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1. Introduction

The Stochastic Gradient Langevin Dynamics (SGLD), first introduced by Welling
and Teh [31], has attracted a lot of attention in various areas [4, 23, 33]. The
SGLD algorithm and its variants have shown exceptional performance when dealing
with many practical sampling or optimization tasks. As an online algorithm, SGLD
can be viewed as adding independent white noise to the well known the classical
machine learning algorithm, Stochastic Gradient Descent (SGD), making it useful
for sampling tasks. The goal here is to generate samples from a target distribution
π. In fact, SGLD is a Markov process that approximates the overdamped Langevin
diffusion whose invariant measure is the target distribution π in the sampling task.
Here the approximation is realized by using random batch to compute the drift at
discrete time Tk := kη, and η is the constant time step (or learning rate). In this
paper, our primary focus is on the theoretical study of SGLD’s convergence to the
invariant measure and its convergence rate.

Let us first explain the SGLD method. Suppose that the distribution of interest
is π ∝ exp(−βU), where U : R

d → R is the free energy and β > 0 is a positive
constant describing the inverse temperature of the system. One effective way to
sample from the target π is through the following overdamped Langevin diffusion,
whose invariant measure is exactly π:

dX = −∇U(X)dt +
√

2β−1dW, X |t=0 = X0,

where W is the Brownian motion in R
d. To numerically compute the sampling

procedure, one often uses the Euler–Maruyama scheme. Given the time step (or
learning rate) ηk at kth iteration, and denote Tk :=

∑k−1
i=0 ηi, the Euler–Maruyama

scheme iterates as follows:

X̂Tk+1 = X̂Tk
− ηk∇U(X̂Tk

) +
√

2β−1(WTk+1 − WTk
).

The key idea of SGLD is to reduce the computation cost by using the random
batch. In fact, in various sampling and optimization tasks from machine learning
and data science, people deal with the potential U(·) coming from high dimensional
large-scaled data with size N . Often U(·) is of the form U(·) = Eξ[U ξ(·)], which is
the expected value of a function depending on a random variable ξ ∈ S. However,
usually we do not have any knowledge of the data’s distribution, and the only
realistic approach to computing U(·) is through the random batch of a fixed small
size S � N repeatedly and independently used at each Tk (see (1.1) for the details).
When k goes large such that kS ≈ N � 1, the random batch approximation for
U(·) = Eξ[U ξ(·)] is then realized accumulatively due to the law of large numbers,
and meanwhile the computational cost at each step is significantly reduced since
S � N . In practice, one often has U(x) = U0(x) + 1

N

∑N
i=1 �i(x) and, as in the

stochastic gradient descent algorithm [15, 26], ξ often represents the minibatch of
{1, . . . , N} (In this case, for fixed batch-size S (a determined constant), ξ belongs to
the set S = {(a1, . . . , aS) : ai(1 ≤ i ≤ S) are S different random numbers uniformly
chosen from {1, . . . , N}}. For ξ = (a1, . . . , aS), the corresponding unbiased estimate
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U ξ is U ξ(x) = U0(x) + 1
S

∑S
i=1 �ai(x).) The general form of SGLD iteration can be

written in the following form.

X̄Tk+1 = X̄Tk
− ηk∇U ξk(X̄Tk

) +
√

2β−1(WTk+1 − WTk
). (1.1)

Here, U ξk is an unbiased estimate for U , and thus ∇U ξk is also an unbiased esti-
mate for ∇U . As mentioned above, ξk often represents the random mini-batch of
some fixed batch size S at time tk, and {ξk}∞k=0 are i.i.d. Also, In our analysis, we
also consider the following continuous version, which is a continuous-time Markov
process with continuous path:

X̄t = X̄Tk
−

∫ t

Tk

∇U ξk(X̄Tk
)ds +

∫ t

Tk

√
2β−1dWs,

t ∈ [Tk, Tk+1), k = 0, 1, . . . (1.2)

and the corresponding differential form

dX̄t = −∇U ξk(X̄Tk
)dt +

√
2β−1dW,

X̄t|t=Tk
= X̄Tk

, t ∈ [Tk, Tk+1) k = 0, 1, . . . . (1.3)

Note that the value of (1.2) at time grid Tk is exactly that of (1.1), so it is enough
to study the continuous version to obtain estimate for SGLD at t = Tk.

Recent decades have witnessed great development of theoretical research for
sampling error bound of SGLD [6, 14, 19, 23, 32, 33]. With SGLD considered a
numerical scheme for the overdamped Langevin diffusion, one is naturally motivated
to study the algorithm’s approximation accuracy. Specifically, when comparing the
densities ρ̄t, ρt of time marginal distributions of SGLD and overdamped Langevin
diffusion, respectively, the authors of [19] proved that H(ρ̄t ‖ ρt) ≤ Cη2, where
H(· ‖ ·) is the relative entropy (or KL-divergence) and recall that η is the constant
learning rate. Consequently, using ergodicity of the overdamped Langevin diffusion
which can be derived provided that its invariant measure π satisfies the log-Sobolev
inequality, one can estimate the Wasserstein or total variation distance between ρ̄t

and the target π : Wp(ρ̄t, π), TV (ρ̄t, π) ≤ Ce−Ct + Cηα for some rates α ≤ 1
and p = 1, 2. Notably, recently the authors of [19] obtained the optimal rate α = 1
while in some other literature like [6, 14, 23, 32, 33] α is no larger than 1

2 . Moreover,
under the global strongly-log-concaveness assumption for the target π, using the
synchronous coupling method, it can be proved that the SGLD algorithm itself as
a Markov chain has an invariant measure π̃, and ρ̄t converges to π̃ exponentially
in time in terms of Wasserstein-2 distance [4]. However, the stringent requirement
of global strong-log-concaveness potentially restricts the broader applicability of
these results. For instance, this result would not give a good theoretical guarantee
of convergence when one is sampling from Gaussian mixture distributions. The
question of the existence and uniqueness of π̃, as well as the algorithm’s ergodicity
when one only assumes strong-log-concaveness of the target distribution π outside
some compact sets, remains an open area for future research. The primary objective
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of this paper is to resolve such problem; specifically, we aim to study the geometric
ergodicity of SGLD, assuming strong-log-concaveness of the target distribution π

outside some compact sets and some other regular Lipschitz conditions (see Sec. 2.1
for more details).

Now in order to study the geometric ergodicity of SGLD, we use the classical
coupling method [7], and in particular we apply the method of reflection coupling
[10, 11, 20], which was originally designed to study the contraction property of
many continuous SDEs. Here, we give a brief summary of how the reflection cou-
pling method is adopted to study the geometric ergodicity of SGLD. Consider the
two time marginal distributions μt, νt of SGLD (1.2), starting from the initial dis-
tributions μ0, ν0, respectively. We aim to prove the contraction property under
the Wassertein-1 distance: W1(μt, νt) � e−ctW1(μ0, ν0). The coupling method then
reduces this goal to find some paired dynamics (X̄t, Ȳt) satisfying the laws of X̄t,
Ȳt are μt, νt, respectively, and the Lyapunov exponent

γ := lim sup
t→∞

1
t

log E|X̄t − Ȳt| ≤ −c,

is negative for this paired dynamics (X̄t, Ȳt). Note that the geometric ergodicity
arises from strong convexity of the potential U(·) outside some compact sets. This
strong convexity becomes strong monotonicity property for any two points (x, y)
far away, as in Lemma 2.1. Therefore, any such pair (X̄t, Ȳt) would attract each
other if they are sufficiently far away.

Next, in order to construct such paired dynamics (X̄t, Ȳt), we use the key tech-
nique — reflection coupling equipped with a specific Lyapunov function f(·). This
technique was originally designed by Lindvall and Rogers in 1986 and was developed
by Eberle, etc. to study the geometric ergodicity of many continuous dynamics.
Here, the Lyapunov function f(·) defined in (2.7) in our result is an increasing,
concave function. Correspondingly, we consider the Kantorovich-Rubinstein dis-
tance Wf (·, ·) with cost function f(·) defined in (2.6) below. The reflection cou-
pling methods begins with choosing the pair of initial points (X̄0, Ȳ0) such that
Ef(|X̄0 − Ȳ0|) = Wf (μ0, ν0). Then we choose a realization X̄t of SGLD (1.2) such
that the law of Xt is μt and the law of X0 is μ0. The key step in the reflection cou-
pling method is that we construct a companion process Ȳt with Ȳ0 coupled above
with X̄0 and satisfies: (i) Ȳt shares the same random batch and Brownian motion
with X̄t, and has an additional reflection term in its diffusion part (see (3.1) below);
(ii) Ȳt is also a realization of SGLD (1.2) and the law of Ȳt is νt (see Lemma 3.1).
Then the contraction property mentioned above is reduced to estimation of the neg-
ative Lyapunov exponent for the paired dynamics (X̄t, Ȳt). In fact, with this spe-
cially designed diffusion in the paired dynamics (X̄t, Ȳt), we can actually prove the
exponential decay in time of Ef(X̄t − Ȳt) and therefore obtain the Wf -contraction
(see Theorem 2.1):

Wf (μt, νt) ≤ Ef(|X̄t − Ȳt|) ≤ Ce−Ct
Ef(|X̄0 − Ȳ0|) = Ce−CTkWf (μ0, ν0).
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Notably, the key contribution of the reflection coupling is as follows: different from
synchronous coupling method where X̄t, Ȳt shares exactly the same Brownian
motion, in the reflection coupling, the process X̄t − Ȳt is still a diffusion process.
In particular its diffusion is an anisotropic one, see the expression in (3.6). Con-
sequently, the existence of this diffusion leads to a f ′′(·) term after Itô’s calculus,
see (3.15). Then the contraction property can be obtained based on the following
concave property of the constructed Lyapunov function in (2.7):

f ′′(r) � −r,

for all r in a bounded set. After proving the contraction property, one can directly
obtain the geometric ergodicity of SGLD (see Corollary 2.1) using the Banach’s
contraction mapping theorem. Moreover, our choice of the f(·) makes the two dis-
tances Wf (·, ·), W1(·, ·) equivalent, enabling one to obtain the geometric ergodicity
under the Wasserstein-1 distance. Further details regarding the formulation of such
paired dynamics (X̄t, Ȳt) and the construction of the Lyapunov function f(·) will
be elaborated upon in Sec. 3.

These years, the reflection coupling has been instrumental in establishing
the geometric ergodicity of various random dynamic systems including over-
damped/underdamped Langevin diffusion [11, 12, 21], Hamiltonian Monte Carlo
[2, 3], first-order interacting particle systems [8, 13], etc. Recently, in [21],
the authors constructed a reflection coupling for the discrete Euler–Maruyama
scheme directly and obtained the contraction and ergodicity in Wasserstein-1 and
Wasserstein-2 distances without random batch. Moreover, their method also gives
some estimates for the long-time behavior of SGLD, but there is an O(η) remain-
der in the control coming from the variance of the random batch (see [21, The-
orem 2.16]), so intuitively the ergodicity of SGLD could not be proved directly
through this estimate. In [17], the authors studied the ergodicity of the time-
continuous random batch dynamics for the interacting particle systems, using a vari-
ant of the reflection coupling. The model studied resembles SGLD but we remark
that the proof there makes use of the external confining potential and regards the
random batch version of the interaction as perturbation. In our setting below, we
only assume the confining property of the expected drift with no external potential
to help, and we will consider the freezing drift dynamics instead and show that
the distance between laws of two SGLD copies will vanish to zero in Wasserstein-1
distance exponentially in time.

