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Abstract
Linear response theory is a fundamental framework studying the macroscopic response of a
physical system to an external perturbation. This paper focuses on the rigorous mathemati-
cal justification of linear response theory for Langevin dynamics. We give some equivalent
characterizations for reversible overdamped/underdamped Langevin dynamics, which is the
unperturbed reference system. Then we clarify sufficient conditions for the smoothness and
exponential convergence to the invariant measure for the overdamped case. We also clarify
those sufficient conditions for the underdamped case, which corresponds to hypoellipticity
and hypocoercivity. Based on these, the asymptotic dependence of the response function on
the small perturbation is proved in both finite and infinite time horizons. As applications,
Green-Kubo relations and linear response theory for a generalized Langevin dynamics are
also proved in a rigorous fashion.

Keywords Onsager’s principle · Hypocoercivity · Fluctuation-dissipation relation ·
Non-equilibrium system · Asymptotic behaviors

1 Introduction

Linear response theory is a general framework for studying the behavior of a physical sys-
tem under small external perturbations. While the microscopic fluctuations in a physical
system are usually complex and sustained, linear response theory provides a way to charac-
terize or predict the corresponding macroscopic behaviors of the system. For instance, the
famous Einstein relation [7] for Brownian motion fits within the framework of linear re-
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sponse theory, using the correlation of Brownian particles to predict macroscopic diffusion
coefficients.

Linear response theory not only bridges the microscopic first physical principles with
macroscopic properties (e.g., electrical, thermal, transport, and mechanical properties), but
it also helps in understanding or predicting a nonequilibrium system, which deviates from
equilibrium states, using only the information of the original equilibrium system. Thus, it
plays a fundamental role in theoretical physics and statistical mechanics.

Given these important applications, linear response theory has been extensively studied,
and various versions of response formulas for different physical contexts have been devel-
oped, cf. [4, 5, 8, 20, 28].

In this paper, we do not attempt to propose new linear response relations. Instead, we fo-
cus on clarifying mathematical conditions and collecting further properties with quantitative
estimates for the well-known linear response results for Langevin dynamics. Specifically, in
a mathematically rigorous way, we study the asymptotic dependence of the solution to the
perturbed Fokker-Planck equation concerning the small external force added to the original
reversible Langevin dynamics.

We begin with an overdamped or underdamped Langevin dynamics, initially in a re-
versible form or with a detailed balanced invariant measure known as the Gibbs measure.
Under mild assumptions on the conservative drift, the probability distribution will exponen-
tially converge to the invariant measure as time tends to infinity. To study the nonequilib-
rium system perturbed by a small non-conservative external force in the long-time regime,
the existence, smoothness, and exponential stability of the perturbed invariant measure are
essential preliminaries. These involve semigroup theory, Harris’ theorem, and, particularly,
hypoellipticity and hypocoercivity for the Fokker-Planck equation in the underdamped case.

In Sect. 2, we first provide the reversibility conditions in five equivalent forms for over-
damped and underdamped Langevin dynamics, and generalized Langevin dynamics.

In Sect. 3, we first clarify the existence and uniqueness of positive invariant measures for
perturbed irreversible Langevin dynamics. The smoothness and exponential convergence of
the solution to the Fokker-Planck equation for the perturbed irreversible Langevin dynamics
are also summarized, with proofs provided in the Appendix. After these preparations, we
give a rigorous verification of linear response theory for overdamped Langevin dynamics.
We analyze the asymptotic behavior of the response function, which is defined as the dif-
ference (in weak form with respect to any observation test function) between the perturbed
dynamics of the probability distribution and the initial data given by the unperturbed Gibbs
measure ρ0(q)

R(t, ε;ϕ) = 1

ε

(∫
Rd

ϕ(q)ρε(q, t)dq −
∫
Rd

ϕ(q)ρ0(q)dq
)

.

In Theorem 3.2, we prove the convergence of the response function R(t, ε;ϕ) for
either fixed t or fixed ε, as well as the double limits for both limε→0+ limt→+∞ and
limt→+∞ limε→0+ . Moreover, we also obtain the uniform convergence of the response func-
tion for ε ≤ ε0 in time t ∈ [0,+∞). In the special case where the external perturbation is
a conservative force ∇W for some potential W , we derive the Green-Kubo formula, which
connects the long-time behavior of the response function to the autocorrelation function over
an infinite time horizon for the original unperturbed dynamics

lim
ε→0+ lim

t→∞R(t, ε;L0g) = −
∫ +∞

0
KL0g,L0W(t)dt, KAB(t) :=

∫
Rd

(etL0A)Bρ0dq,

where L0 is the unperturbed generator.
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In Sect. 4, we first summarize key well-posedness results and the hypoellipticity and
hypocoercivity of the Fokker-Planck equation in the underdamped case. Villani’s seminal
work on hypocoercivity [29] shows that exponential convergence to the invariant measure
can still be achieved under mild conditions on the original potential. Given that we consider
an external perturbation in a conservative form and with compact support, the perturbed
Fokker-Planck equation in the underdamped case will still converge exponentially to the
new invariant measure. Based on this, we prove parallel results for the response function
R(t, ε;ϕ) under both fixed t or ε, and for the double limits behavior in Theorem 4.1. Lastly,
in Sect. 4.3, as an application of Theorem 4.1, we derive the linear response theory for gen-
eralized Langevin dynamics with an exponential kernel using the corresponding augmented
underdamped Langevin dynamics.

Our results on the linear response theory for stochastic dynamics extend the case where
the external force is a general vector field depending on spatial variables. These results are
parallel to those in the comprehensive book by PAVLIOTIS [25], which focuses on the case
where the external force is independent of spatial variables. On the other hand, the abstract
theorem by HAIRER-MAJDA in [11] provides a general methodology for justifying linear
response theory for abstract Markov evolutions under several assumptions. Our work falls
within the general framework of [11], but we offer self-contained conditions with detailed
verification for Langevin dynamics and prove the uniform convergence of the response func-
tion for small external perturbations ε ≤ ε0 uniformly in time t ∈ [0,+∞). For more on
linear response theory for deterministic dynamical systems, see [27].

The remaining sections of this paper are organized as follows: In Sect. 2, we pro-
vide equivalent conditions for reversibility in overdamped, underdamped, and generalized
Langevin dynamics. In Sect. 3, we prove the linear response theory and the Green-Kubo
relation for overdamped Langevin dynamics. In Sect. 4, we prove the linear response the-
ory for underdamped Langevin dynamics and generalized Langevin dynamics. All omitted
proofs for reversibility, hypoellipticity, and hypocoercivity are given in Appendices A and B.

2 Equivalent Conditions of Reversibility of Langevin Dynamics

Before studying the linear response theory for Langevin dynamics in the large-time regime,
we need to first establish the well-posedness and stability of the invariant measure, which
are built on the reversibility of the original unperturbed system. In this section, we provide
several equivalent conditions for the reversibility of both overdamped and underdamped
Langevin dynamics. Although these conditions are classic, some are less well-known but
useful in practice. Therefore, we rigorously clarify these reversibility conditions for the
reader’s convenience.

2.1 Definitions and Preliminaries

We will study the reversibility of both overdamped, underdamped and generalized Langevin
dynamics. In the underdamped and generalized Langevin dynamics case, some physical
variables will have even or odd parities. A typical odd variable is velocity (p), while typical
even variables are position (q), force (f), and acceleration (a). To preserve more flexibility,
we allow different components of x to have different parities.

Another essential difference is the invariant measure (see (2.19)) for the underdamped
case, which involves both kinetic and potential energy, while the kinetic energy is neglected
for the overdamped case. Below, we provide some basic definitions for reversibility.
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Definition 2.1 (Stationary process) A stochastic process {x(t) ∈ R
d , t ≥ 0} is stationary if

for all τ, t1, t2, . . . , tn ∈R
+, n ∈ Z

+, and Borel sets Bj ∈R
d , j = 1,2, . . . , n,

P(x(tj ) ∈ Bj ,1 ≤ j ≤ n) = P(x(tj + τ) ∈ Bj ,1 ≤ j ≤ n). (2.1)

Taking n = 1, we deduce that the law of x(t) is invariant.

Definition 2.2 (Time-reversed process) Let {x(t) ∈ R
d , t ≥ 0} be a stochastic process. Fix

time T > 0. The time-reversed process of x(t) (w.r.t. time T ) is defined as

x∗(t) := (εixi(T − t))1≤i≤n, (2.2)

where

εi :=
{

1, if xi is an even variable;
−1, if xi is an odd variable.

Definition 2.3 (Reversibility) A stationary process {Xt ∈ R
d , t ≥ 0} is reversible if for any

T > 0, the time-reversed process {X∗
t ,0 ≤ t ≤ T } (w.r.t. T ) has the same finite-dimensional

distribution as the original process Xt , i.e., for any t1, t2, . . . , tn ∈ [0, T ], n ∈ Z
+, and Borel

sets Bj ∈R
d , j = 1,2, . . . , n,

P(Xtj ∈ Bj ,1 ≤ j ≤ n) = P(X∗
tj

∈ Bj ,1 ≤ j ≤ n). (2.3)

2.2 Reversibility of the Overdamped Langevin Dynamics

We use qt to indicate the stochastic process at time t , and we also use q as the displacement
vector in R

d , following the convention in mechanics. The overdamped Langevin equation is
given by the following stochastic differential equation (SDE)

dqt = b(qt )dt + σ (qt )dBt , qt=0 = q0, (2.4)

where b ∈ C∞(Rd;Rd), qt ∈ R
d , and σ ∈ C∞(Rd;Rd×d) is nonsingular. Bt is the d-

dimensional standard Brownian motion, and qt=0 = q0 is a random variable independent
of Bt .

To ensure that (2.4) admits a unique strong solution, we assume that coefficients b(q)

and σ (q) satisfy certain conditions (see (2.9) and (2.10) below).
The corresponding Fokker-Planck equation and the Fokker-Planck operator L∗ are given

by

∂ρ(q, t)

∂t
= (L∗ρ)(q, t), L∗ρ := −∇ · (ρb) + 1

2
∇2 : (ρσσ T ). (2.5)

The corresponding Kolmogorov backward equation is

∂f (q, t)

∂t
= (Lf )(q, t), with generator Lf := b · ∇f + 1

2
(σσ T ) : ∇2f. (2.6)

Define the probability flux j as

j(ρ) := −1

2
∇ · (ρσσ T ) + ρb.
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Then the Fokker-Planck equation can be written as the continuity equation

∂ρ

∂t
+ ∇ · j = 0. (2.7)

According to (2.3), we have the following equivalent definition of reversibility.

Lemma 2.1 Consider (2.4) with initial density function ρ0(q). Then the system is reversible
if and only if, for any ϕ1, ϕ2 ∈ C∞

b (Rd)

E[ϕ1(qt )ϕ2(q0) | q0 ∼ ρ0] = E[ϕ1(q0)ϕ2(qt ) | q0 ∼ ρ0]. (2.8)

(Proof of Lemma 2.1 can be found in Appendix A.) We will use (2.8) to prove reversibil-
ity.

Theorem 2.1 (Reversibility of the overdamped Langevin dynamics) Consider (2.4) with
initial probability density function ρ0(q) > 0. Suppose that σ is constant and nonsingular.
Also, suppose that σ and b satisfy

(i) (Local Lipschitz continuity) For any n ∈ Z
+, there exists Kn > 0 such that

|b(x) − b(y)| ≤ Kn|x − y|, (2.9)

for any x,y such that |x|, |y| ≤ n;
(ii) (Monotone condition) There exists a constant C > 0 such that for any x ∈R

d :

xT b(x) ≤ C(1 + |x|2). (2.10)

Then the following are equivalent

(i) (Reversibility) The stochastic process determined by (2.4) is reversible in the sense of
Definition 2.3;

(ii) (Symmetry) For arbitrary ϕ1, ϕ2 ∈ C∞
b (Rd),

∫
Rd

(Lϕ1)(q)ϕ2(q)ρ0(q)dq =
∫
Rd

(Lϕ2)(q)ϕ1(q)ρ0(q)dq; (2.11)

(iii) (Zero flux) The probability flux is zero for all t ≥ 0, i.e., j(ρ(·, t)) = 0;
(iv) (Potential condition) There exists U :Rd →R such that

−∇U(q) = 2(σσ T )−1b, (2.12)

and ρ0(q) = 1
Z
e−U(q) with

∫
Rd e−U(q)dq < ∞.

We point out that assumptions (2.9) and (2.10) ensure the well-posedness of the SDE, but
they are irrelevant to the reversibility. We adopt (2.10) instead of the general linear growth
condition as it covers more cases. For instance, b(x) = (1 −|x|2)x does not satisfy the linear
growth condition but does satisfy (2.10).
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2.3 Reversibility of Underdamped Langevin Equation

Now consider the underdamped Langevin equation
⎧⎪⎨
⎪⎩

dq = pdt,

dp = −1

2
σσ T pdt + b(q)dt + σ√

β
dB.

(2.13)

Here p,q ∈ R
d , σ ∈ R

d×d is a nonsingular constant matrix, and β = 1/(kBT ) is the ther-
modynamic beta. The corresponding Fokker-Planck equation (also known as the kinetic
Fokker-Planck equation) and the Fokker-Planck operator L∗ are

∂ρ(q,p, t)

∂t
= (L∗ρ)(q,p, t),

L∗ρ := −p · ∇qρ − b · ∇pρ + 1

2
∇p ·

(
ρσσ T p + 1

β
σσ T ∇pρ

)
.

(2.14)

The corresponding Kolmogorov backward equation is

∂f (q,p, t)

∂t
= (Lf )(q,p, t),

Lf := p · ∇qf + b · ∇pf − 1

2
(σσ T p) · ∇pf + 1

2β
(σσ T ) : ∇2

pf.

(2.15)

We say that (2.13) satisfies the fluctuation-dissipation theorem because the dissipative part
corresponding to Ornstein–Uhlenbeck process in L∗ can be rewritten as

1

2
∇p ·

(
ρσσ T p + 1

β
σσ T ∇pρ

)
= 1

2
∇p ·

(
σσ T

(
ρ∇p

(‖p‖2

2
+ logρ

β

)))
.

As with the overdamped Langevin equation, we consider an equivalent condition for
reversibility using test functions. Recall that momentum p is an odd variable, so the equiv-
alent characterization below also uses parity-reversed test functions ϕ̃2(p) = ϕ2(−p) and
ψ̃2(p) = ψ2(−p).

Lemma 2.2 Consider (2.13) with the initial density function ρ0(q). Then it is reversible if
and only if, for any ϕ1, ϕ2 ∈ C∞

0 (Rd),

E
[
ϕ1(q(0))ϕ2(p(0))ψ1(q(t))ψ2(p(t))

∣∣ (q(0),p(0)) ∼ ρ0

]
= E

[
ϕ1(q(t))ϕ̃2(p(t))ψ1(q(0))ψ̃2(p(0))

∣∣ (q(0),p(0)) ∼ ρ0
]
.

(2.16)

The proof of Lemma 2.2 is given in Appendix A.
Next, we provide the equivalence theorem for the reversibility of the underdamped

Langevin dynamics.

Theorem 2.2 (Reversibility of the underdamped Langevin) Consider (2.13) with the initial
probability density function ρ0(q,p) > 0. Suppose that σ is a constant and nonsingular
matrix, and that σ and b satisfy (2.9) and (2.10). Then the following are equivalent

(i) (Reversibility) The stochastic process determined by (2.13) is reversible.
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(ii) (Symmetry) ρ0(q,p) = ρ0(q,−p) and, for arbitrary ϕ1(q), ϕ2(p),ψ1(q),ψ2(p) ∈
C∞

0 (Rd)

∫∫
ϕ1(q)ϕ2(p)L (ψ1(q)ψ2(p)) ρ0(q,p)dq dp

=
∫∫

L (ϕ1(q)ϕ̃2(p))ψ1(q)ψ̃2(p)ρ0(q,p)dq dp, (2.17)

where ϕ̃2(p) = ϕ2(−p) and ψ̃2(p) = ψ2(−p).
(iii) (Potential condition) There exists U :Rd →R such that

−∇qU(q) = b, (2.18)

and

ρ0(q,p) = 1

Z
e−βH(q,p), Z =

∫∫
e−βH(q,p) dq dp < ∞, (2.19)

where

H(q,p) := |p|2
2

+ U(q). (2.20)

(iv) (Evenness in p variable) ρ0(q,p) = ρ0(q,−p) and ρ0 is stationary, i.e., it solves
L∗ρ0 = 0.

(v) (Separation of variables) ρ0(q,p) = U1(q)U2(p), where U1 > 0 and U2 > 0, and ρ0 is
stationary, i.e., it solves L∗ρ0 = 0.

We remark here that the conclusions of Theorem 2.1 and Theorem 2.2 also hold for non-
constant σ . However, in this case, the SDE should be written in the backward Itô’s integral
sense [13]. For the overdamped Langevin equation

dq = b(q)dt + σ (q)d̂B,

the Fokker-Planck equation is given by

∂ρ(q, t)

∂t
= (L∗ρ)(q, t), L∗ρ := ∇ ·

(
1

2
σσ T ∇ρ − ρb

)
.

