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Abstract
In this paper, we investigate the instability of growing tumors by employing both analytical
and numerical techniques to validate previous results and extend the analytical findings pre-
sented in a prior study by Feng et al. (Z Angew Math Phys 74:107, 2023). Building upon
the insights derived from the analytical reconstruction of key results in the aforementioned
work in one dimension and two dimensions, we extend our analysis to three dimensions.
Specifically, we focus on the determination of boundary instability using perturbation and
asymptotic analysis along with spherical harmonics. Additionally, we have validated our
analytical results in a two-dimensional (2D) framework by implementing the Alternating
Direction Implicit (ADI) method. Our primary focus has been on ensuring that the numerical
simulation of the propagation speed aligns accurately with the analytical findings. Further-
more, we have matched the simulated boundary stability with the analytical predictions
derived from the evolution function, which will be defined in subsequent sections of our
paper. This alignment is essential for accurately determining the stability or instability of
tumor boundaries.
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1 Introduction

Cancer is one of the major concerning diseases around the world, and the mathematical study
of tumor growth has proved to be meaningful in providing insights for treatments. Therefore,
investigating partial differential equation (PDE) models in the context of tumor growth is of
great importance [7, 11, 12].

Recent advancements in tumor growth modeling have emphasized nonlinear dynamics,
boundary behaviors, and stability under perturbations. Cristini et al. (2003) identified key
dimensionless parameters controlling tumor evolution in [7], delineating growth models
influenced by vascularization. Greenspan (1972) provided a foundational diffusion-based
free boundary model for solid tumor growth in [12], while Friedman and Reitich (2000)
revealed numerous asymmetric solutions in stationary tumor models in [11]. These highlight
the interaction between mathematical parameters and tumor morphology. Moreover, Feng et
al. (2023) examined the tumor boundary stability in [10], finding that tumor boundaries in
vitro remain stable under various conditions, while in vivo boundaries exhibit the instability
when the nutrient consumption rate exceeds certain thresholds, influenced by the wave num-
bers of domain perturbations. Improved numerical schemes for tumor growth PDE models
include the novel prediction-correction reformulation that accurately approximates the front
propagation of speed with the strong nonlinearity introduced by Liu et al. (2018) in [21].
These studies underline the complex interplay between biological and mathematical factors
in tumor growth, guiding our research on the stability of tumor growth models after pertur-
bation in three dimensions. One may notice that there are extensive studies regarding the real
datum for the tumor growth in the two-dimensional (2D) space, such as [8, 14, 15]. However,
we would like to remark that 2D models are still simplifications of real three-dimensional
(3D) tumor models, see [3, 4] for more discussions.

Themain question that we are focusing on is the instability of the tumor boundary induced
by nutrient consumption and supply, which is significant since previous research has sug-
gested the shape of tumors as one of the crucial criteria to determine whether a tumor is
benign or malignant [1, 5, 23, 25]. Specifically, we investigate this based on [10], using
finite difference numerical schemes to match up to the 2D analytical results presented in
[10], as well as extending the results to a 3D perturbed spherical scenario. We first apply
the Alternating Direction Implicit (ADI) numerical scheme, as in Witelski (2003), to vali-
date against the 2D analytical results in Feng (2023) on tumor dynamics. Following this, we
introduce spherical harmonics as a perturbation method, expanding our tumor model to a
3D framework. In this extension, we employ modified Bessel functions, hyperbolic trigono-
metric functions, and asymptotic expansions to derive analytical results for the 3D scenario.
This study is significant from different perspectives. Firstly, the findings reported in [10] are
predominantly based on analytical techniques, and the introduction of numerical simulations
offers an alternative perspective on the 2D tumor PDE model, shedding light on the bound-
ary instability. Moreover, the extension of our investigation into 3D tumor dynamics, both
analytically and numerically, has practical implications, providing deeper insights into the
malignant potential of tumors.

In this paper, we begin by describing the model, detailing both in vitro and in vivo nutrient
models. We then focus on 2D numerical schemes, matching our numerical simulations to
the results in [10]. Subsequently, we investigate the boundary stability and introduce our
analytical approach for constructing 3D scenarios, highlighting the distinction between our
2D and 3D tumor boundary instability. The paper concludes with a summary of our findings
and a discussion of future research directions.
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Fig. 1 Schematic figure of the
tumor and the surrounding
exterior. The cell population
density ρ is defined in the red
shaded tumoral region; c(o) and
c(i) are the nutrient concentration
defined outside and inside the red
shaded tumoral region [10]

2 Model Formulation

The full PDEmodel in [10] thatwe are focusing on is based on the sharp interface limit of a cell
density model. In Fig. 1, we present a schematic representation of the tumor geometry. This
depiction illustrates a 2D circular domain with the radius R, encapsulated within a nutrient
exterior. This simplified representation serves as a conceptual aid; the actual geometry of
the tumor, governed by the equations detailed subsequently, can be any general domain. Our
focus on basic geometric forms, such as the axisymmetric circle in two dimensions or the
sphere in three dimensions (as explored in Sect. 5), is instrumental. This focus allows us to
distill the essential physics of the model. By employing these simplified shapes, specifically
the spherically symmetric sphere in our 3D analysis, we aim to elucidate the fundamental
principles underlying the behavior of the model.