However, due to existence of the time discretization and the random mini-batch,
there are several difficulties arising when applying the reflection coupling to analyze
the SGLD algorithm, detailed as follows. The first difficulty arises from the numeri-
cal discretization. In the time continuous interpolation (1.2), the drifts are evaluated
at Tk but the dynamics is evolving and the hitting time (defined in (3.3)) in the
reflection coupling could be between [Tk, Tk+1). This dismatch brings extra difficulty
compared with the reflection coupling for time-continuous processes. Furthermore,
when dealing with this difficulty, one needs to conduct careful estimate for the tail
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behavior of the multiplicative noise ζt (see (3.6) below). In fact, although the diffu-
sion part Ŵt in (3.1) or Lemma 3.1 below is a Brownian motion, it correlates with
the original Brownian motion Wt. Therefore, in (3.6) below, ζt =

∫ t

Tk
dŴs − dWs

is a multiplicative noise. Estimate for this multiplicative noise is not trivial and we
will overcome this via tools including the Burkholder–Davis–Gundy inequality in
Lemma 3.2. So far, to the best of our knowledge, there is scant literature addressing
the ergodicity of discrete algorithms under such mild assumptions. These difficul-
ties shall be addressed carefully using a series of conditional expectation estimates,
detailed in Sec. 3.

The second difficulty arises from how to make use of the consistency of the
random batch Eξ[U ξ(·)] = U(·) to prove the geometric ergodicity of SGLD. In our
result, we only assumed the confining property for the expected potential. On each
time subinterval [Tk, Tk+1) of the SGLD algorithm, one only sees the behavior of
the process associated with U ξk rather than U . One has to consider the averaged
dynamics so that our assumptions for the averaged potential U can be used. So more
technical details will be required to obtain the ergodicity, see Proposition 3.1. Here
we give a brief summary of Proposition 3.1 regarding the estimate for the random
batch. Recall the paired dynamics (X̄t, Ȳt) discussed above. After Itô’s calculation,
one needs to estimate

E[φ(X̄t, Ȳt)(∇U ξk(X̄Tk
) −∇U ξk(ȲTk

))],

for some function φ(·, ·) and t ∈ [Tk, Tk+1). The key step is to use conduct the
following splitting:

E[φ(X̄t, Ȳt)(∇U ξk(X̄Tk
) −∇U ξk(ȲTk

))]

= E[φ(X̄Tk
, ȲTk

)(∇U ξk(X̄Tk
) −∇U ξk(ȲTk

))(1A + 1B)]

+ E[φ(X̄t, Ȳt) − φ(X̄Tk
, ȲTk

)(∇U ξk(X̄Tk
) −∇U ξk(ȲTk

))(1A + 1B)],

where A := {|X̄Tk
− ȲTk

| > R} and B := Ac for some R > 0. Since X̄Tk
, ȲTk

, 1A

are all independent of the random batch ξk, we are able to use the consistency of
random batch Eξ[U ξ(·)] = U(·) and obtain the following for the first term:

E[φ(X̄Tk
, ȲTk

)(∇U ξk (X̄Tk
) −∇U ξk(ȲTk

))]

= E[φ(X̄Tk
, ȲTk

)(∇U(X̄Tk
) −∇U(ȲTk

))].

Actually, this equality above reveals the consistency between SGLD and the over-
damped Langevin diffusion, since it remains true if we replace Ȳt above with some
solutions to the overdamped Langevin diffusion. Moreover, for the second term,
under the event A, we use the uniform-in-batch Lipschitz condition in Assump-
tion 2.1 to bound ∇U ξk(X̄Tk

) − ∇U ξk(ȲTk
), and the tail estimate obtained in

Lemma 3.2 to estimate (φ(X̄t, Ȳt) − φ(X̄Tk
, ȲTk

). So eventually obtain an estimate
for

E[φ(X̄t, Ȳt)(∇U ξk (X̄Tk
) −∇U ξk(ȲTk

))1A],
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under the event A in Proposition 3.1. For estimate under the event B, one can-
not directly apply tail estimate in Lemma 3.2 to estimate the remainder term in
the splitting above. So the consistency of random batch is no longer used, but the
uniform-in-batch Lipschitz condition in Assumption 2.1 is required in our deriva-
tion, scattered throughout the proof (see (3.22) and (3.38) for instance). This
uniform-in-batch Lipschitz condition is natural: Intuitively, the average of a family
of non-smooth functions could be smooth, while in this case one cannot guarantee
the convergence since the SGLD dynamics can evolve with non-smooth drift in all
time.

The rest of the paper is organized as follows. In Sec. 2, we list our main assump-
tions and main results. The detailed proof will be given in Sec. 3, where a series
of key estimates for the conditional expectations will be given. Section 4 is for the
generalization to drifts that are not necessarily gradients. In Appendix A, some
missing proofs will be given.

2. Assumptions and Main Result

2.1. Local nonconvexity assumption

We will use the reflection coupling to show the ergodicity under the following locally
nonconvex setting, which is common in many practical tasks.

Assumption 2.1. (a) (locally nonconvex). The Hessian matrix of U is uniformly
positive definite outside B(0, R0), namely, there exist R0 > 0, κ0 > 0 such that

∇2U(x) � κ0Id, ∀x ∈ R
d\B(0, R0); (2.1)

(b) (global uniform-in-batch Lipshitz). There exists K > 0 such that ∀x, y ∈ R
d,

∀ ξ ∈ S,

|∇U ξ(x) −∇U ξ(y)| ≤ K|x − y|. (2.2)

Moreover, supξ |∇U ξ(0)| < ∞.

Remark 2.1. In many applications in data science, people study the empirical risk
with a penalty [14, 23]. Particularly, one may consider

Ũ =
1
N

N∑
i=0

�i(x) +
λ

2
|x|2.

If �i’s have certain decay property as |x| → ∞, the function Ũ satisfies Assump-
tion 2.1. For instance, one may consider Ũ being the cross-entropy loss with some
additional l2-penalties as in some machine learning tasks; one may also compare
this with some analogous examples in the interaction particle systems, where one
has suitable bounded interactions and some external force U0 [16, 17].

From the locally nonconvex setting in Assumption 2.1, it is not hard to derive
the following strong monotonicity property for the pair (x, y), which is useful in our
analysis.

2450035-7

St
oc

h.
 D

yn
. 2

02
4.

24
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

SI
N

G
H

U
A

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/2

6/
24

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



November 19, 2024 11:15 WSPC/S0219-4937 168-SD 2450035

L. Li, J.-G. Liu & Y. Wang

Lemma 2.1. Suppose Assumption 2.1 holds, then there exists R ≥ 2, κ > 0 such
that

(x − y) · (∇U(x) −∇U(y)) ≥ κ|x − y|2, ∀x, y ∈ R
d, |x − y| > R. (2.3)

The proof is deferred to Appendix A. Another useful observation from Assump-
tion 2.1 is that, we are able to control pth moment (p > 1) of the SGLD iteration
Xt defined in (1.2). See the detailed proof in Appendix A.

Lemma 2.2 (Moment control for SGLD). Consider the SGLD iteration (1.2).
Suppose Assumption 2.1 holds.

(1) For any p ≥ 1, any T > 0 and any step size ηk > 0,

sup
0≤t≤T

E

[
sup

0≤s≤t
|X̄s|p

]
< +∞. (2.4)

The upper bound may depend on p, T, β and the dimension d.
(2) Let p ≥ 2. If ∃ δ > 0 such that ηk ≤ κ/(2(p− 1)K2) − δ for all k, then

sup
t≥0

E|X̄t|p < +∞. (2.5)

The upper bound may depend on p, β and the dimension d.

2.2. Geometric ergodicity of SGLD

By considering the behavior of Zt, we aim to obtain a contraction result in terms
of the Kantorovich–Rubinstein distance defined by

Wf (μ, ν) := inf
γ∈Π(μ,ν)

∫
Rd×Rd

f(|x − y|)dγ. (2.6)

One aims to find some suitable increasing, concave function f such that f(| · |) is
equivalent to | · | and hence one is able to control Wasserstein-1 distance using Wf .
The specific function we consider in this work is given by

f(r) :=
∫ r

0

e−cf(s∧R1)ds, r ≥ 0. (2.7)

Here, R1 > 3R/2 and cf > 0 are constants to be determined. Clearly, f is concave
and increasing. Moreover, for r ≥ 0,

e−cf R1r ≤ f(r) ≤ r. (2.8)

We will discuss more on the motivation of the construction for such paired dynamics
(X̄t, Ȳt) and the Lyapunov function in Sec. 3.

Next, we will take cf > 0 such that

1
2

√
2β−1cfR−1 − K ≥ 0 (2.9)
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Geometric ergodicity of SGLD

and fix R1 := 2R. Moreover, we consider small steps and require the upper bound
for the time step h := supk ηk to satisfy

h
1
2 |log h| 12 ≤ min

(
1

6c′
e−2cfRκ,

√
c̄

)
,

h ≤ c̄−
1
2 h

1
2 |log h| 12 (KR)−1, h ≤ min(1/(2K), R2/9, 1)

(2.10)

and

h ≤ min

(
c̄βR2

128 log 5
,

c̄βR2

128(2cfR + log(18/κ))
,

c̄βR2/32
log(45(1 +

√
2βc−1

f e2cf RKR)/2)

)
,

(2.11)

where c̄, c′ are two positive constants independent of k and the dimension d coming
from Lemma 3.2 and Proposition 3.1, respectively.

We will establish in this work the following Wasserstein contraction results of
SGLD. We leave the detailed proof to Sec. 3.

Theorem 2.1 (Wasserstein contraction for SGLD). Suppose Assumption 2.1
holds. For any two initial distributions μ0 and ν0, denote μt and νt to be the corre-
sponding time marginal distributions for the time continuous interpolation of SGLD
algorithm (1.2). Denote h := supk ηk. Let f be the Lyapunov function defined
in (2.7). Assume that h and the parameters satisfy conditions in (2.9)–(2.11), then
the following Wasserstein contraction result holds:

Wf (μTk
, νTk

) ≤ e−cTkWf (μ0, ν0), k ∈ N, (2.12)

where

c =
1
3
e−2cf R min(

√
2β−1cfR/2, κ).

Consequently,

W1(μTk
, νTk

) ≤ c0e
−cTkW1(μ0, ν0), k ∈ N, c0 := e2cf R. (2.13)

The contraction rate is not necessarily the optimal one, which we believe is
dimension-free (see the discussion in Remark 3.2). We have listed many restrictions
on the step size. For the second restriction, the most essential one is that we need
h < 1/K for the contraction to hold. Here, we required h ≤ 1/(2K) instead for
the formulas of contraction rate to be of reasonable order. Other restrictions on the
step size can be relaxed somehow (for example 3R/2 can be replaced by a number
close to R and the numerates are loose). They are chosen just to make the formula
of contraction rate appear clean. However, the dependence of β in the upper bound
of the third restriction is essential. Besides, only Lemma 2.2 (a) is needed for the
proof, so the restriction in Lemma 2.2 (b) is not included.

Moreover, if the step size (or learning rate) is constant ηk ≡ η such that the
discrete chain is time-homogeneous, then the SGLD as a discrete time Markov chain
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has an invariant measure π̃ by the Banach contraction mapping theorem [18]. In
particular, we have the following corollary.

Corollary 2.1 (Wasserstein ergodicity of SGLD). Consider the SGLD with
constant step size ηk ≡ η. Assume that the step size η satisfies the restrictions in
Theorem 2.1, for any initial distribution ρ0 ∈ W1, the SGLD iteration has a unique
invariant measure π̃, and the time marginal distribution ρ̄t of (1.2) satisfies for the
constants c0, c in Theorem 2.1 that

W1(ρ̄nη, π̃) ≤ c0e
−cnηW1(ρ0, π̃). (2.14)

Proof. By Theorem 2.1, there exists k0 ∈ N+ such that

W1(μTk0
, νTk0

) ≤ 1
2
W1(μ0, ν0). (2.15)

Denote the corresponding transition kernel for nth iteration by Pn. Then, μ �→
μPk0 is contractive. By contraction mapping theorem, there exists a fixed point π∗
satisfying

π∗ = π∗Pk0 . (2.16)

Then, by Markov property, π̃ := 1
k0

∑k0−1
n=0 π∗Pn is the invariant measure of the

SGLD iteration. Moreover, π̃ = π̃Pk0 for any invariant measure so that the invariant
measure is unique by the contraction property of Pk0 . Besides, π̃ = π∗.

