.2 Well-Posedness of the Fokker-Planck Equation

Suppose the density of q; is given by p°(q, t). Then p°(q, t) satisfies the following Fokker-
Planck equation

(g, 1) .,
BT Lip*(q,0):=V- (o0’ (VV(@) —eM@)p°(q, 1) + Vp°(q,1))), 3.9)
(g, 0) = po(q).
In fact, £} generates a strongly continuous semigroup of contractions, which ensures the
well-posedness of (2.5).
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Lemma 3.3 Let V(q) € C*(R?; R) satisfy Assumption (I), and let M € C®(R?; R?). Con-
sider (3.9). Then

(1) L} in (3.9) generates a strongly continuous semigroup of contractions in L*(1/ P55

(ii) (3.9) admits a unique solution p(q,t) € C'([0, T, Lz(l/pgo))for any T > 0.

The proof of Lemma 3.3 is provided in Appendix A. We denote the semigroup generated
by L} as {e'“¢}

t>0"

3.1.3 Hypoellipticity

Hypoellipticity implies the smoothness of the solution to the Fokker-Planck equation, al-
lowing us to perform integration by parts in subsequent proofs without concern. We prove
hypoellipticity by applying Hérmander’s celebrated result [14, Theorem 1.1].

Recall that a linear differential operator P with C™ coefficients in R (or an open subset
of R?) is called hypoelliptic if for every distribution u in D’(R?), we have

sing supp u = sing supp Pu.
Here, sing supp u denotes the singular support of u
singsuppu = R? \ {x € R : uis smooth nearx} .
Consider a linear differential operator P with C* coefficients, which can be written as:
P= Z X% + XO + c,
j=I

where X, ..., X, denote first-order homogeneous differential operators in R? x (0, 00) with
smooth coefficients, and ¢ € C*®°(R? x (0, 00)). For example, the heat operator A — — in

R? x (0, 00) can be recast as

where

a a
X = , 1=1,2,...,d, Xo=——.
; ot

Hormander’s theorem [14, Theorem 1.1] relates the Lie algebra generated by X;, i =
0,1,2,...,r to the hypoellipticity of P.

Theorem 3.1 (Hypoellipticity, Theorem 1.1 in [14]) Consider

P = in +Xp +c,
Jj=1
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where Xy, . .., X, denote first-order homogeneous differential operators in R? x (0, 0o) with
smooth coefficients, and c € C®(R? x (0, 00)). If, at any given point (q,t) € R¢ x (0, 00),

span {X;,, [X,, X, 1, [X,, X, X510, - X)L Xy, X XG0T = R
where j; =0,1,2,...,r, then P is hypoelliptic.
Using Theorem 3.1, we obtain the smoothness of p°(q, ).
Lemma3.4 Let p°(q,t) be the unique solution of (3.9). Then it is smooth in R¢ x (0, 00).

The hypoellipticity for the Fokker-Planck equation corresponding to overdamped
Langevin dynamics is trivial. However, we include the proof using Hérmander’s hypoel-
lipticity theorem in Appendix B to facilitate comparison with the underdamped case.

3.1.4 Exponential Convergence

The convergence of p®(q,?) to pg (q) in L*(1/ p5,) cannot be derived by Poincare’s in-
equality because (3.3) is irreversible. However, we still have exponential convergence in
total variation, as shown in [15, Theorem B].

Proposition 3.1 (Convergence in L' (RY)) Suppose Assumptions (I and (II) hold. For any
e € (0, 1), consider (3.9). Then there exist constants &y, C > 0, and r > 0 that depend only
on 'V, M, and o, such that for all ¢ € [0, &), we have

”pg('a [) - pio”Ll(R‘t) < Ce_”.

The proof of Proposition 3.1 employs a version of Harris’s theorem by Hairer and Majda
[10]. For completeness, the proof is provided in Appendix B.

3.2 Linear Response Theory (LRT)

Recall (3.1) and perturbed SDE (3.3). We will study the behaviors of the response function
(3.1). Let p*(q, 1) = p°(q, 1) — po. Then

1 ~
R(6:9) = - /R p@p (@)

The function p*(q, ¢) is smooth and satisfies

3pt(q, 1)

S =L@ eV (poa M), 5 (q.0)=0. (3.10)

Using the dissipative property of the semigroup, we can derive the following estimate for
Q. 1).

Lemma 3.5 Consider ﬁ(q, t) in (3.10). Then

(i) There exists a constant C > 0, which depends only on M and V , such that
65 C. )l < Ce, (3.11)

forallt > 0.
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(ii) There exists a constant C > 0, which depends only on M and V , such that
152 ¢ Dl 2105, < Cet, (3.12)
forall t > 0. Furthermore, if M = VW is in gradient form, we also have
16°C )l 2105, < Ce. (3.13)
Proof Since M € C2°(R?; R?), by Duhamel’s principle, we have
~ ! *
0%(q, 1) = g/ eV (V- (ppoo"M)) ds. (3.14)
0
Here, emﬁgo represents the solution to (3.9) at time s with initial value ¢.
First, since p := V - (ppoa " M) has zero Lebesgue integral, the positive part u* and

negative part u~ satisfy p = u* + u”, and [ u*(x)dx = [ u”(x)dx =: ¢o. Therefore, the
exponential convergence in L' norm from Proposition 3.1 implies

t
e/ /|e<f*S>‘?(v-(poaaTM))|dxds
0
! *
- 8/ / V2wt — oty + coply — ) ldxds
0

t t
= Ef / =Lt — cops,|dxds + 8/ / =L = — cops,|dxds
0 0
! ce
< ce/ eI ds = (1 —e).
0 r

Second, since V - (poM) € D(L}), by the contraction property of £ from Lemma 3.3,
we have

t
105Gl 2y pe,) = 8/(; [[e%e (V- (POGGTM))||L2(1/ng)dS
<&tV (pooa" M)l 12015,

From (3.6), we know that ||V - (poaaTM)HLz(l/ng) can be uniformly bounded since M is
compactly supported. This proves (3.12).
Furthermore, the exponential convergence in L%(1/ pS,) norm implies

t
e[ [1e5 T oo M pidnas
0
t *
= [ [ 1600 — copte+ copt = )P ot dnds
0
t * t *
< 28/ / ™% ut — copl, P/ plodxds + 28/ / eV ™ — copl P/ plodxds
0 0
! ce .
< cs/ e s = 2 (1 — e, 0
0 r
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Denote the Fokker-Planck operator for the reversible part as
c;,o::v-(aaT(pvv+Vp)):v-(poaaTvﬁ). (3.15)
Lo

Then Fokker-Planck equation (3.9) which could be reformulated as

90°(q, 1)

o =L’ @0 =Lip" (@, eV (p°c0"M).

We now consider the limit behavior of R(¢, €; ¢).

Theorem 3.2 Suppose that Assumptions (I) and (II) hold. Let M(q) € C° (R4; RY), and let
p°(q, 1) be the law of q; in (3.3). Let p5 (q) be the invariant measure of (3.3). For some
Qe Cfo(Rd), consider R(t, €; ¢) defined in (3.1). Then

(i) (Convergence as ¢ — 07) For any givent > 0,

t
lim R(t,&; @) :/ f [66"M - (V(e0¢))] podqds. (3.16)
e—01 0 Jrd

Moreover, the limit in (3.16) holds uniformly for all t > 0, i.e., for any n > 0, there
exists &y such that for any 0 < e < ey andt >0

’R(t,ezw)—// [00"M - (V(e99))] podgds| < 1.
0 JRd

(ii) (Convergence as ¢ — 07, then t — 00) The following limit exists

t—00 g0t

o0
lim lim R(t,s;ga):/ / [60"M - (V(e9))] podqds, (3.17)
0 R

and the convergence in t is exponentially fast, i.e., there exist constants C > 0 and
r > 0, which depend on M and V , such that

o0
lim R(r,s;ga)—/ / [66"M - (V(e"09))] podqds| < Ce™™, (3.18)
0 R4

e—0t

holds for all t > 0.
(iii) (Convergence as t — oo) For any ¢ > 0,

. 1 .
lim R(t,&;9) = - (/ 9(@) 5 (@)dq —/ w(q)po(q)dq> . (3.19)
1—>00 I R4 Rd
(iv) (Convergence as t — oo, then ¢ — 0V) The following limit exists

o0
lim lim R(z, &; @) =/ / [60"M - (V(e9))] podqds, (3.20)
0 R4

e—0t1—>00

or equivalently

1
lim — ( / (@)%, (q)dq — / w(q)po(q)dq>
R4 R4

e—>0t &

= /Oo /d [06"M - (V(e*“9))] podqds. 3.21)
0 R

@ Springer



12 Page 16 of 52 Y. Gao et al.

Before proving the theorem, we provide a necessary estimate that will be frequently used
later.

Lemma 3.6 Under Assumption (II), there exist constants C > 0 and r > 0 that depend on ¢,
M, and V, such that for any ¢ € Cfo(Rd), we have

IV )20 < Ce™, IV (€"°9) || L% suppovtyy < Ce ™" (3.22)
This lemma ensures that the integral

/OOO /Rd [06™™ - (V(e*“°9))] podqds

appearing in Theorem 3.2 converges

/0 /Rd [oaTM- (V(ew“q)))] podqds

o0
c
< C/ IV (e"09) || Lo (suppvy A
0
o0
< C’/ e " ds < oo,
0

where C and C’ are constants.