2.1 Finite-k Compressible Model

Following this, we are interested in physical properties such as the tumor density, the nutrient
concentration, and the pressure. Specifically, we denote ρ(x, t) as the cell population density,
and c(x, t) as the nutrient concentration. The production rate of tumor cells, G0, depends
only on the nutrient concentration, where we use G(c) = G0c as a growth function in this
paper for simplicity. To represent the tumoral region at time t , we denote the support of
ρ as D = {x |ρ > 0}. Here, we assume the tumoral region expands with a finite speed
governed by Darcy’s law v = −∇ p|∂� via the pressure p(ρ) = ρk [10]. In these models,
we use Darcy’s law because the flow within the tumor or biological tissue can be highly
nonlinear, meaning that small changes in density can lead to large changes in flow or vice
versa. A power law is a simple way to capture such nonlinear effects. The positive power
k > 0 ensures the consistency with physical laws, since the pressure in a fluid or gas typically
increases as the density increases. Additionally, a positive power k in the equation ensures that
the pressure p(ρ) is a well-defined, real-valued function for all positive values of the density
ρ. Furthermore, k > 0 in the pressure p(ρ) = ρk ensures that the support of ρ is compact.
Thus, the density ρ is governed by a Porous Medium Equation (PME) type equation:

∂ρ

∂t
− ∇ · (ρ∇ p(ρ)) = G0ρc, x ∈ R

n, t � 0, (1)

where n = 2 or n = 3.
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The consumption, exchange, and diffusion of the nutrient are governed by the following
reaction-diffusion equation for the nutrient concentration c:

τ
∂c

∂t
− ∇2c + �(ρ, c) = 0, (2)

where τ � 1 is the characteristic time scale of nutrient evolution, and �(u, c) describes the
overall effects of the nutrient supply regime outside the tumor and the nutrient consumption
by cells inside the tumor [10].

Specifically, the overall function �(ρ, c) is mathematically written as �(ρ, c) = λρc ·
1D − λ̃(cB − c) · 1Dc . For simplicity, we set λ̃ = 1 and λ > 0. 1D indicates the indicator
function of the set D (the region of the tumor), and 1Dc is the indicator function of the
complement of the set D [10], and we also use ∂D(t) to denote the evolving tumor boundary.
The indicator function of a set A is defined such that it assigns a value of 1 to an element x
if x is in the set A, and a value of 0 if x is not in the set A.

For simplicity in the later analysis, we consider the following elliptic formulation by
dropping the time derivative, which is reasonable since τ � 1:

− ∇2c + �(ρ, c) = 0. (3)

This further yields
−∇2c + λρc = 0 for x ∈ D(t), (4)

where n = 2, 3, D(t) is the tumor region, and λ is the consumption rate [10].
Positivity of density in our model is crucial both theoretically and computationally.

According to the maximum principle, the density ρ is always non-negative. In scenarios
where the power of the PME, denoted by k, equals 1, the instantaneous positivity of ρ is
guaranteed. However, for k > 1, it is well-known that the density ρ can approach zero and ρ

has only Cα regularity, as detailed in [27]. Active research focuses on developing numerical
schemes that preserve the positivity, including flux splitting type schemes applicable to both
second-order and fourth-order degenerate parabolic equations [2, 13, 22].

Additionally, the positivity can also be derived using the method detailed in [24]. Specif-
ically, in our model, (1) can be reformulated as a transport-reaction equation:

∂tρ + ∇ · (ρv) = G0ρ, v = − k

k − 1
∇ρk−1.

In the context of this variational problem, we take variation with respect to the flow map
X ε , where X ε = v(X ε, t) and X ε(x, 0) = x , This provides an alternative method to preserve
the positivity of the density. Furthermore, preserving the positivity is significant for related
fourth-order degenerate equations. Unlike the maximum principle, the positivity here stems
from the specific choice of free energy. This concept is employed in the Flory-Huggins style
Cahn-Hilliard equation with a logarithmic potential to ensure the positivity [6].