Letting νnη ≡ π̃ in Theorem 2.1, (2.14) then follows.

Under Assumption 2.1, π ∝ e−U satisfies the log-Sobolev inequality, and one can
get a uniform-in-time error estimate using KL divergence in [19]. We are then able
to estimate the W1 distance between the target distribution π and the invariant
measure π̃ of the SGLD algorithm. In fact, for constant step size η, by [19, Theo-
rem 3.2], the discretization error in terms of relative entropy (or KL-divergence) is
given by

H(ρ̄nη ‖ ρnη) ≤ A0η
2, ∀n ∈ N, (2.17)

where ρ̄nη, ρnη correspond to the SGLD iteration and the overdamped Langevin
diffusions, respectively. As a remark, the constant A0 scales almost linearly with the
dimension d under certain assumptions. The reason for the improved error bound
in (2.17) (from O(

√
η) to O(η) in terms of Wasserstein or total vatiantion distance,

in comparison with existing results like [6, 14, 23, 32, 33]) is that, starting from
the Fokker–Planck equation for the discrete algorithm, the authors directly consid-
ered the distance between distribution instead of other trajectory methods; also,
techniques like Girsanov’s transform were applied to handle additional difficulties
brought by the random batch. As a consequence of (2.17), since π satisfies the
log-Sobolev inequality, the Wasserstein-1 distance can be controlled by the square
root of the KL-divergence by some classical transportation inequalities [24, 28],
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enabling one to derive an improved sampling error bound W1(ρ̄nη, π) for SGLD
[19, Corollary 5.1]. We conclude the result in the following corollary.

Corollary 2.2. Consider the SGLD with constant step size η and denote its density
at time nη by ρ̄nη. Under Assumption 2.1, for the step size η small enough (with
the restrictions in Theorem 2.1 and in [19, Theorem 3.2]), for some positive A, C1,

C2 independent of ρ0, η we have

W1(ρ̄nη, π) ≤ C0η + C1e
−C2nη. (2.18)

Moreover, the SGLD iteration has a unique invariant measure π̃ satisfying

W1(π̃, π) ≤ Aη, (2.19)

where π ∝ e−βU is the target distribution.

3. Proof of Theorem 2.1

In this section, we prove Theorem 2.1 — the contraction property under the Wf

distance. In the following, we will apply the technique of reflection coupling dis-
cussed in the introduction to analyze SGLD. See Appendix B for more details on
the construction of the reflection coupling and the Lyapunov function.

We summarize here several challenges we would overcome in the analysis. The
first difficulty arises from how to make use of the consistency of the random batch
Eξ[U ξ(·)] = U(·) to prove the geometric ergodicity of SGLD. In our result, we only
assumed the confining property for the expected potential. On each time subinterval
[Tk, Tk+1) of the SGLD algorithm, one only sees the behavior of the process associ-
ated with U ξk rather than U . Therefore, one has to consider the averaged dynamics
so that our assumptions for the averaged potential U can be used. So more techni-
cal details will be required to obtain the ergodicity, see Proposition 3.1. Second, we
look into the issues that come with numerical discretization — given the discrete
nature of the scheme, the drift term for SGLD is evaluated at XTk

instead of Xt,
introducing additional challenging elements into our analysis. Furthermore, when
dealing with this difficulty coming from time discretization, one needs to carefully
estimate the tail behavior of the multiplicative noise ζt in (3.14). In fact, although
the diffusion part Ŵt in (3.1) or Lemma 3.1 is a Brownian motion, it correlates
with the original Brownian motion Wt. Therefore, in (3.6), ζt =

∫ t

Tk
dŴs −dWs is a

multiplicative noise. Estimate for this multiplicative noise is not trivial and we will
overcome this via tools including the Burkholder–Davis–Gundy (BDG) inequality
in Lemma 3.2.

3.1. Reflection coupling for SGLD

For any two initial distributions μ0, ν0 in the statement of Theorem 2.1, we con-
struct the following reflection coupling:

dX̄t = −∇U ξk(X̄Tk
)dt +

√
2β−1dW, t ∈ [Tk, Tk+1), t < τ ;
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dȲt = −∇U ξk(ȲTk
)dt +

√
2β−1(Id − 2et ⊗ et) · dW, t ∈ [Tk, Tk+1), t < τ ;

X̄t = Ȳt, t ≥ τ,

(3.1)

where

et :=
X̄t − Ȳt

|X̄t − Ȳt|
(3.2)

and the stopping time τ is defined by

τ := inf{t ≥ 0 : X̄t = Ȳt}. (3.3)

Moreover, the initials X̄0, Ȳ0 of (3.1) should be chosen such that

Ef(|X̄0 − Ȳ0|) = Wf (μ0, ν0). (3.4)

Recall the definition of Wf in (2.6). For any two μ0, ν0 in Theorem 2.1, (3.4) can
actually be achieved since one can always choose an optimal coupling γ ∈ π(μ0, μ0)
such that

∫
Rd×Rd f(|x − y|)dγ = Wf (μ0, ν0) [30], and in this case, X̄0 ∼ μ0 and

Ȳ0 ∼ ν0.
Note that

∫ t

0
(Id − 21{s<τ}es ⊗ es) · dWs is also a Brownian motion. Then, Ȳt is

thus also a copy of the time continuous interpolation of SGLD. Therefore, (3.1) is
a well-defined coupling for the SGLD iteration. Similar arguments also appeared in
related literature like [10, 11]. We summarize this in the following lemma.

Lemma 3.1. Under the settings of (3.1) and (3.3), the process

Ŵt :=
∫ t

0

(Id − 21{s<τ}ese
T
s )dWs,

is a Brownian motion in R
d with respect to the natural filtration. Consequently, Ȳt

is also a realization of SGLD (1.2).

Proof. Clearly, Ŵ0 = 0 and Ŵt is a martingale with respect to Ft := σ(Ws : s ≤ t).
Then by Levy’s characterization of Brownian motion, one only needs to verify that
for any t′ > t > 0, E[Ŵt′ ⊗ Ŵt] = tId. Indeed, by independent increment of the
Brownian motion Wt, one has

E[Ŵt′ ⊗ Ŵt] = E

[(∫ t

0

(Id − 21{s<τ}ese
T
s )dWs

)(∫ t

0

(Id − 21{s<τ}ese
T
s )dWs

)T
]

=
∫ t

0

E[(Id − 21{s<τ}ese
T
s )(Id − 21{s<τ}ese

T
s )T ]ds = tId,

where the last inequality is due to the fact that

eT
s es =

(X̄s − Ȳs)T

|X̄s − Ȳs|
(X̄s − Ȳs)
|X̄s − Ȳs|

= 1, ∀ s ≥ 0.
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Therefore, the process Ŵt is a Brownian motion in R
d. Consequently, Ȳt is also a

solution of SGLD (1.2).

Denote Zt := X̄t − Ȳt. Then for t ∈ [Tk, Tk+1) and t < τ , the process Z satisfies

dZt = −(∇U ξk(X̄Tk
) −∇U ξk(ȲTk

))dt + 2
√

2β−1
Z⊗2

t

|Zt|2
· dW (3.5)

and Zt = 0 for all t ≥ τ .
Clearly, the process Zt defined in (3.5) satisfies for t ∈ [Tk, Tk+1),

Zt = ZTk
− (t ∧ τ − Tk ∧ τ)ATk

+ 2
√

2β−1ζt, (3.6)

where the process ζt is defined by

ζt :=
∫ t∧τ

Tk∧τ

Z⊗2
s

|Zs|2
· dWs (3.7)

and

ATk
:= ∇U ξk(X̄Tk

) −∇U ξk(ȲTk
). (3.8)

Clearly, by optional stopping theorem [9], ζt is a martingale. Later in Lemma 3.2
and Corollary 3.1, we will prove some sub-Guassian properties of such martingale.
These estimates are very helpful to overcome the challenge brought by numerical
discretization. We remark that (3.6) and (3.7) also guarantee that Zt ≡ ZTk

= 0
for t ≥ Tk ≥ τ , which is consistent with the definition of the coupling.

3.2. Geometric ergodicity and uniform estimate for SGLD

Recall that the increasing, concave function f is of the form

f(r) =
∫ r

0

e−cf (s∧R1)ds, r ≥ 0. (3.9)

With the construction in (3.1), we are then able to prove the geometric ergodicity
of SGLD. In fact, due to the argument at the beginning of Sec. 3, we aim to show
that

Ef(|Zt|) ≤ e−ct
Ef(|Z0|),

which is clearly equivalent to

Ef(|Zt∧τ |) ≤ e−ct
Ef(|Z0|). (3.10)

Introduce the regularization stopping time sequence

τj := inf{t ≥ 0 : |Zt| /∈ (j−1, j)}, j ∈ N+, (3.11)

which is increasing and can be proved to converge to τ as j → ∞ later in Lemma 3.5.
Hence to obtain (3.10), by Fatou’s lemma, one needs to show that

Ef(|Zt∧τj |) ≤ e−ct
Ef(|Z0|).
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Therefore, the main goal in the proof of Theorem 2.1 is to give the following uniform
estimate:

d

dt
Ef(|Zt∧τj |) ≤ −cEf(|Zt∧τj |), (3.12)

where c is independent of j, ηk and ξk.
In the following, we give the proof of our main result, Theorem 2.1. Some aux-

iliary lemmas and their proofs will be given in Sec. 3.3.

Proof of Theorem 2.1. Recall the definition of τj in (3.11). We first fix T > 0
and consider those k values such that Tk+1 ≤ T . Consider the process Z

τj

t := Zt∧τj .
Clearly, for t ∈ [Tk, Tk+1),

Z
τj

t = Z
τj

Tk
− (t ∧ τj − Tk ∧ τj)ATk

+ 2
√

2β−1ζ
τj

t , (3.13)

with

ζ
τj

t :=
∫ t∧τj

Tk∧τj

Z⊗2
s

|Zs|2
· dWs. (3.14)

In fact, τj ≤ τ . If τj ≤ Tk, Z
τj

t = Z
τj

Tk
and one can focus on the previous subinterval.

If τj ∈ [Tk, Tk+1), one may verify that this holds.
Corresponding to (3.13), the process Zt satisfies for t ∈ (Tk ∧ τj , Tk+1 ∧ τj),

dZt = −(∇U ξk(X̄Tk
) −∇U ξk(ȲTk

))dt + 2
√

2β−1
Z⊗2

t

|Zt|2
· dW.

Since

∇2f(|x|) = f ′′(|x|)x ⊗ x

|x|2 +
f ′(|x|)
|x|

(
Id − x ⊗ x

|x|2

)
,

by Dykin’s formula and the strong Markov property [9], one has then for t ∈
[Tk, Tk+1),

d

dt
E[f(|Zτj

t |)] = E

[(√
2β−1f ′′(|Zτj

t |) − f ′(|Zτj

t |) Z
τj

t

|Zτj

t |
· ATk

)
1{t<τj}

]
. (3.15)

Our goal is to obtain an upper bound of the form −cE[f(|Zτj

t |)] of the right-
hand side of (3.15), where ATk

is computed using U ξ(XTk
) and U ξ(YTk

). Note that
we only assume convexity property for U outside B(0, R) as stated in Lemma 2.1,
so we first split the expectation in (3.15) into the following three parts:

d

dt
E[f(|Zτj

t |)] = E

[
−f ′(|Zτj

t |) Z
τj

t

|Zτj

t |
· ATk

1{|Zτj
Tk

|>R}1{t<τj}

]

+
(

E[
√

2β−1f ′′(|Zτj

t |)1{t<τj}]

2450035-14

St
oc

h.
 D

yn
. 2

02
4.