Proof of Lemma 3.6 Define ¢ := [,, ¢podq. Then, we know that ¥ (q, 1) := ¢'“(¢ — @)
solves the backward equation

0y (q,1)

o = Lov@n, ¥(Q0)=el@-9¢ (3.23)

Notice that [y, ¥(q, 0)podq = 0. Multiplying (3.23) by po and integrating in [0, 7] x RY,
we have for any ¢t > 0,

/  V(@.0podg=0. (3.24)

R

By Assumption (II), Poincare’s inequality holds, and we have exponential convergence
19 Gl 200 < Ce™. (3.25)

Furthermore, let 1 := Lo¥ (q, t) = Loe'“0 (¢ — @) = e'“0 Lyp. Then 7 solves

an(q, 1)
ot

=Lon(q,1), n(q,0) = Log(q).
Since fRd Loppodq = 0, we again have exponential convergence
ILoW (Dl L2y < Ce™™.
Using the definition of £,, we compute
[ o™ v o da=— [ a0 covia.n g

=GO L2000) 1£0% G Dl 2200
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<Ce™".
Since o is nonsingular and constant, we have
IV (@)l L2(py) < Ce™".
Next, we estimate the L*> norm. We first observe
1 G DNl oy S NP C Ol poray,  [1LoW Gy DIl pooway < N1LoW (5 0) || oo ra)-

Then, by the interior estimate from [9, Theorem 9.11], for any 1 < p < oo, we have
19 G, O w2 quppoy < € [ GOy + 1LY ¢ O lLos)] - (3.26)

Here, B is a compact ball such that supp(M) CC B. Since py(q) = e '@ > % > 0 for
q € B, for some p > d, we have

W GO gy < WG OI a -/cpo|w<q,r)| dq < e[y ¢ O IV G012y, -

10w o Oy < 1LoW (DI - f cpol Lo (q. 1) dg
B

=cllLoy(, 0)||L00(R11)||501/f(wt)lliz(po)-
Combining this with (3.26), we obtain
1 ¢ D llw2.p suppyy < Ce™™
By the embedding W'?(B) C L*®(B), we conclude
||V(€tL°<P)||L°°(supp(M)) < ”V(erco(p)”lef’(supp(M)) <G D llwzr uppory < Ce™”
This completes the proof of the lemma. a
Now we can proceed to prove Theorem 3.2.
Proof of Theorem 3.2 (i) This is the key step of the proof, and parts (ii) ~ (iv) will follow

from it. Recall that p®(q, t) solves the Fokker-Planck equation (3.9), which can be reformu-
lated as

3p°(q, 1)

G = L0 @) = Lip*(@.0) — eV - (p oo M.

Thus, by Duhamel’s principle, we have

t
pi(a, 1) =e“opg e / TV - (0 (g, 5)o0 " M()] ds. (3.27)
0

Substituting (3.27) into (3.1), we rewrite the response function as

R(e,1;9) = — /R , fo P(@e" V5[V - (0°(a, 5)oa " M(g))] ds dg.
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Since g € CX(R?), the term ¢ (q)e ™40 [V - (p°(q, s)o0"M(q))] is smooth and has com-
pact support in R? x [0, ¢], ensuring it is bounded in this domain. By Fubini’s theorem, we

get

R(e,t;0) = —/0 /qu;(q)e(’—”‘?ﬁ [V (p°(q,s)00"M(q))] dqds.

Integration by parts gives

t
R(e, t;0) = / /d [60"M - V(e"V%09)] p°(q, s)dqds.
0 JR

Now, for a fixed time T, > O (to be chosen later), for t > Tj), we have

t
‘R(e, 1) — / /d [60"M - V(e"V%9)] py(q, s)dqds
0 JR

Ty
[ [ oo™ 920 0 a5) - prdas
0 R

t
[ [ loo ™40 (5 @ 5) ~ pidads
Tp /R

This can be bounded by the sum of three terms

To 0
—s P (.7S)
I=/ ”(TUTM'V(E(T )C()(p)”Lz(po) P ds,
0 Lo L2(pg,supp(M))
t
= / / oo™ V(e 29)] (0 (@, 5) = p%(@)dgds|
Ty /R
t
I = / /,, [0 M- V(e"™"0)] (00(@) — o5 (@)da ds|
Tp /R

By Lemma 3.5 and Lemma 3.6, we know

To
[=Cs / "™ sds = eCy(Ty + e’ ™7,
0

(3.28)

(3.29)

where C is a constant depending on M, ¢, o, and V. By Proposition 3.1 and Lemma 3.6,

we know

t
<[ lloc"™- V(" %) 1o suppony |1 0°(q, ) — Pec (@l L1 gayds
Ty

t
< C// er(sft) Le"15ds
To

< Cye™1h,

where C’” and C, are constants and r; > 0 depends on M, ¢, o, and V.
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Finally, by taking W (q) = |q|? in [2, Proposition 3.7.4], pg, converges to pp as € — 01
in L' (R%). Thus, by Lemma 3.6, as ¢ — 0T, we have

t
oI < ||,0§o - pO”L](]Rd) : / ||<TO'TM : V(e([_S)CO(p)||L°°(supp(M))ds
Ty

t
, o 331
<Clo% = ol [ €0ds 3D
To

<Cslpi, — poll 1wy — 0.

Here, C3 depends on M, ¢, ¢, and V.

To control the error within any § > 0, take Ty sufficiently large such that Il < C,e™"170 <
&/3. Then, choose &y so that I < C;e¢(Ty + 1) < /3 for any ¢ < . Finally, select & < g9
so that Il < C3|p%, — pollL1gdy < 8/3 for all € < e;. Thus, for any ¢ < &; and ¢ > Ty, by
(3.29), (3.30), and (3.31), we have

t
‘R(s,t;w)—// [06"™™ - V(e"%00)] po(q)dqds| <T+ 11+ < 6. (3.32)
0 JRrd

For t € (0, Ty], use (3.29) to bound the difference

t
‘R(e,t;w)—// [60"M - V(e"%0¢)] po(q)dqds| <1<8/3. (3.33)
0 JRrd

Thus, the convergence is uniform in #, and by a change of variables, we obtain

// [aaTM-V(e“—”ﬁo(p)]po(q)dqu:// [66"™™ - V(e 9)] po(q)dqds.
0 JRd 0 JRY

(3.34)
This completes the proof of (i).
Next, we prove (ii). By Lemma 3.6, we know that for 7, > T} > 0
T
[ [ oo™ vt onmadads
T JRA
T,
< / oo™ - V(e ) || Lo suppmyds < Ce™ T —e7"72). (3.35)
T

1

Here r and C are constants in Lemma 3.6 that depend on M, V, o and ¢. Therefore, we
know that the limit

lim / / [e6"M - V(e™09)] po(q)dqds (3.36)
0 JRrd

—>0o0
exists, and by letting 7, — oo in (3.35), we obtain exponentially fast convergence, proving
(ii).

For (iii), use Proposition 3.1

S llelleomdy - 10°(@, 1) — pill L1 gy < Ce™.

’ / 0@ (0" (q.1) — pt,)dg
Rd
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Thus, for any given ¢, we have

1
fll“olo R(e,t;90) =~ (/Rd o(q) (o5 (q) — po((l))d(I> .

&

This proves (iii).
Finally, we prove (iv). By the uniform convergence in (i), for any n > 0, there exists &
such that for all # > 0 and ¢ € (0, &)

<.

t
‘R(t,e;q))—// [66"M - V(e'*9)] podqds
0 JRrd

Taking the limit t — oo, we get

<.

lim R(z,e;q))—/ /[JJTM-V(e“EOgo)]podqu
t—00 0 Rd

This implies

o0
lim lim R(e,t;¢) = / / [O'O'TM . V(e‘ﬂ‘)go)] oodqds,
0 R

e—0t1—>00

or equivalently

1
lim —< / (@0, (@)dg — / §0((I)Po((I)d(I)
R4 R4

e—0t &
=/ / [GGTM~V(eSL°(p)] podqds. 0
0 R4
3.3 The Green-Kubo Relation

Compared to the general linear response formula describing the behavior of the response
function R(e, t; ¢) with respect to an external force, the Green-Kubo relation is a special
case where the limiting response function is explicitly computed via the stationary auto-
correlation function. This auto-correlation function depends only on the correlation of the
original unperturbed solution at different times, so it can be used to “predict” the aver-
aged response for a reversible system after applying a conservative force as the perturba-
tion.

Precisely, consider a special case of linear response theory: the perturbation is also
of potential form, i.e., there exists W € Cg’o(Rd,Rﬂ such that M = VW. In this case,
the perturbed SDE is also of reversible form, and the invariant measure of (3.3) is given
by

1
pgo: Z_e—V(q)-%—sW(q)’ Z. ::/ e—V(q)-HsW(q)dq. (3.37)
€ R4

By Theorem 3.2, taking two special functions as ¢ = Log and M = VW, we can rig-
orously verify the Green-Kubo relation (3.39). Specifically, we take a special class of test
functions ¢ satisfying f ¢podq = 0, and then one can uniquely solve g from ¢ = Lg up to
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a constant. For this special case, we provide an intuitive proof of the Green-Kubo relation
using the semigroup property. Indeed, observe that

t
a .
/d [g —e™0g] (LoW)podq = — /d/ g(ffw”g)ds (LoW)podq
R rd Jo

t
- f / €0 Log ds (Lo W) podg.
R4 JO

Since fR,, (LoW)podq = 0, and using the result from the proof of (3.24) with ¥ (q, 0) =
LoW, we obtain for g := [, goodq, that g [o, €'“0(LoW)podq = 0. Thus, we have

f , "0 g(LoW)podq = / | e'"0(g — 2)(LoW)podq
R4 R

1 1
2 2
< ( / |e"0(g—g)|2podq> ( f |coW|2podq) =0

as t — o0 due to (3.25). Therefore, the following identity holds:

—/ /R[e‘mo(ﬁog)](ﬂow)podqu:/R g(ﬁoW)pod(I:/R(ﬂog)Wpodq, (3.38)
0 d d d

due to the symmetry of L.
In the theorem below, we provide an alternative proof starting from the linear response
theory in Theorem 3.2.

Theorem 3.3 (The Green-Kubo relation) Suppose that Assumptions (I) and (II) hold. Let
W e Cfo(Rd; R?) and M= VW in (3.3). Forany g € C2, we have

lim lim R(z,&; Log) = /R ., W(q)(Log)(q)po(q)dq

e—0tt—00

= —/ /d [¢"“0(Log)] (LoW)podqds. (3.39)
o Jr
Using the conventional notation for the stationary auto-correlation function

Kap(t) 3=/ (e’l:()A) B podq,
R4

the above Green-Kubo relation (3.39) is interpreted as

+00
lim lim R(,&; Log) = — / K £og.cow (1)t (3.40)
0

e—0+ t—>00

Proof Recall the linear response relation (3.21). We will recast the L.H.S. and R.H.S. of
(3.21) respectively, which in the special case ¢ = Log and M = VW will deduce the so-
called Green-Kubo relation (3.39). This relation is also known as the fluctuation-dissipation
theorem by Gallavotti-Cohen [8].
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For a given observable ¢ € C®(R?) and a potential U € C*°(R?) such that e~V €
L'(R?), define

_ Jrap(@e Y Vdq
)= Rf]Rde‘—U(q)dq' (341)

Then, the L.H.S. of (3.21) should be viewed as the Gateaux derivative at U = V in the
direction W, i.e.,

Vv W) — f(v 1
i ZELED D i ([ @i [ o@miaa). G4

e—0t & e—0t &

By the Dominated Convergence Theorem, direct computation yields

li SV +eW)—f(V) ) e V@+eW (@
R4 de f o

e—0+ & Rd er(q)HW(q)dq

= f go(q)W(q)podq—( / w(q)podq> ( / W(q)podq>-
R4 R4 Rd
(3.43)

For the case ¢ = Lyg, we have f]Rd (Log)podq = 0, and thus the first equality in (3.39) holds.
Now, we reformulate the R.H.S. of (3.21). Substituting M = VW into (3.21) yields

o0 o0
/ / [66"M - V(e’*9)] ppdqds = —/ / (e"09) V- (ppoo" VW) dqds
0 JR 0o Jrd

o0
=— / / (e"09) (LoW) podq ds,
0 R4

where the last equality is due to (3.15). By Theorem 3.2, we know that (3.44) and (3.43) are
equal. Thus, for g € C° (R?) with ¢ = Lyg, we derive (3.39). O

(3.44)

We point out that literature (for instance, [25, Chap. 9.3]) also rewrites (3.39) as

1 o0
3 /}R I'(g, W)(@po(q)dq = / E[(£L0g)(gs)(LoW)(qo)]ds
d 0

= / / E[(L0g)(q5)] (LoW)podqds
0 Rd

o0
= / / 20 (Log)(LoW) podqds. (3.45)
0 Rd
Here, qy, s > 0 is a trajectory of (3.2), and I'(g, &) is the carré du champ operator defined as
I'(g,h):=Ly(gh) — gLloh —hLyg. (3.46)
Equations (3.39) and (3.45) are regarded as the Green-Kubo relation.