For the underdamped Langevin equation, the SDE should be written as

⎧⎪⎨
⎪⎩

dq = pdt,

dp = −1

2
σσ T pdt + b(q)dt + σ√

β
d̂B,

with the Fokker-Planck equation

∂ρ(q,p, t)

∂t
= (L∗ρ)(q,p, t),

L∗ρ := −p · ∇qρ − b · ∇pρ + 1

2
∇p ·

(
ρσσ T p + 1

β
σσ T ∇pρ

)
.
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2.4 The Reversibility of Generalized Langevin Dynamics with Memory

Let n ≥ 1 be a fixed integer. Now consider the following generalized Langevin equation
with memory

⎧⎪⎪⎨
⎪⎪⎩

q̈(t) = b(q) −
n∑

i=1

AiAT
i

∫ t

0
e−αi (t−s)q̇(s)ds + Aifi (t),

dfi (t) = −αifidt +
√

2β−1αidBi , i = 1,2, . . . , n.

(2.21)

Here, for each i = 1,2, . . . , n, Ai ∈ R
d×d is a constant matrix, αi > 0 is a constant, and

Bi (t) ∈ R
d is a standard Brownian motion. Additionally, Bi (t) for i = 1,2, . . . , n are inde-

pendent. Reversibility can also be considered for (2.21) if we reformulate it.
Let zi (t) = −AT

i

∫ t

0 e−αi (t−s)q̇(s)ds + fi (t) and q̇ = p. Then (2.21) can be reformulated
as ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dq = pdt,

dp =
(

b(q) +
n∑

i=1

Aizi

)
dt,

dzi = −(αizi + AT
i p)dt +

√
2β−1αidBi , i = 1,2, . . . , n.

(2.22)

We will consider (2.22) instead of (2.21) for reversibility. The corresponding Fokker-Planck
equation for (2.22) is given by

∂ρ

∂t
= L∗ρ, L∗ρ := − p · ∇qρ − b(q) · ∇pρ −

n∑
i=1

(
(Aizi ) · ∇pρ − AT

i p · ∇zi
ρ
)

+
n∑

i=1

αi∇zi
·
(

ziρ + 1

β
∇zi

ρ

)
.

(2.23)

The corresponding backward equation is given by

∂f

∂t
= Lf, Lf :=p · ∇qf + b(q) · ∇pf +

n∑
i=1

(
(Aizi ) · ∇pf − AT

i p · ∇zi
f
)

+
n∑

i=1

αi

(
−zi · ∇zi

f + 1

β

zi

f

)
.

(2.24)

We now state the equivalent theorem characterizing the reversibility of (2.22) in the case
where n = 1 and A1 = I ∈ R

d×d , i.e.,

⎧⎪⎪⎨
⎪⎪⎩

dq = pdt,

dp = (−∇qV (q) + z
)

dt,

dz = −(αz + p)dt +
√

2β−1αdB.

(2.25)

The proof is given in Appendix A.
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Theorem 2.3 (Reversibility of the generalized Langevin with memory) Consider (2.22) with
initial probability density function ρ0(q,p, z) > 0 satisfying ρ0 > 0. Suppose that σ is a
constant and nonsingular matrix. Then the following are equivalent

(i) (Reversibility) The stochastic process determined by (2.22) is reversible.
(ii) (Symmetry) ρ0(q,p, z) = ρ0(q,−p, z), and for arbitrary ϕ1(q), ϕ2(p), ϕ3(z),ψ1(q),

ψ2(p),ψ3(z) ∈ C∞
0 (Rd)

∫∫∫
ϕ1(q)ϕ2(p)ϕ3(z)L (ψ1(q)ψ2(p)ψ3(z)) ρ0(q,p, z)dq dp dz

=
∫∫∫

L (ϕ1(q)ϕ̃2(p)ϕ3(z))ψ1(q)ψ̃2(p)ψ3(z)ρ0(q,p, z)dq dp dz,

(2.26)

where ϕ̃2(p) = ϕ2(−p) and ψ̃2(p) = ψ2(−p).
(iii) (Potential condition) There exists U :Rd →R such that

−∇qU(q) = b, (2.27)

and

ρ0(q,p, z) = 1

Z
e−βH(q,p,z), Z =

∫∫∫
e−βH(q,p,z) dq dp dz < ∞, (2.28)

where

H(q,p, z) := U(q) + |p|2
2

+ |z|2
2

. (2.29)

(iv) (Evenness in p variable) ρ0(q,p, z) = ρ0(q,−p, z) and ρ0 is stationary, i.e., it solves
L∗ρ0 = 0.

(v) (Separation of variables) ρ0(q,p, z) = U1(q)U2(p)U3(z), where U1,U2,U3 > 0, and
ρ0 is stationary, i.e., it solves L∗ρ0 = 0.

3 Rigorous Verification of Linear Response Theory (LRT) and the
Green-Kubo Formula for the Overdamped Langevin

In this section, we rigorously verify the linear response theory (LRT) and the Green-Kubo
relation for overdamped reversible Langevin dynamics with constant diffusion coefficients.
The linear response theory aims to study the asymptotic dependence of the solution ρε of the
perturbed Fokker-Planck equation (3.9) in terms of the small external force. Recall the Gibbs
measure ρ0(q) for the original overdamped Langevin dynamics. In the weak formulation,
for any ϕ ∈ C∞

c (Rd), we define the response function as follows:

R(t, ε;ϕ) := 1

ε

(∫
Rd

ϕ(q)ρε(q, t)dq −
∫
Rd

ϕ(q)ρ0(q)dq
)

. (3.1)

The term εR(t, ε;ϕ) represents the leading-order (i.e., O(ε)) change of an observable ϕ

at time t under the external perturbation εM. Mathematically, LRT focuses on the behavior
of R(t, ε;ϕ) as ε → 0 and t → ∞. In Theorem 3.2, we will prove the convergence of
R(t, ε;ϕ) for fixed t or fixed ε, as well as the double limits for both limε→0+ limt→+∞
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and limt→+∞ limε→0+ . The main conclusion is the convergence of the response function
R(t, ε;ϕ) in terms of the small parameter for the external perturbation ε ≤ ε0, uniformly
for t ∈ [0,+∞). In Sect. 3.1, we first give some preparations on the perturbed invariant
measure including the hypoellipticity and the exponential convergence of the Fokker-Planck
equation. Then we study the linear response theory for general external force in Sect. 3.2
and the Green-Kubo relation for conservative external force in Sect. 3.3.

3.1 Invariant Measure and the Exponential Convergence for Irreversible
Perturbation

In this subsection, we consider an irreversible perturbation in a form of general external
force εM. Before studying the linear response theory with respect to the external force εM
in Sect. 3.2, we first prepare some preliminary results, including estimates on the perturbed
invariant measure and the well-posedness, hypoellipticity and exponential convergence of
the Fokker-Planck equation.

Consider the following reversible overdamped Langevin system at equilibrium

dqt = −σσ T ∇V (q)dt + √
2σdB, qt=0 ∼ ρ0(q) := 1

Z
e−V (q), Z :=

∫
Rd

e−V (q)dq.

(3.2)

Here, σ ∈R
d×d is constant and nonsingular.

Let M ∈ C∞
c (Rd;Rd). For any ε > 0, suppose that at time t = 0, an external force εM is

added to the system, which yields the following perturbed SDE

dqε
t = σσ T (−∇V (qε) + εM(qε))dt + √

2σdB, (3.3)

with the initial distribution qε
t=0 ∼ ρ0. Notice that the initial data for the perturbed SDE is

taken as the equilibrium ρ0 for the unperturbed SDE.

3.1.1 Invariant Measure: Existence, Uniqueness, and Positivity

In this subsection, we clarify some known results on the existence, uniqueness, and positivity
of the invariant measure, i.e., the stationary solution to the corresponding Fokker-Planck
equation. For simplicity in notation related to the Fokker-Planck equation, we will use 2σσ T

as the variance.
From this point on, we impose the following assumptions on the potential V (x)

Assumption (I) There exists α > 0 such that

|∇V (x)| ≤ C1|x|α + C2, lim sup
|x|→∞

−x · ∇V (x)

|x|α+1
=: γ1 < 0. (3.4)

Assumption (II) There exists λ > 0 such that

lim inf|x|→∞
(|σ T ∇V (x)|2 − 2tr(σσ T ∇2V (x))

)=: λ > 0. (3.5)

Assumption (I) ensures the uniqueness of the invariant measure and provides a decay
estimate at infinity [2, Theorem 3.4.3]. According to [6], Assumption (II) ensures that the
measure e−V (x) satisfies Poincaré’s inequality.
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Notice that (3.3) is irreversible, and the Gibbs measure ρ0(q) is no longer the invariant
measure. In fact, even the existence of an invariant measure for an irreversible system is not
trivial.

Under Assumption (I), the potential is a trapping potential with superlinear growth, which
guarantees that both equations (3.2) and (3.3) admit a unique invariant measure with density
functions ρ0 and ρε∞, respectively. In Lemma 3.1, we establish the existence, uniqueness,
and far-field decay estimates for the invariant measure under Assumption (I). Furthermore, if
exponential convergence to the invariant measure over long times is considered, we will also
require Assumption (II). In Proposition 3.1, we recall the result of exponential convergence
for the invariant measure ρε∞ in L1(Rd), which is crucial for obtaining the linear response
theory.

For the underdamped case, we restrict our study to perturbations in a potential form.
Assumptions (I) and (II) are also essential for the well-posedness of the invariant measure
and the exponential convergence of the perturbed Fokker-Planck equation in L2(1/ρε∞); see
Sect. 4.

Lemma 3.1 (Existence, uniqueness, and positivity of the invariant measure) Let V (q) ∈
C∞(Rd;R) satisfy Assumption (I), and let M ∈ C∞

c (Rd;Rd). For all ε ∈ [0,1), consider
the SDE (3.3). Then it admits a unique invariant measure with density ρε∞ that satisfies

e−K1(|q|α+1+1) ≤ ρε
∞ ≤ e−K2(|q|α+1+1), (3.6)

where constants K1,K2 > 0 are uniform in ε.

The existence and estimate (3.6) can be found in [2, Theorem 3.4.3], and uniqueness is
ensured by the following lemma from [2, Theorem 4.1.6].

Lemma 3.2 (Theorem 4.1.6 in [2]) Suppose that

b ∈ C∞(Rd;Rd), σ ∈ C∞(Rd;Rd×d), σσ T is strictly elliptic. (3.7)

Let ρ ∈ C∞(Rd) solve L∗ρ = 0, where L∗ is defined in (2.5). Assume that ρ > 0 and ρ ∈
L1(Rd). If

‖σσ T ‖
1 + ‖x‖2

∈ L1(ρdx),
‖b‖

1 + ‖x‖ ∈ L1(ρdx) (3.8)

holds, then ρ is the unique non-zero solution of L∗u = 0 such that u ∈ L1(Rd) and u ≥ 0.

3.1.2 Well-Posedness of the Fokker-Planck Equation

Suppose the density of qε
t is given by ρε(q, t). Then ρε(q, t) satisfies the following Fokker-

Planck equation

∂ρε(q, t)

∂t
= L∗

ερ
ε(q, t) := ∇ · (σσ T ((∇V (q) − εM(q))ρε(q, t) + ∇ρε(q, t))

)
,

ρε(q,0) = ρ0(q).

(3.9)

In fact, L∗
ε generates a strongly continuous semigroup of contractions, which ensures the

well-posedness of (2.5).
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Lemma 3.3 Let V (q) ∈ C∞(Rd;R) satisfy Assumption (I), and let M ∈ C∞
c (Rd;Rd). Con-

sider (3.9). Then

(i) L∗
ε in (3.9) generates a strongly continuous semigroup of contractions in L2(1/ρε∞);

(ii) (3.9) admits a unique solution ρε(q, t) ∈ C1([0, T ],L2(1/ρε∞)) for any T > 0.

The proof of Lemma 3.3 is provided in Appendix A. We denote the semigroup generated
by L∗

ε as
{
etL∗

ε
}

t≥0
.

3.1.3 Hypoellipticity

Hypoellipticity implies the smoothness of the solution to the Fokker-Planck equation, al-
lowing us to perform integration by parts in subsequent proofs without concern. We prove
hypoellipticity by applying Hörmander’s celebrated result [14, Theorem 1.1].

Recall that a linear differential operator P with C∞ coefficients in R
d (or an open subset

of Rd ) is called hypoelliptic if for every distribution u in D′(Rd), we have

sing suppu = sing suppPu.

Here, sing suppu denotes the singular support of u

sing suppu = R
d \ {x ∈R

d : u is smooth near x
}
.

Consider a linear differential operator P with C∞ coefficients, which can be written as:

P =
r∑

j=1

X2
j + X0 + c,

where X0, . . . ,Xr denote first-order homogeneous differential operators in R
d ×(0,∞) with

smooth coefficients, and c ∈ C∞(Rd × (0,∞)). For example, the heat operator 
 − ∂

∂t
in

R
d × (0,∞) can be recast as


 − ∂

∂t
=

d∑
i=1

(Xi )
2 + X0,

where

Xi = ∂

∂xi

, i = 1,2, . . . , d, X0 = − ∂

∂t
.

Hörmander’s theorem [14, Theorem 1.1] relates the Lie algebra generated by Xi , i =
0,1,2, . . . , r to the hypoellipticity of P .

Theorem 3.1 (Hypoellipticity, Theorem 1.1 in [14]) Consider

P =
r∑

j=1

X2
j + X0 + c,
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where X0, . . . ,Xr denote first-order homogeneous differential operators in R
d ×(0,∞) with

smooth coefficients, and c ∈ C∞(Rd × (0,∞)). If, at any given point (q, t) ∈R
d × (0,∞),

span
{
Xj1 , [Xj1 ,Xj2 ], [Xj1 , [Xj2 ,Xj3 ]], . . . , [Xj1 , [Xj2 , [Xj3 , . . . ,Xjk ]]]

}=R
d+1,

where ji = 0,1,2, . . . , r , then P is hypoelliptic.

Using Theorem 3.1, we obtain the smoothness of ρε(q, t).

Lemma 3.4 Let ρε(q, t) be the unique solution of (3.9). Then it is smooth in R
d × (0,∞).

The hypoellipticity for the Fokker-Planck equation corresponding to overdamped
Langevin dynamics is trivial. However, we include the proof using Hörmander’s hypoel-
lipticity theorem in Appendix B to facilitate comparison with the underdamped case.

3.1.4 Exponential Convergence

The convergence of ρε(q, t) to ρε∞(q) in L2(1/ρε∞) cannot be derived by Poincare’s in-
equality because (3.3) is irreversible. However, we still have exponential convergence in
total variation, as shown in [15, Theorem B].

Proposition 3.1 (Convergence in L1(Rd)) Suppose Assumptions (I) and (II) hold. For any
ε ∈ (0,1), consider (3.9). Then there exist constants ε0, C > 0, and r > 0 that depend only
on V , M, and σ , such that for all ε ∈ [0, ε0), we have

‖ρε(·, t) − ρε
∞‖L1(Rd ) ≤ Ce−rt .

The proof of Proposition 3.1 employs a version of Harris’s theorem by Hairer and Majda
[10]. For completeness, the proof is provided in Appendix B.

3.2 Linear Response Theory (LRT)

Recall (3.1) and perturbed SDE (3.3). We will study the behaviors of the response function
(3.1). Let ρ̃ε(q, t) = ρε(q, t) − ρ0. Then

R(t, ε;ϕ) := 1

ε

∫
Rd

ϕ(q)ρ̃ε(q, t)dq.

The function ρ̃ε(q, t) is smooth and satisfies

∂ρ̃ε(q, t)

∂t
= L∗

ε ρ̃
ε(q, t) + ε∇ · (ρ0σσ T M), ρ̃ε(q,0) = 0. (3.10)

Using the dissipative property of the semigroup, we can derive the following estimate for
ρ̃ε(q, t).

Lemma 3.5 Consider ρ̃ε(q, t) in (3.10). Then

(i) There exists a constant C > 0, which depends only on M and V , such that

‖ρ̃ε(·, t)‖L1 ≤ Cε, (3.11)

for all t ≥ 0.
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(ii) There exists a constant C > 0, which depends only on M and V , such that

‖ρ̃ε(·, t)‖L2(1/ρε∞) ≤ Cεt, (3.12)

for all t ≥ 0. Furthermore, if M = ∇W is in gradient form, we also have

‖ρ̃ε(·, t)‖L2(1/ρε∞) ≤ Cε. (3.13)

Proof Since M ∈ C∞
c (Rd;Rd), by Duhamel’s principle, we have

ρ̃ε(q, t) = ε

∫ t

0
e(t−s)L∗

ε
(∇ · (ρ0σσ T M)

)
ds. (3.14)

Here, esL∗
ε ϕ represents the solution to (3.9) at time s with initial value ϕ.