The illustrations of the behavior in the model in the form of the two PDEs in (1) and (2) are
shown in Figs. 2 and 3. These figures showcase simulations performed with the ADI method,
an effective numerical technique for solving 2D parabolic PDEs, such as the PME and classic
diffusion equations. Thismethoddiscretizes spatial derivatives in alternating directions across
subsequent time steps, thereby reducing the computational complexity by decoupling the
resulting tridiagonal systems [28]. Specifically, the ADI method alternates between treating
diffusion implicitly in one spatial direction and explicitly in the other within each time step.
This approach not only simplifies the computational steps but also achieves second-order
accuracy over the complete time step due to the symmetric nature of the discretization.
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Fig. 2 The 2D tumor growth boundary evolution with λ = 0.5 (three time profiles evolving from left to right)
for an initial perturbation with the wave number m = 8

Fig. 3 The 2D tumor growth boundary evolution with λ = 40 (three time profiles evolving from left to right)
for an initial perturbation with the wave number m = 8

However, the implementation of the ADI scheme, while straightforward, exhibited a
weakly decoupled system that lacked the stability for varied parameter inputs. To address this
challenge, we explored multiple splitting approaches within the ADI method. Specifically,
we experimented with various sets of splittings, such as 1/2 and 1/2, 1/3 and 2/3, 1/4 and 3/4,
and so forth. Among all the tested sets, we identified that the 1/8 and 7/8 splitting provided
the most stable system. The stability of the ADI scheme was assessed by observing whether
different parameter values consistently produced the same simulation results for the tumor
boundary shape. This consistency indicated the stability of the splitting approach in our ADI
scheme, ensuring reliable performance across varied parameter inputs. Therefore, we will
use this splitting in our model to numerically simulate tumor growth, where the details are
demonstrated in Appendixes A.1.1 and A.2.1.

2.2 Incompressible k = ∞Model

Taking the incompressible limit of k → ∞, and considering the patch solutions ρ∞ = 1D∞ ,
D∞ ⊂ R

n , yield the simplified versions of (1) and (3):

{
− ∇2 p∞ = G0c for x ∈ D∞(t),

p∞ = 0 for x ∈ R
n\D∞(t).

(5)

The boundary conditions (BCs) for the pressure p in the in vitro model are that the pressure
is bounded everywhere and the pressure value and its derivative are zero at the boundary.
Therefore, these give us the complete PDE problem for solving the pressure p for the in vitro
model
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− ∇2c + λc = 0 for x ∈ D∞(t), (6)

where n = 2, 3, and the in vitro and in vivo models will be introduced shortly in Sect. 2.2
[10].

From now on, all pressures are p = p∞, and we omit the subscript. Therefore, combining
(5) and (6), we can denote

u = p + G0

λ
c satisfying ∇2

(
p + G0

λ
c

)
= 0. (7)

This gives us the Laplace’s equation for u, which will be useful for later constructions.
The domainwe are considering here is a disk or spherewith the radius R,where the solution

is bounded everywhere. The boundary and initial conditions (ICs) for the above PDEs will
be introduced for the simplified versions of this full model in the following subsections.
Furthermore, the boundary moving speed in the direction normal to the boundary at a point
x , denoted by σ(x), is given by

σ(x) = −∇ p∞ · n̂(x), (8)

where n̂(x) is the outer unit normal vector at x ∈ ∂D∞(t). This gives us the general axisym-
metric interface motion equation

dR

dt
= −∂r p(R(t)). (9)

Our density model can be considered as a phase field approximation of the sharp interface
model; for a rigorous treatment of the sharp interface limit/ incompressible limit, see Feng
et al. (2024) [9]. Interestingly, identifying an alternative phase field model that is more
computationally and analytically tractable could significantly advance the study of this critical
problem in cancer treatment, as discussed by Baskaran et al. (2013) [2].

2.3 TwoModels for the Nutrient Distribution

Following the general PDE model in (3) and (6), we consider the two simplified versions
with different concentration assumptions, as introduced in [10], which are the in vitro and in
vivo models. We study the boundary stability of the radially symmetric scenario under these
two nutrient models, where R is the radius of the tumor before perturbation.

2.3.1 The in Vitro Model

For the in vitro version, it is assumed that the tumor is surrounded by a liquid and the exchange
rate with the background is extremely high so that cmatches cB on the tumor boundary [10].
This gives us a constant nutrient concentration outside the tumor and quasi-steady inside the
tumor. The in vitro concentration assumption outside the tumoral region coupled with (6)
gives us the system of equations for the in vitro regime [10]:{

− ∇2c + λc = 0 for x ∈ D∞(t),

c = cB for x ∈ R
n\D∞(t),

(10)

where n = 2, 3 and λ > 0 is the consumption rate. Therefore, (10) together with the BC
c(∂D) = cB gives us the complete PDE problem for solving the concentration c for the in
vitro regime model. We only need to solve for the concentration c inside the tumor since c is
always constant outside the tumor.
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2.3.2 The in Vivo Model