24
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

SI
N

G
H

U
A

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/2

6/
24

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



November 19, 2024 11:15 WSPC/S0219-4937 168-SD 2450035

Geometric ergodicity of SGLD

+ E

[
−f ′(|Zτj

t |) Z
τj

t

|Zτj

t |
· ATk

1{|Zτj
Tk

|≤R}1{t<τj}

])

=: I1(t) + I2(t). (3.16)

Moreover, when estimating the right-hand side of (3.16), we need to further
split them like in Taylor’s expansion. The essence of this splitting lies in two main
actions: (1) Conduct evaluations at t = Tk, which enables the utilization of the
tower property by taking expectation with respect to the random batch ξk first;
(2) estimate the residual terms carefully. The main reason for such splitting is
that, for t ∈ [Tk, Tk+1), Zt depends on the random batch ξk; for instance, Eξk

[Zt ·
(∇U ξk(X̄Tk

) −∇U ξk(ȲTk
))] �= Eξk

[Zt · (∇U(X̄Tk
) −∇(ȲTk

))]. With this main idea
of splitting, in the following we will separately estimate each term in (3.16), and
we will take j sufficiently large such that Lemma 3.3 (serving Proposition 3.1),
Lemma 3.4 (serving the term I2(t)) and Proposition 3.1 (serving the term I1(t)) in
Sec. 3.3 below hold.

For the term I1(t), we will make use of the convexity condition along with the
tail estimate in Lemma 3.2. By Proposition 3.1 (which is based on Lemma 3.2), for
the step size ηk in the range considered, then for t ∈ [Tk, Tk+1)

I1(t) ≤ −
(
e−cf R1κ − c′η

1
2
k | log ηk|

1
2 − 3e−c̄βR2η−1

k /128
)
E
[
|Zτj

Tk
|1{|Zτj

Tk
|>R}

]
. (3.17)

Since |Zτj

t | ≤ |Zτj

Tk
| + ηkK|Zτj

Tk
| + |ζτj

t | by Assumption 2.1, we have

−E
[
|Zτj

Tk
|1{|Z

τj
Tk

|>R}
]
≤ − 1

1 + ηkK

(
E
[
|Zτj

t |1{|Z
τj
Tk

|>R}
]
− E

[
|ζτj

t |1{|Z
τj
Tk

|>R}
])

.

Clearly,

E
[
|ζτj

t |1{|Z
τj
Tk

|>R}
]
≤ √

ηkP(|Zτj

Tk
| > R) ≤ √

ηkR−1
E
[
|Zτj

Tk
|1{|Z

τj
Tk

|>R}
]
. (3.18)

Therefore, for the event {|Zτj

Tk
| > R}, one has

−E
[
|Zτj

Tk
|1{|Zτj

Tk
|>R}

]
≤ − 1

(1 +
√

ηkR−1)(1 + ηkK)
E
[
|Zτj

t |1{|Zτj
Tk

|>R}
]
.

This then implies for ηk ≤ min(1/(2K), R2/9) that

−E
[
|Zτj

Tk
|1{|Z

τj
Tk

|>R}
]
≤ −1

2
E
[
|Zτj

t |1{|Z
τj
Tk

|>R}
]

≤ −1
2

E
[
|Zτj

t |1{|Zτj
Tk

|>R}1{t<τj}
]
, (3.19)

for large j.
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Now combining (3.17) and (3.19), we have the following estimate for the
term I1(t):

I1(t) ≤ −1
2
(
e−cfR1κ − c′η

1
2
k | log ηk|

1
2 − 3e

− c̄βR2
128ηk

)
E
[
|Zτj

t |1{|Zτj
Tk

|>R}1{t<τj}
]
.

(3.20)

For I2(t), the strategy is to make use of f ′′ that provides a negative part when
|Zt| is small. This can also be understood as utilization of the convexity from the
concave function f when U does not have convexity in B(0, R).

The first part in I2(t) is given using the definition by

E[
√

2β−1f ′′(|Zτj

t |)1{t<τj}] = E
[
−

√
2β−1cfe−cf |Z

τj
t |1{|Z

τj
t |≤R1}1{t<τj}

]
.

(3.21)

For the second part in I2(t), by Assumption 2.1, Lemma 2.1 and definition of f ,
one has

E

[
−f ′(|Zτj

t |) Z
τj

t

|Zτj

t |
· ATk

1{|Zτj
Tk

|≤R}1{t<τj}

]

≤ E
[
Kf ′(|Zτj

t |)|Zτj

Tk
|1{|Zτj

Tk
|≤R}1{t<τj}

]
≤ E

[
Ke−cf |Z

τj
t ||Zτj

Tk
|1{|Zτj

Tk
|≤R,|Zτj

t |≤R1}1{t<τj}
]

+ E
[
Ke−cfR1 |Zτj

Tk
|1{|Zτj

Tk
|≤R, |Zτj

t |>R1}1{t<τj}
]
. (3.22)

In principle, the idea is to use (3.21) to control the terms arising from (3.22).
Hence, one may get

I2(t) ≤ E

[(
−1

2

√
2β−1cfe−cf |Z

τj
t | + Ke−cf |Z

τj
t ||Zτj

Tk
|
)

1{|Zτj
Tk

|≤R,|Zτj
t |≤R1}1{t<τj}

]

+
[
e−cf R1

(
− 1

2

√
2β−1cf P

(
|Zτj

t | ≤ R1, |Zτj

Tk
| ≤ R, t < τj

)

+ KRP(|Zτj

Tk
| ≤ R, |Zτj

t | > R1, t < τj)
)]

=: J1(t) + J2(t).

Direct estimate yields:

J1(t) ≤ E

[
−e−cf |Z

τj
t |

(
1
2

√
2β−1cfR−1 − K

)
|Zτj

Tk
|1{|Zτj

Tk
|≤R,|Zτj

t |≤R1}1{t<τj}

]

≤ 0, (3.23)

if
1
2

√
2β−1cfR−1 − K ≥ 0.
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Here we need to choose sufficiently large coefficient cf in the definition of f such
that 1

2

√
2β−1cfR−1 − K ≥ 0.

To handle the remaining term J2(t), we first observe that

J2(t) ≤ −1
2

√
2β−1cfe−cfR1R−1

1 E
[
|Zτj

t |1{|Zτj
t |≤R1,|Zτj

Tk
|≤R,t<τj}

]
+ KRR−1

1 E
[
|Zτj

t |1{|Zτj
t |>R1,|Zτj

Tk
|≤R,t<τj}

]
= −1

2

√
2β−1cfe−cfR1R−1

1 E
[
|Zτj

t |1{|Zτj
Tk

|≤R,t<τj}
]

+
(

1
2

√
2β−1cfe−cfR1R−1

1 + KRR−1
1

)
E
[
|Zτj

t |1{|Zτj
t |>R1,|Zτj

Tk
|≤R,t<τj}

]
.

(3.24)

Based on tail estimate in Lemma 3.2, we prove in Lemma 3.4, for small ηk and
large j,

E
[
|Zτj

t |1{|Zτj
t |>R1,|Zτj

Tk
|≤R,t<τj}

]
≤ ε(ηk)E

[
|Zτj

t |1{|Zτj
Tk

|≤R,t<τj}
]
, (3.25)

where

ε(η) :=
15R1e

−c̄β(R1−3R/2)2η−1/8

R
. (3.26)

Therefore, for the conditions given,

J2(t) ≤ −
(

1
2

√
2β−1cfe−cfR1R−1

1 − ε̃(ηk)
)

E
[
|Zτj

t |1{|Zτj
Tk

|≤R}1{t<τj}
]
, (3.27)

where

ε̃(η) :=
(

1
2

√
2β−1cfe−cfR1R−1

1 + KRR−1
1

)
15R1e

−c̄β(R1−3R/2)2η−1/8

R
.

Hence, for t ∈ [Tk, Tk+1), one is able to conclude from (3.20), (3.27) that

d

dt
E[f(|Zτj

t |)] ≤ −c(k)E[|Zτj

t |1{t<τj}] ≤ −c(k)E[f(|Zτj

t |)1{t<τj}],

where

c(k) := min
(

1
2

√
2β−1cfe−cf R1R−1

1 − ε̃(ηk),

1
2
(e−cfR1κ − c′η

1
2
k | log ηk|

1
2 − 3e−c̄βR2η−1

k
/128)

)
.

Letting j → +∞, since τj → τ by Lemma 3.5 in Sec. 3.3 and the moment control
in (3.61) (recall that Tk+1 ≤ T and Zt = Zτ

t ), one has by dominated convergence
theorem that

E[f(|Zt|)] ≤ E[f(|ZTk
|)] − c(k)

∫ t

Tk

E[f(|Zs|)1{s<τ}]ds.
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Since Zt ≡ 0 for t ≥ τ ,

E[f(|Zt|)1{t<τ}] = E[f(|Zt|)].

By Grönwall’s inequality, one has

E[f(|ZTk+1 |)] ≤ e−c(k)ηkE[f(|ZTk
|)].

Define h := supk ηk. Choosing small h as stated in Theorem 2.1, we are able to
conclude

E[f(|ZTk
|)] ≤ e−cTkE[f(|Z0|)] = e−cTkWf (μ0, ν0), (3.28)

where

c =
1
3
e−cf R1 min(

√
2β−1cfR−1

1 , κ). (3.29)

Note that this resulted inequality is independent of T . Since T is arbitrary, this
holds for all k ≥ 0. So one eventually has

Wf (μTk
, νTk

) ≤ e−cTkWf (μ0, ν0), ∀ k ∈ N. (3.30)

Above, μ0 and ν0 denote any two initial distributions, and μt and νt are the cor-
responding time marginal distributions for the time continuous interpolation of
SGLD algorithm (1.2). Moreover, since e−cf R1r ≤ f(r) ≤ r for any r ≥ 0, we
have

W1(μTk
, νTk

) ≤ c0e
−cTkW1(μ0, ν0), ∀ k ∈ N, (3.31)

with c0 := ecf R1 . This then ends the proof by choosing R1 = 2R.

3.3. Propositions and lemmas used in the proof of Theorem 2.1

In the following, we present crucial estimations used in the proof above: Lemma 3.2,
Corollary 3.1, Lemmas 3.3–3.5 and Proposition 3.1. As can be observed in the
proof of Theorem 2.1, the main issue to solve due to the existence of numerical
discretization is that, one needs to estimate how far Zt moves during the time
interval [Tk, t] for t ∈ [Tk, Tk+1). This then motivates us to estimate the diffusion
part ζ

τj

t defined in (3.14) first.
In the next lemma, we estimate the martingale ζ

τj

t defined in (3.14):

ζ
τj

t :=
∫ t∧τj

Tk∧τj

Z⊗2
s

|Zs|2
· dWs.

Note that although the diffusion part Ŵt in (3.1) or Lemma 3.1 is a Brownian
motion, it correlates with the original Brownian motion Wt. Therefore, in (3.6),
ζt =

∫ t

Tk
dŴs−dWs is a multiplicative noise. However, since the diffusion coefficient
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Z⊗2
t

|Zt|2 has unit norm, we are able to give the following tail estimate for ζ
τj

t using the
BDG inequality.

