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In many real-world scenarios, the underlying random fluctuations are non-Gaussian,
particularly in contexts where heavy-tailed data distributions arise. A typical example
of such non-Gaussian phenomena calls for Lévy noise, which accommodates jumps and
extreme variations. We propose the Random Batch Method for interacting particle sys-
tems driven by Lévy noises (RBM-Lévy), which can be viewed as an extension of the
original RBM algorithm in [S. Jin, L. Li and J.-G. Liu, Random batch methods (RBM)
for interacting particle systems, J. Comput. Phys. 400 (2020) 108877]. In our RBM-Lévy
algorithm, N particles are randomly grouped into small batches of size p, and interac-
tions occur only within each batch for a short time. Then one reshuffles the particles and
continues to repeat this shuffle-and-interact process. In other words, by replacing the
weak interacting force by the strong and sparse interacting force, RBM-Lévy dramati-
cally reduces the computational cost from O(N?2) to O(pN) per time step. Meanwhile,
the resulting dynamics converges to the original interacting particle system, even at the
appearance of the Lévy jump. We rigorously prove this convergence in Wasserstein dis-
tance, assuming either a finite or infinite second moment of the Lévy measure. Some
numerical examples are given to verify our convergence rate.

Keywords: Interacting particle system; random mini-batch; Lévy noise; heavy-tailed
data.

AMS Subject Classification: 65C20, 60H30, 70-08

*Corresponding author.

2550034-1


https://dx.doi.org/10.1142/S0219493725500340
https://orcid.org/0000-0002-9911-4045
https://orcid.org/0000-0001-9769-7411

J.-G. Liu & Y. Wang

1. Introduction

Interacting particle systems can effectively model various systems in both natural
and social sciences, such as molecules in fluids [22], plasma [4], swarming [7], [l
[I7, [45], chemotaxis [3| 28], flocking [II, 13| 26], synchronization [I0l 26], consensus
[42], random vortex model [40], and beyond. In the interacting particle system,
each individual is called a particle, and they interact with each other according to
some interacting force, which can be derived from existing physical or economical
theories such as the Newton’s second law. Traditionally, people add white noise with
continuous trajectories to describe the uncertainty of particle movement. However,
in many applications, the random fluctuation of is usually non-Gaussian, and people
usually use Lévy-type noises that allow jumps to model these phenomena [5 18] [29]
[43] [47]. In this paper, we focus on efficient simulation and its rigorous convergence
analysis of interacting particle systems driven by (pure jump) Lévy processes. For
the pairwise interacting case, direct evaluation of the interaction requires complexity
of O(N?) per time step. Inspired by the Random Batch Method (RBM) (for the
Gaussian noise case) proposed in [30], we extend this idea to the case where the noise
in the system has jumps. In detail, the random shuffle-interact idea of RBM can be
described as follows (also see in Algorithm [[lbelow): in each (kth) time interval, we
randomly divide {1,..., N} into % small batches, each with batch size p (p < N,
often p = 2), denoted by Cr, (¢ =1,2,..., %), and particles interact among each
other within each batch for a short time. Then, the particles are reshuffled, and the
process continues. Consequently, the computational cost is reduced to O(pN) per
time step while one may still have convergence, even in the Lévy noise case. In this
paper, we provide the first rigorous proof for the convergence guarantee of RBM
with Lévy noise and bounded interacting kernel with an explicit convergence rate.
The convergence analysis is valid for both finite and infinite second-moment cases.
In particular, our result is valid for the rotational invariant a-stable case, which is
applicable in various practical tasks.

Let us first introduce the basic settings of this paper. Consider the following
first-order pairwise interacting particle system driven by Lévy processes:

Xi(t) = X(0) — /0 VV(X(s))ds +/0 ﬁ ZK(Xj(S) — X(s))ds + L(t),
j#i
1<i<N, (1.1)

where X? € R, V : R? — RY, K : R? — R? and L‘(t) are N independent Lévy
processes with Lévy measure v satisfying v({0}) = 0 and

/ 1A |zPv(dz) < co. (1.2)
Rd

Moreover, the Lévy—Ito decomposition gives

L(t)P.V./Ot /Z<1z]\7(d5,dz)+/0t /|Z|>1ZN(ds,dz), (1.3)
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Random batch methods for Lévy particles

where N (dt,dz) is the Poisson measure and N (dt,dz) := N(dt,dz) — EN(dt,dz) =
N(dt,dz) — v(dz)dt is the compensated Poisson measure. Also, P.V. denotes the
Cauchy principle value, and in the followings we will omit this notation for sim-
plicity. We would refer the readers to [2] for more detailed introduction for the
Lévy process. We also provide some related basic knowledge in [Appendix A]of this
paper.

As we would see in Algorithm [Il the Random Batch Method replaces the weak
interaction force 5K (X7 — X*) between all pairs (X7, X*) with some strong
interaction force ZﬁK (X7 — X% within pairs selected in a small batch with size p. In
other words, the main modification in the RBM is replacing ﬁ Z#i K(X7— X%
(the total force acting on X?) with p%l Yjeczi K(X7=X'), where C C {1,..., N}
is a random batch of size p. Consequently, this replacement dramatically reduces the
computational cost from O(N?) to O(pN) per time step, and provides an unbiased
approximation for the force/velocity field of the original interacting particle system.
This means for any fixed deterministic sequence (z),,

1 - 1 .
JEC,jF#i j#i

where the randomness is from the random batch C. The above consistency property
is quite intuitive since conditioning on i € C, the probability that another index j is
chosen into C is K,;fl. This consistency property (L)) of the random batch indicates
that the modified dynamics in RBM should be close to the original interacting
particle system, and in fact it plays a significant role in our convergence analysis.