For the in vivo version, the nutrient is transported by vessels outside the tumor and reaches
cB at the far field. Correspondingly, it is assumed that the exchange rate outside the tumor
is determined by the concentration difference from the background, i.e., cB − c [10]. The
in vivo concentration assumption outside the tumoral region coupled with (6) gives us the
system of equations for the in vivo regime [10]:

{
− ∇2c + λc = 0 for x ∈ D∞(t),

− ∇2c = cB − c for x ∈ R
n\D∞(t),

(11)

wheren = 2, 3, and the concentration is quasi-steady inside andoutside the tumor.Weassume
the tumor is axisymmetric, and we denote the concentration inside the tumor as c(i)(r , t), and
the concentration outside the tumor as c(o)(r , t). The solution for concentration is everywhere
bounded, and BCs for concentration c in the in vitro model are

⎧⎪⎨
⎪⎩
c(i)(R, t) = c(o)(R, t),

∂c(i)(r , t)

∂r

∣∣∣∣
r=R

= ∂c(o)(r , t)

∂r

∣∣∣∣
r=R

.
(12)

Therefore, (11) and (12) give us the complete PDE problem for solving the concentration c
for the in vivo regime model.

The PDE problem for the pressure p in the in vivo model is identical to that in the in vitro
model. Therefore, (5) along with the BCs outlined before Sect. 2.1, comprehensively defines
the PDE problem for determining the pressure p in both the in vitro and in vivo models.

3 The 2D Problem

In this section, we examine the 2D analytical findings on the tumor boundary stability and
instability as presented in [10], focusing on the radially symmetric boundary. In two dimen-
sions, the tumoral region is considered a disk with the radius R for simplicity. This aims to
establish the foundational equations pertinent to our research and facilitate a comparative
analysis with the 3D results we obtained. Specifically, in Sect. 3.1, we skip their calculation
details and provide a comprehensive overview of their procedural steps. Subsequently, in
Sect. 3.2, we state their results for two dimensions.

3.1 Overview of the Steps

In both the in vitro and in vivo models, similar methodologies are employed, yet they yield
distinct results. In this section, we primarily focus on the more complex in vivo scenario as
an illustrative example. The results for both the in vitro and in vivo models are presented in
Sect. 3.2.

Step 1: Solve radial symmetric solution
In [10], the authors solve the nutrient concentration using the modified Bessel functions

of the second kind In(r) and Kn(r). Then, they solve the pressure p∞ and use the symmetry
to derive p∞(r , t). Following (9), the velocity of the boundary for the in vitro model is
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dR

dt
= G0cB I1(

√
λR)√

λI0(
√

λR)
(13)

and for the in vivo model:

dR

dt
= G0cBK1(R)I1(

√
λR)

λK0(R)I1(
√

λR) + √
λK1(R)I0(

√
λR)

. (14)

Step 2: Define the perturbation in terms of the perimeter curve
If we denote B = ∂D, then B̃ is the tumor boundary after perturbation. At time t , the

authors introduce a perturbation characterized by an amplitude δ(t) and the boundary of this
perturbation is described as follows:{

Bδ(φ) = {(r , φ)|r = R(t), φ ∈ [−π,π)},
B̃δ(φ) = {(r , φ)|r = R(t) + δ(t) cos(mφ), φ ∈ [− π,π)}. (15)

Step 3: Expression of asymptotic solutions on the perturbed region
The perturbed solutions c̃ and p̃ have the following asymptotic expansions:{

c̃(r , φ, t) = c0(r , t) + δ(t)c̃1(r , φ, t) + O(δ2),

p̃(r , φ, t) = p0(r , t) + δ(t) p̃1(r , φ, t) + O(δ2),
(16)

where the leading order terms c0 and p0 correspond to the unperturbed solutions solved in
Step 1. The main response corresponding to the perturbation is captured by the first-order
terms c1(r , φ, t) and p1(r , φ, t). The higher-order terms are represented by O(δ2). Here, for
the linear problem involving c1 and p1, we can solve for a single m-mode from the Fourier
series independently. For further details, please refer to Sect. 5.2 in [10]. This allows us to
simplify the expansions and approximate them as{

c̃1(r , φ, t) ≈ c1(r , t) cos(mφ),

p̃1(r , φ, t) ≈ p1(r , t) cos(mφ).
(17)

Step 4: Equations for the first order terms
Plug the asymptotic solutions into the model on D̃(t) and solve for c(i)

1 and c(o)
1 :

{
− ∇2c(i)

1 (r , φ, t) + λc(i)
1 (r , φ, t) = 0,

− ∇2c(o)
1 (r , φ, t) + c(o)

1 (r , φ, t) = 0.
(18)