Lemma 3.2. Recall the definition for ζ
τj
s in (3.14). For any j ∈ N+, for fixed

t ∈ [Tk, Tk+1), the random variable supTk≤s≤t |ζ
τj
s | is subgaussian in the sense

that

P

(
sup

Tk≤s≤t
|ζτj

s | > a

∣∣∣∣FTk

)
≤ 2e−c̄η−1

k a2
, ∀ a > 0, (3.32)

where the σ-algebra FTk
is defined by FTk

:= σ(X̄s, Ȳs; s ≤ Tk), and c̄ is a positive
constant independent of t, k, ξ and a. Consequently,

P

(
sup

Tk≤s≤t
|ζτj

s | > c̄−
1
2 η

1
2
k | log ηk|

1
2

∣∣∣∣FTk

)
≤ 2ηk → 0 as ηk → 0. (3.33)

Proof. We prove the subgaussian property (3.32) via the well-known ψ2-condition
[29]: there exists α > 0 such that

E[eα|θ
τj
t |2 | FTk

] ≤ 2, (3.34)

where we denote θ
τj

t := supTk≤s≤t ζ
τj
s . Clearly, ζ

τj

t of the form (3.14) is a martingale
by optional stopping theorem [9], and its quadratic variation satisfies 〈ζτj

t 〉 ≤ t ∧
τj − Tk ∧ τj ≤ ηk. Then it holds by the BDG inequality [1, 5] that

E[eα|θ
τj
t |2 | FTk

] = 1 +
+∞∑
p=1

1
p!

αp
E[|θτj

t |2p | FTk
]

≤ 1 +
+∞∑
p=1

1
p!

αpC2pE[〈ζτj 〉pTk+1
| FTk

]

≤ 1 +
+∞∑
p=1

1
p!

C2p(ηkα)p, (3.35)

where α is a positive parameter to be determined, and C2p is a positive constant
satisfying [1, 5, 25]:

C2p ≤ (C
√

2p)2p, (3.36)

where C is a positive constant related to the Hilbert space only (in our case R
d).

Combining (3.35) and (3.36), we have

E[eα|θ
τj
t |2 | FTk

] ≤ 1 + C

+∞∑
p=1

pp

p!
(2ηkα)p.

Clearly, pp

p! ≤ epp−
1
2 ≤ ep, which can be derived from an intermediate result in the

proof of Stirling’s formula [27]: log p! > (p + 1
2 ) log p − p. Therefore,

E[eα|θτj
t |2 | FTk

] ≤ 1 + C

+∞∑
p=1

(2eηkα)p = 1 + C
2eηkα

1 − 2eηkα
= 2,
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by choosing α = 1
2e(1+C)ηk

:= c̄η−1
k . Therefore, the ψ2 condition (3.34) holds.

Finally, using Chernoff’s bound [29], for any a > 0, it holds that

P(|θτj

t | > a | FTk
) ≤ E[eα|θτj

t |2 | FTk
]/eαa2 ≤ 2e−c̄η−1

k a2
. (3.37)

Consequently, taking a = c̄−
1
2 η

1
2
k | log ηk|

1
2 gives the last claim.

We will make use of the subgaussian estimate to control a series of conditional
expectations. In particular, later we need the conditional expectations on events like
|Zτj

Tk
| > R and t < τj . If these two events are independent, there is little difficulty.

The difficulty is that these two are highly correlated. Actually, we will make use
of the fact that the former event almost is contained in the second one so that the
estimates can carry through as well.

As a start, we prove the following conditional estimate of |ζτj

t | as an illustration.

Corollary 3.1. Let ηk ≤ min( 1
2K , c̄βR2

128 log 8 ), where c̄ is the positive constant

obtained in Lemma 3.2. Suppose that P(|Zτj

Tk
| > R) > 0. Then, for j large enough,

it holds that

E[|ζτj

t | | |Zτj

Tk
| > R, t < τj ] ≤ 8

√
2
√

ηk, ∀ t ∈ [Tk, Tk+1). (3.38)

Proof. For simplicity, we denote the events

A := {|Zτj

Tk
| > R}, B := {t < τj}.

Our goal is then to control E[|ζτj

t |1A1B]/P (A ∩ B).
First, using the BDG inequality for p ∈ (0, 2) (see, e.g., [22, Theorem 7.3]), one

has

E[|ζτj

t | |A] ≤ 4
√

2E[E[〈ζτj 〉
1
2
Tk

| FTk
] |A] ≤ 4

√
2
√

ηk. (3.39)

Next, we estimate P(Bc |A). By Markov inequality and the moment control in
Lemma 2.2,

P(|Zτj

Tk
| ≥ j0) ≤

E|Zτj

Tk
|2

j2
0

→ 0 as j0 → ∞.

Hence, for j0 large enough (independent of j),

P(|Zτj

Tk
| ≥ j0) ≤

1
4

P(A).

Clearly,

P(Bc |A) ≤
P(|Zτj

Tk
| ≥ j0)

P(A)
+

P(Bc ∩ {R < |Zτj

Tk
| < j0})

P({R < |Zτj

Tk
| < j0})

.

Now, since

||Zτj
s | − |Zτj

Tk
|| ≤ ηkK|Zτj

Tk
| + 2

√
2β−1|ζτj

s |,
then Bc could happen only if

2
√

2β−1 sup
Tk≤s≤t

|ζτj
s | ≥ max

{
j − 3

2
|Zτj

Tk
|, 1

2
|Zτj

Tk
| − j−1

}
.
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Taking j with j > 3
2j0 + R/4 and j−1 < R/4, then

P(Bc ∩ {R < |Zτj

Tk
| < j0})

P({R < |Zτj

Tk
| < j0})

≤ P

(
2
√

2β−1 sup
Tk≤s≤t

|ζτj
s | > R/4|FTk

)
.

By Lemma 3.2, one obtains that

P

(
2
√

2β−1 sup
Tk≤s≤t

|ζτj
s | > R/4|FTk

)
≤ 2e−c̄βR2η−1

k
/128.

Hence, for ηk ≤ c̄βR2

128 log 8 , one has

P(BC |A) <
1
2
. (3.40)

Consequently,

E[|ζτj

t |1A1B]
P(A ∩ B)

≤ E[|ζτj

t |1A]
P(A) − P(BC ∩ A)

=
E[|ζτj

t ||A]
1 − P(BC |A)

≤ 2E[|ζτj

t |
∣∣∣A]

and the claim then follows.

Next, we will make use the same idea to establish a series of conditional expec-
tations, which is based on the tail estimate in Lemma 3.2.

Lemma 3.3. Let ηk ∈ (0, 1/2K). Then, for j ≥ j0 + R/4, it holds that

E
[
|Zτj

Tk
|1{|Zτj

Tk
|>R}1{t≥τj}

]
≤ (ε(j0) + 2e−c̄βR2η−1

k /128)E
[
|Zτj

Tk
|1{|Zτj

Tk
|>R}

]
,

(3.41)

where ε(j0) → 0 as j0 → ∞.

Proof. Clearly, (3.41) is trivial if P(|Zτj

Tk
| > R) = 0. Below, we assume that

P(|Zτj

Tk
| > R) > 0.

On one hand, using the result for moment control (Lemma 2.2),

E
[
|Zτj

Tk
|1{|Zτj

Tk
|>j0}1{t≥τj}

]
≤ E

[
|Zτj

Tk
|1{|Zτj

Tk
|>j0}

]
≤ ε(j0)E

[
|Zτj

Tk
|1{|Zτj

Tk
|>R}

]
,

(3.42)

where ε0(j0) → 0 uniformly in j as j0 → ∞.
Fix j0 and let |Zτj

Tk
| = z ∈ (R, j0]. By similar discussion as in the proof of

Corollary 3.1, since ηkK ≤ 1/2, for j ≥ j0 + R/4 and j−1 ≤ R/4, for τj ≤ t, one
necessarily needs 2

√
2β−1 supTk≤s≤t |ζ

τj

t | ≥ R/4. Hence, for such j, one has

P(t ≥ τj ||Zτj

Tk
| = z) ≤ 2e−c̄βR2η−1

k /128. (3.43)

Hence, letting μTk
(dz) be the law of |Zτj

Tk
|, one has

E
[
|Zτj

Tk
|1{R<|Zτj

Tk
|≤j0}1{t≥τj}

]

=
∫ j0

R

zE
[
1{t≥τj} | |Z

τj

Tk
| = z

]
μTk

(dz)
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≤ 2e−c̄βR2η−1
k /128

∫ j0

R

zμTk
(dz)

≤ 2e−c̄βR2η−1
k /128

E
[
|Zτj

Tk
|1{|Z

τj
Tk

|>R}
]
.

(3.44)

Combining (3.42) and (3.44), the claim (3.41) holds.

The following result follows from the same idea as above, but more involved. It
tells us that the two random variables |Zτj

t | and |Zτj

Tk
| are roughly the same. Note

that this result is also based on the tail estimate in Lemma 3.2.

Lemma 3.4. Under Assumption 2.1, for any R1 > 3R/2 with R obtained in
Lemma 2.1, and ηk < min( 1

2K , 1
16βc̄R1(R1 − 3R/2), βc̄R2/(128 log 5)), there exists

j0 > R1 such that for all j > j0,

E
[
|Zτj

t |1{|Zτj
t |>R1,|Zτj

Tk
|≤R,t<τj}

]
≤ ε(ηk)E

[
|Zτj

t |1{|Zτj
Tk

|≤R,t<τj}
]
, (3.45)

where

ε(η) :=
15R1e

−c̄β(R1−3R/2)2η−1/8

R
. (3.46)

Proof. The idea is that for the event {|Zτj

t | > R1, |Zτj

Tk
| ≤ R} to happen, |Z|

must be R for some time during Tk and t. Conditioning on this, |Zτj

t | should be
large (roughly comparable to R), while the moment for |Zτj

t | > R1 is then a small
fraction of this conditional moment.

Define the event

E := {|Zτj

Tk
| ≤ R, ∃ s ∈ [Tk, t], |Zτj

s | = R}.

If P(E) = 0, there is nothing to prove. Below, we assume that P(E) > 0. Again,
the event E is also almost contained in {t < τj}. We will in fact show that

E
[
|Zτj

t |1{|Zτj
t |>R1,|Zτj

Tk
|≤R,t<τj}

]
= E

[
|Zτj

t |1E1{|Zτj
t |>R1,t<τj}

]
≤ ε(ηk)E[|Zτj

t |1E1{t<τj}]. (3.47)

For a nonnegative random variable X , one has

E[X ] = E

∫ ∞

0

1{X>r}dr =
∫ ∞

0

P(X > r)dr.

Then,

E
[
|Zτj

t |1E1{|Zτj
t |>R1,t<τj}

]
=

∫ ∞

0

P(|Zτj

t |1E1{|Z
τj
t |>R1,t<τj} > r)dr

= R1P(|Zτj

t | > R1, E, t < τj) +
∫ ∞

R1

P(|Zτj

t | > r, E, t < τj)dr.
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Geometric ergodicity of SGLD

By applying the strong Markov property for |Zτj
s | hitting R and using the same

idea in the proof of Corollary 3.1, one has for j large enough that

P(|Zτj

t | > r, E, t < τj) ≤ 2P(|Zτj

t | > r|E)P(E, t < τj).

Using the definition of the event E and applying Lemma 3.2 with the strong Markov
property for |Zτj

s | = R, one has

P (|Zτj

t | > r |E) ≤ 2e−c̄β(r−3R/2)2η−1
k /8, ∀ r ≥ R1 > 3R/2. (3.48)

Hence, one then has

E
[
|Zτj

t |1E1{|Zτj
t |>R1,t<τj}

]

≤ 2
[
R1e

−c̄β(R1−3R/2)2η−1
k /8 +

∫ ∞

R1

e−c̄β(r−3R/2)2η−1
k /8dr

]
P(E, t < τj)

≤ 2(R1 + 8ηk c̄−1β−1(R1 − 3R/2)−1)e−c̄β(R1−3R/2)2η−1
k /8

P(E, t < τj)

≤ 3R1e
−c̄β(R1−3R/2)2η−1

k
/8

P(E, t < τj).