In detail, the Random Batch Method for (II]) acts as follows: Let x > 0 be the
constant time step, p be the batch size (assume that p divides N), and denote t,, :=
mk form = 0,1,2,.... For eachm, divide {1,..., N} into p batches .1, ..., Cpo n/p
randomly, for each ¢ and ¢ such that ¢ € C,, 4, update the X* by solving the following
SDE for t € [tm, timi1):

Xi(t) = X (ty) — /t VV(X(s))ds

m

+/t L ST K(X(s) - XU(s))ds + (L(t) — Li(tm)).  (1.5)

1
m P e,

Then one reshuffles the particles and continues to repeat this shuffle-and-interact
procedure. A detailed algorithm is demonstrated in Algorithm [l

Originally proposed in [30], the Random Batch Method for systems with contin-
uous noises has been applied to design various practical algorithms. For instance,
in [23, 33] 37, 38|, the authors combined the RBM and the Ewald algorithm and
proposed the so-called Random Batch Ewald (RBE) method for the molecular
dynamics. Other recent extensions of RBM include its application to sampling
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Algorithm 1. RBM-Lévy
1: form e {0,...,£ -1} do
2: Divide {1,2,..., N} into % batches randomly.
3: for each batch Cy, 4 (¢ =1,2,..., %) do
4: Update X' (where i € Cp,4) by solving the following SDE with ¢ €
[ty tint]:

dX' = —VV(X")dt + ]% > K(X7 - XY)dt+dL'.
FECm g, i
5: end for
6: end for

[36], interacting quantum particle systems [24] 4], second-order interacting parti-
cle systems [32], multi-species stochastic interacting particle systems [15] 3], the
Poisson-Nernst-Planck (PNP) equation [35], the Landau equation [8] and Landau-
type equations [I9], to name a few. On the other hand, instead of the Brownian
motion, the usage of Lévy noise is of great significance in various dynamical sys-
tems. In fact, in many real-world scenarios, the underlying random fluctuations are
non-Gaussian, particularly in contexts where heavy-tailed data distributions arise.
Typical examples include the COVID-19 deaths [I1]], hurricane-related losses [16],
etc. A typical example of such non-Gaussian phenomena calls for Lévy noise, which
accommodates jumps and extreme variations. For instance, recently the authors in
[B] used the Lévy noise to study the fluctuation of the stochastic gradient descent
(SGD) when the data (random mini-batch) has infinite variance. Also, the authors
of [47] studied the small-mass limit of interacting particle systems driven by Lévy
processes. Moreover, the mean-field theory for interacting particle systems driven
by noises with jumps has been investigated [39, 4], and other properties such as
the Smoluchowski—Kramers limit for SDEs driven by Lévy noises has been studied
[46] [48]. However, the efficient simulation of the interacting particle systems driven
by Lévy process remains open. The main contribution of this paper is addressing
this problem by applying the random batch idea to simulate this dynamics with
Lévy jumps, and providing a rigorous convergence guarantee as the time step s
tends to zero.

At first glance, after only a few iterations, the resulted dynamics would differ
a lot from the original dynamics, due to the difference between the weak interac-
tion and the strong interaction mentioned above. However, for k — 0, the RBM
dynamics would be close to the original one due to the law of large number in
time. In detail, we prove in Theorems 2.1 and that whether or not the Lévy
noise has finite second moment, RBM always converges to the interacting particle
system uniformly in time under Wasserstein distances (to be more specific, under
Wasserstein-2 distance when the second moment is finite, and under Wasserstein-1
distance when the second moment is infinite).
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Part of our techniques for the convergence analysis are similar to existing ones
(for instance, in [6l [30]). However, due to the discontinuous nature of the Lévy noise,
the associated analysis is not very trivial. For instance, one significant challenge we
overcome during the derivation in this paper is as follows:

e We address the possible singularity problem in the case when the Lévy process
does not have finite second moment. This problem shares the same nature of
the singularity of = +— %mo‘ at © = 0 for a € (1,2). We solve this issue
by introducing a regularized “norm” |- || = /|- |?> + € and choosing suitable

value of e.

Notably, our techniques can be naturally extended to analyze other systems, such as
the kinetic interacting particle systems with Lévy noise, and systems with unequal
particle masses. However, it is still unclear whether we could establish convergence
for more complicated cases, for instance, the space-inhomogeneous noise, and the
singular interacting kernels. We leave these as possible future work.

The rest of this paper is organized as follows. In Sec. Bl we prove the conver-
gence of RBM-Lévy to the original interacting particle system driven by the Lévy
processes. We consider the Lévy noise with finite second moments in Sec. 2.1l and
with infinite second moments in Sec. Some lemmas used in the main proofs are
given in Sec. Bl In Sec. d we run some numerical tests to evaluate the RBM-Lévy
algorithm and verify our theory in Sec. 2

2. Convergence Anlyasis for Random Batch Methods
with Lévy Noise

Recall the RBM for interacting particle system with Lévy noise defined in ().
In this section, under suitable assumptions for the Lévy measure v as well as for
the forces V (-), K(-,+), we prove its convergence to the interacting particle system
(T as the time step x — 0.

Denote pgl), ﬁgl) the first marginal distributions of (Il), (L), respectively, we
aim to estimate the Wasserstein-p distance (for p = 1, 2)

Wo(o 5. (2.1)

Note that for any two probability measure p, v, W, (p, v) is defined by

1/p
W, = inf —y|Pd .
(1, 1) ('yell'ﬁﬂ,v) /Rdxw lz -y w)

In our results below, we only consider p = 1,2 for simplicity: in Sec. 21l we
assume that the Lévy measure v has finite second moment, and show that the
error Wg(pgl),ﬁgl)) is at most O(y/k) uniformly in time. In Sec. 22 we assume
that the Lévy measure v only has finite first moment, and show that the error

Wi (pgl), ﬁgl)) is also at most O(y/k) uniformly in time.
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2.1. Systems driven by Lévy processes with finite second moments

We first consider the case where the Levy process has finite second moment. In
detail, we assume the following.

Assumption 1 (Finite second moment). The Lévy measure v satisfies
/ 12u(dz) < oo, (2.2)
|z[=1

Moreover, we need the following assumptions for V', K in the drift and the initial
states.

Assumption 2. Assume that K is bounded by Mg and Lg-Lipschitz, V is Ay-
strongly convex (i.e. function x — V(z) — 2¥|xz|? is convex), VV is Ly-Lipschitz.