Thus, {
c(i)
1 (r , t) = cBa1(t)Im(

√
λr) for r � R(t),

c(o)
1 (r , t) = cBb1(t)Km(r) for r � R(t),

(19)

where m represents the harmonic order of the coefficients in the Fourier series expansion.
Remember that we denote the concentration inside the tumor as c(i)(r , t), and the concen-
tration outside the tumor as c(o)(r , t) [10]. On the other hand, p1 solves

∇2 p1(r , φ, t) = G0c
(i)
1 (r , φ, t) in D̃(t). (20)
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Step 5: Determine the coefficients by matching the boundary
The authors evaluate the perturbed solution on the boundary point B̃(R + δ cos(mφ), φ)

by first taking the Taylor expansion around R with respect to the first variable up to first
order:

c(i)(R + δ cos(mφ), φ) = c(o)(R + δ cos(mφ), φ)

= c0(R) + δ∂r c0(R) cos(mφ) + δc1(R) cos(mφ), ∀φ ∈ [−π,π],

∂r c
(i)(R+δ cos(mφ), φ) = ∂r c

(o)(R + δ cos(mφ), φ)

= ∂r c0(R)+∂2r c0(R)δ cos(mφ)+δ∂r c1(R) cos(mφ), ∀φ ∈ [−π,π].
(21)

Then by using the BCs for c1, we require the solution to be bounded everywhere and
c(∞, φ) = cB for any φ ∈ [−π,π) yields

c(o)
1 (∞, t) = 0. (22)

Using the above BCs, the coefficients a1(R(t)) and b1(R(t)) in (19), are determined.
Step 6: Determine p1 for the amplitude evolution equation δ−1 dδ

dt
The perturbed pressure solution p satisfies the BCs p = 0 at B̃δ . Evaluating p at B̃(R +

δ cos(mφ)) ∈ B̃δ , which yields the leading order equation for δ → 0

p(R + δ cos(mφ), φ) = p0(R) + ∂r p0(R)δ cos(mφ) + p1(R)δ cos(mφ), (23)

where O(1) yields dR
dt = −∂r p0(R), and O(δ) yields the linear dδ

dt equation. Since p(R +
δ cos(mφ), φ) = p0(R) = 0,

∂r p0(R) + p1(R) = 0. (24)

By using the expressions of c1 and p0, the particular solution of p1 can be determined. After
this, plugging the expression of p into the normal boundary speed (Darcy’s law) and taking
the Taylor expansion for the r variable yield the leading order equation for δ → 0

dR

dt
+ dδ

dt
cos(mφ) = −(∂r p0(R) + ∂2r p0(R)δ cos(mφ) + ∂r p1(R)δ cos(mφ)), (25)

which simplifies to

δ−1 dδ

dt
= −(∂2r p0(R) + ∂r p1(R)) + O(δ). (26)

This is used to determine the evolution of the perturbation magnitude by the sign of δ−1 dδ
dt .

Specifically, if it is positive, then it implies the growth of the magnitude, which leads to the
instability with the growing perturbation. If it is negative, then it implies the decay of the
perturbation amplitude and leads to the stability of the tumor boundary.

3.2 Results of 2D Tumor Boundary Stability/Instability in [10]

In conclusion, given G0 > 0, cB > 0, λ > 0, and m ∈ N
+. When the radius of the tumor is

around R. For the in vitro model, δ−1 dδ
dt is given by

δ−1 dδ

dt
= G0cB I1(

√
λR)

I0(
√

λR)

(
I ′
1(

√
λR)

I1(
√

λR)
− I ′

m(
√

λR)

Im(
√

λR)

)
def= F3(λ,m, R). (27)
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Fig. 4 2D in vivo evolution function with G0 = 1, cB = 100; λ = 100 and R ∈ [0, 20]

For the in vivo model, δ−1 dδ
dt is given by

δ−1 dδ

dt
= G0cBm√

λRC(R)

(
C1(R)

Cm(R)
Km(R)Im(

√
λR) − K1(R)I1(

√
λR)

)

− G0cB
C(R)

(
C1(R)

Cm(R)
Km(R)I ′

m(
√

λR) − K1(R)I ′
1(

√
λR)

)
def= F4(λ,m, R),

(28)

where C(R)= √
λK0(R)I1(

√
λR) + K1(R)I0(

√
λR), and C j (R) = K ′

j (R)I j (
√

λR) −√
λI ′

j (
√

λR)K j (R). Herem denotes the wave number, and In(x) and Kn(x) are the modified
Bessel functions of order n.