In the following, we provide an example to compute the diffusion coefficients via the
Green-Kubo relation. In fact, (3.45) can be rewritten as

f]Rlpo(Q)(Vg)TUUTVWdQ=/O E[(Log)(qs)(LoW)(qo)] ds. (3.47)
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Though we assume W and g are in C2° (RY), by a density argument, (3.45) or (3.47) also
holds for W(q) = ¢q;, g(q) = g; where i, j =1,2,...,d. Thus, we derive the diffusion
coefficients

o0
(0o Ty = / E[(@:0VV)(@)(@09V)(@)]ds,
0
where o, j=1,2,...,d are the j-throwof 0.

Remark 3.1 As mentioned in (3.38), the Green-Kubo relation could be verified by using the
exponential convergence of e*“0¢. This method is independent of linear response theory
(see [25, Result 9.1]). The way we verified the Green-Kubo formula is to reveal the intrinsic
relationship between it and the linear response theory. Indeed, Hairer-Majda directly termed
(3.21) as the Green-Kubo relation in [11].

Remark 3.2 We also remark that the Green-Kubo relation when studying pZ,, relaxed to py
after canceling the perturbation force, can be used to justify the Onsager regression hypoth-
esis [22, 23]; see also the review article [20]. That is, using the following relation, one can
compute (in a reversible way) the original unperturbed auto-correlation function

1
lim — < / @(q) po(q)dq — / su(q)pio(q)dq)
R4 R4

e—>01 &

— lim / / [*% (£.9)] (L. W)pS, (@)dads
0 R4

e—071

/ / e 02op)] (£oW) po@dqds.
0 R

4 The Linear Response Theory for Underdamped Langevin and
Generalized Langevin Dynamics

Unlike the overdamped case, the degenerate ellipticity of the underdamped Langevin equa-
tion prevents the direct analogy of many results from the overdamped Langevin case. In
particular, few results are known for irreversible underdamped Langevin dynamics. Fortu-
nately, Villani’s remarkable work on hypocoercivity [29] has facilitated the analysis of the
reversible case, showing that exponential convergence still holds under mild conditions on
the potential.

In this section, we consider underdamped Langevin dynamics and study the linear re-
sponse theory for the case where the external force perturbation is in a conservative form
eV W. The main differences between the underdamped Langevin dynamics and the over-
damped case are hypocoercivity and hypoellipticity. Therefore, we will first clarify hypoco-
ercivity and hypoellipticity before proving parallel results for the behavior of the response
function R(e, t; ¢).
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4.1 Hypocoercivity and Hypoellipticity of the Kinetic Fokker-Planck Equation

Suppose that V(q) € C®(R?) is positive and satisfies Assumptions (I) and (II). Consider
the following underdamped Langevin dynamics

dq® = p®dr,
dp* = —oo ptdr — Vg[V(q°) — eW(q®)ldr + v20dB, @0

1 2 2
(@ (0),p*(0) ~ poi= —e PV, 7= / e PPV @ dqdp,
R2d

where W(q) € C>°(R?) is the potential as in Sect. 3.3 such that the force perturbation is also
of the potential form eVW.
Let p®(q, p, 5) be the law of (q¢, p$). It satisfies the following Fokker-Planck equation

9p°(q, p, 1)

5 =Lip(q,p.1), p°(q.p.0)=po, 4.2)

where L7 is the perturbed Fokker-Planck operator
Lip:=—p - Vap+ VgV —eW(@] Vpp + V- (po0 p+00"Vyp).  (43)

The invariant measure of (4.2) is the Gibbs measure

1
P, = — P2V @+ W (@ Z. ::/ ef\p\2/2fv(q)+sw(q>dqdp_ 4.4)
Z R2d

LRT is interested in the limit behavior of the response function given an observable
@ € CX[R¥™), ie.,

1
Rie, 1;9) =~ < / ¢(q.p)p°(q. p. 1)dqdp — / ¢(q, P)po(q; p)dqdp> NN
& R2d R2d
As in (2.15), the unperturbed backward operator £ is given by

Lof :=p-Vof =VaV(@ - Vpf = (00"p)- Vo f +(667):V, f, (4.6)

and the unperturbed Fokker-Planck operator £j is given by

Lip:i=—p-Vgp+VqV(@Q) - Vppo+Vp- (0o p+aa’Vyp). 4.7
&€
Pt —_
We now consider the equation of p°(q, p,t) = M, which is
05(4. p)
ap* o
8t :ﬁs,lpsv pg(q’pvo):_fv

where

Lorf =P Vo +(VgV(@ — VW (@) - Vo f — (@067D) - Vo f +(@07): V2.
4.8)
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We point out that, unlike the overdamped Langevin dynamics, £, ; is not exactly the same
as the generator, since the first two terms in £y form the Liouville operator.

We can prove that £, generates a strongly continuous semigroup of contraction on
L?(p5,).

Lemma 4.1 Let V(q) € C*(R?; R) satisfy Assumption (I) and W(q) € Cf"(R"; R). Con-
sider equation (4.2). Then

(i) po/ps € H (05) k=1,2,...
(1) L., in (4.8) generates a strongly continuous semigroup of contractions in Lz(pgo);
(iii) Equation (4.2) admits a unique solution p°(q,p,t) € C'([0, T]; Lz(l/,ogo)) for any
T >0.

By Hormander’s hypoellipticity Theorem 3.1, we can prove that the unique solution of
(4.2) is smooth (proof is in Appendix B).

Lemmad4.2 Let p°(q, p, t) be the unique solution of (4.2). Then it is smooth in R* x (0, 00).
4.2 Linear Response Theory for Underdamped Langevin

According to [6], for any ¢ € C®(R??), the solution to the backward equation

dp(q,p, 1)

Y, :‘C’O(p(q’ p7t)s (p(qa p’o) :QD(q, p)» (49)

converges exponentially fast in L?(py), i.e.,
lpCs 1) = @l < Ce™. (4.10)

Here ¢ := f]RZd ©(q, p)po(q, p)dqdp, C > 0 is a constant depending on V, &, and ¢, and
r > 01is a constant depending on V and o.

Since W is of compact support, the conditions of hypocoercivity for V in Assumption
(1) still apply to the perturbed Fokker-Planck equation [6]. Hence, exponential convergence
also holds

1% G- 1) = pgo G, ')||L2(1/pgc) <e"po— Ioéo”L2(1/pgo)' (4.11)

Here r > 0 depends only on V and &, but not on ¢; C; > 0 depends only on V and o. The
reason they do not depend on ¢ is that the perturbation from W is smooth and of compact
support.

Using these exponential convergence results (as in Lemma 3.6), we can rigorously verify
the linear response theory.

Theorem 4.1 Let V(q) € C®(R?) be positive and satisfy Assumptions (I) and (IT). Suppose
W(q) e CX (RY). Let p?(q, t) be the law of (qf, py) in (4.1), and let pS_(q) be the invariant
measure of (4.1). For some ¢ € C° (R*?), consider R(t, &; @) defined in (4.5). Then

(i) (Convergence as ¢ — 07) For any givent > 0,

lim R(t,€;¢) :/ / [VqW-(Vp(eSLogo))],oOdqdpds. (4.12)
0 JRXM

e—>01
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Moreover, the limit in (4.12) holds uniformly for all t > 0; i.e., for any n > 0, there
exists &y such that for any 0 < ¢ < ey and t > 0,

t
‘R(t, £ ¢) — / /Zd [VqW - (Vp(e"°9))] podqdpds | < ;
0o JRr
(ii) (Convergence as ¢ — 07, then t — 00) The following limit exists

o0
lim lim R(z,¢&; ¢) = / / [VaW - (Vp(e*“09))1podqdpds, (4.13)
0 R2d

t—00 g0t
and the convergence in t is exponentially fast. That is, there exist constants C > 0 and

r > 0 (depending on M and V') such that

o0
lim R(t, & ¢) — / / [VqW - (Vp(e*09))]1podqdpds| < Ce™" (4.14)
e—0F 0 RrR2d

holds for all t > 0;
(iii) (Convergence as t — oo) For any ¢ > 0,

1
Jim R(z, &1 ) = — </de ¢(@)r% (q)dgdp — /de ¢(@po(q, t)dqdp> SN CAN)

(iv) (Convergence as t — o0, then ¢ — 0%) The following limit exists

e—0tt—>00

tim lim R(.ei0)= [ [ 900 (V@ S0)indadpds. @16
0 R2d

or equivalently,

1
lim — ( / @(q) -, (q)dqdp — / ga(q)po(q)dqdp)
R2d R2d

e—>0t €&
o0
- / / [VaW - (V(eE09)) ] podqdpds. @.17)
0 R

Proof We first prove (i). By Lemma 4.2, p°(q, p, t) is smooth. By Duhamel’s principle, we
have

t
pf(q,p,t) =e 0py—¢ / LV W (Q) - Vpo©(q, p, 5))ds. (4.18)
0

Remember that e'£6 py = py, 50

1
R(t,e;9) =— (f ¢(q,p)p°(q,p, t)dqdp—/ ¢(q, p)po(q, p)dqdp>
£ R2d R2d

t
=— / y / @(q, p)e’ 50 (VaW(q) - Vpp©(q, p, s))dsdqdp.
R 0

Since ¢(q, p)e(’_”ﬁf; (VqW(q) - Vpp®(q, P, s)) is a smooth function with compact support
in R* x [0, t], Fubini’s theorem gives

t
R(t,e59)=— / / EaCt PV (VW (q) - Vpp(q, p, s))dqdpds.
0 R:
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Integration by parts then yields

t
R(t,&;90) = / / 2d[vqw (Vp(e"V%09))1p"(q, p, s)dqdpds.
0 R
By (4.11), we know

10°Cs s 8) = poCs M2aypey S N0°Cs08) = e G Mlrzaype + 100 = Paoll 2z,
< +e)lpo— P;||L2(1/pgc)

<2lpo — piollea/ng).