Next, we aim to show that

E[|Zτj

t |1E1{t<τj}] ≥
R

5
P(E, t < τj).

In fact,

E[|Zτj

t |1E1{t<τj}] =
∫ ∞

0

P(|Zτj

t | > r, E, t < τj)dr

≥
∫ R/4

0

P(|Zτj

t | > r, E, t < τj)dr.

For r ∈ [0, R/4],

P(|Zτj

t | > r, E, t < τj) ≥ P(E, t < τj) − P(|Zτj

t | ≤ R/4, E, t < τj).

Suppose s is the stopping time for |Zτj | hitting R during [Tk, t], then one needs

2
√

2β−1

∣∣∣∣∣
∫ t∧τj

s∧τj

Z⊗2
t′

|Zt′ |2
· dWt′

∣∣∣∣∣ ≥ R/4,

for |Zτj

t | ≤ R/4 and t < τj to happen (if j is large enough).
By strong Markov property and similar estimate as in the proof of Corollary 3.1,

one has

P(|Zτj

t | ≤ R/4, E, t < τj) ≤ 2P

(
|Zτj

t | ≤ R

4

∣∣∣∣E
)

P(E, t < τj)

≤ 4e−c̄β R2
128 η−1

k P(E, t < τj). (3.49)
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Hence,

P(|Zτj

t | > r, E, t < τj) ≥
R

5
P(E, t < τj)

and the claim (3.47) holds.
Note that the event E ∩ {t < τj} is smaller than {|Zτj

Tk
| ≤ R}∩ {t < τj} so that

E[|Zτj

t |1E1{t<τj}] ≤ E
[
|Zτj

t |1{|Z
τj
Tk

|≤R}1{t<τj}
]
. (3.50)

With (3.47) in hand, the claim then follows.

Next, we obtain the following estimate for the term I1(t) defined in (3.16),
which explains how we treat the random batch at discrete time Tk and make use
of the far away convexity. Note that this result is also based on the tail estimate in
Lemma 3.2.

Before the detailed derivation, we first give a brief summary of proof for Propo-
sition 3.1 regarding the estimate for the random batch. After Itô’s calculation, one
needs to estimate

E[φ(X̄t, Ȳt)(∇U ξk (X̄Tk
) −∇U ξk(ȲTk

))1A],

for some function φ(·, ·), t ∈ [Tk, Tk+1) and some event A independent of the ran-
dom batch ξk. The key step in Proposition 3.1 is to use Taylor’s expansion and
consistency of the random batch:

E[φ(X̄t, Ȳt)(∇U ξk(X̄Tk
) −∇U ξk(ȲTk

))1A]

= E[φ(X̄Tk
, ȲTk

)(∇U ξk(X̄Tk
) −∇U ξk(ȲTk

))1A] + ε(η)

= E[φ(X̄Tk
, ȲTk

)(∇U(X̄Tk
) −∇U(ȲTk

))1A] + ε(η),

where the last equality is due to Eξ[U ξ(·)] = U(·) and the fact that ξk is independent
of X̄Tk

and ȲTk
. Moreover, under the event A, the small remainder term ε(η) can be

estimated through the tail behavior obtained in Lemma 3.2. The details are given
as follows.

Proposition 3.1. Let f be the Lyapunov function defined in (2.7). Suppose

Assumption 2.1 holds. Assume that ηk ≤ 1/2K, KRηk ≤ c̄−
1
2 η

1
2
k |log ηk|

1
2 ≤ 1 (c̄

is the constant coming from Lemma 3.2). Denote

c′ := c̄−1/2

(
2K

R/2 − 1
+ Kcfe−cf (R/2−1)

)
+

4c̄−1/2

R
. (3.51)

Then for j sufficiently large, it holds that

E

[
−f ′(|Zτj

t |) Z
τj

t

|Zτj

t |
· (∇U ξk(X̄Tk

) −∇U ξk(ȲTk
))1{|Z

τj
Tk

|>R}1{t<τj}

]

≤ −(e−cf R1κ − c′η
1
2
k | log ηk|

1
2 − 3e−c̄βR2η−1

k
/128)E

[
|Zτj

Tk
|1{|Zτj

Tk
|>R}

]
.

(3.52)
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Geometric ergodicity of SGLD

Proof. We first show that for j ∈ N+, t ∈ [Tk, Tk+1),

E

[
−f ′(|Zτj

t |) Z
τj

t

|Zτj

t |
· (∇U ξk(X̄Tk

) −∇U ξk(ȲTk
))

∣∣∣∣FTk

]

≤
(
−f ′(|Zτj

Tk
|)

Z
τj

Tk

|Zτj

Tk
|
· (∇U ξk(X̄Tk

) −∇U ξk(ȲTk
))

+ c′η
1
2
k | log ηk|

1
2 |Zτj

Tk
|
)

1{|Zτj
Tk

|>R}. (3.53)

Recall that for t ∈ [Tk, Tk+1),

Z
τj

t = Z
τj

Tk
− (t ∧ τj − Tk ∧ τj)ATk

+ 2
√

2β−1ζ
τj

t . (3.54)

Noting that |f ′(r)| ≤ 1, by Assumption 2.1 and Lemma 3.2, it follows easily that∣∣∣∣E
[
−f ′(|Zτj

t |) Z
τj

t

|Zτj

t |
· ATk

1{|Zτj
Tk

|>R}1{|ζ
τj
t |>c̄−

1
2 η

1
2
k | log ηk|

1
2 }

∣∣∣∣FTk

]∣∣∣∣
≤ 2ηkK|Zτj

Tk
|1{|Zτj

Tk
|>R}. (3.55)

On the other hand, consider the following:

E

[
−f ′(|Zτj

t |) Z
τj

t

|Zτj

t |
· ATk

1{|Z
τj
Tk

|>R}1{|ζτj
t |≤c̄−

1
2 η

1
2
k | log ηk|

1
2 }

∣∣∣∣FTk

]
.

Consider the function g : R
d → R defined by

g(x) := −f ′(|x|) x

|x| · ATk
.

Here, ATk
= ∇U ξk(X̄Tk

)−∇U ξk(ȲTk
) is FTk

measurable, satisfying |ATk
| ≤ K|ZTk

|
by Assumption 2.1. Clearly, for x �= 0, the gradient ∇g(x) = −f ′(|x|)ATk

· 1
|x|(Id −

x⊗2

|x|2 ) − f ′′(|x|)x⊗2

|x|2 · ATk
is well defined. Hence

∇g(λZ
τj

Tk
+ (1 − λ)Zτj

t ) · (−ATk
) ≤ |ATk

|2
|λZ

τj

Tk
+ (1 − λ)Zτj

t |
≤

K2|Zτj

Tk
|2

|λZ
τj

Tk
+ (1 − λ)Zτj

t |
,

where we used f ′′(r)ATk
· x⊗2

|x|2 · ATk
≤ 0. Then, for |ζτj

t | ≤ c̄−
1
2 η

1
2
k | log ηk|

1
2 ,

g(Zτj

t ) = g(Zτj

Tk
) +

(∫ 1

0

∇g(λZ
τj

Tk
+ (1 − λ)Zτj

t )dλ

)
·
(
Z

τj

t − Z
τj

Tk

)

≤ g(Zτj

Tk
) + ηkK2

∫ 1

0

|Zτj

Tk
|2

|λZ
τj

Tk
+ (1 − λ)Zτj

t |
dλ

+
(∫ 1

0

|∇g(λZ
τj

Tk
+ (1 − λ)Zτj

t )|dλ

)
c̄−

1
2 η

1
2
k | log ηk|

1
2 .
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Hence, choosing small ηk such that Kηk ≤ 1
2 and c̄−

1
2 η

1
2
k | log ηk|

1
2 ≤ 1, it is not

difficult to control |λZ
τj

Tk
+ (1 − λ)Zτj

t | ≥ |Zτj

Tk
|(1 − ηkK) − 1 ≥ |Zτj

Tk
|(1/2 − 1/R).

Moreover,

|∇g(λZ
τj

Tk
+ (1 − λ)Zτj

t )| ≤ |ATk
|

|λZ
τj

Tk
+ (1 − λ)Zτj

t |
+ cf |ATk

| e−cf |λZ
τj
Tk

+(1−λ)Z
τj
t |

≤
(

K

R/2 − 1
+ Kcfe−cf (R/2−1)

)
|Zτj

Tk
|.

Hence, for KRηk ≤ c̄−
1
2 η

1
2
k | log ηk|

1
2 ,

g(Zτj

t )1{|Zτj
Tk

|>R} ≤ (g(Zτj

Tk
) + c̄′η

1
2
k | log ηk|

1
2 |Zτj

Tk
|)1{|Zτj

Tk
|>R},

where

c̄′ := c̄−1/2

(
2K

R/2 − 1
+ Kcfe−cf (R/2−1)

)
.

By Lemma 3.2, this then implies

E

[
−f ′(|Zτj

t |) Z
τj

t

|Zτj

t |
· ATk

1{|Zτj
Tk

|>R}1{|ζ
τj
t |≤c̄−1/2η

1
2
k | log ηk|

1
2 }

∣∣∣∣FTk

]

≤ (1 − 2ηk)

(
−f ′(|Zτj

Tk
|)

Z
τj

Tk

|Zτj

Tk
|
· ATk

+ c̄′η
1
2
k | log ηk|

1
2 |Zτj

Tk
|
)

1{|Zτj
Tk

|>R}

≤
(
−f ′(|Zτj

Tk
|)

Z
τj

Tk

|Zτj

Tk
|
· ATk

+ 2ηkK|Zτj

Tk
| + c̄′η

1
2
k | log ηk|

1
2 |Zτj

Tk
|
)

1{|Zτj
Tk

|>R}.

(3.56)

Combining (3.55) and (3.56), the claim (3.53) holds.
Next, we prove (3.52). Clearly,

E

[
−f ′(|Zτj

t |) Z
τj

t

|Zτj

t |
· (∇U ξk(X̄Tk

) −∇U ξk(ȲTk
))1{|Z

τj
Tk

|>R}1{t<τj}

]

= E

[
−f ′(|Zτj

t |) Z
τj

t

|Zτj

t |
·
(
∇U ξk(X̄Tk

) −∇U ξk(ȲTk
)
)
1{|Z

τj
Tk

|>R}

]

−E

[
−f ′(|Zτj

t |) Z
τj

t

|Zτj

t |
·
(
∇U ξk(X̄Tk

) −∇U ξk(ȲTk
)
)
1{|Zτj

Tk
|>R}1{t≥τj}

]

= B1 + B2.

2450035-26

St
oc

h.
 D

yn
. 2

02
4.

24
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

SI
N

G
H

U
A

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/2

6/
24

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



November 19, 2024 11:15 WSPC/S0219-4937 168-SD 2450035

Geometric ergodicity of SGLD

For the first term, using (3.53), the consistency of the random batch ξ, and the
convexity condition in Assumption 2.1, one has

B1 ≤ E

[(
−f ′(|Zτj

Tk
|)

Z
τj

Tk

|Zτj

Tk
|
·
(
∇U ξk(X̄Tk

) −∇U ξk(ȲTk
)
)

+ c′η
1
2
k | log ηk|

1
2 |Zτj

Tk
|
)

1{|Zτj
Tk

|>R}

]

= E

[(
−f ′(|Zτj

Tk
|)

Z
τj

Tk

|Zτj

Tk
|
·
(
∇U(X̄Tk

) −∇U(ȲTk
)
)

+ c′η
1
2
k | log ηk|

1
2 |Zτj

Tk
|
)

1{|Zτj
Tk

|>R}

]

≤ −(e−cfR1κ − c′η
1
2
k | log ηk|

1
2 )E

[
|Zτj

Tk
|1{|Zτj

Tk
|>R}

]
, (3.57)

where we used the convexity outside B(0, R) in the last inequality.
For the second term, by Lipschitz condition in Assumption 2.1, we have

|B2| ≤ KE
[
|Zτj

Tk
|1{|Zτj

Tk
|>R}1{t≥τj}

]
. (3.58)

Finally, combining (3.57), (3.58) and (3.41) in Lemma 3.3, we conclude that for
j large enough

E

[
−f ′(|Zτj

t |) Z
τj

t

|Zτj

t |
· (∇U ξk(X̄Tk

) −∇U ξk(ȲTk
))1{|Zτj

Tk
|>R}1{t<τj}

]

≤ −(e−cf R1κ − c′η
1
2
k | log ηk|

1
2 − 3e−c̄βR2η−1

k /128)E
[
|Zτj

Tk
|1{|Z

τj
Tk

|>R}
]
. (3.59)

Lemma 3.5. It holds that τj is nondecreasing in j and

τj → τ, a.s., (3.60)

where τ is a stopping time defined in (3.3).