Therefore, the sign of the leading order terms of δ−1 dδ
dt (such as F3(λ,m, R) and

F4(λ,m, R) as shown above) determines the sign of δ−1 dδ
dt , thus implies the stabil-

ity/instability of the tumor boundary after perturbation. The plots of the evolution function
for the in vivo regime are shown in Figs. 4, 5. The simulations of the tumor boundary evo-
lution using the ADI method are shown in Figs. 2, 3, where the detailed descriptions for the
numerical scheme will be presented in Appendix A.

Remark 1 In the in vitro regime, both graphical and analytical analyses indicate that the
growth of the perturbation amplitude and boundary stability are maintained. This holds
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Fig. 5 2D in vivo evolution function with G0 = 1, cB = 100; λ = 1 and R ∈ [0, 20]

regardless of variables such as the consumption rate λ, the perturbation wave numberm ∈ N,
and the tumor size R.

Remark 2 For the in vivo regime, we have the following.

i. When 0 < λ � 1 (λ: nutrient consumption rate), the boundaries show the samequalitative
behavior as the in vitro model.

ii. When λ > 1, for any fixed wave number m � 2, there exists a threshold R∗(m) such
that F4(λ,m, R) < 0 for 0 < R < R∗(m), and F4(λ,m, R) > 0 for R > R∗(m).
This is proved by checking the asymptotes of F4. Also, fix a proper value of R0, there
exists m0 such that F4(λ,m, R0) > 0 for m < m0 and F4(λ,m, R0) < 0 for m > m0.
Lastly, as the tumor size expands, R(t) exceeds more thresholds R∗(m), therefore the
corresponding wave number perturbation becomes unstable successively.

4 The 3D Problem

While the foundational configurations and methodologies in the 3D analysis are similar to
those employed in the 2D case, the extension to a 3D framework in exploring the tumor
growth model is of substantive significance. Primarily, this 3D approach yields results with
higher applicability to real-world scenarios, enhancing themodel’s practical relevance. Addi-
tionally, the 3D model employs more intricate techniques, such as spherical harmonics, to
capture the complexities of tumor growth. These advanced methodologies facilitate a deeper
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understanding of the tumor boundary instability, a pivotal aspect of our study. The technical
intricacies and the evolution function construction that elucidate the instability of the tumor
boundary are detailed in Sects. 4.3 and 4.4.

In this section, we focus on analyzing the tumor growthmodel in a 3D scenario, examining
it under both in vitro and in vivo nutrient conditions. Specifically, we explore the spherically
symmetric model in a 3D context for these nutrient models before any perturbation, as
detailed in Sects. 4.1 (in vitro) and 4.2 (in vivo). We then shift our attention to the stability
of the 3D spherically symmetric model under these models, discussed in Sects. 4.3 (in vitro)
and 4.4 (in vivo). A key part of our investigation involves reconstructing critical variables: the
concentration (c), the pressure (p), and the boundary speed (σ ) and analyzing their behaviors
both before and after perturbations. We also derive the evolution function δ−1 dδ

dt and use it
to assess the stability of the tumor boundary, based on its sign. The critical threshold for the
transition between the stability and instability is identified through the asymptotic analysis of
spherical modified Bessel functions and hyperbolic functions, which play a significant role
in the evolution function. Detailed results and methodologies are included in each respective
section. In Sect. 5.1, we emphasize a comparative analysis between the in vitro and in vivo
results, highlighting biological insights gained from this comparison.

4.1 3D Spherically Symmetric Solution for the in Vitro Model

For the 3D scenario, based on the models given in Sect. 2, we can reduce the problem from
Bessel functions to hyperbolic trigonometric functions cosh and sinh. The Laplacian in 3D
spherical coordinates (spherically symmetric) becomes

∇2u = 1

r2
∂

∂r

(
r2

∂u

∂r

)
. (29)

Step 1: Construct the concentration c
The corresponding governing equation for the concentration c in 3D spherical coordinates

(spherically symmetric) is (2.26) in [10]:

⎧⎨
⎩ − 1

r2
∂r (r

2∂r c) + λc = 0 for r � R(t),

c = cB for r � R(t).
(30)

Since u(r , θ, φ) is independent of θ and φ, expanding the right-hand side of (29) yields

∇2u = 2

r

∂u

∂r
+ ∂2u

∂r2
. (31)

This is shown to be the same as 1
r

(
∂2

∂r2
(ru)

)
by expanding this out using the product rule:

1

r

(
∂2

∂r2
(ru)

)
= 2

r

∂u

∂r
+ ∂2u

∂r2
. (32)

Hence, we have
1

r

(
∂2

∂r2
(ru)

)
= λu. (33)
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Let v = ru. Then we obtain the general solution

∂2v

∂r2
= λv

⇒ v = C1 sinh(
√

λr) + C2 cosh(
√

λr)