Thus, by Cauchy-Schwarz’s inequality, we have

‘R(t,S;w)—//R [VgW - (Vp(e9)) ] podqdpds
0 2d

/ / VW - (Ve 001" (@, . 5) — po(a, P)dadpds
0 K (4.19)

t
= f VW - (Vp(e(t_S)LO(p))”Lz(pgc) l0%(q, p. s) — po(q, P)||L2(1/pgo)ds
0

t
=2llpo = PillL2a1ps) - / IVqW - (Vp(e 0@l 2z, ds-
0

Because W has compact support, there exists a constant C’ > 0, depending only on V, W,
and o, such that

VW - (Vp (@20l 20 < ClIVp@@ @) 1205y < ClIVp @0 200 (420)

Notice that V,(e*£0¢) = V,(e*20(¢ — @)). Thus, by (4.10), we have

lo " V(€ )L ) = = f (€"“0(¢ — §))(Loe (¢ — $))podqdp
R2d

< 1109 = @)l 120 1 L0€" (9 = DI 12

< C//efzm.

Here C” > 0 is a constant depending on ¢, V, and o, and A is the constant in (4.10). Since
o is non-singular, we have

IVp(E“0)[172,, < Cre™". 4.21)
Here C is a constant depending on ¢, V, and a. Returning to (4.19), we obtain
t t
‘R(t, ei0) = [ [ IV (Gae L) ondadpds| < 2Callo0 — picliaey - [ € s
0o Jr 0

< Gsllpo = pgollizype,)-
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Here C; > 0 is a constant depending on ¢, V, W, and o. Since py and pZ, are the Gibbs
measures given in (4.1) and (4.4) respectively, and W is of compact support, the dominated
convergence theorem directly implies

loo — pf;o”LZ(l/pgo) -0

as ¢ — 0T, Since Cs|pg — p5, lL2(1/02,) is independent of 7 and approaches 0 as ¢ — 0t, (i)
is proved, and the convergence is uniform in ¢.

Now we proceed to prove (ii). By (4.21) and Cauchy-Schwarz’s inequality, for any
T,, T> > 0, we have

T
/ / [V W - (Vp(e*29))] 0odqdpds
7, Jru

i
< IVqWl 12¢y) / e ds
T
< C(e_T]r _ e—Tzr).
Here C is a constant depending on V, W, and o. Thus, the limit in (4.13) exists and con-

verges exponentially fast in 7.
Next, we prove (iii). This follows immediately from (4.11). For any given ¢ > 0, we have

1
- ( / ¢(q, p)ps.(q, p)dqdp — f w(q,p)pg(q,p,t)dqdpﬂ
& R2d R2d

1
=< ;||§0||L2(l/p§0)”p£('7 1) = pg G, Mezayses,)
<Cie"/e.

Here C; > 0 is a constant depending on ¢, V, W, and o, and r; > 0 is in (4.11). Thus, the
limit as t — oo exists for each ¢ > 0.

Finally, we prove (iv). By (i), we know that for any 1 > 0, there exists gy > 0 such that
for all ¢ € (0, g9), we have

<.

‘R(Iys;w)—/ /Rd[VqW-(Vp(e'wow))]podqdpds
o Jr2

Passing to the limit as + — 0o, we obtain

=n.

lim R(, ¢; ) —/ / [VW - (Vp(e‘”:‘)(p))]podqdpds
t—00 0 R2d

Thus, by definition,

lim lim R(t,¢; @) :/ / [VqW - (Vp(ewogo))]podqdpds.
0 R2d

g—0+ =00
By (iii), this also implies (4.17). This completes the proof. O
4.3 Linear Response for the Generalized Langevin with Memory
The generalized Langevin equation with a general algebraic memory kernel was introduced

in [18, 21]. Recent works [17, 19] have extended the fluctuation-dissipation relation for both
overdamped and underdamped generalized Langevin dynamics.
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When the memory kernel takes an exponential form, the generalized Langevin dynamics
can be transformed into classical underdamped Langevin dynamics by introducing an ad-
ditional variable [24, 26]. As an application of Theorem 4.1, we consider the generalized
Langevin equation with an exponential memory kernel, i.e., (2.21)

n t
q,=_qu(q)—ZAiAiT/ e i q,ds + A,
i=1 0
dff = —,fidt + /2 'a;dB!, i=1,2,...,n.

Here, V € C®(RY) satisfies Assumptions (I) and (II) with ¢ = I, and for each i =
1,2,....n, A; € R9*? ig a constant matrix, ¢; > 0 is a constant, and Bf € RY is a standard
Brownian motion. The Bf ’s are independent. Furthermore, we assume that the Hessian of V
is uniformly bounded, i.e., there exists a constant C > 0 such that for all q € R4,

V2V (gl < C. (4.22)

Here, the norm refers to the Frobenius norm.
Letzl = —A] fol e =9 q,ds +f and q = p. Then (2.21) can be reformulated as (2.22),
ie.,

dq = pdt,

dp= (—VqV(q) + ZA,-Z,) dt,

i=1
dz; = —(a;z; + Al p)dr + 2 ';dB;, i=1,2,...,n.

For simplicity and without loss of generality, we consider the case n =1 and A; =1,
i.e. (2.25). The conclusions in this section can be easily extended to the general case.

Now based on (2.25), we impose a compact and smooth perturbation on the potential
term, i.e., for W € C° (R%), and consider the following perturbed SDE

dq* =p‘dr,

dp® = (~VaV(Q) + eV W(q) +2°) dr,
dz° = —(az° +p)dt + /2~ adB,

(q°, p°. 2°) ~ po.

(4.23)

The invariant measure of (4.23) is given by

1
Poo(Q, P, 2) = 7 exp(—BH(q,p,2) +eBW(Qq)),
(4.24)
VA :=/ e PH@P2+BW @ qqdpdz < oco.
]R3d

Let p°(q,p,z,t) be the law of (q°(¢), p°(¢),z°(¢)) in (2.25). Then p°(q, p,z,t) sat-
isfies the following perturbed Fokker-Planck equation with initial value p®(q, p,z,0) =
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Po(q, P, z)

ap®
ot

=Lop, Lop:=—P Vep+ VeV (@ —eW(@)  Vpo+ (P Vap —2- Vpp)

1
+aV, - (zp + EVZ,O) .
(4.25)
Consider ¢ € C°(R3?). The linear response theory focuses on the limit behavior of

1
R(e, t; ) = - (/“ ¢(q,p,2)p°(q, p, z, t)dqdpdz — /“ @(q,p,2)po(q, p, Z)dqdde> .
R~ R3d
(4.26)

The unperturbed backward operator L is given by
o
Lof :i=p-Vqf =YgV (@ -Vpf —(P-Vof —2-Vpf) —az! V,f + EAzf. (4.27)

The backward equation with initial value ¢ is then written as

0p(q,p,z,1)

ot :l:()(ﬂ(q, P.z, [)’ (p(qs P.z, 0) =§0(Q» P, Z)' (428)

According to the hypocoercivity result in [12], under Assumptions (I), (II), and (4.22)

on the smooth potential V, the solution to (4.28) converges exponentially in the weighted
Sobolev space H'(pg)

H<p(~, b)) — / ¢(q, p. ) podqdpdz
R3d

H'(pg)

< ef)xt

(4.29)

(- 0)— / ¢(q, p, 2) podqdpdz
]R3d

H'(pg)

We emphasize that (4.29) is stronger than the result used in the underdamped Langevin
case, which focuses on exponential convergence in L?(py), while (4.29) concerns H'(pp).
With (4.29), we can rigorously verify the LRT for the generalized Langevin dynamics.

Theorem 4.2 Let V(q) € C®(RY) be positive, satisfying Assumptions (I), (IT), and (4.22).
Suppose W(q) € Cj’o(Rd). Let p°(q,p,z,t) be the law of (q°(t), p°(t),z°(¢)) in (4.23),

and let p% (q, P, z) be the invariant measure of (4.23). For some ¢ € CSO(RM), consider
R(t, &; @) defined in (4.26). Then

(1) (Convergence as ¢ — 0%) For any given t > 0,

t
lim R(t,&; ¢) = / / [V W - (Vp(e*209))]podqdpdzds. (4.30)
e—0t 0 JR3

Moreover, the limit in (4.30) holds uniformly for all t > 0; i.e., for any n > 0, there
exists & such that for any 0 < e < gy and t > 0,

t
‘R(l,é“;(ﬂ)—/ / [VqW«(Vp(es‘:"w))]podqdpdzds <.
0 JR3M
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(ii) (Convergence as € — 0% then t — 00) The following limit exists

lim lim R(t,E;w)Z/ / [VqW - (Vp(e*“°p))]podqdpdzds, 4.31)
0 R3d

1—>00 8*)0*’

and the convergence in t is exponentially fast; i.e., there exist constants C > 0 and
r > 0 that depend on W and V such that

o0
lim R(z, & ¢) — / / [VqW - (Vp(e*“9))1podqdpdzds| < Ce™"  (4.32)
e—0 0 R3d

holds for all t > 0.