First, since μ := ∇ · (ρ0σσ T M) has zero Lebesgue integral, the positive part μ+ and
negative part μ− satisfy μ = μ+ + μ−, and

∫
μ+(x)dx = ∫

μ−(x)dx =: c0. Therefore, the
exponential convergence in L1 norm from Proposition 3.1 implies

ε

∫ t

0

∫
|e(t−s)L∗

ε (∇ · (ρ0σσ T M))|dxds

= ε

∫ t

0

∫
|e(t−s)L∗

ε (μ+ − c0ρ
ε
∞ + c0ρ

ε
∞ − μ−)|dxds

= ε

∫ t

0

∫
|e(t−s)L∗

ε μ+ − c0ρ
ε
∞|dxds + ε

∫ t

0

∫
|e(t−s)L∗

ε μ− − c0ρ
ε
∞|dxds

≤ cε

∫ t

0
e−r(t−s)ds = cε

r
(1 − e−rt ).

Second, since ∇ · (ρ0M) ∈ D(L∗
ε), by the contraction property of L∗

ε from Lemma 3.3,
we have

‖ρ̃ε(·, t)‖L2(1/ρε∞) = ε

∫ t

0
‖e(t−s)L∗

ε (∇ · (ρ0σσ T M))‖L2(1/ρε∞)ds

≤ εt‖∇ · (ρ0σσ T M)‖L2(1/ρε∞).

From (3.6), we know that ‖∇ · (ρ0σσ T M)‖L2(1/ρε∞) can be uniformly bounded since M is
compactly supported. This proves (3.12).

Furthermore, the exponential convergence in L2(1/ρε∞) norm implies

ε

∫ t

0

∫
|e(t−s)L∗

ε (∇ · (ρ0σσ T M))|2/ρε
∞dxds

= ε

∫ t

0

∫
|e(t−s)L∗

ε (μ+ − c0ρ
ε
∞ + c0ρ

ε
∞ − μ−)|2/ρε

∞ dxds

≤ 2ε

∫ t

0

∫
|e(t−s)L∗

ε μ+ − c0ρ
ε
∞|2/ρε

∞dxds + 2ε

∫ t

0

∫
|e(t−s)L∗

ε μ− − c0ρ
ε
∞|2/ρε

∞dxds

≤ cε

∫ t

0
e−r(t−s)ds = cε

r
(1 − e−rt ). �
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Denote the Fokker-Planck operator for the reversible part as

L∗
0ρ := ∇ · (σσ T (ρ∇V + ∇ρ)) = ∇ · (ρ0σσ T ∇ ρ

ρ0
). (3.15)

Then Fokker-Planck equation (3.9) which could be reformulated as

∂ρε(q, t)

∂t
= L∗

ερ
ε(q, t) = L∗

0ρ
ε(q, t) − ε∇ · (ρεσσ T M).

We now consider the limit behavior of R(t, ε;ϕ).

Theorem 3.2 Suppose that Assumptions (I) and (II) hold. Let M(q) ∈ C∞
c (Rd;Rd), and let

ρε(q, t) be the law of qε
t in (3.3). Let ρε∞(q) be the invariant measure of (3.3). For some

ϕ ∈ C∞
c (Rd), consider R(t, ε;ϕ) defined in (3.1). Then

(i) (Convergence as ε → 0+) For any given t > 0,

lim
ε→0+ R(t, ε;ϕ) =

∫ t

0

∫
Rd

[
σσ T M · (∇(esL0ϕ))

]
ρ0dqds. (3.16)

Moreover, the limit in (3.16) holds uniformly for all t > 0, i.e., for any η > 0, there
exists ε0 such that for any 0 < ε < ε0 and t > 0

∣∣∣∣R(t, ε;ϕ) −
∫ t

0

∫
Rd

[
σσ T M · (∇(esL0ϕ))

]
ρ0dqds

∣∣∣∣< η.

(ii) (Convergence as ε → 0+, then t → ∞) The following limit exists

lim
t→∞ lim

ε→0+ R(t, ε;ϕ) =
∫ ∞

0

∫
Rd

[
σσ T M · (∇(esL0ϕ))

]
ρ0dqds, (3.17)

and the convergence in t is exponentially fast, i.e., there exist constants C > 0 and
r > 0, which depend on M and V , such that

∣∣∣∣ lim
ε→0+ R(t, ε;ϕ) −

∫ ∞

0

∫
Rd

[
σσ T M · (∇(esL0ϕ))

]
ρ0dqds

∣∣∣∣≤ Ce−rt , (3.18)

holds for all t > 0.
(iii) (Convergence as t → ∞) For any ε > 0,

lim
t→∞ R(t, ε;ϕ) = 1

ε

(∫
Rd

ϕ(q)ρε
∞(q)dq −

∫
Rd

ϕ(q)ρ0(q)dq
)

. (3.19)

(iv) (Convergence as t → ∞, then ε → 0+) The following limit exists

lim
ε→0+ lim

t→∞R(t, ε;ϕ) =
∫ ∞

0

∫
Rd

[
σσ T M · (∇(esL0ϕ))

]
ρ0dqds, (3.20)

or equivalently

lim
ε→0+

1

ε

(∫
Rd

ϕ(q)ρε
∞(q)dq −

∫
Rd

ϕ(q)ρ0(q)dq
)

=
∫ ∞

0

∫
Rd

[
σσ T M · (∇(esL0ϕ))

]
ρ0dqds. (3.21)
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Before proving the theorem, we provide a necessary estimate that will be frequently used
later.

Lemma 3.6 Under Assumption (II), there exist constants C > 0 and r > 0 that depend on ϕ,
M, and V , such that for any ϕ ∈ C∞

c (Rd), we have

‖∇(etL0ϕ)‖L2(ρ0) ≤ Ce−rt , ‖∇(etL0ϕ)‖L∞(supp(M)) ≤ Ce−rt . (3.22)

This lemma ensures that the integral
∫ ∞

0

∫
Rd

[
σσ T M · (∇(esL0ϕ))

]
ρ0 dq ds

appearing in Theorem 3.2 converges
∣∣∣∣
∫ ∞

0

∫
Rd

[
σσ T M · (∇(esL0ϕ))

]
ρ0 dq ds

∣∣∣∣≤ C

∫ ∞

0
‖∇(etL0ϕ)‖L∞(supp(M)) ds

≤ C ′
∫ ∞

0
e−rs ds < ∞,

where C and C ′ are constants.

Proof of Lemma 3.6 Define ϕ̄ := ∫
Rd ϕρ0 dq. Then, we know that ψ(q, t) := etL0(ϕ − ϕ̄)

solves the backward equation

∂ψ(q, t)

∂t
= L0ψ(q, t), ψ(q,0) = ϕ(q) − ϕ̄. (3.23)

Notice that
∫
Rd ψ(q,0)ρ0 dq = 0. Multiplying (3.23) by ρ0 and integrating in [0, t] × R

d ,
we have for any t ≥ 0,

∫
Rd

ψ(q, t)ρ0 dq = 0. (3.24)

By Assumption (II), Poincare’s inequality holds, and we have exponential convergence

‖ψ(·, t)‖L2(ρ0) ≤ Ce−rt . (3.25)

Furthermore, let η := L0ψ(q, t) = L0e
tL0(ϕ − ϕ̄) = etL0L0ϕ. Then η solves

∂η(q, t)

∂t
= L0η(q, t), η(q,0) = L0ϕ(q).

Since
∫
Rd L0ϕρ0 dq = 0, we again have exponential convergence

‖L0ψ(·, t)‖L2(ρ0) ≤ Ce−rt .

Using the definition of L0, we compute
∫
Rd

ρ0|σ T ∇(etL0ϕ)|2 dq = −
∫
Rd

ρ0ψ(q, t)L0ψ(q, t)dq

≤ ‖ψ(·, t)‖L2(ρ0)‖L0ψ(·, t)‖L2(ρ0)
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≤ Ce−rt .

Since σ is nonsingular and constant, we have

‖∇(etL0ϕ)‖L2(ρ0) ≤ Ce−rt .

Next, we estimate the L∞ norm. We first observe

‖ψ(·, t)‖L∞(Rd ) ≤ ‖ψ(·,0)‖L∞(Rd ), ‖L0ψ(·, t)‖L∞(Rd ) ≤ ‖L0ψ(·,0)‖L∞(Rd ).

Then, by the interior estimate from [9, Theorem 9.11], for any 1 < p < ∞, we have

‖ψ(·, t)‖W2,p(supp(M)) ≤ C
[‖ψ(·, t)‖Lp(B) + ‖Lψ(·, t)‖Lp(B)

]
. (3.26)

Here, B is a compact ball such that supp(M) ⊂⊂ B . Since ρ0(q) = e−V (q) ≥ 1
c

> 0 for
q ∈ B , for some p > d , we have

‖ψ(·, t)‖p

Lp(B) ≤ ‖ψ(·, t)‖p−2
L∞(Rd )

·
∫

B

cρ0|ψ(q, t)|2 dq ≤ c‖ψ(·,0)‖p−2
L∞(Rd )

‖ψ(·, t)‖2
L2(ρ0)

,

‖L0ψ(·, t)‖p

Lp(B) ≤ ‖L0ψ(·, t)‖p−2
L∞(Rd )

·
∫

B

cρ0|L0ψ(q, t)|2 dq

≤ c‖L0ψ(·,0)‖p−2
L∞(Rd )

‖L0ψ(·, t)‖2
L2(ρ0)

.

Combining this with (3.26), we obtain

‖ψ(·, t)‖W2,p(supp(M)) ≤ Ce−rt .

By the embedding W 1,p(B) ⊂ L∞(B), we conclude

‖∇(etL0ϕ)‖L∞(supp(M)) ≤ ‖∇(etL0ϕ)‖W1,p(supp(M)) ≤ ‖ψ(·, t)‖W2,p(supp(M)) ≤ Ce−rt .

This completes the proof of the lemma. �

Now we can proceed to prove Theorem 3.2.

Proof of Theorem 3.2 (i) This is the key step of the proof, and parts (ii) ∼ (iv) will follow
from it. Recall that ρε(q, t) solves the Fokker-Planck equation (3.9), which can be reformu-
lated as

∂ρε(q, t)

∂t
= L∗

ερ
ε(q, t) = L∗

0ρ
ε(q, t) − ε∇ · (ρεσσ T M).

Thus, by Duhamel’s principle, we have

ρε(q, t) = etL∗
0ρ0 − ε

∫ t

0
e(t−s)L∗

0
[∇ · (ρε(q, s)σσ T M(q)

)]
ds. (3.27)

Substituting (3.27) into (3.1), we rewrite the response function as

R(ε, t;ϕ) = −
∫
Rd

∫ t

0
ϕ(q)e(t−s)L∗

0
[∇ · (ρε(q, s)σσ T M(q)

)]
ds dq.
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Since ϕ ∈ C∞
c (Rd), the term ϕ(q)e(t−s)L∗

0
[∇ · (ρε(q, s)σσ T M(q))

]
is smooth and has com-

pact support in R
d × [0, t], ensuring it is bounded in this domain. By Fubini’s theorem, we

get

R(ε, t;ϕ) = −
∫ t

0

∫
Rd

ϕ(q)e(t−s)L∗
0
[∇ · (ρε(q, s)σσ T M(q))

]
dq ds.

Integration by parts gives

R(ε, t;ϕ) =
∫ t

0

∫
Rd

[
σσ T M · ∇(e(t−s)L0ϕ)

]
ρε(q, s)dq ds. (3.28)

Now, for a fixed time T0 > 0 (to be chosen later), for t > T0, we have

∣∣∣∣R(ε, t;ϕ) −
∫ t

0

∫
Rd

[
σσ T M · ∇(e(t−s)L0ϕ)

]
ρ0(q, s)dq ds

∣∣∣∣
=
∣∣∣∣
∫ T0

0

∫
Rd

[
σσ T M · ∇(e(t−s)L0ϕ)

]
(ρε(q, s) − ρ0)dq ds

+
∫ t

T0

∫
Rd

[
σσ T M · ∇(e(t−s)L0ϕ)

]
(ρε(q, s) − ρ0)dq ds

∣∣∣∣ .

This can be bounded by the sum of three terms

I =
∫ T0

0
‖σσ T M · ∇(e(t−s)L0ϕ)‖L2(ρ0)

∥∥∥∥ ρ̃ε(·, s)
ρ0

∥∥∥∥
L2(ρ0,supp(M))

ds,

II =
∣∣∣∣
∫ t

T0

∫
Rd

[
σσ T M · ∇(e(t−s)L0ϕ)

]
(ρε(q, s) − ρε

∞(q))dq ds

∣∣∣∣ ,

III =
∣∣∣∣
∫ t

T0

∫
Rd

[
σσ T M · ∇(e(t−s)L0ϕ)

]
(ρ0(q) − ρε

∞(q))dq ds

∣∣∣∣ .

By Lemma 3.5 and Lemma 3.6, we know

I ≤ Cε

∫ T0

0
e(s−t)r s ds = εC1(T0 + 1)er(T0−t), (3.29)

where C1 is a constant depending on M, ϕ, σ , and V . By Proposition 3.1 and Lemma 3.6,
we know

II ≤
∫ t

T0

‖σσ T M · ∇(e(t−s)L0ϕ)‖L∞(supp(M))‖ρε(q, s) − ρε
∞(q)‖L1(Rd )ds

≤ C ′
∫ t

T0

er(s−t) · e−r1sds

≤ C2e
−r1T0 .

(3.30)

where C ′ and C2 are constants and r1 > 0 depends on M, ϕ, σ , and V .
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Finally, by taking W(q) = |q|2 in [2, Proposition 3.7.4], ρε∞ converges to ρ0 as ε → 0+
in L1(Rd). Thus, by Lemma 3.6, as ε → 0+, we have

III ≤ ‖ρε
∞ − ρ0‖L1(Rd ) ·

∫ t

T0

‖σσ T M · ∇(e(t−s)L0ϕ)‖L∞(supp(M))ds

≤ C ′′‖ρε
∞ − ρ0‖L1(Rd ) ·

∫ t

T0

er(s−t)ds

≤ C3‖ρε
∞ − ρ0‖L1(Rd ) → 0.

(3.31)

Here, C3 depends on M, ϕ, σ , and V .
To control the error within any δ > 0, take T0 sufficiently large such that II ≤ C2e

−r1T0 ≤
δ/3. Then, choose ε0 so that I ≤ C1ε0(T0 + 1) ≤ δ/3 for any ε ≤ ε0. Finally, select ε1 ≤ ε0

so that III ≤ C3‖ρε∞ − ρ0‖L1(Rd ) ≤ δ/3 for all ε ≤ ε1. Thus, for any ε < ε1 and t > T0, by
(3.29), (3.30), and (3.31), we have

∣∣∣∣R(ε, t;ϕ) −
∫ t

0

∫
Rd

[
σσ T M · ∇(e(t−s)L0ϕ)

]
ρ0(q)dq ds

∣∣∣∣≤ I + II + III ≤ δ. (3.32)

For t ∈ (0, T0], use (3.29) to bound the difference
∣∣∣∣R(ε, t;ϕ) −

∫ t

0

∫
Rd

[
σσ T M · ∇(e(t−s)L0ϕ)

]
ρ0(q)dq ds

∣∣∣∣≤ I ≤ δ/3. (3.33)

Thus, the convergence is uniform in t , and by a change of variables, we obtain

∫ t

0

∫
Rd

[
σσ T M · ∇(e(t−s)L0ϕ)

]
ρ0(q)dq ds =

∫ t

0

∫
Rd

[
σσ T M · ∇(esL0ϕ)

]
ρ0(q)dq ds.

(3.34)

This completes the proof of (i).
Next, we prove (ii). By Lemma 3.6, we know that for T2 > T1 > 0

∫ T2

T1

∫
Rd

[σσ T M · ∇(esL0ϕ)]ρ0(q)dqds

≤
∫ T2

T1

‖σσ T M · ∇(esL0ϕ)‖L∞(supp(M))ds ≤ C(e−rT1 − e−rT2). (3.35)

Here r and C are constants in Lemma 3.6 that depend on M, V , σ and ϕ. Therefore, we
know that the limit

lim
t→∞

∫ t

0

∫
Rd

[
σσ T M · ∇(esL0ϕ)

]
ρ0(q)dq ds (3.36)

exists, and by letting T2 → ∞ in (3.35), we obtain exponentially fast convergence, proving
(ii).

For (iii), use Proposition 3.1
∣∣∣∣
∫
Rd

ϕ(q)(ρε(q, t) − ρε
∞)dq

∣∣∣∣≤ ‖ϕ‖L∞(Rd ) · ‖ρε(q, t) − ρε
∞‖L1(Rd ) ≤ Ce−rt .
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Thus, for any given ε, we have

lim
t→∞R(ε, t;ϕ) = 1

ε

(∫
Rd

ϕ(q)(ρε
∞(q) − ρ0(q))dq

)
.

This proves (iii).
Finally, we prove (iv). By the uniform convergence in (i), for any η > 0, there exists ε0

such that for all t > 0 and ε ∈ (0, ε0)

∣∣∣∣R(t, ε;ϕ) −
∫ t

0

∫
Rd

[
σσ T M · ∇(esL0ϕ)

]
ρ0dq ds

∣∣∣∣< η.

Taking the limit t → ∞, we get

∣∣∣∣ lim
t→∞ R(t, ε;ϕ) −

∫ ∞

0

∫
Rd

[
σσ T M · ∇(esL0ϕ)

]
ρ0dq ds

∣∣∣∣< η.