Assumption 3. The initial states satisfy

X'(0) = X¥(0), su‘pIE|Xi(O)|2 < o0, supIE|V(Xi(O))|2 < 0. (2.3)

Theorem 2.1. Let pgl), [),El) be the first marginal distributions of (1), (LI,
respectively. Under Assumptions[BLBl for small time step k, there exists a positive
constant C' such that

sup Wa(pl", pV) < Cr3. (2.4)

t>0

Proof. We consider the synchronous coupling (same Lévy noise): for 1 <i < N,
X(t) = X"(0) - /t VV(X'(s))ds + /t L > K(X(s)
0 o N—1 o

— X'(s))ds + L'(t), -
cin i [ X% (s))ds L s
Xi(t) = Xi(0) /O VV(X"(s))ds + Y P 1#1_&;“@ e

— X'(s))ds + L'(t). o

Recall that ¢ = 1,2,..., % in Algorithm [Il and for each index ¢, there exists a ¢
such that i € Cp, 4. In (Z06]) and what follows, we denote such ¢ by ¢(7) so that one
always has i € Cpy, q(i)-

Denote

ZHt) = X(t) — X'(¢). (2.7)

Then, by exchangeability and Assumption 2 we have (some trivial details omitted)

SEIZ0P < ~Ow — 2L) /:EIZ%s)FdS + /OtE[Z%s) Xa (X (9)ds,  (2.8)
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where
XX = 3 KR - X))
J#1,J€Cm q(1)
*ﬁZKW(s) — X'(s)). (2.9)
J#i
Denote
R(t) == E[ZY(t) - X1 (X (1))] (2.10)
Then

o

R(t) = E[Z (tm) - X1 (Xe,)] + E[Z" (t) - (X 1 (X (1) = X1 (X (E)))]
+E[(Z (1) = 2 (tm)) - X1 (X (2))]
=L+ 1+ (2.11)
Clearly,
I =0. (2.12)

In fact, at t,,, the random batch C,, 4(;) is independent of )N(l(tm) and X%(t,,), and
since

E[Xn,i (X (tr))] = E[E[Xpn,i(X (tm)) | X*(tm),1 <i < NJJ =0

due to the consistency of the random batch, we know that I; = 0.
For the term Iy, by Lemma below, we have

E|ZY(t) — Z ' (tm)]? < CK?,  t € [tim,tm). (2.13)

Moreover, defining the F;, = o(f(i(s),Xi(s),Ck,q(i),k <m,1 <i<N,s<ty),
we prove in Lemma below that

E[Z (tm) - (X1 (X (1) = X1 (X (tm))] < COR(BIZ (b)) *)2. (2.14)

Consequently, combining with Lemma 3.2l and Young’s inequality, for any n > 0 to
be determined, we have

I, < Cr* + CryE|Z1(1)]2 < (C + 49) w2+ nE|Z ()2 (2.15)
U

For the term I3, since K is bounded by My Assumption 2] we know that
X1 (X (t)) is bounded by 2M . Therefore, using Lemma B.2] again, we have

I3 < Ck. (2.16)

Finally, combining the estimates for I, I5, I5, and choosing ¢ (in (Z15))) small
enough such that n < Ay — 2Lk, we have

E|Z1 (1) 2 g/o (—CE|Z(s) + C). (2.17)

2550034-7



J.-G. Liu & Y. Wang

By using Gronwall’s inequality, and by definition of the Wasserstein-2 distance, we
obtain the desired uniform-in-time error estimate:

sup Wa(p, i) < Crt. (2.18)
t>0

Above, the values of the constant C' may vary but are all independent of the time
t and the particle number N. O

2.2. Systems driven by Lévy processes with infinite second
moments

In many applications, the Lévy measure does not have finite second-order moment.
For instance, if we consider instead the rotational invariant a-stable Lévy process
with o € (1,2), the corresponding RBM algorithm would still have convergence.
Moreover, the convergence is still non-asymptotic, thanks to the strong convexity
of the external potential V.

In detail, we replace Assumption [Il by the following weaker condition.

Assumption 4 (Finite first moment). The Lévy measure v satisfies
/ |z|v(dz) < oo. (2.19)
|z[=1

Theorem 2.2. Let pgl), [),(51) be the first marginal distributions of (1), (LI,
respectively. Under Assumptions2 BLEL for small time step k, there exists a positive
constant C' such that

sup Wl(pgl) , ﬁgl)) < Ck>. (2.20)

t>0

Proof. We still consider the synchronous coupling (same Lévy noise): for
1<i<N,

Xi(t):Xi(O)—/O VV(Xi(s))ds—k/O e SK(X(s)
J#i

— X(s))ds + L(t), (2.21)
Cily = 0y - [TV [ s
K1) = Xi(0) /0 V(i) + [ pl#i,jezc:m,qm K(X4(s)
— X'(s))ds + L(t) (2.22)
and denote
Zi(t) = X(t) — X(t). (2.23)

For € > 0, define
|x|e :== /]x]? + €2. (2.24)

2550034-8
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Then we have

IZl(f)|e=|Zl(0)le+/0 1ZH(s)[ 21 (s) - | —(VV(XH(s)) = VV(XH(s)))

S K(Ris) - X))

—1
p J#L,JE€CH q(1)
1 )
- J _x!
N1 ;K(X (5) — X(s)) | | ds. (2.25)

Taking expectation, since X'(0) = X*(0), and using the strongly-convexity of V(-),
the boundedness of K(-), as well as the exchangeability property of the particle
system, we have

E|Z'(t)]e < 6+/0 E[-(\v —2Lx)|Z"(s)|1 2" (s)’]ds

+ / E[|Z(s)|71 21 (s) - X1 (X ()], (2.26)
0
where

1 (X(s) = — Y K(X(s5)-X'(s))

J#1L,5€Cm q(1)
1 - -
— J _x!
N1 ZK(X (s) — X1(s)). (2.27)
J#1
Clearly, from the definition of | - |¢, we know that |z|c < |z| 4+ €. Then
~E[Z(s)|TMZ1 ()] < —E[Z ()12 (5)]e = €)?]