(iii) (Convergence ast — o0) For any € > 0,
. 1 e
lim R(t, & ¢) = - ¢(q,p.2) 5 (q, p, 2)dqdpdz
(=00 e \Jpaa

- / y ©(q,p,2)po(q, P, Z)dqdde> . (4.33)
]R‘(

(iv) (Convergence as t — oo then ¢ — 0) The following limit exists

[e o]
lim lim R(z, &; ¢) = / / [VqW - (Vp(e*“°p))] podqdpdzds, (4.34)
0 JR¥M

e—0t 1—00

or equivalently,

1
lim — ( / y ¢(q,p,2)p5,(q, p, z)dqdpdz — / y »(q, P, 2)po(q, P, z)dqdde)
R R

e—>0T €

= / / [VaW - (Vy(e™*9))|odqdpdzds.
]R3
0 (4.35)

Proof The proof follows closely from the case of the underdamped Langevin dynamics, so
we provide only a sketch.
For (i), as in the proof of Theorem 4.1, by Duhamel’s principle, we have

t
R(t,e;9) = —/M/ @(q, p, z)e" %0 (VaW (@) - Vpo©(q, p,2)) dqdpdzds.  (4.36)
=3 Jo

Using integration by parts and Fubini’s theorem, this becomes

1
R(t,&;0) = / / [VaW(Q) - V, (e"909)] p*(q, p. 2, s)dqdpdzds. 4.37)
0 R3d
The variational structure of the Fokker-Planck equation gives the bound

||p£('7 ) ',S) - PO('» © ')“Lz(l//)go) = ||p£('7 ) '7S) - p;o(v ) .)”Lz(l//)go)
+11e0Cs s ) = P5 Co s Mlrzay e,

=20p0Cs ) = P s Ir2ypg)-
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Using Cauchy-Schwarz’s inequality, we obtain

t
‘R(t, g ¢) — / / . [VaW(Q) - Vp (e""%°¢)] po(q. P, z)dqdpdzds
0 JR’

t
=< 2”100('7 “ ') - loéo('s ) ’)“Lz(l/pgo) ' / ||qu(q) : V]) (esﬁ()¢) ||L2(p:s>c) ds.
0
Since W is of compact support, by (4.29), we have
t t
/ H VaW(Qq) - Vp (ew"go) ||L2(p5 )ds < C/ e Mds < C'.
0 *© 0

Here, C’ is a constant independent of ¢ and ¢. Hence,

t
’R(t, & ¢) — / /3[ [VaW (@) - Y, (e"79%09)] po(q, p, z)dqdpdzds
0 JR

=< ZC,HPO(» “ ) - pgo(a s ')“Lz(l/pgc)a

and the right-hand side tends to 0 as & — 0. Thus, (4.30) holds, and the convergence is
uniform in 7.
For (ii), by (4.29), for any 0 < T} < T3, we have

0
/ / o, [VaW @ - Vp (e"77%°)] 0o(a. p, 2)dqdpdzds
T RR-

T
—A —T1A —Thr
snvqwan(,,Q)-/ e Pds < Ce T — T,
Ty

Here, C is a constant depending on V, W, and «. Thus, (4.31) holds, and the convergence
in ¢ is exponentially fast.
Next, for (iii), this is a consequence of convergence in L'. For any given & > 0, we have

1
- ( / ¢(q,p,2)p.,(q, p, z)dqdpdz — / ¢(q,p,2)0°(q, p, Z, t)dqdde)
£ R3d R3d

1 B e
= Zlelleello™ Gy 1) = poo G )l
< Cle_rgt/é‘.

Here, . > 0 and C; > 0 are constants depending on ¢. Thus, we have convergence as t —
0.

Finally, for (iv), by (i), for any n > 0, there exists &y > 0 such that for all ¢ € (0, &), we
have

<.

’R(I,S;so)—/ /d[VqW-(Vp(em"w))]podqdpdzds
0 JR3

Passing the limit # — oo, we have

=n.

[e ]
lim R(z, &; @) —/ / [VgW - (Vp(e“:‘)(p))],oodqdpdzds
=00 0 R3d
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Thus, we conclude

o0
lim lim R(z, &5 ¢) = / / [VqW - (Vp(e*“9))]podqdpdzds.
0 R3d

£—0F t—>00

By (iii), this also implies (4.35). This concludes the proof. O

Appendix A: Omitted Proofs for Reversibility Results

This appendix provides some preliminary definitions and the omitted proofs for the re-
versibility of overdamped and underdamped Langevin dynamics.

Proof of Lemma 2.1 Suppose that (2.4) with the initial density function py(q) describes a re-
versible process. According to Definition 2.3, pp must be a stationary measure. Consider the
distribution of the time-reversed process q*(¢) with respect to a fixed time 7' (see Definition
2.3)

q =qr_;. (A1)

Because py(q) is stationary, the time-reversed process q; has the same distribution as the
original process. Thus, for any ¢y, ¢, € CZ°(RY), reversibility implies

Ele1(q)92(q0) | 9o ~ pol = Ele1(q))e2(q5) | qo ~ 0ol (A.2)
Using the Markov property and the invariance of py, for any 0 <t < T, we have
Elei1(q)92(a) | 9o ~ pol = Ele1(qr—)e2(qr) | go ~ pol

=Elpi(qr-)e2(qr) | qr—; ~ pol (A.3)
=E[¢1(qo)®2(q:) | qo ~ pol-

Thus, we obtain the symmetry

Elg1(q)2(q0) | 9o ~ 0] = E[@1(qo)02(q) | qo ~ ool (A4)

Conversely, if for arbitrary ¢, and ¢,, equation (2.8) holds, we can apply smooth func-
tions to approximate simple functions. By the monotone convergence theorem, this allows
us to conclude reversibility. |

Proof of Theorem 2.1 We will prove the theorem using the following logical steps
(i) = (i) = (iv) = (iii) = (iv) = ().

Step 1. (i) = (ii).
Denote the solution of (2.4) as q,. For arbitrary ¢, ¢, € C;° (R?), we have

Ele1(q)92(q0)] — Ele: (qo)92(qo)] _ El(e1(q:) — ¢1(q0))92(qo)]
t t

_ E[E[(¢1(a) — ¢1(90)¢2(qo) | o]l
t
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_ Elg2(q0)E[(¢1(q:) — @1(do)) | qo]]
1t

El(e1(q) — ¢1(q0)) | qo =
» v (q)

al po(q) dq.
(A.5)

t

Similarly, we have

El¢2(9)¢1(q0)] — Elg2(qo)¢1(qo)] El(¢2(q,) — ¢2(90)) | go =4q] d
- = | e1(@) ; ro(q) dq.
(A.6)
By Definition 2.3, we know
Elg1 (a)92(q0)] = El[p1(qo)¢2(q.)]-
Therefore, we have
E ) — =
/Rl 0@ [(®1(qr) wlt(qo)) | qo=q] 0@ dq
]E 1 - =
_ /Rd o1 (@ [(p2(q)) <P2I(QO)) | qo =q] o) dat. (A7)

Passing the limit as t — 07, using the definition of the generator, we obtain

/R ) (Lo (@@2(q) po(q) dq = /R , (Le2)(@e1(q)po(q) dq,

which is exactly (2.11).
Step 2. (ii) = (iv).
Rewrite (2.11) as

Po(@@2 () L™ (po(@)e1(q)) dq.

1 1
/ Po( @01 (@)L (00 (@ (@) dg = /
R Po(qQ) rd Po(q)

This holds for arbitrary ¢, ¢, € C§° (RY). Hence, for arbitrary ¢ (q), ¢»(q) € e (R%), we
get

1
4 po(q)

1
/}R P1(@ L ($2(q)) dg = /R $2(@ L7 (¢1(q)) dg.

4 po(q)

Let 1/p0(q) = eV @ for some U(q) : R? — R. Substituting (2.5), we have
1
/ Y@ [—v H(gob) + 5V (¢2aaf>] dg
R

= f , A1) [—v (¢1b) + %vz : <¢laof)] dq.
]R{

@ Springer



Reversibility and Linear Response Theory Page 35 of 52

12

Integration by parts yields
1
f G,V (@)b(@ + 5V V(@) (9007 dg
R
1
= / | VDo, (q) Ve (q) - b(q) + Evz(e”“%(q)) :(¢roa’)dq.
R

Next, using the fact that oa’ is constant, we obtain

V("1 (@) : ($ro07) = V2" V(@) : (pr00T)
=2[0a" V(" V)] ($2(@) V1 (Q) — d1(@) V(@)
+e" OV (00" ($2(@ V1 (@) — $1 (@ V(@)

Substituting this into (A.8) and integrating by parts again, we find

1

/ ) e’ V(@) V1 (q) — ¢1(@) Ve (q)) - <b + EUUTVU(q)> dq=0.
R[
By Lemma A.1 and the smoothness of b and py, we obtain
[
b+ Eaa VU (q) =0.

Since o is nonsingular, we have

—VU(q) =2(caT)'Db.

Thus, po(q) = e~Y@, which proves (iv).
Step 3. (iv) = (iii).

(A.8)

(A9)

If (iv) holds, we can derive that £ generates a strongly continuous semigroup on
L?(pydq) by Hille-Yosida’s theorem (see proof of Lemma A.2). Therefore, the diffusion
process is well-defined, and x(#) admits a probability density p(q, ¢), which is the unique

local solution of (2.5) with initial value p(q, 0) = po (see [3]).
Notice

1 1
L*po= EV . <—e‘U“1)b(q) + EGO‘TVQ_U(q)>

1 1 1
= —EV . (efu(q)gaaTVU(q) — eiU(q)EaaTVU(q)>

=0.

Thus, the unique local solution of (2.5) with initial value pg(q) is exactly p(q, t) = po(q),

which is actually a global solution. Hence

. . 1
J(p@)) = j(po) =bpo — EaaTVpo =0.

Therefore, j(p) =0, i.e., the probability flux is zero.

(A.10)
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Step 4. (iii) = (iv).
Since j(p(t)) =0, we know that py satisfies

1
b(q)po(q) — EUGTV,OO((]) =0.
Since po(q) > 0, we have

o0’ Vlog(po(q))

b(q) = >

Thus, (iv) is proved by setting U (q) = —log(po(q)).

Step 5. (iv) = (i).

From the proof of Lemma A.2 and Hille-Yosida’s theorem, we know that £ generates a
strongly continuous semigroup on L?(p,dq), denoted as e'%, for t > 0. Therefore, for any
g1 e C° (R%), (e"“¢1)(q, t) is the solution of (2.6) with initial value f(q, 0) = ¢;(q).

Direct calculation yields that for arbitrary f and g € CJ°(R?)

/R @@L @) dg
| |
=§fde‘y(")g(q)< V@ + oro sz(q)) dq
-U(q) 1
= —/ g(tl)( Vf(q)+e’U“"§wT:V2f(q)> d
ﬁ 8@V (o0 Vf(@)dg
1

_ -U(q) ToaT
=-5 Rde (Vg(@) o0’ Vf(q)dg.

The last equality is symmetric with respect to f and g, thus £ is symmetric in C °°(]Rd) C
L?(podq). By [3, Corollary 7.3.2], the dual semigroup of ¢’ in L(p, dq) (denoted as e’ ﬁ)
is generated by the dual operator of £ in L?(p dq) (denoted as E)

Since £ is symmetric on C°°(Rd) we know e'£¢ = e'“¢ for any ¢ € C° (R%). Thus, for
arbitrary ¢, ¢, € CJ°(R?), we have

/}R ) po(@@2(q) (e “p1)(q, 1) dg = /}R ) Po(@1(Q)(€C0y)(q, 1) dg

= /R ) Po(@e1 (Q) (e “92)(q, 1) dq.