This implies

lim
ε→0+ lim

t→∞R(ε, t;ϕ) =
∫ ∞

0

∫
Rd

[
σσ T M · ∇(esL0ϕ)

]
ρ0dq ds,

or equivalently

lim
ε→0+

1

ε

(∫
Rd

ϕ(q)ρε
∞(q)dq −

∫
Rd

ϕ(q)ρ0(q)dq
)

=
∫ ∞

0

∫
Rd

[
σσ T M · ∇(esL0ϕ)

]
ρ0dq ds. �

3.3 The Green-Kubo Relation

Compared to the general linear response formula describing the behavior of the response
function R(ε, t;ϕ) with respect to an external force, the Green-Kubo relation is a special
case where the limiting response function is explicitly computed via the stationary auto-
correlation function. This auto-correlation function depends only on the correlation of the
original unperturbed solution at different times, so it can be used to “predict” the aver-
aged response for a reversible system after applying a conservative force as the perturba-
tion.

Precisely, consider a special case of linear response theory: the perturbation is also
of potential form, i.e., there exists W ∈ C∞

c (Rd ,R+) such that M = ∇W . In this case,
the perturbed SDE is also of reversible form, and the invariant measure of (3.3) is given
by

ρε
∞ = 1

Zε

e−V (q)+εW(q), Zε :=
∫
Rd

e−V (q)+εW(q)dq. (3.37)

By Theorem 3.2, taking two special functions as ϕ = L0g and M = ∇W , we can rig-
orously verify the Green-Kubo relation (3.39). Specifically, we take a special class of test
functions ϕ satisfying

∫
ϕρ0dq = 0, and then one can uniquely solve g from ϕ = L0g up to
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a constant. For this special case, we provide an intuitive proof of the Green-Kubo relation
using the semigroup property. Indeed, observe that

∫
Rd

[
g − etL0g

]
(L0W)ρ0dq = −

∫
Rd

∫ t

0

∂

∂s
(esL0g)ds (L0W)ρ0dq

= −
∫
Rd

∫ t

0
esL0L0g ds (L0W)ρ0dq.

Since
∫
Rd (L0W)ρ0dq = 0, and using the result from the proof of (3.24) with ψ(q,0) =

L0W , we obtain for ḡ := ∫
Rd gρ0dq, that ḡ

∫
Rd etL0(L0W)ρ0dq = 0. Thus, we have

∫
Rd

etL0g(L0W)ρ0dq =
∫
Rd

etL0(g − ḡ)(L0W)ρ0dq

≤
(∫

|etL0(g − ḡ)|2ρ0dq
) 1

2
(∫

|L0W |2ρ0dq
) 1

2 → 0

as t → +∞ due to (3.25). Therefore, the following identity holds:

−
∫ ∞

0

∫
Rd

[
esL0(L0g)

]
(L0W)ρ0dq ds =

∫
Rd

g(L0W)ρ0dq =
∫
Rd

(L0g)Wρ0dq, (3.38)

due to the symmetry of L0.
In the theorem below, we provide an alternative proof starting from the linear response

theory in Theorem 3.2.

Theorem 3.3 (The Green-Kubo relation) Suppose that Assumptions (I) and (II) hold. Let
W ∈ C∞

c (Rd;Rd) and M = ∇W in (3.3). For any g ∈ C∞
c , we have

lim
ε→0+ lim

t→∞R(t, ε;L0g) =
∫
Rd

W(q)(L0g)(q)ρ0(q)dq

= −
∫ ∞

0

∫
Rd

[
esL0(L0g)

]
(L0W)ρ0dq ds. (3.39)

Using the conventional notation for the stationary auto-correlation function

KAB(t) :=
∫
Rd

(
etL0A

)
B ρ0dq,

the above Green-Kubo relation (3.39) is interpreted as

lim
ε→0+ lim

t→∞R(t, ε;L0g) = −
∫ +∞

0
KL0g,L0W(t)dt. (3.40)

Proof Recall the linear response relation (3.21). We will recast the L.H.S. and R.H.S. of
(3.21) respectively, which in the special case ϕ = L0g and M = ∇W will deduce the so-
called Green-Kubo relation (3.39). This relation is also known as the fluctuation-dissipation
theorem by Gallavotti-Cohen [8].
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For a given observable ϕ ∈ C∞
c (Rd) and a potential U ∈ C∞(Rd) such that e−U ∈

L1(Rd), define

f (U) :=
∫
Rd ϕ(q)e−U(q)dq∫

Rd e−U(q)dq
. (3.41)

Then, the L.H.S. of (3.21) should be viewed as the Gateaux derivative at U = V in the
direction W , i.e.,

lim
ε→0+

f (V + εW) − f (V )

ε
= lim

ε→0+
1

ε

(∫
Rd

ϕ(q)ρε
∞(q)dq −

∫
Rd

ϕ(q)ρ0(q)dq
)

. (3.42)

By the Dominated Convergence Theorem, direct computation yields

lim
ε→0+

f (V + εW) − f (V )

ε
=
∫
Rd

ϕ(q)
∂

∂ε

(
e−V (q)+εW(q)∫

Rd e−V (q)+εW(q)dq

)∣∣∣∣
ε=0

dq

=
∫
Rd

ϕ(q)W(q)ρ0dq −
(∫

Rd

ϕ(q)ρ0dq
)(∫

Rd

W(q)ρ0dq
)

.

(3.43)
For the case ϕ = L0g, we have

∫
Rd (L0g)ρ0dq = 0, and thus the first equality in (3.39) holds.

Now, we reformulate the R.H.S. of (3.21). Substituting M = ∇W into (3.21) yields

∫ ∞

0

∫
Rd

[
σσ T M · ∇(esL0ϕ)

]
ρ0dq ds = −

∫ ∞

0

∫
Rd

(
esL0ϕ

)∇ · (ρ0σσ T ∇W
)

dq ds

= −
∫ ∞

0

∫
Rd

(
esL0ϕ

)
(L0W)ρ0dq ds,

(3.44)

where the last equality is due to (3.15). By Theorem 3.2, we know that (3.44) and (3.43) are
equal. Thus, for g ∈ C∞

c (Rd) with ϕ = L0g, we derive (3.39). �

We point out that literature (for instance, [25, Chap. 9.3]) also rewrites (3.39) as

1

2

∫
Rd

�(g,W)(q)ρ0(q)dq =
∫ ∞

0
E [(L0g)(qs)(L0W)(q0)] ds

=
∫ ∞

0

∫
Rd

E
q [(L0g)(qs )] (L0W)ρ0dqds

=
∫ ∞

0

∫
Rd

esL0(L0g)(L0W)ρ0dqds. (3.45)

Here, qs , s ≥ 0 is a trajectory of (3.2), and �(g,h) is the carré du champ operator defined as

�(g,h) := L0(gh) − gL0h − hL0g. (3.46)

Equations (3.39) and (3.45) are regarded as the Green-Kubo relation.
In the following, we provide an example to compute the diffusion coefficients via the

Green-Kubo relation. In fact, (3.45) can be rewritten as
∫
Rd

ρ0(q)(∇g)�σσ�∇Wdq =
∫ ∞

0
E [(L0g)(qs)(L0W)(q0)] ds. (3.47)
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Though we assume W and g are in C∞
c (Rd), by a density argument, (3.45) or (3.47) also

holds for W(q) = qj , g(q) = qi where i, j = 1,2, . . . , d . Thus, we derive the diffusion
coefficients

(σσ�)ij =
∫ ∞

0
E
[
(σ iσ∇V )(qs)(σ jσ∇V )(q0)

]
ds,

where σ j , j = 1,2, . . . , d are the j -th row of σ .

Remark 3.1 As mentioned in (3.38), the Green-Kubo relation could be verified by using the
exponential convergence of esL0ϕ. This method is independent of linear response theory
(see [25, Result 9.1]). The way we verified the Green-Kubo formula is to reveal the intrinsic
relationship between it and the linear response theory. Indeed, Hairer-Majda directly termed
(3.21) as the Green-Kubo relation in [11].

Remark 3.2 We also remark that the Green-Kubo relation when studying ρε∞, relaxed to ρ0

after canceling the perturbation force, can be used to justify the Onsager regression hypoth-
esis [22, 23]; see also the review article [20]. That is, using the following relation, one can
compute (in a reversible way) the original unperturbed auto-correlation function

lim
ε→0+

1

ε

(∫
Rd

ϕ(q)ρ0(q)dq −
∫
Rd

ϕ(q)ρε
∞(q)dq

)

= lim
ε→0+

∫ ∞

0

∫
Rd

[
esLε (Lεg)

]
(LεW)ρε

∞(q)dqds

=
∫ ∞

0

∫
Rd

[
esL0(L0g)

]
(L0W)ρ0(q)dqds.

4 The Linear Response Theory for Underdamped Langevin and
Generalized Langevin Dynamics

Unlike the overdamped case, the degenerate ellipticity of the underdamped Langevin equa-
tion prevents the direct analogy of many results from the overdamped Langevin case. In
particular, few results are known for irreversible underdamped Langevin dynamics. Fortu-
nately, Villani’s remarkable work on hypocoercivity [29] has facilitated the analysis of the
reversible case, showing that exponential convergence still holds under mild conditions on
the potential.

In this section, we consider underdamped Langevin dynamics and study the linear re-
sponse theory for the case where the external force perturbation is in a conservative form
ε∇W . The main differences between the underdamped Langevin dynamics and the over-
damped case are hypocoercivity and hypoellipticity. Therefore, we will first clarify hypoco-
ercivity and hypoellipticity before proving parallel results for the behavior of the response
function R(ε, t;ϕ).
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4.1 Hypocoercivity and Hypoellipticity of the Kinetic Fokker-Planck Equation

Suppose that V (q) ∈ C∞(Rd) is positive and satisfies Assumptions (I) and (II). Consider
the following underdamped Langevin dynamics

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dqε = pεdt,

dpε = −σσ T pεdt − ∇q[V (qε) − εW(qε)]dt + √
2σdB,

(qε(0),pε(0)) ∼ ρ0 := 1

Z
e−|p|2/2−V (q), Z :=

∫
R2d

e−|p|2/2−V (q)dqdp,

(4.1)

where W(q) ∈ C∞
c (Rd) is the potential as in Sect. 3.3 such that the force perturbation is also

of the potential form ε∇W .
Let ρε(q,p, s) be the law of (qε

s ,pε
s ). It satisfies the following Fokker-Planck equation

∂ρε(q,p, t)

∂t
= L∗

ερ(q,p, t), ρε(q,p,0) = ρ0, (4.2)

where L∗
ε is the perturbed Fokker-Planck operator

L∗
ερ := −p · ∇qρ + ∇q[V (q) − εW(q)] · ∇pρ + ∇p · (ρσσ T p + σσ T ∇pρ). (4.3)

The invariant measure of (4.2) is the Gibbs measure

ρε
∞ := 1

Zε

e−|p|2/2−V (q)+εW(q), Zε :=
∫
R2d

e−|p|2/2−V (q)+εW(q)dqdp. (4.4)

LRT is interested in the limit behavior of the response function given an observable
ϕ ∈ C∞

c (R2d), i.e.,

R(ε, t;ϕ) := 1

ε

(∫
R2d

ϕ(q,p)ρε(q,p, t)dqdp −
∫
R2d

ϕ(q,p)ρ0(q,p)dqdp
)

. (4.5)

As in (2.15), the unperturbed backward operator L0 is given by

L0f := p · ∇qf − ∇qV (q) · ∇pf − (σσ T p) · ∇pf + (σσ T ) : ∇2
pf, (4.6)

and the unperturbed Fokker-Planck operator L∗
0 is given by

L∗
0ρ := −p · ∇qρ + ∇qV (q) · ∇pρ + ∇p · (ρσσ T p + σσ T ∇pρ). (4.7)

We now consider the equation of pε(q,p, t) = ρε(q,p, t)

ρε∞(q,p)
, which is

∂pε

∂t
= Lε,1p

ε, pε(q,p,0) = ρ0

ρε∞
,

where

Lε,1f := −p · ∇qf + (∇qV (q) − ε∇qW(q)) · ∇pf − (σσ T p) · ∇pf + (σσ T ) : ∇2
pf.

(4.8)
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We point out that, unlike the overdamped Langevin dynamics, Lε,1 is not exactly the same
as the generator, since the first two terms in L0 form the Liouville operator.

We can prove that Lε,1 generates a strongly continuous semigroup of contraction on
L2(ρε∞).

Lemma 4.1 Let V (q) ∈ C∞(Rd;R) satisfy Assumption (I) and W(q) ∈ C∞
c (Rd;R). Con-

sider equation (4.2). Then

(i) ρ0/ρ
ε∞ ∈ Hk(ρε∞), k = 1,2, . . .

(ii) Lε,1 in (4.8) generates a strongly continuous semigroup of contractions in L2(ρε∞);
(iii) Equation (4.2) admits a unique solution ρε(q,p, t) ∈ C1([0, T ];L2(1/ρε∞)) for any

T > 0.

By Hörmander’s hypoellipticity Theorem 3.1, we can prove that the unique solution of
(4.2) is smooth (proof is in Appendix B).

Lemma 4.2 Let ρε(q,p, t) be the unique solution of (4.2). Then it is smooth in R
2d ×(0,∞).

4.2 Linear Response Theory for Underdamped Langevin

According to [6], for any ϕ ∈ C∞
c (R2d), the solution to the backward equation

∂ϕ(q,p, t)

∂t
= L0ϕ(q,p, t), ϕ(q,p,0) = ϕ(q,p), (4.9)

converges exponentially fast in L2(ρ0), i.e.,

‖ϕ(·, ·, t) − ϕ̄‖L2(ρ0) ≤ Ce−λt . (4.10)

Here ϕ̄ := ∫
R2d ϕ(q,p)ρ0(q,p)dqdp, C > 0 is a constant depending on V , σ , and ϕ, and

r > 0 is a constant depending on V and σ .
Since W is of compact support, the conditions of hypocoercivity for V in Assumption

(II) still apply to the perturbed Fokker-Planck equation [6]. Hence, exponential convergence
also holds

‖ρε(·, ·, t) − ρε
∞(·, ·)‖L2(1/ρε∞) ≤ e−rt‖ρ0 − ρε

∞‖L2(1/ρε∞). (4.11)

Here r > 0 depends only on V and σ , but not on ε; C1 > 0 depends only on V and σ . The
reason they do not depend on ε is that the perturbation from W is smooth and of compact
support.

Using these exponential convergence results (as in Lemma 3.6), we can rigorously verify
the linear response theory.

Theorem 4.1 Let V (q) ∈ C∞(Rd) be positive and satisfy Assumptions (I) and (II). Suppose
W(q) ∈ C∞

c (Rd). Let ρε(q, t) be the law of (qε
t ,pε

t ) in (4.1), and let ρε∞(q) be the invariant
measure of (4.1). For some ϕ ∈ C∞

c (R2d), consider R(t, ε;ϕ) defined in (4.5). Then

(i) (Convergence as ε → 0+) For any given t > 0,

lim
ε→0+ R(t, ε;ϕ) =

∫ t

0

∫
R2d

[∇qW · (∇p(e
sL0ϕ))]ρ0dqdpds. (4.12)
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Moreover, the limit in (4.12) holds uniformly for all t > 0; i.e., for any η > 0, there
exists ε0 such that for any 0 < ε < ε0 and t > 0,

∣∣∣∣R(t, ε;ϕ) −
∫ t

0

∫
R2d

[∇qW · (∇p(e
sL0ϕ))]ρ0dqdpds

∣∣∣∣< η;

(ii) (Convergence as ε → 0+, then t → ∞) The following limit exists

lim
t→∞ lim

ε→0+ R(t, ε;ϕ) =
∫ ∞

0

∫
R2d

[∇qW · (∇p(e
sL0ϕ))]ρ0dqdpds, (4.13)

and the convergence in t is exponentially fast. That is, there exist constants C > 0 and
r > 0 (depending on M and V ) such that

∣∣∣∣ lim
ε→0+ R(t, ε;ϕ) −

∫ ∞

0

∫
R2d

[∇qW · (∇p(e
sL0ϕ))]ρ0dqdpds

∣∣∣∣≤ Ce−rt (4.14)

holds for all t > 0;
(iii) (Convergence as t → ∞) For any ε > 0,

lim
t→∞R(t, ε;ϕ) = 1

ε

(∫
R2d

ϕ(q)ρε
∞(q)dqdp −

∫
R2d

ϕ(q)ρ0(q, t)dqdp
)

; (4.15)

(iv) (Convergence as t → ∞, then ε → 0+) The following limit exists

lim
ε→0+ lim

t→∞R(t, ε;ϕ) =
∫ ∞

0

∫
R2d

[∇qW · (∇p(e
sL0ϕ))]ρ0dqdpds, (4.16)

or equivalently,

lim
ε→0+

1

ε

(∫
R2d

ϕ(q)ρε
∞(q)dqdp −

∫
R2d

ϕ(q)ρ0(q)dqdp
)

=
∫ ∞

0

∫
R2d

[∇qW · (∇p(e
sL0ϕ))]ρ0dqdpds. (4.17)

Proof We first prove (i). By Lemma 4.2, ρε(q,p, t) is smooth. By Duhamel’s principle, we
have

ρε(q,p, t) = etL∗
0ρ0 − ε

∫ t

0
e(t−s)L∗

0 (∇qW(q) · ∇pρ
ε(q,p, s))ds. (4.18)

Remember that etL∗
0ρ0 = ρ0, so

R(t, ε;ϕ) = 1

ε

(∫
R2d

ϕ(q,p)ρε(q,p, t)dqdp −
∫
R2d

ϕ(q,p)ρ0(q,p)dqdp
)

= −
∫
R2d

∫ t

0
ϕ(q,p)e(t−s)L∗

0 (∇qW(q) · ∇pρ
ε(q,p, s))dsdqdp.