2
=E |—|Z'(s)|c +2¢ — NGOET:
< —E|Z'(s)|c + 2e. (2.28)
For the remaining term, we denote it by
R(t) :=E[Z' ()| Z1(t) - X a (X(1))]. (2.29)

Then
R(t) = E[Z" (tw)| 2 (tm) - X1 (X))
+E(|Z (tm)| 71 2" (tm) - (X1 (X (F)) = X1 (X (E)))]
+E[(Z' 0|71 21 (6) = 12" (tm)| 71 21 (tn)) - X1 (X (2))]
= Jy + Jo+ Js. (2.30)

2550034-9
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Similarly with (ZI2)), by consistency of the random batch,
Jy = 0. (2.31)

For the term Jo, since |Z1(t,,)|- | Z  (tm)] < 1, by Lemma B3 we have

Jo <E|Xm 1 (X (1)) — Xt (X (tm))| < Ckr. (2.32)
For the term J3, we consider the function f(x) := - Clearly, Vi) =
|z| 7t (1a— %) is always well-defined, and |V f(z)| < 2/e. Then, using the bounded-

ness of K(+) (so that X, 1(X (t)) is bounded by 2M ), as well as Holder’s continuity
property of Z! in Lemma B.2 we have

s < 2B|ZM(1) — 2N (t)] - 2My < CF. (2.33)
€ €

Combining all the above, we conclude that
t
E|Z ()] < e + / (—CE|Z(5)|. + Cle + 5 + re=1))ds. (2.34)
0

Finally, choosing € = sz for n < 1, by Grénwall’s inequality, and since |z| < |z].,
we have

E|Z'(t)| < E|Z' ()| < Ck>. (2.35)

Then, by definition of the Wasserstein-1 distance, we obtain the desired uniform-
in-time error estimate:

sup Wl(pgl) , ﬁgl)) < Ck?. (2.36)
>0

Above, the values of the constant C may vary but are all independent of the time
t and the particle number N. O

A significant corollary of our result is the following a-stable case.

Assumption 5. The Lévy measure v satisfies

297 ol ((d + «) /2)

- —(d+a) =
v(dz) = Cq,alz| dz, Caa = m2/d0(1 —a/2)

ac(1,2). (2.37)

Corollary 2.1 (Rotational invariant a-stable case). Let ,0,(51), ﬁgl) the first

marginal distributions of (1)), (LX), respectively. Under Assumptions 2 B B for
small time step k, there exists a positive constant C such that

sup Wi (o, 5iM)) < Crt. (2.38)
t>0

Furthermore, a very natural question is: why we consider different mea-
sures (Wasserstein-2 distance in Theorem 21)) and Wasserstein-1 distance for
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Theorem [2:2)? To our knowledge, the choice of order of the Wasserstein distances
is strongly related with the value of
P :=sup{p > 0: E|L(t)|’ < o}, (2.39)

which is determined by the integrability of the Lévy measure v. In other words,
the convergence topology is determined by the intensity of large jumps. Moreover,
after exactly the same derivation, we can see that if we replace

/>1 I2lv(dz) < oo (2.40)
by )
/>1 |z|“v(dz) < oo (2.41)

for some a € (1,2), then the result in Theorem can be correspondingly
replaced by
sup Wa(pgl),ﬁgl)) < Ck?. (2.42)
>0
In this paper, we consider the W; distance just for simplicity, and we separately
state the finite and infinite second moment cases because of the difference in the
proof. We summarize the W, (a € (1,2)) results discussed above into the following
corollary.

Assumption 6 (Finite pth moment). Fix « € (1,2). Lévy measure v satisfies
/ 2|7 1(dz) < oo, (2.43)
|z[=1

Corollary 2.2. Let pgl), ﬁgl) be the first marginal distributions of (LI)), (L3,
respectively. Under Assumptions2 BL6L for small time step k, there exists a positive
constant C' such that
sup Wa (ot itM) < Cr. (2.44)
t>0

3. Lemmas Used in the Proof

In this section, we provide some technical lemmas used in the proof of Theorems[2.1]
and The first lemma is the uniform-in-time moment bound for both the inter-
acting particle system and the associated RBM dynamics. We consider the finite
and infinite second moment cases separately.

Lemma 3.1 (Uniform-in-time moment estimate). Suppose Assumptions[2]
hold.

(1) Suppose Assumption[Dl holds. Then there exists positive constant C' independent
of i such that

supE[X ()2 < C < o0, supE|X'(#)?<C<oo, 1<i<N. (3.1)
>0 >0

2550034-11
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(2) Suppose AssumptionBl holds. Then there exists positive constant C independent
of i such that

supE[X (1) < C < 00, supE|X'(t)| <C <oo, 1<i<N. (3.2
>0 >0

Proof.

(1) Lévy jump with finite second-order moments. We first consider the pro-
cess X(t). By Ito’s formula, we have

IXT()]? = | X(0)]* + / 2X"(5—) - dX"(s) + (X))
+ Z(|Xi(s) — X(s—) — 2X(s—)AX(s)). (3.3)

s<t

Here, AX*(s) := X%(s) — X%(s—), and (X?)¢ denotes the continuous part of the
semimartingale X*. Recall that

X(t) _Xi(O)/O VV(X'(s))ds

/ N—lZK (X7(s) — X'(s))ds + Li(t), 1<i<N. (3.4)
J#i

Clearly, the continuous part of the semi-martingale X? has zero quadratic variation
({((X%)¢); = 0), since there is no Brownian motion. Moreover, recall that

Li(r) _//1 i(da, dz) //mzjw (ds, dz). (3.5)

Also note that fo Xi(s—)d(X?)¢ f X(s)d(X")e, we have

X2 = [X(0)2 + / 2X(s) - (— YV (X(s)

1 > K(X(s) - Xi(s))> ds

i

/ ) 2 = X () POV,

//>1 X (=) + 2" = | X" (s—)[*)v(dz)ds

+ / /Z<1(|Xi(8_) + Z|2 _ |Xi<3—)|2 — 9. XZ(S_))V(dZ)ds
(3.6)

2550034-12
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By Assumption[2] V is Ay -convex, and K is Lg-Lipschitz. Then since X!,..., XV
are exchangeable, we have