Thus, E[¢;(qo)@2(q;) | 4(0) ~ 00] = E[@2(qo)¢1(q,) | q(0) ~ po], which proves reversibil-
ity. ]

Proof of Lemma 2.2 First, if the process with initial density function py(q, p) is a reversible
process, then p, is a stationary measure. Consider the distribution of the time-reversed pro-
cess (q*(¢), p*(¢)) with respect to a fixed time 7, as defined in Definition 2.3. Since q is
even and p is odd, we have

QG =dqr—, P, =—Pr—- (A.11)
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Since py is invariant, it follows that

(7. p) = @r—, —Pr—) ~ po(q, —P), (A.12)

i.e., the distribution of the time-reversed process has density po(q, —p).
Let po(q, p) = po(q, —p). For any 1, @2, Y1, ¥, € C;° (R?), the reversibility condition
implies
Elg1(qo)@2(Po)¥1(d:) ¥2(P:) | (qo, Po) ~ pol
= Elp1(q0)¢2(po) ¥1(a))¥2(p;) | (qo, Po) ~ pol-

Let g5 (p) = 2 (—p) and %(p) = ¥, (—p). Using the Markov property and the invariance
of py, for any ¢ € [0, T], we have

Elp1 (q0)e2(po) V1 (a;) ¥2(p;) | (qos Po) ~ pol
= El1 (@r)@2(—pr) Y1 (@r-)¥2(—pr—) | (o, Po) ~ po)
= Elp1 (ar)@®r) ¥ @r—)V2(r—0) | (Go. Po) ~ ool
= Ele1(ar) @ @) ¥ @r-)¥2(pr—) | @r—. Pr—1) ~ pol
= Elp1(q,)@(P) V1 (Q0)¥2(Po) | (qo- Po) ~ o).

Therefore, equation (2.16) holds.

Conversely, if equation (2.16) holds for arbitrary ¢, and ¢,, then by using smooth func-
tions to approximate simple functions, one can conclude reversibility through the monotone
convergence theorem. Hence, we employ (2.16) to prove reversibility instead of checking
the definition directly. ]

LemmaA.1 For any ¢ = (1, ¢, ..., da) € CCRY; RY) with ¢; >0,i=1,2,...,d, there
exist f, g € Cy° (R?) such that

fVg—gVf=¢.
Proof Foreachi,let f; =./¢; and g; = x; f;. Then

fiVg — &V fi=f2V (g—) = pie;,

1

where ¢; = (0,0,...,1,0,...,0) € R? has 1 in the i-th position and 0 elsewhere. Thus,
d
¢=>_,fiVsi —&Vf. 0

Proof of Theorem 2.2 Step 1. We prove (i) —> (ii).
Because the process is reversible (and therefore stationary), (qg, p;) and (qo, po) have
the same distribution. Thus (qg, p;) = (qr, —pr) has the same distribution as (q(0), p(0)),

meaning that po(q, p) = po(q, —p)-
From the definition of reversibility, we know that (i) is equivalent to

Ele: (qo)@2(Po) ¥1 (@) ¥2(pr) | (o, Po) ~ o0l
=E[@1(q)@2(=p)¥1(do) ¥2(—Po) | (o, Po) ~ 0ol

for any ¢1 (@), ¢2(p), ¥1 (@), Y2 (p) € C5°(R).

(A.13)
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By similar calculations to those in (A.5), we know

po(q, p)dqdp

E[Y1(@)v2(p) — ¥1(qo)¥2(Po) | qo = q, Po = P]
P1(Qp2(p) ;

E t —Pr) — - =4 =
=/ 1 (@ (—p) [01(d:)@2(—Pr) — ©1(qo)¥2(—Po) | 4o = q, Po p],Oo(q, p) dqdp.

t

Taking the limit as t — 0T, by the definition of the generator for the process q;, p;, we
conclude that (i) implies

// o1 @e2(P) L [V (@) V2(p)] po(q, p) dqdp

=//ﬁ[wl(Q)fﬁz(P)]wl(Q)l/Nfz(P)po(qa p)dqdp,

for any ¢1(q), 92(p), ¥1(q), ¥2(p) € CP(RY), where @ (p) := ¢2(—p) and VY (p) :=
Yo (—p).

As a consequence, taking {; = v, = 1 in this equation, we have

/ / Llo1@7@)] oo p) dadp=0. Vg, g2 € CRY),

which implies that po(q, p), satisfying £*py = 0, is an invariant measure. Therefore, we
conclude that (i) = (ii).

Step 2. We prove (ii) is equivalent to (iii).

Let H(q,p) = —% In po. Then (i) is equivalent to

// 21 (@@ (P LY 1 (@Y (p)e PP dqdp

= / / L1 (@ ()] Y1 (@ (p)e PP dqdp,

for any ¢1(q), 2(p), ¥1(q), ¥2(p) € Cgo(]Rd ). Substituting the operator £ as defined in
(2.15) and using @,(p) = ¢2(—p) and ¥»(p) = Y2(—p), we obtain

/ / P1(@e2(p) |:W2(P)P Ve (@) + Y1 (@b - Vi (p)
1 1
+¥1(q) (—E(aaTm -Vt (p) + %w«ﬂ) : Vﬁ%(p)) }e“’(‘“’) dqdp
= / Vi (@y2(p) { — 2(P)P - Vq91(@) — @1 (@b - V02 (p)

1 1
+o1(q) <—§(oan) - Voo (p) + ﬁ(aoT) : Vﬁwz(p)) }e‘“’“"") dqdp.
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We now separate the Hamiltonian flow terms on the LHS from the Fokker-Planck terms
on the RHS. Then, we get

L= // [wz(P)llfz(P)VVq W (@e1(@) + o1 (@y1(@b -V, (wz(p)llfz(l)))]
x ¢ PH@.P) dqdp

1 1
=h:= // [wl(q)wl(q)(ifpz(p)(aarp)-Vp%(p)—ﬁwz(p)(wT):VEWz(p)

1 1
—5V2(@)(007p) - Vpea(p) + ﬁllfz(P)(UﬂT) : V§¢2<p))}e—”f“q"’> dqdp.

Using integration by parts, /; simplifies as

I =// 21 (@Y1 @@2(P)Y2(p) (—p - Ve P —b - Vye ) dqdp. (A.14)

Similarly, I, simplifies as
1
L=3 / / o1 (@Y1 (q) [e"sH(aan) (22(P)Vp¥2(p) — ¥2(P) V2 (D))

1
+ =V (e ) (60 ") V12 (p)

B
1
= 5% (1@ ") (06T V0 |dadp A1
1 1
=3 // o1 (¥ (q) |:<€7ﬂH(GGTP) + E““TvpeiﬂH)
(02(P) Vp¥2(p) — ¥2(p) V2 (p)) | dqdp.
Now, let ¢, = V,, then I, =0, and from (A.14), we obtain
h= // 91 (@Y1 (@g;P) (=P~ Vae ™ —b - Vpe ") dqdp =0
for any ¢;(q), ¥1(q), and @,(p). Thus, we deduce
—p-Vge P —b. Ve P =0. (A.16)

This implies that /; = I, = 0 for arbitrary test functions ¢;(p), ¢2(p), ¥1(q), and ¥ (q).
By the auxiliary lemma, equation (A.15) yields

1
e’ﬁH(aan) + EGGTVpe’ﬂH =0.
Since o is nonsingular, we conclude
1
e PHp 4 Evpe—f‘H =0 (A.17)
holds for any p.

@ Springer



12 Page 40 of 52 Y. Gao et al.

Next, we use (A.16) and (A.17) to derive H(q, p) = % + U (q) for some potential U (q).
Equation (A.17) implies

Ve P 0,
and thus there exists a potential U (q) such that
(2 v@
e PH = ¢ (% q>. (A.18)

Substituting (A.18) into (A.16), we derive

—p-Vge P —b-Vye P71 =0, (A.19)
which simplifies to
p-(b+VyU(Q)=0, Vp,q. (A.20)
Therefore, we conclude
b=-V,U(q),

and U(q) is unique up to a constant. Thus, the invariant measure is given by

1 (224 (22 1u
po(q,P)=E€ ﬂ( + (q)>, Z=//€ ﬂ( 5+ (q)>dqdp, (A21)

which is the unique invariant measure, and hence (ii) is equivalent to (iii).

Step 3. We prove that (iii) implies (i).

First, from (iii) and for £ defined in (2.15) with b = —V,U(q), it is easy to verify (2.17).
Now, we use (2.17) and (iii) to derive (i).

From Lemma A.2, —£ is a maximal monotone operator in L?(pydqdp), where

1 -p(®4v@
Po(a,p) = —e <2 )

Recall the strongly continuous semigroup generated by — £, denoted by S(¢) = e'~.

From [3, p381, Cor 7.3.2], we know that the dual semigroup S(t) = (e'f) is generated by
the dual operator —£, which is also a maximal monotone operator. Here, the dual operators
are understood in L?(pydqdp). Therefore, we have

//wn(q)wz(p)e" W (@v2(p)) po(q, p) dqdp
= / f (%) (01(Q)@2(P) ¥1 (@ ¥2(p) po(q, p) dqdp

=[] (¢) w1 @p:00 w1 @ @rm0ca. p) daa.
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where (e’ Z) (¢1(q)p2(p)) is the solution to

a ~ 1 1
Ef:ﬁf::—(p-vqf—i-b-vpf)—i- <—5(00Tp)~vpf+ﬁ(aaT):V;f).
(A.22)
By changing variables from p to —p, it is easy to verify

(¢5) @ @ee) = () @@p-p | = () @@pen| a2

Thus, we have

/ / 21 @@2(p)e'” (Y1 (@¥2(p)) po(q, p) dqdp
= / / (¢"°) (21 (@@2(P)) « 7p)1ﬁ1(q)lﬂz(l))po(qvp)dqdp
= / / (@) (01(@)P2(P)) V1 (@Q)¥2(—P) po(q. —p) dqdp

= / / () (@1 (@G (P)) Y1 (@) V2(P)po(q, P) dqdp,

and we conclude (i).

Step 4. We prove that (iii) and (iv) are equivalent.