Since ϕ(q,p)e(t−s)L∗
0 (∇qW(q) · ∇pρ

ε(q,p, s)) is a smooth function with compact support
in R

2d × [0, t], Fubini’s theorem gives

R(t, ε;ϕ) = −
∫ t

0

∫
R2d

ϕ(q,p)e(t−s)L∗
0 (∇qW(q) · ∇pρ

ε(q,p, s))dqdpds.
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Integration by parts then yields

R(t, ε;ϕ) =
∫ t

0

∫
R2d

[∇qW · (∇p(e
(t−s)L0ϕ))]ρε(q,p, s)dqdpds.

By (4.11), we know

‖ρε(·, ·, s) − ρ0(·, ·)‖L2(1/ρε∞) ≤ ‖ρε(·, ·, s) − ρε
∞(·, ·)‖L2(1/ρε∞) + ‖ρ0 − ρε

∞‖L2(1/ρε∞)

≤ (1 + e−rs)‖ρ0 − ρε
∞‖L2(1/ρε∞)

≤ 2‖ρ0 − ρε
∞‖L2(1/ρε∞).

Thus, by Cauchy-Schwarz’s inequality, we have

∣∣∣∣R(t, ε;ϕ) −
∫ t

0

∫
R2d

[∇qW · (∇p(e
sL0ϕ))]ρ0dqdpds

∣∣∣∣
=
∣∣∣∣
∫ t

0

∫
R2d

[∇qW · (∇p(e
(t−s)L0ϕ))](ρε(q,p, s) − ρ0(q,p))dqdpds

∣∣∣∣
≤
∫ t

0
‖∇qW · (∇p(e

(t−s)L0ϕ))‖L2(ρε∞)‖ρε(q,p, s) − ρ0(q,p)‖L2(1/ρε∞)ds

≤ 2‖ρ0 − ρε
∞‖L2(1/ρε∞) ·

∫ t

0
‖∇qW · (∇p(e

sL0ϕ))‖L2(ρε∞)ds.

(4.19)

Because W has compact support, there exists a constant C ′ > 0, depending only on V , W ,
and σ , such that

‖∇qW · (∇p(e
sL0ϕ))‖L2(ρε∞) ≤ C‖∇p(e

sL0ϕ)‖L2(ρε∞) ≤ C ′‖∇p(e
sL0ϕ)‖L2(ρ0). (4.20)

Notice that ∇p(e
sL0ϕ) = ∇p(e

sL0(ϕ − ϕ̄)). Thus, by (4.10), we have

‖σ T ∇p(e
sL0ϕ)‖2

L2(ρ0)
= −

∫
R2d

(esL0(ϕ − ϕ̄))(L0e
sL0(ϕ − ϕ̄))ρ0dqdp

≤ ‖esL0(ϕ − ϕ̄)‖L2(ρ0)‖L0e
sL0(ϕ − ϕ̄)‖L2(ρ0)

≤ C ′′e−2λt .

Here C ′′ > 0 is a constant depending on ϕ, V , and σ , and λ is the constant in (4.10). Since
σ is non-singular, we have

‖∇p(e
sL0ϕ)‖2

L2(ρ0)
≤ C1e

−rt . (4.21)

Here C1 is a constant depending on ϕ, V , and σ . Returning to (4.19), we obtain

∣∣∣∣R(t, ε;ϕ) −
∫ t

0

∫
R2d

[∇qW · (∇p(e
sL0ϕ))]ρ0dqdpds

∣∣∣∣≤ 2C2‖ρ0 − ρε
∞‖L2(1/ρε∞) ·

∫ t

0
e−rsds

≤ C3‖ρ0 − ρε
∞‖L2(1/ρε∞).
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Here C3 > 0 is a constant depending on ϕ, V , W , and σ . Since ρ0 and ρε∞ are the Gibbs
measures given in (4.1) and (4.4) respectively, and W is of compact support, the dominated
convergence theorem directly implies

‖ρ0 − ρε
∞‖L2(1/ρε∞) → 0

as ε → 0+. Since C3‖ρ0 − ρε∞‖L2(1/ρε∞) is independent of t and approaches 0 as ε → 0+, (i)
is proved, and the convergence is uniform in t .

Now we proceed to prove (ii). By (4.21) and Cauchy-Schwarz’s inequality, for any
T1, T2 > 0, we have

∣∣∣∣
∫ T2

T1

∫
R2d

[∇qW · (∇p(e
sL0ϕ))]ρ0dqdpds

∣∣∣∣≤ ‖∇qW‖L2(ρ0) ·
∫ T2

T1

e−srds

≤ C(e−T1r − e−T2r ).

Here C is a constant depending on V , W , and σ . Thus, the limit in (4.13) exists and con-
verges exponentially fast in t .

Next, we prove (iii). This follows immediately from (4.11). For any given ε > 0, we have
∣∣∣∣1

ε

(∫
R2d

ϕ(q,p)ρε
∞(q,p)dqdp −

∫
R2d

ϕ(q,p)ρε(q,p, t)dqdp
)∣∣∣∣

≤ 1

ε
‖ϕ‖L2(1/ρε∞)‖ρε(·, ·, t) − ρε

∞(·, ·)‖L2(1/ρε∞)

≤ C1e
−r1t /ε.

Here C1 > 0 is a constant depending on ϕ, V , W , and σ , and r1 > 0 is in (4.11). Thus, the
limit as t → ∞ exists for each ε > 0.

Finally, we prove (iv). By (i), we know that for any η > 0, there exists ε0 > 0 such that
for all ε ∈ (0, ε0), we have

∣∣∣∣R(t, ε;ϕ) −
∫ t

0

∫
R2d

[∇qW · (∇p(e
sL0ϕ))]ρ0dqdpds

∣∣∣∣< η.

Passing to the limit as t → ∞, we obtain
∣∣∣∣ lim
t→∞R(t, ε;ϕ) −

∫ ∞

0

∫
R2d

[∇qW · (∇p(e
sL0ϕ))]ρ0dqdpds

∣∣∣∣≤ η.

Thus, by definition,

lim
ε→0+ lim

t→∞R(t, ε;ϕ) =
∫ ∞

0

∫
R2d

[∇qW · (∇p(e
sL0ϕ))]ρ0dqdpds.

By (iii), this also implies (4.17). This completes the proof. �

4.3 Linear Response for the Generalized Langevin with Memory

The generalized Langevin equation with a general algebraic memory kernel was introduced
in [18, 21]. Recent works [17, 19] have extended the fluctuation-dissipation relation for both
overdamped and underdamped generalized Langevin dynamics.
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When the memory kernel takes an exponential form, the generalized Langevin dynamics
can be transformed into classical underdamped Langevin dynamics by introducing an ad-
ditional variable [24, 26]. As an application of Theorem 4.1, we consider the generalized
Langevin equation with an exponential memory kernel, i.e., (2.21)

⎧⎪⎪⎨
⎪⎪⎩

q̈t = −∇qV (q) −
n∑

i=1

AiAT
i

∫ t

0
e−αi (t−s)q̇sds + Aifit ,

dfit = −αifitdt +
√

2β−1αidBi
t , i = 1,2, . . . , n.

Here, V ∈ C∞(Rd) satisfies Assumptions (I) and (II) with σ = Id , and for each i =
1,2, . . . , n, Ai ∈ R

d×d is a constant matrix, αi > 0 is a constant, and Bi
t ∈ R

d is a standard
Brownian motion. The Bi

t ’s are independent. Furthermore, we assume that the Hessian of V

is uniformly bounded, i.e., there exists a constant C > 0 such that for all q ∈R
d ,

‖∇2V (q)‖ ≤ C. (4.22)

Here, the norm refers to the Frobenius norm.
Let zi

t = −AT
i

∫ t

0 e−αi (t−s)q̇sds + fit and q̇ = p. Then (2.21) can be reformulated as (2.22),
i.e.,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dq = pdt,

dp =
(

−∇qV (q) +
n∑

i=1

Aizi

)
dt,

dzi = −(αizi + AT
i p)dt +

√
2β−1αidBi , i = 1,2, . . . , n.

For simplicity and without loss of generality, we consider the case n = 1 and A1 = Id ,
i.e. (2.25). The conclusions in this section can be easily extended to the general case.

Now based on (2.25), we impose a compact and smooth perturbation on the potential
term, i.e., for W ∈ C∞

c (Rd), and consider the following perturbed SDE

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dqε = pεdt,

dpε = (−∇qV (qε) + ε∇qW(qε) + zε
)

dt,

dzε = −(αzε + pε)dt +
√

2β−1αdB,

(qε,pε, zε) ∼ ρ0.

(4.23)

The invariant measure of (4.23) is given by

ρε
∞(q,p, z) := 1

Zε
exp(−βH(q,p, z) + εβW(q)),

Zε :=
∫
R3d

e−βH(q,p,z)+εβW(q)dqdpdz < ∞.

(4.24)

Let ρε(q,p, z, t) be the law of (qε(t),pε(t), zε(t)) in (2.25). Then ρε(q,p, z, t) sat-
isfies the following perturbed Fokker-Planck equation with initial value ρε(q,p, z,0) =
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ρ0(q,p, z)

∂ρε

∂t
= L∗

ερ, L∗
ερ := − p · ∇qρ + ∇q(V (q) − εW(q)) · ∇pρ + (p · ∇zρ − z · ∇pρ)

+ α∇z ·
(

zρ + 1

β
∇zρ

)
.

(4.25)
Consider ϕ ∈ C∞

c (R3d). The linear response theory focuses on the limit behavior of

R(ε, t;ϕ) := 1

ε

(∫
R3d

ϕ(q,p, z)ρε(q,p, z, t)dqdpdz −
∫
R3d

ϕ(q,p, z)ρ0(q,p, z)dqdpdz
)

.

(4.26)

The unperturbed backward operator L0 is given by

L0f := p · ∇qf − ∇qV (q) · ∇pf − (p · ∇zf − z · ∇pf ) − αzT ∇zf + α

β

zf. (4.27)

The backward equation with initial value ϕ is then written as

∂ϕ(q,p, z, t)
∂t

= L0ϕ(q,p, z, t), ϕ(q,p, z,0) = ϕ(q,p, z). (4.28)

According to the hypocoercivity result in [12], under Assumptions (I), (II), and (4.22)
on the smooth potential V , the solution to (4.28) converges exponentially in the weighted
Sobolev space H 1(ρ0)

∥∥∥∥ϕ(·, ·, ·, t) −
∫
R3d

ϕ(q,p, z)ρ0dqdpdz

∥∥∥∥
H 1(ρ0)

≤ e−λt

∥∥∥∥ϕ(·, ·, ·,0) −
∫
R3d

ϕ(q,p, z)ρ0dqdpdz

∥∥∥∥
H 1(ρ0)

. (4.29)

We emphasize that (4.29) is stronger than the result used in the underdamped Langevin
case, which focuses on exponential convergence in L2(ρ0), while (4.29) concerns H 1(ρ0).
With (4.29), we can rigorously verify the LRT for the generalized Langevin dynamics.

Theorem 4.2 Let V (q) ∈ C∞(Rd) be positive, satisfying Assumptions (I), (II), and (4.22).
Suppose W(q) ∈ C∞

c (Rd). Let ρε(q,p, z, t) be the law of (qε(t),pε(t), zε(t)) in (4.23),
and let ρε∞(q,p, z) be the invariant measure of (4.23). For some ϕ ∈ C∞

c (R3d), consider
R(t, ε;ϕ) defined in (4.26). Then

(i) (Convergence as ε → 0+) For any given t > 0,

lim
ε→0+ R(t, ε;ϕ) =

∫ t

0

∫
R3d

[∇qW · (∇p(e
sL0ϕ))]ρ0dqdpdzds. (4.30)

Moreover, the limit in (4.30) holds uniformly for all t > 0; i.e., for any η > 0, there
exists ε0 such that for any 0 < ε < ε0 and t > 0,

∣∣∣∣R(t, ε;ϕ) −
∫ t

0

∫
R3d

[∇qW · (∇p(e
sL0ϕ))]ρ0dqdpdzds

∣∣∣∣< η.
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(ii) (Convergence as ε → 0+ then t → ∞) The following limit exists

lim
t→∞ lim

ε→0+ R(t, ε;ϕ) =
∫ ∞

0

∫
R3d

[∇qW · (∇p(e
sL0ϕ))]ρ0dqdpdzds, (4.31)

and the convergence in t is exponentially fast; i.e., there exist constants C > 0 and
r > 0 that depend on W and V such that

∣∣∣∣ lim
ε→0+ R(t, ε;ϕ) −

∫ ∞

0

∫
R3d

[∇qW · (∇p(e
sL0ϕ))]ρ0dqdpdzds

∣∣∣∣≤ Ce−rt (4.32)

holds for all t > 0.
(iii) (Convergence as t → ∞) For any ε > 0,

lim
t→∞R(t, ε;ϕ) = 1

ε

(∫
R3d

ϕ(q,p, z)ρε
∞(q,p, z)dqdpdz

−
∫
R3d

ϕ(q,p, z)ρ0(q,p, z)dqdpdz
)

. (4.33)

(iv) (Convergence as t → ∞ then ε → 0+) The following limit exists

lim
ε→0+ lim

t→∞R(t, ε;ϕ) =
∫ ∞

0

∫
R3d

[∇qW · (∇p(e
sL0ϕ))]ρ0dqdpdzds, (4.34)

or equivalently,

lim
ε→0+

1

ε

(∫
R3d

ϕ(q,p, z)ρε
∞(q,p, z)dqdpdz −

∫
R3d

ϕ(q,p, z)ρ0(q,p, z)dqdpdz
)

=
∫ ∞

0

∫
R3d

[∇qW · (∇p(e
sL0ϕ))]ρ0dqdpdzds.

(4.35)

Proof The proof follows closely from the case of the underdamped Langevin dynamics, so
we provide only a sketch.

For (i), as in the proof of Theorem 4.1, by Duhamel’s principle, we have

R(t, ε;ϕ) = −
∫
R3d

∫ t

0
ϕ(q,p, z)e(t−s)L∗

0
(∇qW(q) · ∇pρ

ε(q,p, z)
)

dqdpdzds. (4.36)

Using integration by parts and Fubini’s theorem, this becomes

R(t, ε;ϕ) =
∫ t

0

∫
R3d

[∇qW(q) · ∇p
(
e(t−s)L0ϕ

)]
ρε(q,p, z, s)dqdpdzds. (4.37)

The variational structure of the Fokker-Planck equation gives the bound

‖ρε(·, ·, ·, s) − ρ0(·, ·, ·)‖L2(1/ρε∞) ≤ ‖ρε(·, ·, ·, s) − ρε
∞(·, ·, ·)‖L2(1/ρε∞)

+ ‖ρ0(·, ·, ·) − ρε
∞(·, ·, ·)‖L2(1/ρε∞)

≤ 2‖ρ0(·, ·, ·) − ρε
∞(·, ·, ·)‖L2(1/ρε∞).
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Using Cauchy-Schwarz’s inequality, we obtain
∣∣∣∣R(t, ε;ϕ) −

∫ t

0

∫
R3d

[∇qW(q) · ∇p
(
e(t−s)L0ϕ

)]
ρ0(q,p, z)dqdpdzds

∣∣∣∣
≤ 2‖ρ0(·, ·, ·) − ρε

∞(·, ·, ·)‖L2(1/ρε∞) ·
∫ t

0

∥∥∇qW(q) · ∇p
(
esL0ϕ

)∥∥
L2(ρε∞)

ds.

Since W is of compact support, by (4.29), we have

∫ t

0

∥∥∇qW(q) · ∇p
(
esL0ϕ

)∥∥
L2(ρε∞)

ds ≤ C

∫ t

0
e−λsds ≤ C ′.

Here, C ′ is a constant independent of t and ε. Hence,
∣∣∣∣R(t, ε;ϕ) −

∫ t

0

∫
R3d

[∇qW(q) · ∇p
(
e(t−s)L0ϕ

)]
ρ0(q,p, z)dqdpdzds

∣∣∣∣
≤ 2C ′‖ρ0(·, ·, ·) − ρε

∞(·, ·, ·)‖L2(1/ρε∞),

and the right-hand side tends to 0 as ε → 0. Thus, (4.30) holds, and the convergence is
uniform in t .