! i i 1 j i
E/O 2X(s) - | —=VV(X(s)) + mZK(X (s) — X'(s)) | ds

< —2(\, — 2Lx) /tE|Xi(s)|2ds. (3.7)
0

The term fg Joa(IX P (t=) + 2> — | X (t—)|*)N(dz, dt) is a martingale, so it has zero
mean. For the other terms involving the Lévy meausre v, by Young’s inequality, we
have

E/o /|Z|21(|Xi(8—) + z|2 _ |Xi(t_)|2)v(dz)d3

¢ ¢
= / / |z|2v(dz)ds + 2E/ X'(s—) - zv(dz)ds
0 Jjz>1 0 Jlzl>1

i Z2V z 1% z t i825
<(1+5) (/MH (d >)t+26 (1= 1)) [ EIXG)Pds, (39

where > 0 is a constant to be determined. For the other term, we have

T

= (/ |z|2u(dz)> t. (3.9)
|z|<1

Finally, since v is a Levy measure, f\z\<1 |2|?v(dz) < oo. By Assumption [
f|2|>1 |2|?v(dz) < oco. Hence, concluding all the above, choosing small § such that
ov({|z] > 1}) < Ay — 2Lk, we have

t

E|X(1)]2 < E|XT(0) — cl/ E| X(s)|2ds + Cot. (3.10)
0

By Gronwall’s inequality, and since sup; E|X%(0)|? < oo, we conclude that

supE| X (t)]* < C < . (3.11)
t>0
For X, using exactly the same argument, we can obtain
t
E[IX(t)]?|7,.] <E[X'(0)]* - Cy / E[|X"(s)*F,,]ds + Cat, t € [t tms1).
0

Consequently,

sup E| X (1)2 < C < . (3.12)
>0
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(2) Lévy jump with infinite second-order moments.
We first consider the process X. Recall that |z|. = /|z|? + €2 for € > 0. By Itd’s

formula, we have
(X' (t)]e = X" (0)] +/0 (X (s)]1 X (5) - (~VV(X'(s)

T S KX (s) — X (s))ds

J#

//Rd X7 (5=) + 2le — [ X*(s—)| )N (dz, ds)

/ />1 [ X" (s=) + 2le = | X" (s—)|e)v(dz)ds

[ el - X

—|X"(5)[eX " (s—) - 2)v(dz)ds. (3.13)

Note that the third line above is a martingale which has zero expectation. For the
first two lines, by Assumption [2 V is Ay-convex, and K is L g-Lipschitz. Then
since X', ..., X" are exchangeable, we have

E/O |X(s)| 71X (s) - ( VV(Xi(s ZK (X7 (s) — X'(s )))ds

Jséz

< [ MBI X))+ M)
0

t
< / (“AVEIX(8)]e + 2Ave + Mg )ds, (3.14)
0

where in the last inequality we have used the equality |z|. < |z| + e. For the third
line in BI3), since |V.|z|c| = |z|7t|z] < 1, we have

/ />1 X7 (5=) + zle — | X" (s—)|e)v(dz)ds < /Ot /Z>1|z|y(dz)ds

For the last line in [B.13), since |V2,|z|| = |7 1a — —|| < 2, we have

(3.15)

B[l Xl XX (o) 2tz

< %/0 /|Z|<1|z|2y(dz)ds. (3.16)
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Since v is a Lévy measure, we know that f\z\<1 |z|?v(dz) < co. Also, by Assump-
tion [ f\z\zl |z|v(dz) < oco. Therefore, by (BI3)—(3I4), there exists positive con-
stant C' such that

E|X(t)] <E|X'(0)]c + /Ot(AVmXi(s)le +C(l+e+e))ds.  (3.17)
By Gronwall’s inequality, there exists a positive constant C” independent of ¢ such
that
E|X ()| <C'(14+e+e ). (3.18)
Finally, choosing € = 1, and since |z| < |z|c, we have

sup E|X(t)| < oo. (3.19)

t>0

For X, using exactly the same argument, for ¢ > 0, we can obtain for ¢ €
[tmatm+1)a

E[| X (t)]|F:,.] < E|X(0)]? +/0 (=M\E[| X (5)|e|Fe, ]+ C(1 + e+ e 1))ds.

(3.20)
Consequently, choosing € = 1,
sup E|X ()] < oo. (3.21)
>0
O

The following Lemma states Holder’s continuity for the process Z1 (recall Z; =
X% — X%, The derivation does not depend on the properties of the noise, so the
proof is exactly the same with the Brownian motion case in [6] B0].

Lemma 3.2 (Hoélder’s continuity for the process Z'). Suppose Assumption[2
holds.

(1) Under Assumptions[dl there exists a positive constant C' independent of t, m,
K such that

E|ZY(t) — Z (tm)| < Ok, t € [tm,tmi1)- (3.22)

(2) Furthermore, under Assumptions[l there exists a positive constant C' indepen-
dent of t, m, k such that

B|Z () — Z (tm)]? < CK?,  t € [ty tmi1)- (3.23)

Proof. Since K(-) is bounded and VV(-) is Lipschitz by Assumption 2] and
using the uniform-in-time (first-order) moment bound obtained in Lemma Bl
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we have

E|ZY(t) — Z'(tm)| = E —/t (VV(X(s)) = VV(X(s)))ds

< Ly /t (E|XY(s)| + E| X (s)|)ds + 2Mg (t — t,) < Ck,
" (3.24)

for some positive C independent of m, t, N, p.
Similarly, using the uniform-in-time (first-order) moment bound obtained in
Lemma [3]], as well as Holder’s inequality, we have

E|Z} () — Z}(tn)|? = E ‘—/t (VV(X(s)) — VV (X (s)))ds

m

t 1 ; .

+ /tm ITJ.G;#K(X (5) - X(s)
1 j 1

m;mx (s) — X'(s)) | ds

< Ly(t—tm) /t (E|X1(s)| + E[X(s)|)ds + 2Mp (t — tn)?

< CK?, (3.25)

for some positive C' independent of m, t, N, p. O

The following lemma characterizes Holder’s continuity for the operator X, i
(recall its definition in ([Z3)). As we can see below, the derivation relies on the fact
that the first moment of the Lévy measure is finite.