It is obvious that (iii) implies (iv) since H(q, p) = H(q, —p), and the Gibbs measure
solves (2.5). Thus, we just need to prove that (iv) implies (iii). Let oo(q, p) = po(q, —p).
Since p(q, p) = p(q, —p), they both solve (2.5). Thus

1 1
=P Vgpo —b - Vyp0 + Evp : (POUGTP‘i' EUUTVpPo) =0,

(A.24)
~ ~ 1 - 1 -
—P - Vg0 —b - Vp0o+ EVP . <poaan + EO’OTVP/OQ) =0.
Substituting 0o(q, p) = po(q, —p) into (A.24), we get
1 1
=P - Vgoo—b - Vppo+ EVP . <,000an + anTVppo) =0,
(A.25)
1 T I
P Vgoo+b-Vypo + EVP “\ pooo” p+ Eo'o' Voo ) =0,
which implies
1
P-Vgpo+b-Vpoo=0, V,- (poa(er + EUUTVpp()) =0. (A.26)

Since p(q, p) > 0 and po(q, p) € L' (R*), by Fubini’s theorem, for almost every q €
RY, m(q) := fza po(q, p) dp € (0, 00) exists, and m(q) € L' (R?). Now, for these q’s, from
(A.26), po(q, p) solves the following Fokker-Planck equation (in the p-variable)

1
Vp (pO‘TUTP + EGGTVpp()) =0,
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and py(q, p) is a positive L'-solution (in the p-variable). Thus, by Proposition 3.2, we know
that e~#P/2 is the unique non-zero solution (up to a constant). Hence, there exists ¢(q) > 0
such that

_ 2
po = c(qe PP, (A27)
Substituting the above equality into (A.26), we get
_ 2
e PP2p . (Vge(q) — ¢Bb) = 0.

This holds for arbitrary p, so b= —V,log(c)/B, and (iii) is proved.

Step 5. We prove that (v) and (iii) are equivalent.

It is clear that (iii) implies (v), so we only need to prove that (v) implies (iii). First, we
have

—Ux(p)p - VqUi(q) — Ui(q) b - V,Ux(p)

Ui(q)

L)

1
Vp- (Uz(p)twrp + anTVpUz(p)) =0.
Dividing by U, (q)U,(p), we get

1 1

—p - VqlogUi(q) —b-VylogUs(p) + ———V, - | Ua(p)oo’p+ —aa” V,Us(p) | =0.
2U,(p) B

(A.28)

Notice that the last term only depends on p. Now, evaluating (A.28) at (q;, p) and (qa, p)
and taking the difference yields
P VgllogUi(q) —log Ui(q2)] + [b(q1) — b(q2)] - Vplog U (p) = 0.
This holds for any p, qi, q, € R?. Taking the derivative with respect to p, we get
Vgllog Uy (qi) — log Uy (q2)] + V, log U (p)[b(q;) — b(q2)] = 0. (A.29)

Notice that the first term only depends on q; and (, and so does the second term. Thus, for
any p; and p,, we have

[V, log Uz (p1) — V; log Uz (p2)1[b(q1) — b(gz)] = 0. (A.30)
Equation (A.30) implies that, for any p; and p,, we must have
Vy log Uz (p1) = V, log U (py).

Thus, V; log U, (p) is a constant, meaning there exist A € R¥*¢, a e RY, and c € R, all
constant, such that

logUs(p) =p’Ap+a-p+c. (A31)
We assume that A is symmetric. Substituting this back into (A.29), we get

VyllogUi(q1) —log Ui(q2)] + 2A[b(q1) — b(q2)] =0,
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which holds for arbitrary q; and q,. Thus, there exists a constant ¢’ such that, for any q € R?,
we have

VqlogUi(q) + 2Ab=c¢'. (A.32)
Substituting (A.32) and (A.31) back into (A.28), we get
—p-¢—b-a

1 1 2
+ 3 [(ZAp +a)looTp+tr(oa?) + 5 (2Ap+a)Too(2Ap+a) + Etr(oaTA)] =0.

Here, b is the only term that depends on q. Thus, from the previous argument, we know that
a = 0. The above equation holds for all p € R?, so the coefficients are all zero. Hence

2
=0, ATooT + EATGJTA =0, tr(ca’QA/B+1,))=0.

Since A = A7, the second equality implies that AToo” = —2AT60 T A/B is symmetric, so
A and 007 are commutative. Thus

oo (A+2A%/8)=0. (A.33)

Since oo is invertible, it follows that A + 2A%/8 = 0. The eigenvalues of A are either 0
or —f/2. Therefore, the eigenvalues of (2A/8 + 1;) are either O or 1. Suppose the eigen-
vectors of 2A/B +1,) arew;, i =1,2,...,d, satisfying w; - u; = §;;, with corresponding
eigenvalues A;,i =1,2,...,d. Then }; =0or 1, and

d d
0=tr@o” QA/B+1)) =) uloo" QA/B+1)u; =) rufoc’u; > 0.

i=1 i=1

Thus, A; =0foralli =1,2,...,d, since g is nonsingular. Hence, the only eigenvalue of A
1

is —B/2, and therefore A = —B1I,;/2. Since ¢/ = 0 from (A.32), we have b = qu logU,(q),

which is a gradient. Thus, (iii) is proved. ]

LemmaA.2 Letb = -V U(q) in (2.15). Consider the operator

1

1
sz(_p,vqf_b.vpf)+(—E(aan).fo—i-2/3

(ca?)y: vjf) =Tf+L,f
(A.34)

Then —L is a maximal monotone operator in L*(py dqdp) with the weight py(q, p) defined

in (2.19).

Proof First, observe that

(=Tf. N r2gpaqap =0 (=L fs fr2(pydgap) = 0 (A.35)

which shows that both —T and —L,, are monotone in L?(py dqdp).
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Second, we prove that Ran(/ — L,) = L*(pydqdp), i.e., given any h € L*(pydqdp),
there exists a solution f € D(—L,) C L*(pydqdp) such that (I — L,) f = h. Indeed, define
a weighted Hilbert space H' (e~ 2 Ip‘2dp) with the norm

£l :=/pof2dp+/po|Vf|2dp,

and a bilinear form on H' (e~ 2P dp) x H'(e~2® dp):
a(u,v) = (I — Ly)u, v)12(p-

It is clear that a(u,v) is a coercive and bounded bilinear form on H' (e’%‘*"zdp) X
H'(e™ 5 ‘p‘zdp). Therefore, for any q, we conclude the existence of (I — L,) f(q, -) = h(q, -)
by the Lax-Milgram theorem.

Third, we show that the sum of —7 and —L, is a maximal monotone operator by using
[1, Cor 2.6]. From the above, we have already concluded that — L, is a maximal monotone
operator in L?(py dqdp) and —T is monotone. It remains to verify that —7 is demicontinu-
ous (see [16]), i.e., if f, € D(=T) converges strongly to f € D(—T) in L*(pydqdp), then
—Tf, converges weak* to —T f in (L?(po dqdp))*. It is clear that —T is a linear operator in
L?(py dqdp) and thus demicontinuous. O

Remark A.1 Define the Hamiltonian H(p, £) := (e~* Lé®, p). Then the symmetry condition
(ii) for L is equivalent to

H(p. £) =H(p. log% —£), VE.peCERY). (A.36)

Indeed, if £ is symmetric with respect to py, then

H(p, log L &)= <@€$£ (ﬁe_s) , ,0>
Lo P Lo

= <ef, c <ﬁﬁ>> — (L5, pe Y =H(p, £).
Po £0
If (A.36) holds, let

& =log(¢2), p=d1P200,

then:
0
H(p, log e §) =2, LO1)py,  H(p,E) = (@1, L2) py-
0
Therefore, (A.36) yields the symmetry of £ with respect to (-, -) ,,-

Proof of Lemma 3.3 We first prove part (i). To start, we show that —£* is maximal accretive.
Define

u
H:= {u|p—E€H1(p§O)],

[e°]
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and equip H with the following inner product

u v
(u,v)n = T .
Poo PoolH1 (ps)

Clearly, H C L*(1/pt,), and H is a Hilbert space. Let the domain of £ be
DL :={ulueH, LlueL*(1/p5)} C L*(1/p%,).
Define b= —VV 4 eM. Then, for any u € D(L}), we have

u
(u, Lou) 2018, :/ -
Re Poo

= [ [7 (oo (oo (o5 1)) Joa
R P g * pg
u u
=[] —|v-[—o00cT (=bp +Vp d
/]Rpw[ (pgo” (=boso+ p‘”)ﬂ a
u u
L[ (eoriv () Joa
Rd PL <\ pg
= f ¢ lgTv " 2d 1/
- ]deoo ,Ogo q 2 Rd
u 2
- _ & TV e
/de“’g <p§o>

dq <O0.
Thus, —L7 is accretive.
Next, we prove that R(I — L) = L%(1/p%,). This can be derived by Lax-Milgram’s
theorem. For arbitrary f € L%(1/p¢,), define the linear functional

Liudq

(A37)

u

P

2
L;pe.dq

f@: L*(A/p5) =R, ur> fu):=(u, e
which is continuous on H. Now, consider the bilinear form:
aw,v): Hx H—>R, (u,v)—au,v):=(I—L)u, V) 12(1/p8,)-

By direct calculation and Cauchy-Schwarz inequality, we obtain
1 1
la(u, v)| = uv—dq — —ul}vdq
R P R Pdo

< Nullzqypey v llL2aype)

+ / e lgTV L
R4 Poo P

lau, V)| < cllullgllvllg,

2
dq.

2
dq- / Poo
R4

v
o’V <—>
P

Therefore, we have
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where ¢ > 0 is a constant depending on 0. Meanwhile,

oV (_)
P

where ¢’ > 0 is a constant depending on . Therefore, a is bounded and coercive on H. By
Lax-Milgram’s theorem, there exists u € H such that a(u, v) = f(v) holds for all v € H.
Hence, (I — £)u = f, and thus R(I — L£¥) = L*(1/p%.).

Finally, by the Hille-Yosida theorem, we conclude that £} generates a strongly continu-
ous semigroup of contractions in L2(1/pZ,).

For part (ii), by [3], equation (2.5) admits a unique solution p®(q,t) € C'([0, T,
Lz(l/pg’c)) forany T > 0. O

2
dq > /|lull3,

2
au,u) = llulljzq e, + /d Pso
R

Proof of Theorem 2.3 Notice that the structure of the generator in (2.24) is quite similar to
the generator in (2.15), with the exception that only p is an odd variable.
Step 1. (i) = (ii) is exactly the same as Step 1 in the proof of Theorem 2.2.
Step 2. We prove (ii) = (iii). From the definition of the generator £ in (2.24), (2.26)
implies
//f [ — P V2P) @3 @) Y3(2) p - Ve (Y1(@e1(q)
— 1 @V1(@e3(2)Y3(2) (b +2) - Vp, (02(p)¥2(P))

— @Y1 @)D P Vi (33 (@) e 77D dqdpdz

= / / / [wl @1 @@ (P)¥2(p)e (¢3 (2)z- Vy03(2)

1
@2 Vs (@) + 5 @A) — @) Asps(@) )}—W”’” dqdp dz.