For (ii), by (4.29), for any 0 < T1 < T2, we have

∣∣∣∣
∫ T2

T1

∫
R3d

[∇qW(q) · ∇p
(
e(t−s)L0ϕ

)]
ρ0(q,p, z)dqdpdzds

∣∣∣∣
≤ ‖∇qW‖L2(ρ0) ·

∫ T2

T1

e−λsds ≤ C(e−T1λ − e−T2λ).

Here, C is a constant depending on V , W , and α. Thus, (4.31) holds, and the convergence
in t is exponentially fast.

Next, for (iii), this is a consequence of convergence in L1. For any given ε > 0, we have
∣∣∣∣1

ε

(∫
R3d

ϕ(q,p, z)ρε
∞(q,p, z)dqdpdz −

∫
R3d

ϕ(q,p, z)ρε(q,p, z, t)dqdpdz
)∣∣∣∣

≤ 1

ε
‖ϕ‖L∞‖ρε(·, ·, ·, t) − ρε

∞(·, ·, ·)‖L1

≤ C1e
−rε t /ε.

Here, rε > 0 and C1 > 0 are constants depending on ε. Thus, we have convergence as t →
∞.

Finally, for (iv), by (i), for any η > 0, there exists ε0 > 0 such that for all ε ∈ (0, ε0), we
have ∣∣∣∣R(t, ε;ϕ) −

∫ t

0

∫
R3d

[∇qW · (∇p(e
sL0ϕ))]ρ0dqdpdzds

∣∣∣∣< η.

Passing the limit t → ∞, we have
∣∣∣∣ lim
t→∞R(t, ε;ϕ) −

∫ ∞

0

∫
R3d

[∇qW · (∇p(e
sL0ϕ))]ρ0dqdpdzds

∣∣∣∣≤ η.
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Thus, we conclude

lim
ε→0+ lim

t→∞R(t, ε;ϕ) =
∫ ∞

0

∫
R3d

[∇qW · (∇p(e
sL0ϕ))]ρ0dqdpdzds.

By (iii), this also implies (4.35). This concludes the proof. �

Appendix A: Omitted Proofs for Reversibility Results

This appendix provides some preliminary definitions and the omitted proofs for the re-
versibility of overdamped and underdamped Langevin dynamics.

Proof of Lemma 2.1 Suppose that (2.4) with the initial density function ρ0(q) describes a re-
versible process. According to Definition 2.3, ρ0 must be a stationary measure. Consider the
distribution of the time-reversed process q∗(t) with respect to a fixed time T (see Definition
2.3)

q∗
t = qT −t . (A.1)

Because ρ0(q) is stationary, the time-reversed process q∗
t has the same distribution as the

original process. Thus, for any ϕ1, ϕ2 ∈ C∞
b (Rd), reversibility implies

E[ϕ1(qt )ϕ2(q0) | q0 ∼ ρ0] = E[ϕ1(q∗
t )ϕ2(q∗

0) | q0 ∼ ρ0]. (A.2)

Using the Markov property and the invariance of ρ0, for any 0 ≤ t ≤ T , we have

E[ϕ1(q∗
t )ϕ2(q∗

0) | q0 ∼ ρ0] = E[ϕ1(qT −t )ϕ2(qT ) | q0 ∼ ρ0]
= E[ϕ1(qT −t )ϕ2(qT ) | qT −t ∼ ρ0]
= E[ϕ1(q0)ϕ2(qt ) | q0 ∼ ρ0].

(A.3)

Thus, we obtain the symmetry

E[ϕ1(qt )ϕ2(q0) | q0 ∼ ρ0] = E[ϕ1(q0)ϕ2(qt ) | q0 ∼ ρ0]. (A.4)

Conversely, if for arbitrary ϕ1 and ϕ2, equation (2.8) holds, we can apply smooth func-
tions to approximate simple functions. By the monotone convergence theorem, this allows
us to conclude reversibility. �

Proof of Theorem 2.1 We will prove the theorem using the following logical steps

(i) =⇒ (ii) =⇒ (iv) =⇒ (iii) =⇒ (iv) =⇒ (i).

Step 1. (i) =⇒ (ii).
Denote the solution of (2.4) as qt . For arbitrary ϕ1, ϕ2 ∈ C∞

b (Rd), we have

E[ϕ1(qt )ϕ2(q0)] −E[ϕ1(q0)ϕ2(q0)]
t

= E[(ϕ1(qt ) − ϕ1(q0))ϕ2(q0)]
t

= E[E[(ϕ1(qt ) − ϕ1(q0))ϕ2(q0) | q0]]
t
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= E[ϕ2(q0)E[(ϕ1(qt ) − ϕ1(q0)) | q0]]
t

=
∫
Rd

ϕ2(q)
E[(ϕ1(qt ) − ϕ1(q0)) | q0 = q]

t
ρ0(q)dq.

(A.5)

Similarly, we have

E[ϕ2(qt )ϕ1(q0)] −E[ϕ2(q0)ϕ1(q0)]
t

=
∫
Rd

ϕ1(q)
E[(ϕ2(qt ) − ϕ2(q0)) | q0 = q]

t
ρ0(q)dq.

(A.6)

By Definition 2.3, we know

E[ϕ1(qt )ϕ2(q0)] = E[ϕ1(q0)ϕ2(qt )].

Therefore, we have

∫
Rd

ϕ2(q)
E[(ϕ1(qt ) − ϕ1(q0)) | q0 = q]

t
ρ0(q)dq

=
∫
Rd

ϕ1(q)
E[(ϕ2(qt ) − ϕ2(q0)) | q0 = q]

t
ρ0(q)dq. (A.7)

Passing the limit as t → 0+, using the definition of the generator, we obtain

∫
Rd

(Lϕ1)(q)ϕ2(q)ρ0(q)dq =
∫
Rd

(Lϕ2)(q)ϕ1(q)ρ0(q)dq,

which is exactly (2.11).
Step 2. (ii) =⇒ (iv).
Rewrite (2.11) as

∫
Rd

1

ρ0(q)
ρ0(q)ϕ1(q)L∗(ρ0(q)ϕ2(q))dq =

∫
Rd

1

ρ0(q)
ρ0(q)ϕ2(q)L∗(ρ0(q)ϕ1(q))dq.

This holds for arbitrary ϕ1, ϕ2 ∈ C∞
0 (Rd). Hence, for arbitrary φ1(q),φ2(q) ∈ C∞

0 (Rd), we
get

∫
Rd

1

ρ0(q)
φ1(q)L∗(φ2(q))dq =

∫
Rd

1

ρ0(q)
φ2(q)L∗(φ1(q))dq.

Let 1/ρ0(q) = eU(q) for some U(q) :Rd →R. Substituting (2.5), we have

∫
Rd

eU(q)φ1(q)

[
−∇ · (φ2b) + 1

2
∇2 : (φ2σσ T )

]
dq

=
∫
Rd

eU(q)φ2(q)

[
−∇ · (φ1b) + 1

2
∇2 : (φ1σσ T )

]
dq.
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Integration by parts yields

∫
Rd

eU(q)φ2(q)∇φ1(q) · b(q) + 1

2
∇2(eU(q)φ1(q)) : (φ2σσ T )dq

=
∫
Rd

eU(q)φ1(q)∇φ2(q) · b(q) + 1

2
∇2(eU(q)φ2(q)) : (φ1σσ T )dq.

(A.8)

Next, using the fact that σσ T is constant, we obtain

∇2(eU(q)φ1(q)) : (φ2σσ T ) − ∇2(eU(q)φ2(q)) : (φ1σσ T )

= 2[σσ T ∇(eU(q))] · (φ2(q)∇φ1(q) − φ1(q)∇φ2(q))

+eU(q)∇ · (σσ T (φ2(q)∇φ1(q) − φ1(q)∇φ2(q))).

Substituting this into (A.8) and integrating by parts again, we find

∫
Rd

eU(q)(φ2(q)∇φ1(q) − φ1(q)∇φ2(q)) ·
(

b + 1

2
σσ T ∇U(q)

)
dq = 0.

By Lemma A.1 and the smoothness of b and ρ0, we obtain

b + 1

2
σσ T ∇U(q) = 0.

Since σ is nonsingular, we have

−∇U(q) = 2(σσ T )−1b. (A.9)

Thus, ρ0(q) = e−U(q), which proves (iv).
Step 3. (iv) =⇒ (iii).
If (iv) holds, we can derive that L generates a strongly continuous semigroup on

L2(ρ0 dq) by Hille-Yosida’s theorem (see proof of Lemma A.2). Therefore, the diffusion
process is well-defined, and x(t) admits a probability density ρ(q, t), which is the unique
local solution of (2.5) with initial value ρ(q,0) = ρ0 (see [3]).

Notice

L∗ρ0 = 1

Z
∇ ·

(
−e−U(q)b(q) + 1

2
σσ T ∇e−U(q)

)

= − 1

Z
∇ ·

(
e−U(q) 1

2
σσ T ∇U(q) − e−U(q) 1

2
σσ T ∇U(q)

)

= 0.

Thus, the unique local solution of (2.5) with initial value ρ0(q) is exactly ρ(q, t) = ρ0(q),
which is actually a global solution. Hence

j(ρ(t)) = j(ρ0) = bρ0 − 1

2
σσ T ∇ρ0 = 0. (A.10)

Therefore, j(ρ) = 0, i.e., the probability flux is zero.
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Step 4. (iii) =⇒ (iv).
Since j(ρ(t)) = 0, we know that ρ0 satisfies

b(q)ρ0(q) − 1

2
σσ T ∇ρ0(q) = 0.

Since ρ0(q) > 0, we have

b(q) = σσ T ∇ log(ρ0(q))

2
.

Thus, (iv) is proved by setting U(q) = − log(ρ0(q)).
Step 5. (iv) =⇒ (i).
From the proof of Lemma A.2 and Hille-Yosida’s theorem, we know that L generates a

strongly continuous semigroup on L2(ρ0 dq), denoted as etL, for t ≥ 0. Therefore, for any
ϕ1 ∈ C∞

0 (Rd), (etLϕ1)(q, t) is the solution of (2.6) with initial value f (q,0) = ϕ1(q).
Direct calculation yields that for arbitrary f and g ∈ C∞

0 (Rd)

∫
Rd

ρ0(q)g(q)(Lf )(q)dq

= 1

Z

∫
Rd

e−U(q)g(q)

(
b · ∇f (q) + 1

2
σσ T : ∇2f (q)

)
dq

= 1

Z

∫
Rd

g(q)

(
σσ T ∇e−U(q)

2
· ∇f (q) + e−U(q) 1

2
σσ T : ∇2f (q)

)
dq

= 1

2Z

∫
Rd

g(q)∇ · (e−U(q)σσ T ∇f (q))dq

= − 1

2Z

∫
Rd

e−U(q)(∇g(q))T σσ T ∇f (q)dq.

The last equality is symmetric with respect to f and g, thus L is symmetric in C∞
0 (Rd) ⊂

L2(ρ0 dq). By [3, Corollary 7.3.2], the dual semigroup of etL in L2(ρ0 dq) (denoted as ẽtL)
is generated by the dual operator of L in L2(ρ0 dq) (denoted as L̃).

Since L is symmetric on C∞
0 (Rd), we know ẽtLϕ = etLϕ for any ϕ ∈ C∞

0 (Rd). Thus, for
arbitrary ϕ1, ϕ2 ∈ C∞

0 (Rd), we have
∫
Rd

ρ0(q)ϕ2(q)(etLϕ1)(q, t)dq =
∫
Rd

ρ0(q)ϕ1(q)(ẽtLϕ2)(q, t)dq

=
∫
Rd

ρ0(q)ϕ1(q)(etLϕ2)(q, t)dq.

Thus, E[ϕ1(q0)ϕ2(qt ) | q(0) ∼ ρ0] = E[ϕ2(q0)ϕ1(qt ) | q(0) ∼ ρ0], which proves reversibil-
ity. �

Proof of Lemma 2.2 First, if the process with initial density function ρ0(q,p) is a reversible
process, then ρ0 is a stationary measure. Consider the distribution of the time-reversed pro-
cess (q∗(t),p∗(t)) with respect to a fixed time T , as defined in Definition 2.3. Since q is
even and p is odd, we have

q∗
t = qT −t , p∗

t = −pT −t . (A.11)
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Since ρ0 is invariant, it follows that

(q∗
t ,p∗

t ) = (qT −t ,−pT −t ) ∼ ρ0(q,−p), (A.12)

i.e., the distribution of the time-reversed process has density ρ0(q,−p).
Let ρ̃0(q,p) = ρ0(q,−p). For any ϕ1, ϕ2,ψ1,ψ2 ∈ C∞

b (Rd), the reversibility condition
implies

E[ϕ1(q0)ϕ2(p0)ψ1(qt )ψ2(pt ) | (q0,p0) ∼ ρ0]
= E[ϕ1(q∗

0)ϕ2(p∗
0)ψ1(q∗

t )ψ2(p∗
t ) | (q0,p0) ∼ ρ0].

Let ϕ̃2(p) = ϕ2(−p) and ψ̃2(p) = ψ2(−p). Using the Markov property and the invariance
of ρ0, for any t ∈ [0, T ], we have

E[ϕ1(q∗
0)ϕ2(p∗

0)ψ1(q∗
t )ψ2(p∗

t ) | (q0,p0) ∼ ρ0]
= E[ϕ1(qT )ϕ2(−pT )ψ1(qT −t )ψ2(−pT −t ) | (q0,p0) ∼ ρ0]
= E[ϕ1(qT )ϕ̃2(pT )ψ1(qT −t )ψ̃2(pT −t ) | (q0,p0) ∼ ρ0]
= E[ϕ1(qT )ϕ̃2(pT )ψ1(qT −t )ψ̃2(pT −t ) | (qT −t ,pT −t ) ∼ ρ0]
= E[ϕ1(qt )ϕ̃2(pt )ψ1(q0)ψ̃2(p0) | (q0,p0) ∼ ρ0].

Therefore, equation (2.16) holds.
Conversely, if equation (2.16) holds for arbitrary ϕ1 and ϕ2, then by using smooth func-

tions to approximate simple functions, one can conclude reversibility through the monotone
convergence theorem. Hence, we employ (2.16) to prove reversibility instead of checking
the definition directly. �

Lemma A.1 For any φ = (φ1, φ2, . . . , φd) ∈ C∞
0 (Rd;Rd) with φi ≥ 0, i = 1,2, . . . , d , there

exist f,g ∈ C∞
0 (Rd) such that

f ∇g − g∇f = φ.

Proof For each i, let fi = √
φi and gi = xifi . Then

fi∇gi − gi∇fi = f 2
i ∇

(
gi

fi

)
= φiei ,

where ei = (0,0, . . . ,1,0, . . . ,0) ∈ R
d has 1 in the i-th position and 0 elsewhere. Thus,

φ =∑d

i=1 fi∇gi − gi∇fi . �

Proof of Theorem 2.2 Step 1. We prove (i) =⇒ (ii).
Because the process is reversible (and therefore stationary), (q∗

0,p∗
0) and (q0,p0) have

the same distribution. Thus (q∗
0,p∗

0) = (qT ,−pT ) has the same distribution as (q(0),p(0)),
meaning that ρ0(q,p) = ρ0(q,−p).

From the definition of reversibility, we know that (i) is equivalent to

E[ϕ1(q0)ϕ2(p0)ψ1(qt )ψ2(pt ) | (q0,p0) ∼ ρ0]
= E[ϕ1(qt )ϕ2(−pt )ψ1(q0)ψ2(−p0) | (q0,p0) ∼ ρ0]

(A.13)

for any ϕ1(q), ϕ2(p),ψ1(q),ψ2(p) ∈ C∞
0 (Rd).
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By similar calculations to those in (A.5), we know

∫∫
ϕ1(q)ϕ2(p)

E [ψ1(qt )ψ2(pt ) − ψ1(q0)ψ2(p0) | q0 = q,p0 = p]

t
ρ0(q,p) dqdp

=
∫∫

ψ1(q)ψ2(−p)
E [ϕ1(qt )ϕ2(−pt ) − ϕ1(q0)ϕ2(−p0) | q0 = q,p0 = p]

t
ρ0(q,p) dqdp.

Taking the limit as t → 0+, by the definition of the generator for the process qt , pt , we
conclude that (i) implies

∫∫
ϕ1(q)ϕ2(p)L [ψ1(q)ψ2(p)]ρ0(q,p) dqdp

=
∫∫

L [ϕ1(q)ϕ̃2(p)]ψ1(q)ψ̃2(p)ρ0(q,p) dqdp,

for any ϕ1(q), ϕ2(p),ψ1(q),ψ2(p) ∈ C∞
0 (Rd), where ϕ̃2(p) := ϕ2(−p) and ψ̃2(p) :=

ψ2(−p).
As a consequence, taking ψ1 ≡ ψ2 ≡ 1 in this equation, we have

∫∫
L [ϕ1(q)ϕ̃2(p)]ρ0(q,p) dqdp = 0, ∀ϕ1, ϕ2 ∈ C∞

0 (Rd),

which implies that ρ0(q,p), satisfying L∗ρ0 = 0, is an invariant measure. Therefore, we
conclude that (i) =⇒ (ii).