Lemma 3.3 (Ho6lder’s continuity for X, 1). Recall the definition of X1
in 29):
1

Cua(X@) == ), KX(s) - X))
p—1
J#LIECm q(1)
1 o j 1
- ; K(X7(s) — XY(s)), (3.26)
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where s € [tm, tmy1). Suppose Assumption 2l holds.

(1) Under Assumptions [l there exists a positive constant C independent of t, m,
K such that

E[Z* (t) + (X1 (X (1) = X1 (X (tm))] < CK(E|Z" (tm)|?)?,
£ € [t tinst), (3.27)

(2) Under Assumptionsdl there exists a positive constant C independent of t, m,
K such that

E| X1 (X (1)) = X1 (X (t)] < Ch. (3.28)

Proof. By definition,
E['Xm,l(x(s)) - Xm,l(X(tm)) | Ft..]

1 - 1 .
-1 Z _ E[0K7(s) | F,.] — mZE[CsKJ(S) | Ftnls
JE€Cm q(1),J#1 J#1
(3.29)
where
OKI(s) = K(X7(s) — X'(5)) — K(X?(tm) — X (tm))
< Lg|6X1(s) —6X7(s)] (3.30)
and
6XI(s) = X'(s) — XI(t,,), 1<j<N. (3.31)
It is remaining to estimate 6X. Clearly,
[E[6X"(s) | Fi.,]]
- / E[-VV(X'(w) | Fi,,Jdu
tm
s 1 - -
+ / E|-— > EX(uw) - K(X'(w)) ]| F, | du
tm p j;éiijCWL,q(i)
+ / / zv(dz)du + 0|. (3.32)
tm |Z|21

Using boundedness of K, Lipschitz of VV, finite first moment, and Lemma 3.1l we
have

[EW%HﬂA

m

WW%HEJSCG+

). (3.33)
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Finally, taking expectation, using tower property of the conditional expectation and
Hoélder’s inequality, we have

E[Z (tm) - (X1 (X (1) = X1 (X ()]
= E[Z"(tm) - E[(Xin,1(X(t) = Xt (X (tm))) | Fr,.]]
< (E|Z (tm)*)?

[V

2

! 1 1 .y
x | Ck* + CE /t N—lz—i_pfl Z X7 (u)du

m Jj#1 J#LIECm qi)
1
< (E|Z"(tm)[?)?
2 2
X C/<;2+Cl<;/t]E #Z—FL Z X7 (u)| du
¢ N —14 p—1 :
m J#1 J#L,IE€Cm q(i)
1
< (E[Z"(tm)[?)?
t 1 1 :
2 i N2
x| Cr +2C/<;/t N712+p71l > E|X7 (u)|2du
m J#1 J#L,IECm qi)
(3.34)

By Assumption[]] using the (second-order) moment bound in Lemma Bl we obtain
E[Z" (tm) - (X1 (X (1) = X 1 (X ()] < CR(E|Zy,, [2)?. (3.35)

The derivation of the other claim is similar. By tower property of the conditional
expectation, we have

E[ X1 (X (1) = X1 (X (t)| = E[E[ X1 (X (1) = X1 (X ()| | F, ]
< ALKE[|6XY(s)| | F,] < Ok, (3.36)

where we have used Assumptionfland the (first-order) moment bound in Lemma[31]
in the last inequality. m|

4. Numerical Examples

In this section, we run some numerical examples to evaluate the RBM-Lévy algo-
rithm and verify our theory in Sec. @ The experiments were conducted on a server
running Ubuntu 20.04 with a 5.15.0-88-generic kernel, dual Intel Xeon Silver 4216
CPUs (64 cores), 125 GB RAM, and four NVIDIA TITAN Xp GPUs with CUDA
12.2 support.
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4.1. A simple test example

We first consider a simple artificial example to verify the results obtained in our
theory. In detail, in what follows, we test the dependence of the errors on the time
step &, the particle number N, and the time 7. In detail, we consider the following
one-dimensional interacting particle system with Lévy jump:

, , 1 XI(t) — X(t) .
dX'(t) = —aX"(t)dt . . dt + dL'(t 4.1
Ve
where a > 0 is a positive constant, and L(t) is a rotational invariant a-stable
Lévy process with o = 1.5. The interaction is clearly smooth, bounded and with
bounded derivatives. Moreover, it has a long-range interaction. In our experiments,
we take the initial state from the following distribution using the Metropolis-
Hastings MCMC algorithm:
V4 — 22
po(z) = B 1ya)<oy- (4.2)
T
To evaluate the error numerically, we use

BA(T) = 5 Y0 1X(T) = XU, (4.3)

Above, X' and X are coupled with the same Lévy jump and simulated with forward
Euler’s scheme with small time step 7 = 2715,

In Fig. [0l we consider the error at time T' = 1. We test the error E, for RBM-
Lévy with k = 274,275,276, 277 As we can see from Fig. [ for different N and
different a, the slope of the log-log curve is approximately % This means the con-
vergence rate is O(y/k), and is independent of N, which is consistent with our
theoretical result.

convergence rate of RBM-Levy, a = 1 convergence rate of RBM-Levy, a = 0

3.4
—e— N=50 —8— N=50

—e— N=100 -3.21 —e— N=100
| —e— nN=1000

—8— N=1000

|
w
o

-3.41

|
w
©

L

log error
1
IS
o

log error

-3.81

—4.0 4

-4.5 -4.0 -3.5 -3.0 -4.5 -4.0 -35 -3.0

log kappa log kappa
(a) (b)

Fig. 1. Error of RBM-Lévy versus time step at terminal time 7" = 1 (log-log scale): (a) a = 1
(with confining condition), (b) a = 0 (without confining condition). The particle number N is
50, 100, 1000 in each figure.
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error of RBM-Levy versus time computational cost of RBM-Levy

—e— EM
—8— RBM

0.035
0.030 4

0.025 4
10" 4

error
CPU running time

0.020 4

0.015 10 4

w

2 4 6 8 10 12 14 16 200 400 600 800 1000
T N

(a) (b)

Fig. 2. (a) Error of RBM-Lévy versus time T with configuration T' € {1,2,4,8,16}. x = 277,
N = 100. (b) CPU running time versus particle number N. a =1, s =277, T = 1.