⇒ u = 1

r

(
C1 sinh(

√
λr) + C2 cosh(

√
λr)
)
,

(34)

whereC1 andC2 are arbitrary constants, and this applies to odd dimensions. Further applying
the BCs, we can solve this equation

c(r , t) = cB
R

r

sinh(
√

λr)

sinh(
√

λR)
. (35)

Step 2: Construct the pressure p
We have the PDE for the pressure p:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− 1

r2
∂r (r

2∂r p) = G0c for r � R,

p = 0 for r � R,

dR

dt
= −∂r p(R),

∂r p(0) = 0,

(36)

and we can use c(r , t) from (35) for r � R obtained from Step 1.
We can combine the equations of the concentration (c) for r � R(t) and the equation of

the pressure (p) for r � R(t), done similarly to Sect. 2, to obtain the Laplace’s equation for
u = p + G0

λ
c as shown in (7), we have

d2u

dr2
+ 2

r

du

dr
= 0. (37)

This is a Cauchy-Euler (CE) equation, and thus we plug in the trial solution u = rs , which
gives

u = A1(R) + A2(R)r−1, (38)

where A1(R) and A2(R) are arbitrary constants. Since we require c, p to be bounded at the
origin, A2(R) must be zero, so u must be constant in space, u = A1(R).

Then we can apply the BCs from (49), and determine the constant to be

p(r = R) = A1(R) − G0

λ
cB = 0 �⇒ A1(R) = G0

λ
cB . (39)

Therefore, we derive the final solution for the pressure p for the in vitro model:

p(r , t) = G0cB
λ

(
1 − R sinh(

√
λr)

r sinh(
√

λR)

)
. (40)

Step 3: Construct the boundary velocity
Substituting the solution for p derived in (40) into the boundary velocity equation as in

(9), we get the boundary velocity for the 3D spherically symmetric in vitro model is

dR

dt
= G0cB

(
− 1

λR
+ cosh(

√
λR)√

λ sinh(
√

λR)

)
. (41)
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4.2 3D Spherically Symmetric Solution for the in VivoModel

Step 1: Construct the concentration c
The equations for concentration in the in vivo model can be described as (2.31) in [10]⎧⎪⎨

⎪⎩
− 1

r2
∂r (r

2∂r c) + λc = 0 for r � R(t),

− 1

r2
∂r (r

2∂r c) = cB − c for r � R(t).
(42)

We solve the above two equations and then apply the BCs, which ensure the continuity of
both c and ∂r c at R(t) {

c(i)(R, t) = c(o)(R, t),

∂r c
(i)(R, t) = ∂r c

(o)(R, t)
(43)

and we get

c(r , t) =
{
cBa0(R) sinh(

√
λr)/r

def= c(i)(r , t) for r � R(t),

cB(b0(R)e−r + r)/r
def= c(o)(r , t) for r � R(t),

(44)

where a0 and b0 are given by

a0(R) = R + 1√
λ cosh(

√
λR) + sinh(

√
λR)

, (45)

b0(R) = −
√

λ R cosh(
√

λR) − sinh(
√

λR)

−R(
√

λ cosh(
√

λR) + sinh(
√

λR))
. (46)

The concentration for r � R(t) in (44) is clear with the same form as (35), so we will not go
into details. However, for the concentration when r � R(t) as specified in (44), our analysis
beginswith the second equation of the in vivomodel for regionswhere r � R(t), as described
in (42):

− 1

r2
∂

∂r

(
r2

∂c

∂r

)
= cB − c. (47)

This equation simplifies upon substituting v = rc, which isolates the spatial component and
transforms the PDE into an ODE:

− 1

r

d2v

dr2
= cB − v

r
. (48)

Considering the homogeneous part first:

d2v

dr2
= v.

Assuming a trial solution v = esr , we find

s2esr = esr ⇒ s2 = 1 ⇒ s = ±1.

Thus, the general solution for the homogeneous equation is

vhom = B1e
r + B2e

−r .

Considering the requirement that c must be finite as r → ∞, we set B1 = 0, giving us
vhom = B2e−r . Transforming back to c, the homogeneous solution is chom = B2e−r/r .
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Introducing a constant solution c = cB for the particular solution and combining, we have

c = B2e−r

r
+ cB .

Renaming B2 as b0, the solution for r � R(t) becomes

c(r , t) = cB

(
b0

e−r

r
+ 1

)
, r � R(t),

which give us the concentration for r � R(t) in (44).
Step 2: Construct the pressure p
We have the PDE for the pressure p:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− 1

r2
∂r (r

2∂r p) = G0c for r � R(t),

p = 0 for r � R(t),
dR

dt
= −∂r p(R),

∂r p(0) = 0

(49)

as in (49), and we use the solution for the concentration c as in (44) and (45).
We arrive at the Laplace’s equation for u = p + G0

λ
c, done similarly to Sect. 2, as shown

in (7):
d2u

dr2
+ 2

r

du

dr
= 0. (50)

This is a CE equation, and using the same approach as in (38), we derive the general solution
for the pressure p = B1(R) − G0

λ
c. We then apply the BC:

p(r = R) = B1(R) − G0

λ
c(R) = B1(R) − G0

λ
cB = 0

⇒ B1(R) = G0cB
λ

a0(R)

R
sinh(

√
λR) = G0cB

λ
.