Proof of Lemma 3.5. It is clear that τj is nondecreasing in j and supj τj ≤ τ .
Fix T > 0. By Hölder’s inequality and Lemma 2.2, for any T > 0,

E

[
sup
s≤t

|Zs|
]
≤

(
E

[
sup
s≤t

|Zs|2
]) 1

2

≤
(

2E

[
sup
s≤t

|X̄s|2
]

+ 2E

[
sup
s≤t

|Ȳs|2
]) 1

2

≤ C(T ), ∀ t ∈ [0, T ],

(3.61)
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where C(T ) is a positive constant. Then, limj→∞ P(|Zτj∧T | ≥ j) ≤ limj→∞
C(T )

j =
0. By continuity and the definition of τj , τ , one has

sup
j

τj ∧ T = τ ∧ T.

Since T is arbitrary, τj → τ .

Remark 3.1. Lemma 3.5 can also be proved based on moment control for
the stopped process X̄

τj
s = X̄s∧τj , which is a weaker result compared with

Lemma 2.2, and is in fact easier to prove than the moment control of sups≤t |X̄s| in
Lemma 2.2.

Remark 3.2 (Discussion on dimension dependency for the contraction
rate). We believe that the contraction rate c in our result is dimension-free. The
only place that might be influenced by the dimension d is the positive constant C2p

in (3.36) coming from the BDG inequality. So far, we have not found any reference
claiming that the constant in the BDG inequality is independent of the dimension
d. However, the process ζt defined in (3.7) resembles a 1D Brownian Motion, since
the rank of the matrix Z⊗2

t /|Zt|2 is one with trace to be 1. If the direction Zt/|Zt|
does not change, then it is exactly 1D Brownian motion. The difference is that the
direction is changing along time.

4. General Drift Case

In many applications, the drift term may not be of the form −∇U . In this section,
we generalize the results to the general diffusion processes where the drifts are no
longer gradients, namely, one still has ergodicity for the random batch version of
the Euler–Maruyama scheme for diffusion processes.

Consider the time continuous diffusion process

dX = b(X)dt +
√

2β−1dW, (4.1)

where b(·) is a given drift, which might not be a gradient field (in this case, X

is no longer a Langevin diffusion). Let bξ be an unbiased stochastic estimate of b,
E(bξ(·)) = b(·). The random batch version of the Euler–Maruyama scheme for the
continuous SDE (4.1), the correspondence of SGLD iteration, is then given by

X̄Tk+1 = X̄Tk
+ ηkbξk(X̄Tk

) +
√

2β−1(WTk+1 − WTk
). (4.2)

Similarly with (1.2), we only need to analyze the following time interpolation:

X̄t = X̄Tk
−

∫ t

Tk

bξk(X̄Tk
)ds +

∫ t

Tk

√
2β−1dWs, t ∈ [Tk, Tk+1), k = 0, 1, . . . .

(4.3)

In order to obtain similar contraction property, we need the following assump-
tion, which corresponds with Assumption 2.1.
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Assumption 4.1. There exist R > 0, κ > 0, K > 0 such that the followings hold:

(a) ∀|x − y| > R,

− (x − y) · (b(x) − b(y)) ≥ κ|x − y|2; (4.4)

(b) ∀x, y ∈ R
d, ∀ ξ ∈ S,

|bξ(x) − bξ(y)| ≤ K|x − y|. (4.5)

Again, the first assumption can be obtained if for some κ0 > 0 and R0 > 0 the
following holds:

− v · ∇b(x) · v ≥ κ0|v|2, ∀x ∈ R
d\B(0, R0), ∀ v ∈ R

d. (4.6)

Then, we are able to prove the contraction property for the algorithm (4.2),
which naturally implies geometric ergodicity for constant step size ηk ≡ η by con-
traction mapping theorem [18].

Theorem 4.1 (Wasserstein contraction with general drift). Consider the
random Euler–Maruyama iteration (4.3). For any two initial distributions μ0 and
ν0, denote μTk

and νTk
to be the corresponding laws at Tk. Denote h := supk ηk.

Let f be the Lyapunov function defined in (2.7). Then under Assumption 4.1, for
fixed R1 = 2R and cf satisfying 1

3

√
2β−1cfR−1 − K ≥ 0, there exists δ > 0 such

that for h ≤ δ, the following Wasserstein contraction result holds:

Wf (μTk
, νTk

) ≤ e−cTkWf (μ0, ν0), k ∈ N, (4.7)

where

c =
1
3
e−2cf R min(

√
2β−1cfR−1/2, κ).

Consequently,

W1(μTk
, νTk

) ≤ c0e
−cTkW1(μ0, ν0), k ∈ N, c0 := e2cf R. (4.8)

Moreover, if ηk ≡ η is a constant, then for η ≤ δ, the iteration (4.2) has a unique
invariant distribution π̃ such that

W1(μTk
, π̃) ≤ c0e

−cTkW1(μ0, π̃), k ∈ N. (4.9)

The proof is almost the same as that of Theorem 2.1. The only difference is
that we use condition (a) in Assumption 4.1 instead of the convexity condition
(condition (a) in Assumption 2.1) when estimating the term I3 near (3.17).

5. Conclusion

In this paper, We proved the geometric ergodicity of the SGLD algorithm under
nonconvexity settings. As a popular online sampling algorithm, SGLD has shown
exceptional performance when dealing with high-dimensional and large-scaled data.
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Via the technique of reflection coupling, in Theorem 2.1 we proved the Wasser-
stein contraction of SGLD when the target distribution is log-concave only outside
some compact sets. In particular, the time discretization and the minibatch in
SGLD introduced several difficulties when applying the reflection coupling, which
were addressed by a series of careful estimates of conditional expectations. As a
direct corollary, we proved that the SGLD with constant step size has an invari-
ant distribution and obtained its geometric ergodicity in terms of W1 distance.
The generalization to non-gradient drifts was also included. We also remarked that
the contraction rate c in Theorem 2.1 is intuitively dimension-free, as discussed
in Remark 3.2. Remarkably, we believe that many techniques in this article are
applicable to other discrete algorithms involving random batches.
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Appendix A. Missing Proofs

In this section, we give the detailed proofs for Lemmas 2.1 and 2.2.

Proof of Lemma 2.1. Fix r > 2R0, and choose two arbitrary point x, y ∈ R
d

satisfying |x − y| = r. Then it holds that

(x − y) · (∇U(x) −∇U(y))
|x − y|2 =

(x − y) ·
∫ 1

0
∇2U(tx + (1 − t)y)dt · (x − y)

|x − y|2 .

(A.1)

For fixed x, y above, denote

A1 := {t ∈ (0, 1) : |tx + (1 − t)y| ≤ R0}

and

A2 := {t ∈ (0, 1) : |tx + (1 − t)y| > R0}.

Then, by Assumption 2.1,∫ 1

0

∇2U(tx + (1 − t)y)dt =
(∫

A1

+
∫

A2

)
∇2U (tx + (1 − t)y) dt

� (−m(A1)KId) + (m(A2)κ0Id), (A.2)

where m denotes the Lebesgue measure in R
1. Clearly, {tx + (1 − t)y : t ∈ (0, 1)}

is a segment connecting the two point x, y in R
d. Then by definition of the ball
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B(0, R0) := {x ∈ R
d : |x| < R0}, the longest segment contained in B(0, R0) is of

length 2R0. Therefore,

m(A1) ≤
2R0

r
, m(A2) = 1 − m(A1) ≥ 1 − 2R0

r
. (A.3)

Combining (A.1)–(A.3), for all x, y ∈ R
d satisfying |x − y| = r,

(x − y) · (∇U(x) −∇U(y))
|x − y|2 ≥ −2R0

r
K +

(
1 − 2R0

r

)
κ0 = κ0 −

2R0

r
(K + κ0).

(A.4)

Choosing R := max(4R0(K + κ0)/κ0, 2), the conclusion (2.3) then holds with
κ := κ0/2.

Next, we prove the result of p-th moment control for SGLD.

Proof of Lemma 2.2. We first control the moments of X̄t, namely E|X̄t|p on
[0, T ], and then prove the moment control of supt≤T |X̄t|.

We take p ≥ 2 first. By Itô’s formula, for t ∈ [Tk, Tk+1), we have

d|X̄t|p = −p|X̄t|p−2X̄t · ∇U ξk(X̄Tk
)dt + β−1p|X̄t|p−2

(
Id + (p − 2)

X̄⊗2
t

|X̄t|2

)
: Id dt

− p|X̄t|p−2X̄t ·
√

2β−1dW. (A.5)

Note that (Id + (p − 2) X̄⊗2
t

|X̄t|2 ) : Id = p + d − 2. This implies that

d

dt
E|X̄t|p = E[−p|X̄t|p−2X̄t · ∇U ξk(X̄Tk

)] + β−1p(p + d − 2)E|X̄t|p−2. (A.6)

By the Lipschitz condition in Assumption 2.1, we can directly obtain

d

dt
E|X̄t|p ≤ (p − 1)E|X̄t|p + C(p, K)(1 + E|X̄Tk

|p) + β−1p(p + d − 2)E|X̄t|p−2.

This easily yields

sup
t≤T

E|X̄t|p < ∞, (A.7)

where the upper bound depends on p, T, d but is independent of ξk.
Next, we prove

sup
0≤t≤T

E

[
sup

0≤s≤t
|X̄s|p

]
< +∞. (A.8)

Note that |X̄t|p = |X̄0|p + Mt + At, where

Mt :=
∫ t

0

√
2β−1p|X̄s|p−2X̄s · dWs, ∀ t ≥ 0 (A.9)
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and

At := −
∫ t

0

p|X̄s|p−2X̄s · bsds +
∫ t

0

β−1p(p + d − 2)|X̄s|p−2ds,

bt := ∇U ξk(X̄Tk
), ∀ t ∈ [Tk, Tk+1).

(A.10)

Then,

E

[
sup

0≤s≤t
|X̄s|p

]
≤ E|X̄0|p + E

[
sup

0≤s≤t
Ms

]
+ E

[
sup

0≤s≤t
As

]
. (A.11)

Clearly Mt is a martingale. By BDG inequality [22], one has

E

[
sup

0≤s≤t
Ms

]
≤ 4

√
2E[〈M〉

1
2
t ] = 8

√
β−1pE

[(∫ t

0

|X̄s|2p−2ds

) 1
2
]

.