(A.38)
Using integration by parts, this simplifies as

/// o102V (P Vge P + (b +2) - Vpe 7 —p- Vze_ﬁH) dqdpdz

1
= /// 1192 (Evze_ﬁH + Ze—M) (U3 Va03 — @3V, 0r3) dqdpdz. (A.39)

Taking ¢3(z) = ¥3(z), the RHS of (A.39) becomes zero, yielding
p-Vee P4 (b+2) Ve P —p.V,e P =0. (A.40)

Thus, by the auxiliary Lemma A.1, we obtain

1
Evze*ﬂ” +ze P =0, (A.41)

This implies e ##+ 212" is independent of z. Rewriting (A.40) as

P Vae PRI . Ve R g (Ve MHTERE 4 gpemhith’) — 0, (A42)
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we conclude
vpe_,311r+§|z|2 4 ﬂpe—ﬁH+§\z\2 —0. (A.43)

Therefore, e ¥ +5 b+ 5 depends only on q, and we conclude there exists a potential
U(q) such that H = U(q) + 3|p|* + 3|z/*. From:

p- qu*’g’”%'z'z +b- Vpe”“”g‘z‘2 =0,
we further conclude b(q) = —V,U(q).
Step 3. (iii) = (i) is exactly the same as Step 3 in the proof of Theorem 2.2.
Step 4. The statement (iii) implies both statements (iv) and (v), which are obvious.

To show that (iv) implies (iii), similar to (A.27), we use the evenness in p to obtain that
po(q, P, z) solves

1
V- (Z/OO + —Vz100> =0.
B
By Proposition 3.2, we conclude there exists c(q, p) > 0 such that

po=c(q.pe 21"

Then, by similar arguments to (A.42) and (A.43), we can conclude (iii).
To show that (v) implies (iii), we plug pp = U, (q) U, (p)U3(z) into L* pg = 0 and obtain:

—p - VqlogUi(q) —b - VylogU,(p) +z- VylogUs(p) +p - V. logUs(z)

o 1
+ mvz . <U3 (z)z + EVZU2(1)> =0. (A.44)

By similar arguments as in (A.31), we have:
logU,(p) =p"Ap+a-p+c, loglUs;(z)=z"Bz+d-z+e,

for some constant matrices A, B € R?*, and vectors a, d € R?, and constants ¢, e € R. By
similar arguments as in (A.33), we conclude that A = —%I, B = —%I, a=0,andd =0.
Finally, we obtain

VqlogUi(q) = b= -V U(q),

for U(q) = —logU,(q). O

Appendix B: Omitted Proofs for Exponential Convergence and
Smoothness of Fokker-Planck Equations

In this section, we present the omitted proofs for the exponential convergence and smooth-
ness of the solution to the Fokker-Planck equation corresponding to overdamped Langevin
dynamics, as well as the hypocoercivity and hypoellipticity results for underdamped
Langevin dynamics.
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B.1 Exponential Convergence and Smoothness for the Overdamped Case

We first provide the proof for the exponential convergence and smoothness in the over-
damped case. The proof of Proposition 3.1 invokes the following version of Harris’s theo-
rem, as stated in [10, Theorem 3.6].

Theorem B.1 (Harris's theorem, Theorem 3.6 in [10]) Suppose that P is the Markov operator
of a discrete Markov semigroup P" forn=1,2,... on R¢. Let p(x,y), where X,y € R?,
denote the transition probability of P. If the following two conditions hold

(i) (Lyapunov Function) There exists a function U : R¢ — [0, 0o) and constants K > 0 and
y € (0, 1) such that

PUKX) <yUX) +K B.1)

forallx € RY;
(i) (Minorisation) For every R > 0, there exists a constant « > 0 such that

lpX, ) = (¥, L1 wdy <201 = @), (B.2)

for all X, y such that U(x) + U (y) < R.

Define the following weighted supremum norm:

lp()|
lelly = sup ————

. B.
T UM ®9

Then P admits a unique invariant measure |W*. Furthermore, there exist constants C > 0
and p € (0, 1) such that

<Cp"
U

¢ — / p(x)du* (B.4)
Rd

In the proof of Proposition 3.1, we take P = '« for some appropriately chosen f, and
the Lyapunov function U (x) = ¢"®/3, where V (x) is the potential function.

HP"«p— / () du”
R‘I

U

Proof of Proposition 3.1 We directly employ Theorem B in [15]. Consider U(q) = " @/3,
which is in L'(py). Moreover, we have

L.U(q) = % (tr(aaTVZV(q)) - §|0TVV(q)|2 +eo0 M(q) - VV(q)> eV @3,

For q that is not in the support of M and sufficiently large, by Assumptions (I) and (II), we
have

1
LU(Q) =< —EIGTVV(q)FeV(‘lW <_Ce" W3,

Thus, for all q € R4, we have

L:U(Q) =C—CU(q) (B.5)
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for some constants C; > 0 and C, > 0. Therefore, U (q) is a strongly unbounded Lyapunov
function. By Theorem B in [15], we conclude exponential convergence.
Next, we prove that C, and r, can be selected uniformly. Indeed, the proof of Theorem
B in [15] relies on Harris’s theorem [10], which is based on the following two conditions:
1. Lyapunov condition: For some 7y > 0, there exist constants y € (0, 1), K > 0, and a
function U : R? — R* such that

e U(Q <yU(Q + K (B.6)

holds for all q € R?. According to [15, Lemma 3.4], (B.6) holds by choosing U (q) = ¢" (@/3,
i.e., the unbounded strong Lyapunov function. Moreover, y and K depend on M, V, ¢, and
constants C; and C, in (B.5), which are all uniform in €.

2. Minorisation condition: It is required to verify the following local minorisation condi-
tion: for all R > 0, there exists « > 0 such that

1P (@1, - 10) = P (G2, + fo) [l L1 ey < 2(1 — @) (B.7)

holds for all q; and q; in the set {(q;, q2) : U(q;) + U(qz) < R}. Here, p®(qi, q, tp) is the
transition probability. By [15, Lemma 3.3], we know that (B.7) holds for ¢ = 0 with some
o = o. Then, by [2, Corollary 9.8.26], there exists a constant C > 0 (depending on M, V,
and o) such that for all q; with U(q;) < R, we have

P (@i, o) — P’ @1, - 1)l .1 ey < Ce.

Thus, there exists &y > 0 such that for all ¢ € (0, &),

P (a1, -, t0) — PP (qa, -, to) | 1 (ray < 2(1 — o /2). (B.8)

Therefore, for each R > 0, one can find & > 0 such that (B.7) holds uniformly for sufficiently
small ¢.

Finally, according to [10, Remark 3.10], the contraction constants C, and r, depend on
M, V, a, and the following constants: by selecting R sufficiently large such that

2K o a 2+ RBy

= — <1, =—, o= I— =, —————1.
wi=yt =l P=gp max{ 2" 21 RB }

Here, y and K are from (B.6), and « is from (B.7), all of which are uniform for ¢ € (0, &9).

Thus, C, and r, are also uniform in ¢ € (0, &). O

Proof of Lemma 3.4 Consider the coordinate transformation q' = 6~'q. Then we have
Vg f =07V, f. Thus, one can reformulate £ — % as

aq; ot

2
* 8 d 8 / T / 8
co-==3 +<Vq/jV(Uq)—ea M(oq))-Vq/j——

+
—~

AgV(0q) —eVy -aTM(aq’)) .
Let

X, =€ eR™ j=1,2....d Xo=—es + [Vq/jV(aq/) - eaTM(aq’),O] ,
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c=AyV(eq)— eVy, - o "M(oq).

Then, we can express £} — 2 as
3 d
* _ 2
-5 = ?:1 X)? +Xo+c.

Note that X; for i = 1,2,...,d + 1 are linearly independent at any point (q', ) € RY x

(0, +00). By Theorem 3.1, we know that £} — % is hypoelliptic, and p®(q, ) is smooth in

both ¢ and 7. O
Now we provide the well-posedness of the Fokker-Planck equation for the overdamped
case. The existence and uniqueness are obtained via the semigroup method, while the

smoothness is established using Hormander’s hypoellipticity theorem 3.1.

Proof of Lemma 4.1 We define a weighted Hilbert space L2(pZ,) with the weight p¢_(q, p) >
0 and the norm

T / f o5, £ dqdp.

Additionally, we define a weighted Hilbert space H'(p2,) with the norm

1l = //piofquder//piolvflqudp-

For (i), we have

po(q,p) e *V9Z,
05(q, p) Zy

Since W € C®(R¢; R), for q outside the support of W, 5£(gil;))) is a constant. Therefore, it is
2o (g,

in Lz(pgo), and any order derivative of £ is also in Lz(pgo). Thus, (i) holds.

For (ii), by Lemma A.2, we know thatif b = —V4U(q), then — L, | is a maximal mono-
tone operator in L2(p?, dqdp), with the weight defined in (2.19). By the Hille-Yosida theo-
rem, L. | generates' a strongly continuous semigroup on L*(pZ,), denoted as S(t) = e’ =1,

For (iii), from the contraction semigroup in (ii), we know that the Cauchy problem

£

ap
ot

P
:l:é‘,lp’ p(qvpao):p_09

&
o0
is well-posed, and p®(q,p,t) € C'([0, T]; Lz(pgo)). Thus, (4.2) admits a unique solution
pf(q,p. 1) € C'([0, T]; L*(p%,)). g

Proof of Lemma 4.2 We apply Theorem 3.1 again. For simplicity, we assume o = L. If this is
not the case, a coordinate transformation similar to that in Lemma 3.4 can be used.

ISometimes —Ly; 1 is called the infinitesimal generator instead of L.
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a
The operator L} — 3 can be expressed as

d
* 0 2
££—5=;<X,~) +Xo+c,
where ¢ =d and
Bl
Xi=—1, i=12,...,d,
api
Rl
X0=—p.vq+(vq(V—eW)+p).VP—E.
Notice that
a 0
X, Xol=——+—, i=12,...,d.
dq;  dp;

Thus, at any point (q, p, #) € R* x (0, 00), we have

Span{XlsX2a soe 7Xda [X17X0]7 LR} [Xd7X0]sXO} :R2d+l‘

By Theorem 3.1, we conclude that p®(q, p, t) is smooth. O
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