0.010

In Fig. 2a), we test the long-time behavior of the RBM-Lévy algorithm. We
choose k =277, N = 100, and T = 1,2, 4,8,16. As we can see from Fig.[2la), when
a = 1 (namely, there is a strongly convex external potential), the convergence of
RBM-Lévy is uniform-in-time; when there is no such confining condition (a = 0),
the error of RBM would increase in time.

In Fig.2I(b), we test the computational complexity of the RBM-Lévy algorithm.
We choose a =1, k =277, T =1, and N = 50,100,200, 500, 1000. As we can see
from the results, the computational cost of RBM-Lévy is much cheaper.

4.2. Application to stochastic Cucker—Smale model

The Cucker—Smale model proposed by Cucker and Smale [I3][14] applies a nonlinear
second-order system to describe the behavior of particles swarm with Newton-type
interaction. It can effectively describe the flocking behaviors of animals such as
birds, fishes, and ants. The word “flocking” refers to general phenomena where
autonomous agents reach a consensus based on limited environmental information
and simple physical/social rules [25H27]. Here, we consider the following stochastic
Cucker—Smale model, which can capture the random fluctuation in practice more

precisely [21]:
d{Ei (t) = U; (t)dt,

N
dvi(t) = Z (|l () = @i (0)]) (v; () = vi(t))dt + (vi(t—) — ve(t))dLi(t),
(4.4)

where X;,v; €R, 0 € Ry, v(t) = & ZN L 0i(t), Li(t)(1 < i < N) are independent

Lévy processes with characteristics (0,07, v(+)), and the interaction kernel is of the
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following form:

1
(1+7r2)8"
It is known that when 3 € (0, %], the deterministic Cucker—Smale is unconditional
flocking [25H27]. Our experiment reveals that the Random Batch Method can effec-

tively simulate the stochastic Cucker—Smale model whether the model is flocking
or unflocking by choosing

O(r) = (4.5)

p=5 0=1 (4.6)

and different settings of the noises. We also choose v to be Lévy measure of some
compound Poisson process:

(dz) = A —— exp (%) dz (4.7)

velocity evolution of each particle (without random batch)

0.1 0.2
0.1
0.0
i 0.0
S o1 { s 019
0.2
-0.24
~0.34
-0.4
—-0.34
T T v v T T T T v v T T
0 10 20 30 40 50 0 10 20 30 40 50
t t
(a) (b)
velocity fluctuation evolution position diameter evolution
—— without random batch 331
0.5 4 —— with random batch
3.24
0.4 4
3.1
= 0.3 =
> %,
a o 3.0
0.2 4
2.9
0.14
2.8 —— without random batch
0.0 —— with random batch
0 10 20 30 40 50 0 10 20 30 40 50
t t
(c) (d)

Fig.3. o =1, A = 0.1 (white noise 4+ jump). flocking. (a) velocity evolution of each particle with-
out randam batch. (b) velocity evolution of each particle with random batch. (c) time evolution
of Dy(t) (d) time evolution of Dy (t).
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for some A > 0. Moreover, for each particle, the z-intitial distribution is i.i.d. chosen
to be po(z) (recall po(x) in ([E2), and the v-initial distribution is i.i.d. chosen to be
proportional to pg(0.1x).

In our experiments, we set the particle number N = 24, The stochastic Cucker—
Smale dynamics (with or without random batch on the drift) are simulated using
Euler’s scheme, and the time step for Euler scheme is 7 = 278, the time step for
choosing the random batch is x = 274, the batch size is p = 2.

As we can see from Fig. B below, when ¢ = 1, A = 0.1 (white noise + jump),
the model is flocking and the Random Batch Method can effectively simulate the
Cucker—Smale dynamics with much lower computational cost. Note that D, (t) and
D, (t) are defined by

D, (t) i= max (1) ()]

(4.8)
D,(t) := n}%xh}i(t) —v;(t)].

In the Appendix, we give some additional results under different settings of the
noise, which reveals that the Random Batch Method can effectively simulate the
model and preserve the flocking/unflocking nature of the system.

5. Conclusion

In this paper, we proposed the Random Batch Method for interacting particle sys-
tems driven by Lévy noises (RBM-Lévy), which can be viewed as an extension of the
original RBM algorithm in [30]. In our RBM-Lévy algorithm, one randomly shuf-
fles the IV particles into small batches of size p, and interacts particles only within
each batch for a short period of time. Then one repeats this shuffle-and-interact
procedure. Consequently, RBM-Lévy dramatically reduces the computational cost
from O(N?) to O(pN) per time step, while still ensuring the convergence to the
original interacting particle system, even when the noise allows jumps. Under the
assumptions of both finite or infinite second moment of the Lévy measure, we gave
rigorous proof of this convergence in terms of Wasserstein distances. Typical appli-
cations include systems with a-stable Lévy noises for a € (1,2). Remarkably, we
are not including the theoretical results for a € (0,1). This is mainly because our
proof is based on the coupling technique, and it is known that an a-stable process
cannot have finite o/th moment for o’ larger than a.. This then leads us to obtain a
Wasserstein-p convergence result for p < a, but the Wasserstein-p distance itself is
not a true distance for p < 1. On the other hand, we do believe that it is possible to
obtain a (sharp) Wasserstein convergence result using some other advanced PDE-
based techniques instead of the current coupling method. We leave it as a nontrivial
future work. Some numerical examples are given to verify our convergence rate and
show the applicability of RBM-Lévy. Some other possible future work may include
extensions to particle systems with Lévy noises and singular interaction kernels,
and to particle systems with multiplicative noises with jumps.
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Appendix A. Some Basics of Lévy Processes

In this section, we refer to [2] for some basic definitions in probability theory asso-
ciated with the Lévy process. We refer to [12] for more general jump processes. Let
L = (L(t),t > 0) be a stochastic process defined on a probability space (2, F, P).
We say that L; is a Lévy process if

(1) L(0) =0 a.s;
(2) L has independent and stationary increments;
(3) L is continuous in probability, i.e. for all a > 0, s > 0,

lim P(|L(t) - L(s)| > a) = 0.

Note that in the presence of the first two conditions, the third condition is equivalent
to

}in%P(|L(t)| >a) =0.