Step 2. We prove (ii) is equivalent to (iii).
Let H(q,p) = − 1

β
lnρ0. Then (ii) is equivalent to

∫∫
ϕ1(q)ϕ2(p)L [ψ1(q)ψ2(p)] e−βH(q,p) dqdp

=
∫∫

L [ϕ1(q)ϕ̃2(p)]ψ1(q)ψ̃2(p)e−βH(q,p) dqdp,

for any ϕ1(q), ϕ2(p),ψ1(q),ψ2(p) ∈ C∞
0 (Rd). Substituting the operator L as defined in

(2.15) and using ϕ̃2(p) = ϕ2(−p) and ψ̃2(p) = ψ2(−p), we obtain

∫∫
ϕ1(q)ϕ2(p)

[
ψ2(p)p · ∇qψ1(q) + ψ1(q)b · ∇pψ2(p)

+ ψ1(q)

(
−1

2
(σσ T p) · ∇pψ2(p) + 1

2β
(σσ T ) : ∇2

pψ2(p)

)]
e−βH(q,p) dqdp

=
∫∫

ψ1(q)ψ2(p)

[
− ϕ2(p)p · ∇qϕ1(q) − ϕ1(q)b · ∇pϕ2(p)

+ ϕ1(q)

(
−1

2
(σσ T p) · ∇pϕ2(p) + 1

2β
(σσ T ) : ∇2

pϕ2(p)

)]
e−βH(q,p) dqdp.
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We now separate the Hamiltonian flow terms on the LHS from the Fokker-Planck terms
on the RHS. Then, we get

I1 :=
∫∫ [

ϕ2(p)ψ2(p)p · ∇q (ψ1(q)ϕ1(q)) + ϕ1(q)ψ1(q)b · ∇p (ϕ2(p)ψ2(p))
]

× e−βH(q,p) dqdp

= I2 :=
∫∫ [

ψ1(q)ϕ1(q)

(
1

2
ϕ2(p)(σσ T p) · ∇pψ2(p) − 1

2β
ϕ2(p)(σσ T ) : ∇2

pψ2(p)

− 1

2
ψ2(p)(σσ T p) · ∇pϕ2(p) + 1

2β
ψ2(p)(σσ T ) : ∇2

pϕ2(p)

)]
e−βH(q,p) dqdp.

Using integration by parts, I1 simplifies as

I1 =
∫∫

ϕ1(q)ψ1(q)ϕ2(p)ψ2(p)
(−p · ∇qe

−βH − b · ∇pe
−βH

)
dqdp. (A.14)

Similarly, I2 simplifies as

I2 = 1

2

∫∫
ϕ1(q)ψ1(q)

[
e−βH (σσ T p) · (ϕ2(p)∇pψ2(p) − ψ2(p)∇pϕ2(p)

)

+ 1

β
∇p

(
ϕ2(p)e−βH

)
(σσ T )∇pψ2(p)

− 1

β
∇p

(
ψ2(p)e−βH

)
(σσ T )∇pϕ2(p)

]
dqdp

= 1

2

∫∫
ϕ1(q)ψ1(q)

[(
e−βH (σσ T p) + 1

β
σσ T ∇pe

−βH

)

· (ϕ2(p)∇pψ2(p) − ψ2(p)∇pϕ2(p)
)]

dqdp.

(A.15)

Now, let ϕ2 = ψ2, then I2 = 0, and from (A.14), we obtain

I1 =
∫∫

ϕ1(q)ψ1(q)ϕ2
2(p)

(−p · ∇qe
−βH − b · ∇pe

−βH
)
dqdp = 0

for any ϕ1(q), ψ1(q), and ϕ2(p). Thus, we deduce

−p · ∇qe
−βH − b · ∇pe

−βH = 0. (A.16)

This implies that I1 = I2 = 0 for arbitrary test functions ϕ1(p), ϕ2(p), ψ1(q), and ψ2(q).
By the auxiliary lemma, equation (A.15) yields

e−βH (σσ T p) + 1

β
σσ T ∇pe

−βH = 0.

Since σ is nonsingular, we conclude

e−βH p + 1

β
∇pe

−βH = 0 (A.17)

holds for any p.
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Next, we use (A.16) and (A.17) to derive H(q,p) = |p|2
2 +U(q) for some potential U(q).

Equation (A.17) implies

∇pe
−βH+β

|p|2
2 = 0,

and thus there exists a potential U(q) such that

e−βH = e
−β

(
|p|2

2 +U(q)

)
. (A.18)

Substituting (A.18) into (A.16), we derive

−p · ∇qe
−βH − b · ∇pe

−βH = 0, (A.19)

which simplifies to

p · (b + ∇qU(q)
)= 0, ∀p,q. (A.20)

Therefore, we conclude

b = −∇qU(q),

and U(q) is unique up to a constant. Thus, the invariant measure is given by

ρ0(q,p) = 1

Z
e

−β

(
|p|2

2 +U(q)

)
, Z =

∫∫
e

−β

(
|p|2

2 +U(q)

)
dqdp, (A.21)

which is the unique invariant measure, and hence (ii) is equivalent to (iii).
Step 3. We prove that (iii) implies (i).
First, from (iii) and for L defined in (2.15) with b = −∇qU(q), it is easy to verify (2.17).

Now, we use (2.17) and (iii) to derive (i).
From Lemma A.2, −L is a maximal monotone operator in L2(ρ0 dqdp), where

ρ0(q,p) = 1

Z
e

−β

(
|p|2

2 +U(q)

)
.

Recall the strongly continuous semigroup generated by −L, denoted by S(t) = etL.

From [3, p381, Cor 7.3.2], we know that the dual semigroup S̃(t) = (̃etL) is generated by
the dual operator −L̃, which is also a maximal monotone operator. Here, the dual operators
are understood in L2(ρ0 dqdp). Therefore, we have

∫∫
ϕ1(q)ϕ2(p)etL (ψ1(q)ψ2(p)) ρ0(q,p) dqdp

=
∫∫

(̃etL) (ϕ1(q)ϕ2(p))ψ1(q)ψ2(p)ρ0(q,p) dqdp

=
∫∫ (

etL̃
)

(ϕ1(q)ϕ2(p))ψ1(q)ψ2(p)ρ0(q,p) dqdp,



Reversibility and Linear Response Theory Page 41 of 52    12 

where
(
etL̃

)
(ϕ1(q)ϕ2(p)) is the solution to

∂

∂t
f = L̃f := − (

p · ∇qf + b · ∇pf
)+

(
−1

2

(
σσ T p

) · ∇pf + 1

2β

(
σσ T

) : ∇2
pf

)
.

(A.22)
By changing variables from p to −p, it is easy to verify

(
etL̃

)
(ϕ1(q)ϕ2(p)) = (

etL) (ϕ1(q)ϕ2(−p))

∣∣∣
(q,−p)

= (
etL) (ϕ1(q)ϕ̃2(p))

∣∣∣
(q,−p)

. (A.23)

Thus, we have
∫∫

ϕ1(q)ϕ2(p)etL (ψ1(q)ψ2(p)) ρ0(q,p) dqdp

=
∫∫ (

etL) (ϕ1(q)ϕ̃2(p))

∣∣∣
(q,−p)

ψ1(q)ψ2(p)ρ0(q,p) dqdp

=
∫∫

(etL) (ϕ1(q)ϕ̃2(p))ψ1(q)ψ2(−p)ρ0(q,−p)dq dp

=
∫∫ (

etL) (ϕ1(q)ϕ̃2(p))ψ1(q)ψ̃2(p)ρ0(q,p) dqdp,

and we conclude (i).
Step 4. We prove that (iii) and (iv) are equivalent.
It is obvious that (iii) implies (iv) since H(q,p) = H(q,−p), and the Gibbs measure

solves (2.5). Thus, we just need to prove that (iv) implies (iii). Let ρ̃0(q,p) = ρ0(q,−p).
Since ρ(q,p) = ρ(q,−p), they both solve (2.5). Thus

−p · ∇qρ0 − b · ∇pρ0 + 1

2
∇p ·

(
ρ0σσ T p + 1

β
σσ T ∇pρ0

)
= 0,

−p · ∇qρ̃0 − b · ∇pρ̃0 + 1

2
∇p ·

(
ρ̃0σσ T p + 1

β
σσ T ∇pρ̃0

)
= 0.

(A.24)

Substituting ρ̃0(q,p) = ρ0(q,−p) into (A.24), we get

−p · ∇qρ0 − b · ∇pρ0 + 1

2
∇p ·

(
ρ0σσ T p + 1

β
σσ T ∇pρ0

)
= 0,

p · ∇qρ0 + b · ∇pρ0 + 1

2
∇p ·

(
ρ0σσ T p + 1

β
σσ T ∇pρ0

)
= 0,

(A.25)

which implies

p · ∇qρ0 + b · ∇pρ0 = 0, ∇p ·
(

ρ0σσ T p + 1

β
σσ T ∇pρ0

)
= 0. (A.26)

Since ρ(q,p) > 0 and ρ0(q,p) ∈ L1(R2d), by Fubini’s theorem, for almost every q ∈
R

d , m(q) := ∫
Rd ρ0(q,p) dp ∈ (0,∞) exists, and m(q) ∈ L1(Rd). Now, for these q’s, from

(A.26), ρ0(q,p) solves the following Fokker-Planck equation (in the p-variable)

∇p ·
(

ρ0σσ T p + 1

β
σσ T ∇pρ0

)
= 0,
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and ρ0(q,p) is a positive L1-solution (in the p-variable). Thus, by Proposition 3.2, we know
that e−β|p|2/2 is the unique non-zero solution (up to a constant). Hence, there exists c(q) > 0
such that

ρ0 = c(q)e−β|p|2/2. (A.27)

Substituting the above equality into (A.26), we get

e−β|p|2/2p · (∇qc(q) − cβb
)= 0.

This holds for arbitrary p, so b = −∇q log(c)/β , and (iii) is proved.
Step 5. We prove that (v) and (iii) are equivalent.
It is clear that (iii) implies (v), so we only need to prove that (v) implies (iii). First, we

have

− U2(p)p · ∇qU1(q) − U1(q)b · ∇pU2(p)

+ U1(q)

2
∇p ·

(
U2(p)σσ T p + 1

β
σσ T ∇pU2(p)

)
= 0.

Dividing by U1(q)U2(p), we get

−p · ∇q logU1(q) − b · ∇p logU2(p) + 1

2U2(p)
∇p ·

(
U2(p)σσ T p + 1

β
σσ T ∇pU2(p)

)
= 0.

(A.28)

Notice that the last term only depends on p. Now, evaluating (A.28) at (q1,p) and (q2,p)

and taking the difference yields

p · ∇q[logU1(q1) − logU1(q2)] + [b(q1) − b(q2)] · ∇p logU2(p) = 0.

This holds for any p,q1,q2 ∈ R
d . Taking the derivative with respect to p, we get

∇q[logU1(q1) − logU1(q2)] + ∇2
p logU2(p)[b(q1) − b(q2)] = 0. (A.29)

Notice that the first term only depends on q1 and q2, and so does the second term. Thus, for
any p1 and p2, we have

[∇2
p logU2(p1) − ∇2

p logU2(p2)][b(q1) − b(q2)] = 0. (A.30)

Equation (A.30) implies that, for any p1 and p2, we must have

∇2
p logU2(p1) = ∇2

p logU2(p2).

Thus, ∇2
p logU2(p) is a constant, meaning there exist A ∈ R

d×d , a ∈ R
d , and c ∈ R, all

constant, such that

logU2(p) = pT Ap + a · p + c. (A.31)

We assume that A is symmetric. Substituting this back into (A.29), we get

∇q[logU1(q1) − logU1(q2)] + 2A[b(q1) − b(q2)] = 0,
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which holds for arbitrary q1 and q2. Thus, there exists a constant c′ such that, for any q ∈R
d ,

we have

∇q logU1(q) + 2Ab = c′. (A.32)

Substituting (A.32) and (A.31) back into (A.28), we get

− p · c′ − b · a

+ 1

2

[
(2Ap + a)T σσ T p + tr(σσ T ) + 1

β
(2Ap + a)T σσ (2Ap + a) + 2

β
tr(σσ T A)

]
= 0.

Here, b is the only term that depends on q. Thus, from the previous argument, we know that
a = 0. The above equation holds for all p ∈R

d , so the coefficients are all zero. Hence

c′ = 0, AT σσ T + 2

β
AT σσ T A = 0, tr(σσ T (2A/β + Id)) = 0.

Since A = AT , the second equality implies that AT σσ T = −2AT σσ T A/β is symmetric, so
A and σσ T are commutative. Thus

σσ T (A + 2A2/β) = 0. (A.33)

Since σσ T is invertible, it follows that A + 2A2/β = 0. The eigenvalues of A are either 0
or −β/2. Therefore, the eigenvalues of (2A/β + Id) are either 0 or 1. Suppose the eigen-
vectors of (2A/β + Id) are ui , i = 1,2, . . . , d , satisfying ui · uj = δij , with corresponding
eigenvalues λi , i = 1,2, . . . , d . Then λi = 0 or 1, and

0 = tr(σσ T (2A/β + Id)) =
d∑

i=1

uT
i σσ T (2A/β + Id)ui =

d∑
i=1

λiuT
i σσ T ui ≥ 0.

Thus, λi = 0 for all i = 1,2, . . . , d , since σ is nonsingular. Hence, the only eigenvalue of A

is −β/2, and therefore A = −βId/2. Since c′ = 0 from (A.32), we have b = 1

β
∇q logU1(q),

which is a gradient. Thus, (iii) is proved. �

Lemma A.2 Let b = −∇qU(q) in (2.15). Consider the operator

Lf = (−p · ∇qf − b · ∇pf
)+

(
−1

2
(σσ T p) · ∇pf + 1

2β
(σσ T ) : ∇2

pf

)
=: Tf + Lvf.

(A.34)
Then −L is a maximal monotone operator in L2(ρ0 dqdp) with the weight ρ0(q,p) defined
in (2.19).

Proof First, observe that

〈−Tf,f 〉L2(ρ0 dqdp) = 0, 〈−Lvf,f 〉L2(ρ0 dqdp) ≥ 0, (A.35)

which shows that both −T and −Lv are monotone in L2(ρ0 dqdp).
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Second, we prove that Ran(I − Lv) = L2(ρ0 dqdp), i.e., given any h ∈ L2(ρ0 dqdp),
there exists a solution f ∈ D(−Lv) ⊂ L2(ρ0 dqdp) such that (I − Lv)f = h. Indeed, define
a weighted Hilbert space H 1(e− 1

2 |p|2 dp) with the norm

‖f ‖1 :=
∫

ρ0f
2 dp +

∫
ρ0|∇f |2 dp,

and a bilinear form on H 1(e− 1
2 |p|2 dp) × H 1(e− 1

2 |p|2 dp):

a(u, v) := 〈(I − Lv)u, v〉L2(ρ0).

It is clear that a(u, v) is a coercive and bounded bilinear form on H 1(e− 1
2 |p|2 dp) ×

H 1(e− 1
2 |p|2 dp). Therefore, for any q, we conclude the existence of (I −Lv)f (q, ·) = h(q, ·)

by the Lax-Milgram theorem.
Third, we show that the sum of −T and −Lv is a maximal monotone operator by using

[1, Cor 2.6]. From the above, we have already concluded that −Lv is a maximal monotone
operator in L2(ρ0 dqdp) and −T is monotone. It remains to verify that −T is demicontinu-
ous (see [16]), i.e., if fn ∈ D(−T ) converges strongly to f ∈ D(−T ) in L2(ρ0 dqdp), then
−Tfn converges weak* to −Tf in (L2(ρ0 dqdp))∗. It is clear that −T is a linear operator in
L2(ρ0 dqdp) and thus demicontinuous. �

Remark A.1 Define the Hamiltonian H(ρ, ξ) := 〈e−ξLeξ , ρ〉. Then the symmetry condition
(ii) for L is equivalent to

H(ρ, ξ) = H(ρ, log
ρ

ρ0
− ξ), ∀ξ, ρ ∈ C∞

c (Rd). (A.36)

Indeed, if L is symmetric with respect to ρ0, then

H(ρ, log
ρ

ρ0
− ξ) =

〈
ρ0

ρ
eξL

(
ρ

ρ0
e−ξ

)
, ρ

〉

=
〈
eξ ,L

(
ρ

ρ0
e−ξ

)〉
ρ0

= 〈Leξ , ρe−ξ 〉 = H(ρ, ξ).

If (A.36) holds, let

ξ = log(φ2), ρ = φ1φ2ρ0,

then:

H(ρ, log
ρ

ρ0
− ξ) = 〈φ2,Lφ1〉ρ0 , H(ρ, ξ) = 〈φ1,Lφ2〉ρ0 .

Therefore, (A.36) yields the symmetry of L with respect to 〈·, ·〉ρ0 .

Proof of Lemma 3.3 We first prove part (i). To start, we show that −L∗
ε is maximal accretive.

Define

H :=
{
u | u

ρε∞
∈ H 1(ρε

∞)

}
,
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and equip H with the following inner product

〈u,v〉H =
〈

u

ρε∞
,

v

ρε∞

〉
H 1(ρε∞)

.