Then using Jensen’s inequality and (A.7), one has

E

[
sup

0≤s≤t
Ms

]
≤ 8

√
β−1p

(∫ t

0

E|X̄s|2p−2ds

) 1
2

≤ C2. (A.12)

For the term E[sup0≤s≤t As], using the Lipshitz condition in Assumption 2.1,
we first observe that for t ∈ [0, T ],

At ≤
∫ t

0

p|X̄s|p−1

(
K sup

0≤u≤s
|X̄u| + b0

)
ds + C3

∫ t

0

|X̄s|p−2ds,

where b0, C3 are time-independent positive constants. Applying Young’s equality,
we have

E

[
sup

0≤s≤t
As

]
≤ (pK + 1)

∫ t

0

E

[
sup

0≤u≤s
|X̄u|p

]
ds + C4. (A.13)

Combining (A.11)–(A.13) together, one has that

E

[
sup

0≤s≤t
|X̄s|p

]
≤ C5 + (pK + 1)

∫ t

0

E

[
sup

0≤u≤s
|X̄u|p

]
ds, ∀ t ∈ [0, T ]. (A.14)

Hence, by Grönwall’s inequality, for all t ∈ [0, T ], we have

E

[
sup

0≤s≤t
|X̄s|p

]
≤ C5e

(pK+1)T . (A.15)

The bound for p ∈ [1, 2] then follows easily by Hölder’s inequality.
Next, we aim to establish the uniform moment control of X̄t for ηk being suf-

ficiently small. Starting with (A.6), the first term on the right-hand side may be
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written as

E[−p|X̄t|p−2X̄t · ∇U ξk(X̄Tk
)]

= E[−p|X̄Tk
|p−2X̄Tk

· ∇U ξk(X̄Tk
)]

+ pE

[∫ 1

0

∇h(λX̄t + (1 − λ)X̄Tk
)dλ · (X̄t − X̄Tk

)
]

:= p(K1 + K2), (A.16)

where the function h is defined by h(x) := −|x|p−2x · ∇U ξk(X̄Tk
), and has a well-

defined gradient ∇h(x) = −∇U ξk(X̄Tk
) · |x|p−2(Id +(p− 2)x⊗2

|x|2 ). Since X̄t − X̄Tk
=

−(t − Tk)∇U ξk(X̄Tk
) +

√
2β−1(Wt − WTk

),

K2 ≤ (p − 1)ηk

∫ 1

0

E|λX̄t + (1 − λ)X̄Tk
|p−2|∇U ξk(X̄Tk

)|2dλ

+ (p − 1)
√

2β−1

∫ 1

0

E|λX̄t + (1 − λ)X̄Tk
|p−2|∇U ξk(X̄Tk

)|
∣∣∣∣
∫ t

Tk

dW

∣∣∣∣ dλ.

Note that p− 2 ≥ 0, |λX̄t +(1−λ)X̄Tk
|p−2 ≤ max(|X̄t|p−2, |X̄Tk

|p−2) ≤ (|X̄t|p−2 +
|X̄Tk

|p−2). Then, one has

K2 ≤ (p − 1)ηk(1 + δ1)K2
E(|X̄t|p−2|X̄Tk

|2 + |X̄Tk
|p)

+ Cδ1b
2
0(p − 1)ηkE(|X̄t|p−2 + |X̄Tk

|p−2)

+
√

β−1ηkC(p, d)[(E|X̄t|p)(p−1)/p + (E|X̄Tk
|p)(p−1)/p + 1].

For the term K1, by Assumption 2.1 and Lemma 2.1,

−x · ∇U(x) ≤ −κ|x|2 + b0|x| + C(R).

Using the consistency of the random batch ξ, we have

K1 = E[−|X̄Tk
|p−2X̄Tk

· ∇U(X̄Tk
)]

= E[−|X̄Tk
|p−2X̄Tk

· ∇U(X̄Tk
)]

≤ −κE|X̄Tk
|p + b0E|X̄Tk

|p−1 + C(R)E|X̄Tk
|p−2. (A.17)

Let εk = (p − 1)ηk(1 + δ1)K2. Then by Young’s inequality, we conclude that

p(K1 + K2) ≤ −
(

κ − εk

(
1 +

2
p

)
− δ2

)
E|X̄Tk

|p

+
(

εk

(
1 − 2

p

)
+ δ2

)
E|X̄t|p + C. (A.18)
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Letting u(t) := E|X̄t|p, one then has for t ∈ [Tk, Tk+1] that

u̇(t) ≤ −
(

κ − εk

(
1 +

2
p

)
− δ2

)
u(Tk) +

(
εk

(
1 − 2

p

)
+ δ2

)
u(t)

+ C(δ1, δ2, p, d). (A.19)

For 0 < λ1 < λ2 and v ≥ 0 satisfying

v̇ ≤ λ1u(t) − λ2u(Tk) + C,

one may obtain by Grönwall’s inequality that

v(Tk+1) ≤
(

eλ1ηk − 1
λ1

(eλ1ηk − 1)λ2

)
v(Tk) + C

1
λ1

(eλ1ηk − 1).

However, since

eλ1ηk − 1
λ1

(eλ1ηk − 1)λ2 =
(

1 − λ2

λ1

)
eλ1ηk +

λ2

λ1
≤ 1 + (λ1 − λ2)ηk,

one then has

v(Tk+1) ≤ [1 + (λ1 − λ2)]v(Tk)C
1
λ1

(eλ1ηk − 1).

We apply this elementary derivation for λ1 = εk(1− 2/p) + δ2 and λ2 = κ− εk(1 +
2/p) − δ2, then obtain

u(Tk+1) ≤ [1 − (κ − 2εk − 2δ2)ηk]u(Tk) + C(p, d, β, δ1, δ2, ηk).

Since we can choose δ1 and δ2 small, by the condition ηk ≤ κ/(2(p − 1)K2) − δ

given, κ−2εk −2δ2 is bounded below by a positive number and C(p, d, β, δ1, δ2, ηk)
has a uniform upper bound in k. Moreover, since κ ≤ K, (κ − 2εk − 2δ2)ηk < 1.
The claim then follows.

Appendix B. Details for Construction of Reflection Coupling and
Lyapunov Function

Here we present more details for the principal method employed in this study —
reflection coupling equipped with a specific Lyapunov function f(·), as described
in the introduction.

Consider the two time marginal distributions ρ
(1)
t , ρ

(2)
t of some SDEs (in our

result, it is (1.2)), starting from the initial distributions ρ
(1)
0 , ρ

(2)
0 , respectively.

As has been discussed in the introduction, here we aim to prove the contraction
property:

Wf (ρ(1)
t , ρ

(2)
t ) � e−ctWf (ρ(1)

0 , ρ
(2)
0 ).

Here, f(·) is some suitable Lyapunov function and Wf (·, ·) is the Kantorovich–
Rubinstein distance associated with the cost function f(·). The reflection coupling
method begins with choosing the pair of initial points (X0, Y0) such that Ef(|X0 −
Y0|) = Wf (ρ(1)

0 , ρ
(2)
0 ). Then we choose a realization X̄t of SGLD (1.2) such that the
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Geometric ergodicity of SGLD

law of Xt is ρ
(1)
t and the law of X0 is ρ

(1)
0 . The key step in the reflection coupling

method is that we construct a companion process Yt with Y0 coupled above with
X0 and satisfies: (i) Yt shares the same Brownian motion with X̄t, and has an
additional reflection term in its diffusion part, and Yt also shares the same random
batch ξk at each Tk in our SGLD setting (1.2); (ii) Yt is also a realization of the
same SDE for Xt and the law of Yt is ρ

(2)
t . Then the contraction property mentioned

above is reduced to estimation of the negative Lyapunov exponent for the paired
dynamics (Xt, Yt). Namely, we aim to show that

Ef(|Xt − Yt|) ≤ Ce−Ct
Ef(|X0 − Y0|).

In the followings, we will first introduce the necessity of using the technique of
reflection coupling, and then introduce the motivation of the construction of the
reflection coupling and the associated Lyapunov function. Note that the geomet-
ric ergodicity arises from the strong convexity of the potential U(·) outside some
compact sets. In fact, by strong monotonicity property in Lemma 2.1

(x − y) · (∇U(x) −∇U(y)) ≥ κ|x − y|2,

any such pair (Xt, Yt) would attract each other if they are sufficiently far away.
Take the following numerical scheme for SDE as a simple illustration:

Xn+1 = Xn − η∇U(Xn) +
√

ηζ, ζ ∼ N (0, 1). (B.1)

In the settings of this paper, on one hand, as mentioned above, the strong convexity
outside some compact sets of the potential U(·) in the drift implies that any paired
iteration (Xn, Y n) associated with (B.1) would attract each other if they are far
away. On the other hand, the external force is weak inside the compact set since
in this area the potential U(·) does not have strong convexity. In this case, the
diffusion term would dominates the drift, since c1

√
η ≤ c2η, where c1, c1 are of

O(1). Therefore, at first glance, one cannot directly prove the contraction when the
diffusion overshadows the drift. Nonetheless, the application of reflection coupling
[10] offers a resolution by facilitating the closer convergence of two particles Xt, Yt

even within the compact set. Take the following overdamped Langevin diffusion for
example:

dXt = b(Xt)dt + dW, X |t=0 = X0.

The reflection coupling method for the overdamped Langevin diffusion considers
another slave copy of Xt, which shares the same Brownian motion but has a reflec-
tion term in the diffusion part:

dYt = b(Yt)dt +
(

Id − 2
(Xt − Yt)⊗2

|Xt − Yt|2

)
· dW, Y |t=0 = Y0.

It can be shown that the diffusion with a reflection is still a Brownian motion
(see [10] or Lemma 3.1), so Yt is also a realization of the overdamped Langevin
diffusion. With the reflection matrix (Id − 2 (Xt−Yt)

⊗2

|Xt−Yt|2 ), the two particles Xt, Yt

2450035-35

St
oc

h.
 D

yn
. 2

02
4.

24
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

SI
N

G
H

U
A

 U
N

IV
E

R
SI

T
Y

 o
n 

11
/2

6/
24

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



November 19, 2024 11:15 WSPC/S0219-4937 168-SD 2450035

L. Li, J.-G. Liu & Y. Wang

would eventually move towards each other when the diffusion dominates the drift.
In fact, from the reflection operator (Id −2 (Xt−Yt)

⊗2

|Xt−Yt|2 ), the Brownian motion can be
either approaching or depart from each other. However, the restored force would
prevent Xt, Yt from going too far away from each other. With this intuitive picture
of how the reflected couple (Xt, Yt) moves, it is then left to prove the contraction
via practical calculation, namely, one needs to find some Lyapunov function f(·)
satisfying

(1) C1r ≤ f(r) ≤ C2r for all r.
(2) Ef(|Xt − Yt|) decays exponentially in time.

Below we discuss a bit on our motivation for how to fund such Lyapunov function.
One can see from Itô’s formula that

d

dt
E[f(|Xt − Yt|)]

= E

[
f ′′(|Xt − Yt|) + f ′(|Xt − Yt|)

Xt − Yt

|Xt − Yt|
· (b(Xt) − b(Yt))

]
. (B.2)

Since the goal is to obtain an estimate of the form
d

dt
E[f(|Xt − Yt|)] � −E[f(|Xt − Yt|)],

one naturally requires the following conditions when constructing such f : (1) C1r ≤
f(r) ≤ C2r; (2) |f ′(r)| ≤ L; (3) f ′′(r) ≤ −C3r for all r < R1, where R1 is some
positive constant larger than R. If these conditions are satisfied, then one can see
from (B.2) that

d

dt
E[f(|Xt − Yt|)1{|Xt−Yt|<R}]

≤ E[(−C3|Xt − Yt| + L‖b′‖∞|Xt − Yt|)1{|Xt−Yt|<R}]

� −E[f(|Xt − Yt|)1{|Xt−Yt|<R}],

provided that C3 is relatively large. This then motivates one to seek a concave
increasing Lyapunov function f of the form

f(r) :=
∫ r

0

e−cf(s∧R1)ds, r ≥ 0.

for some positive cf , R1 to be determined (in our result for SGLD, we choose
R1 = 2R and the required condition for cf is stated in (2.9)). Then one can
obtain the contraction property for this reflection coupled continuous dynamics
(Xt, Yt).
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