Also, the second condition implies that for fixed ¢ > 0, the random variable L(t) is
infinitely indivisible. This means for any n € N, there exists i.i.d. random variables
Yl("), Y™ such that L(t) equals to Y7, Yj(n) in the sense of distribution.
Moreover, the characteristic function of L(t) has the following Lévy-Khintchine
representation (here we consider the one dimension case Lévy process for simplicity
throughout this section):

Elexp(iuL(t))] = exp(tv(u)), Vu € R,
where the characteristic exponent of L(t) is given by
P(u) = ibu — %02’11/2 + /(ei“'z — 1 —iuzly<1y)v(dz). (A1)
Here, b,0 € R, and v is the Lévy measure of L satisfying
({0}) = 0, /1 A J2Pu(dz) < oc.

Correspondingly, for any Lévy process L(t), we have the following It6-Lévy decom-
position:

t t
L(t)=bt+oB: + / / zN(ds,dz) + / / 2N (ds,dz), (A.2)
0 Jlz|<1 0 Jz|>1

where N (dt,dz) is the Poisson measure and N (dt,dz) := N(dt,dz) — EN(dt,dz) =
N(dt,dz) —v(dz)dt is the compensated Poisson measure. Above, the triple (b, o2, v/)
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is often called the characteristic of a Lévy process. Moreover, the jump process
above as a semimartingale also satisfies the It6’s formula. In detail, letting X be a
semimartingale and f be a twice differentiable function, we have

F(X0) = £(Xo) /f dX+/f” x°)

+ Z (f(Xs) - f(Xs) - f/(Xsf)AXs)v (A3)

0<s<t

where X ¢ denotes the continuous part of the semimartingale X. In particular, if X
solves the following SDE driven by a (pure jump) Lévy process with characteristic
(0,0,v):

t
X =Xp +/ b(Xs)ds+ L(t), t>0, (A4)
0
then

F(X0) = £(Xo) + / F(X)b(X.)ds + / / (F(Xo- +2) — f(Xa))N(dz, ds)
Xoo +2)— f(Xs2))v(dz)ds
+/0 /Z>1(f( T 2) — f(Xa)w(d2)

* / / \<1(f(X87 +2) — f(Xoo) = f(Xs-)2)v(dz)ds. (A.5)

Appendix A.1. Rotational invariant a-stable Lévy processes

A real-valued random variable X is called stable if there exists real-valued sequences
(¢n)n, (dp)n with each ¢, > 0 such that

X1+ Xo+ -+ Xn L enX +dy, (A.6)

where X1,...,X,, are n independent of X, and it can be proved that the only
choice of the sequence ¢, is ¢, = onas for some o > 0 and a € (0,2] being its
index of stability [20, p. 166]. Alternatively, a stable process can be defined via
its characteristic function: A real-valued random variable X is stable if and only
if there exist o > 0, 5 € [-1,1], @ € (0,2] and b € R such that the characteristic
function of X is given by

1
exp (ibu — §U2u2) if =2,

Y(u) = B[] = { exp ibu — o%|ul|* [1 —ifsgn(u) tan (?)}} ifa#1,2,

{
exp {z’bu — olul [1 + w% sgn(u) log(|u|)} } ifa=1.
(A7)
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In particular, X is called rotational invariant a-stable if § = b = 0, namely, its
Lévy symbol n(u) := log(y(u)) satisfies

n(u) = —oul, (A.8)

where 6 = o for « # 2 and 6 = cr/\/§ if a = 2. It is also known that X has finite
pth moment when a > p.

Now, for a € (0,2), a real-valued Lévy process L,(t) is called a-stable if for
any ¢ > 0, the random variable L(¢) is stable. In particular, in this paper, we
focus on the rotational invariant a-stable Lévy process, where the Lévy symbol of
L(1) is n(u) = —|u]* (we take 0 = 1 in (A7) for simplicity). Consequently, the
characteristics of L () is (0,0, v,), where

_ 20710l ((1 + ) /2)
= (1+e) =
v(dz) = Cylz| dz, Cq: T —a/2)

Furthermore, it is well known that the rotational invariant a-stable Lévy process
corresponds to the fractional Laplacian operator (—A)?, which is a non-local one
and can be defined through the Fourier transform (see for instance, [44, Chap. 5]):

(A.9)

(—2)%p() == FHE[*p(E) (),  p(E) = Fp())(€)- (A.10)
In detail, the law p; of L, (t) solves a fractional heat equation:
dip=—(—A)2p. (A.11)

Clearly, this reduces to the classical heat equation when o = 2, namely, L, (t) is a
Brownian motion.

Appendix B. Additional Results for the Stochastic Cucker—Smale
Model

In this section, we provide more results of the random batch simulation of the
stochastic Cucker—Smale model discussed in Sec. In detail, we consider another
three different settings (two of them are not flocking): (1) o = 1, A = 0 (white
noise only, Fig. B)); (2) ¢ = 0, A = 0.1 (jump only, Fig. B2); (3) ¢ =0, A =0
(deterministic, Fig. [B3). The particle number is N = 2%. The stochastic Cucker—
Smale dynamics (with or without random batch on the drift) are simulated using
Euler’s scheme, and the time step for Euler scheme is 7 = 278, the time step for
choosing the random batch is © = 274, the batch size is p = 2.

As we can observe from Figs. [B.IHB.3] the existence of Brownian motion some-
how determines the flocking or unflocking behavior of the system. To our knowledge,
this phenomenon has no theoretical explanations under the current choice of the
interaction kernel in (£3). The random batch approach, in the current settings, can
effectively simulate the original model and capture the flocking/unflocking nature,
with much cheaper computational cost. Furthermore, inspired by these observa-
tions, it is meaningful to explore the nature of the fact that continuous noise makes
flocking easier, which is of independent interest.
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Fig. B.1.
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o =1, A = 0 (white noise only). flocking. (a) velocity evolution of each particle without

randam batch. (b) velocity evolution of each particle with random batch. (¢) time evolution of
D, (t) (d) time evolution of Dy (t).
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Fig. B.2.
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o =0, A =0.1 (jump only). unflocking. (a) velocity evolution of each particle without
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