Clearly, H ⊂ L2(1/ρε∞), and H is a Hilbert space. Let the domain of L∗
ε be

D(L∗
ε) := {u | u ∈ H, L∗

εu ∈ L2(1/ρε
∞)} ⊂ L2(1/ρε

∞).

Define b = −∇V + εM. Then, for any u ∈ D(L∗
ε), we have

〈u,L∗
εu〉L2(1/ρε∞) =

∫
Rd

u

ρε∞
L∗

εudq

=
∫
Rd

u

ρε∞

[
∇ ·

(
σσ T

(
−bρε

∞
u

ρε∞
+ ∇

(
ρε

∞ · u

ρε∞

)))]
dq

=
∫
Rd

u

ρε∞

[
∇ ·

(
u

ρε∞
σσ T

(−bρε
∞ + ∇ρε

∞
))]

dq

+
∫
Rd

u

ρε∞

[
∇ ·

(
σσ T ρε

∞∇
(

u

ρε∞

))]
dq

(A.37)

= −
∫
Rd

ρε
∞

∣∣∣∣σ T ∇
(

u

ρε∞

)∣∣∣∣
2

dq − 1

2

∫
Rd

∣∣∣∣ u

ρε∞

∣∣∣∣
2

L∗
ερ

ε
∞dq

= −
∫
Rd

ρε
∞

∣∣∣∣σ T ∇
(

u

ρε∞

)∣∣∣∣
2

dq ≤ 0.

Thus, −L∗
ε is accretive.

Next, we prove that R(I − L∗
ε) = L2(1/ρε∞). This can be derived by Lax-Milgram’s

theorem. For arbitrary f ∈ L2(1/ρε∞), define the linear functional

f (u) : L2(1/ρε
∞) → R, u �→ f (u) := 〈u,f 〉L2(1/ρε∞),

which is continuous on H . Now, consider the bilinear form:

a(u, v) : H × H →R, (u, v) �→ a(u, v) := 〈(I −L∗
ε)u, v〉L2(1/ρε∞).

By direct calculation and Cauchy-Schwarz inequality, we obtain

|a(u, v)| =
∣∣∣∣
∫
Rd

uv
1

ρε∞
dq −

∫
Rd

1

ρε∞
uL∗

εvdq

∣∣∣∣
≤ ‖u‖L2(1/ρε∞)‖v‖L2(1/ρε∞)

+
√∫

Rd

ρε∞

∣∣∣∣σ T ∇
(

u

ρε∞

)∣∣∣∣
2

dq ·
√∫

Rd

ρε∞

∣∣∣∣σ T ∇
(

v

ρε∞

)∣∣∣∣
2

dq.

Therefore, we have

|a(u, v)| ≤ c‖u‖H‖v‖H ,
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where c > 0 is a constant depending on σ . Meanwhile,

a(u,u) = ‖u‖2
L2(1/ρε∞)

+
∫
Rd

ρε
∞

∣∣∣∣σ T ∇
(

u

ρε∞

)∣∣∣∣
2

dq ≥ c′‖u‖2
H ,

where c′ > 0 is a constant depending on σ . Therefore, a is bounded and coercive on H . By
Lax-Milgram’s theorem, there exists u ∈ H such that a(u, v) = f (v) holds for all v ∈ H .
Hence, (I −L∗

ε)u = f , and thus R(I −L∗
ε) = L2(1/ρε∞).

Finally, by the Hille-Yosida theorem, we conclude that L∗
ε generates a strongly continu-

ous semigroup of contractions in L2(1/ρε∞).
For part (ii), by [3], equation (2.5) admits a unique solution ρε(q, t) ∈ C1([0, T ],

L2(1/ρε∞)) for any T > 0. �

Proof of Theorem 2.3 Notice that the structure of the generator in (2.24) is quite similar to
the generator in (2.15), with the exception that only p is an odd variable.

Step 1. (i) ⇒ (ii) is exactly the same as Step 1 in the proof of Theorem 2.2.
Step 2. We prove (ii) ⇒ (iii). From the definition of the generator L in (2.24), (2.26)

implies
∫∫∫ [

− ϕ2(p)ψ2(p)ϕ3(z)ψ3(z)p · ∇q (ψ1(q)ϕ1(q))

− ϕ1(q)ψ1(q)ϕ3(z)ψ3(z)(b + z) · ∇p (ϕ2(p)ψ2(p))

− ϕ1(q)ψ1(q)ϕ2(p)ψ2(p)p · ∇z (ϕ3(z)ψ3(z))
]
e−βH(q,p,z) dq dp dz

=
∫∫∫ [

ψ1(q)ϕ1(q)ϕ2(p)ψ2(p)α
(
ψ3(z) z · ∇zϕ3(z)

− ϕ3(z) z · ∇zψ3(z) + 1

β
(ϕ3(z)
zψ3(z) − ψ3(z)
zϕ3(z))

)]
e−βH(q,p,z) dq dp dz.

(A.38)
Using integration by parts, this simplifies as

∫∫∫
ϕ1ψ1ϕ2ψ2ϕ3ψ3

(
p · ∇qe

−βH + (b + z) · ∇pe
−βH − p · ∇ze

−βH
)

dq dp dz

=
∫∫∫

ϕ1ψ1ϕ2ψ2

(
1

β
∇ze

−βH + ze−βH

)
(ψ3∇zϕ3 − ϕ3∇zψ3) dq dp dz. (A.39)

Taking ϕ3(z) = ψ3(z), the RHS of (A.39) becomes zero, yielding

p · ∇qe
−βH + (b + z) · ∇pe

−βH − p · ∇ze
−βH = 0. (A.40)

Thus, by the auxiliary Lemma A.1, we obtain

1

β
∇ze

−βH + ze−βH = 0. (A.41)

This implies e−βH+ β
2 |z|2 is independent of z. Rewriting (A.40) as

p · ∇qe
−βH+ β

2 |z|2 + b · ∇pe
−βH+ β

2 |z|2 + z ·
(
∇pe

−βH+ β
2 |z|2 + βpe−βH+ β

2 |z|2
)

= 0, (A.42)
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we conclude

∇pe
−βH+ β

2 |z|2 + βpe−βH+ β
2 |z|2 = 0. (A.43)

Therefore, e−βH+ β
2 |p|2+ β

2 |z|2 depends only on q, and we conclude there exists a potential
U(q) such that H = U(q) + 1

2 |p|2 + 1
2 |z|2. From:

p · ∇qe
−βH+ β

2 |z|2 + b · ∇pe
−βH+ β

2 |z|2 = 0,

we further conclude b(q) = −∇qU(q).
Step 3. (iii) ⇒ (i) is exactly the same as Step 3 in the proof of Theorem 2.2.
Step 4. The statement (iii) implies both statements (iv) and (v), which are obvious.
To show that (iv) implies (iii), similar to (A.27), we use the evenness in p to obtain that

ρ0(q,p, z) solves

∇z ·
(

zρ0 + 1

β
∇zρ0

)
= 0.

By Proposition 3.2, we conclude there exists c(q,p) > 0 such that

ρ0 = c(q,p)e− β
2 |z|2 .

Then, by similar arguments to (A.42) and (A.43), we can conclude (iii).
To show that (v) implies (iii), we plug ρ0 = U1(q)U2(p)U3(z) into L∗ρ0 = 0 and obtain:

−p · ∇q logU1(q) − b · ∇p logU2(p) + z · ∇p logU2(p) + p · ∇z logU3(z)

+ α

U3(z)
∇z ·

(
U3(z)z + 1

β
∇zU2(z)

)
= 0. (A.44)

By similar arguments as in (A.31), we have:

logU2(p) = pT Ap + a · p + c, logU3(z) = zT Bz + d · z + e,

for some constant matrices A,B ∈ R
d×d , and vectors a,d ∈ R

d , and constants c, e ∈ R. By
similar arguments as in (A.33), we conclude that A = − β

2 I , B = − β

2 I , a = 0, and d = 0.
Finally, we obtain

∇q logU1(q) = βb = −∇qU(q),

for U(q) = − logU1(q). �

Appendix B: Omitted Proofs for Exponential Convergence and
Smoothness of Fokker-Planck Equations

In this section, we present the omitted proofs for the exponential convergence and smooth-
ness of the solution to the Fokker-Planck equation corresponding to overdamped Langevin
dynamics, as well as the hypocoercivity and hypoellipticity results for underdamped
Langevin dynamics.
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B.1 Exponential Convergence and Smoothness for the Overdamped Case

We first provide the proof for the exponential convergence and smoothness in the over-
damped case. The proof of Proposition 3.1 invokes the following version of Harris’s theo-
rem, as stated in [10, Theorem 3.6].

Theorem B.1 (Harris’s theorem, Theorem 3.6 in [10]) Suppose that P is the Markov operator
of a discrete Markov semigroup Pn for n = 1,2, . . . on R

d . Let p(x,y), where x,y ∈ R
d ,

denote the transition probability of P . If the following two conditions hold

(i) (Lyapunov Function) There exists a function U :Rd → [0,∞) and constants K > 0 and
γ ∈ (0,1) such that

PU(x) ≤ γU(x) + K (B.1)

for all x ∈R
d ;

(ii) (Minorisation) For every R > 0, there exists a constant α > 0 such that

‖p(x, ·) − p(y, ·)‖L1(Rd ) ≤ 2(1 − α), (B.2)

for all x, y such that U(x) + U(y) ≤ R.

Define the following weighted supremum norm:

‖ϕ‖U = sup
x∈Rd

|ϕ(x)|
1 + U(x)

. (B.3)

Then P admits a unique invariant measure μ∗. Furthermore, there exist constants C > 0
and ρ ∈ (0,1) such that

∥∥∥∥Pnϕ −
∫
Rd

ϕ(x)dμ∗
∥∥∥∥

U

≤ Cρn

∥∥∥∥ϕ −
∫
Rd

ϕ(x)dμ∗
∥∥∥∥

U

. (B.4)

In the proof of Proposition 3.1, we take P = et0Lε for some appropriately chosen t0, and
the Lyapunov function U(x) = eV (x)/3, where V (x) is the potential function.

Proof of Proposition 3.1 We directly employ Theorem B in [15]. Consider U(q) = eV (q)/3,
which is in L1(ρ0). Moreover, we have

LεU(q) = 1

3

(
tr(σσ T ∇2V (q)) − 2

3
|σ T ∇V (q)|2 + εσσ T M(q) · ∇V (q)

)
eV (q)/3.

For q that is not in the support of M and sufficiently large, by Assumptions (I) and (II), we
have

LεU(q) ≤ − 1

18
|σ T ∇V (q)|2eV (q)/3 ≤ −C1e

V (q)/3.

Thus, for all q ∈R
d , we have

LεU(q) ≤ C2 − C1U(q) (B.5)
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for some constants C1 > 0 and C2 > 0. Therefore, U(q) is a strongly unbounded Lyapunov
function. By Theorem B in [15], we conclude exponential convergence.

Next, we prove that Cε and rε can be selected uniformly. Indeed, the proof of Theorem
B in [15] relies on Harris’s theorem [10], which is based on the following two conditions:

1. Lyapunov condition: For some t0 > 0, there exist constants γ ∈ (0,1), K > 0, and a
function U :Rd →R

+ such that

et0LεU(q) ≤ γU(q) + K (B.6)

holds for all q ∈R
d . According to [15, Lemma 3.4], (B.6) holds by choosing U(q) = eV (q)/3,

i.e., the unbounded strong Lyapunov function. Moreover, γ and K depend on M, V , σ , and
constants C1 and C2 in (B.5), which are all uniform in ε.

2. Minorisation condition: It is required to verify the following local minorisation condi-
tion: for all R > 0, there exists α > 0 such that

‖pε(q1, ·, t0) − pε(q2, ·, t0)‖L1(Rd ) ≤ 2(1 − α) (B.7)

holds for all q1 and q2 in the set {(q1,q2) : U(q1) + U(q2) ≤ R}. Here, pε(q1,q, t0) is the
transition probability. By [15, Lemma 3.3], we know that (B.7) holds for ε = 0 with some
α = α0. Then, by [2, Corollary 9.8.26], there exists a constant C > 0 (depending on M, V ,
and σ ) such that for all q1 with U(q1) ≤ R, we have

‖pε(q1, ·, t0) − p0(q1, ·, t0)‖L1(Rd ) ≤ Cε.

Thus, there exists ε0 > 0 such that for all ε ∈ (0, ε0),

‖pε(q1, ·, t0) − pε(q2, ·, t0)‖L1(Rd ) ≤ 2(1 − α0/2). (B.8)

Therefore, for each R > 0, one can find α > 0 such that (B.7) holds uniformly for sufficiently
small ε.

Finally, according to [10, Remark 3.10], the contraction constants Cε and rε depend on
M, V , σ , and the following constants: by selecting R sufficiently large such that

γ0 := γ + 2K

R
< 1, β := α

2K
, α′ := max

{
1 − α

2
,

2 + Rβγ0

2 + Rβ

}
.

Here, γ and K are from (B.6), and α is from (B.7), all of which are uniform for ε ∈ (0, ε0).
Thus, Cε and rε are also uniform in ε ∈ (0, ε0). �

Proof of Lemma 3.4 Consider the coordinate transformation q′ = σ−1q. Then we have
∇q′f = σ T ∇qf . Thus, one can reformulate L∗

ε − ∂
∂t

as

L∗
ε − ∂

∂t
=

d∑
j=1

(
∂

∂q′
j

)2

+
(
∇q′

j
V (σq′) − εσ T M(σq′)

)
· ∇q′

j
− ∂

∂t

+
(

q′V (σq′) − ε∇q′

j
· σ T M(σq′)

)
.

Let

Xj = ej ∈ R
d+1, j = 1,2, . . . , d, X0 = −ed+1 +

[
∇q′

j
V (σq′) − εσ T M(σq′),0

]
,
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c = 
2
q′V (σq′) − ε∇q′

j
· σ T M(σq′).

Then, we can express L∗
ε − ∂

∂t
as

L∗
ε − ∂

∂t
=

d∑
i=1

(Xj )
2 + X0 + c.

Note that Xi for i = 1,2, . . . , d + 1 are linearly independent at any point (q′, t) ∈ R
d ×

(0,+∞). By Theorem 3.1, we know that L∗
ε − ∂

∂t
is hypoelliptic, and ρε(q, t) is smooth in

both q and t . �

Now we provide the well-posedness of the Fokker-Planck equation for the overdamped
case. The existence and uniqueness are obtained via the semigroup method, while the
smoothness is established using Hörmander’s hypoellipticity theorem 3.1.

Proof of Lemma 4.1 We define a weighted Hilbert space L2(ρε∞) with the weight ρε∞(q,p) >

0 and the norm

‖f ‖L2(ρε∞) :=
∫∫

ρε
∞f 2 dq dp.

Additionally, we define a weighted Hilbert space H 1(ρε∞) with the norm

‖f ‖H 1(ρε∞) :=
∫∫

ρε
∞f 2 dq dp +

∫∫
ρε

∞|∇f |2 dq dp.

For (i), we have

ρ0(q,p)

ρε∞(q,p)
= e−εW(q)Zε

Z0
.

Since W ∈ C∞
c (Rd;R), for q outside the support of W , ρ0(q,p)

ρε∞(q,p)
is a constant. Therefore, it is

in L2(ρε∞), and any order derivative of ρ0
ρε∞ is also in L2(ρε∞). Thus, (i) holds.

For (ii), by Lemma A.2, we know that if b = −∇qU(q), then −Lε,1 is a maximal mono-
tone operator in L2(ρε∞ dq dp), with the weight defined in (2.19). By the Hille-Yosida theo-
rem, Lε,1 generates1 a strongly continuous semigroup on L2(ρε∞), denoted as S(t) = etLε,1 .

For (iii), from the contraction semigroup in (ii), we know that the Cauchy problem

∂pε

∂t
= Lε,1p, p(q,p,0) = ρ0

ρε∞
,

is well-posed, and pε(q,p, t) ∈ C1([0, T ];L2(ρε∞)). Thus, (4.2) admits a unique solution
ρε(q,p, t) ∈ C1([0, T ];L2(ρε∞)). �

Proof of Lemma 4.2 We apply Theorem 3.1 again. For simplicity, we assume σ = I. If this is
not the case, a coordinate transformation similar to that in Lemma 3.4 can be used.

1Sometimes −Lε,1 is called the infinitesimal generator instead of L.
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The operator L∗
ε − ∂

∂t
can be expressed as

L∗
ε − ∂

∂t
=

d∑
i=1

(Xi )
2 + X0 + c,

where c = d and

Xi = ∂

∂pi

, i = 1,2, . . . , d,

X0 = −p · ∇q + (∇q(V − εW) + p
) · ∇p − ∂

∂t
.

Notice that

[Xi ,X0] = − ∂

∂qi

+ ∂

∂pi

, i = 1,2, . . . , d.

Thus, at any point (q,p, t) ∈R
2d × (0,∞), we have

span{X1,X2, . . . ,Xd , [X1,X0], . . . , [Xd ,X0],X0} =R
2d+1.

By Theorem 3.1, we conclude that ρε(q,p, t) is smooth. �
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