(51)

Therefore, the solution for the pressure p for the in vivo model is

p(r , t) = B1(R) − G0

λ
c = G0cB

λ

a0(R)

R
(sinh(

√
λR) − sinh(

√
λr)), (52)

where a0 is shown in (45).
Step 3: Construct the boundary velocity
Substituting the solution for p we derived in (52) into the boundary velocity equation as

in (9), we get the boundary velocity for the 3D spherically symmetric in vivo model:

dR

dt
= G0cB

λ

R + 1

R2

λR cosh(
√

λR) − √
λ sinh(

√
λR)

λ cosh(
√

λR) + √
λ sinh(

√
λR)

. (53)

Following (41) and (53), we plot the comparison of the tumor evolution speed for in vitro
and in vivo models as shown in Figs. 6 and 7, where we can observe that the tumor in the in
vivo model is growing slower than the in vitro model.
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Fig. 6 3D in vitro tumor evolution (41)

Fig. 7 3D in vivo tumor evolution (53)

4.3 Stability of 3D Spherically Symmetric in the in Vitro Model

Building upon the nutrient concentration PDEs outlined in (10), we now extend our analysis
to the spherically symmetric 3D scenario:

− ∇2c(r , θ, φ, t) + λc(r , θ, φ, t) = 0 in D̃. (54)

The 3D Laplacian in the spherical coordinate (r , θ, φ) is

∇2c = crr + 2

r
cr + 1

r2

[
1

sin2 θ
cφφ + 1

sin θ
(sin θcθ )θ

]
. (55)
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The spherical harmonic function plays an important role in the 3D stability analysis. The
spherical harmonic function of degree � and order m is given by

Ym
� (θ, φ) =

√
2� + 1

4π
(� − m)!
(� + m)! P

m
� (cos θ)eimφ. (56)

Here, � can take on any noninteger values, and for each value of �, m can range from −�

to �. Pm
� (cos θ) represents the associated Legendre polynomial. Note that m = 0 mode cor-

responds to the unperturbed, spherically symmetric scenario. The stability analysis includes
all modes, thereby generalizing to cases where m = 1, 2, 3, · · · . Consequently, this analysis
involves the associated Legendre polynomial Pm

� (cos θ).
Recall the asymptotic expansions for the perturbed solutions c̃ and p̃ after extending our

analysis to three dimensions:{
c̃(r , θ, φ, t) = c0(r , t) + δc̃1(r , θ, φ, t) + O(δ2),

p̃(r , θ, φ, t) = p0(r , t) + δ p̃1(r , θ, φ, t) + O(δ2).
(57)

Here, c0(r , t) and p0(r , t) are the leading-order solutions in the spherical coordinates
(r , θ, φ), as we obtained in Sects. 4.1 and 4.2. These solutions describe the unperturbed,
spherically symmetric case and depend only on the radial coordinate r and time t . The terms
c̃1(r , θ, φ, t) and p̃1(r , θ, φ, t) represent the first-order terms, which include the additional
angular dependence on θ and φ due to the introduced perturbations.

Consider the concentration c̃1(r , θ, φ, t) in the 3D spherical tumor model after perturba-
tion. By applying separation of variables, we can express c̃1 as a sum over radial functions
and spherical harmonics, which respectively capture the radial and angular dependencies:

c̃1 =
∞∑

�=0

�∑
m=−�

c1�m(r , t)Ym
� (θ, φ). (58)

Here, c1�m(r , t) represents the radial component of the concentration and depends only on
the radial coordinate r and time t . The Ym

� (θ, φ) are spherical harmonics as introduced in
(56), reflecting the dependence of the solution on the angular coordinates θ and φ. Based on
this separation of variables from the linearized equation at O(δ), the BCs allow us to drop all
O(δ2) and smaller terms, which considerably simplifies the expansion. Therefore, for clarity
and simplicity in the following discussions, we will use c1 to represent c1�m(r , t). It is crucial
to note that this representation of c1 differs from the c1(r , θ, φ, t) obtained in the asymptotic
expansion discussed in (57).

Based on the BC in (10), and evaluating the perturbed solution at the perturbed boundary
point as in (21) using the asymptotic expansion in (57) after the separation of variables in
(58), we have

∂r c0(R(t), t) + c1(R(t), t) = 0. (59)

Step 1: Construct the concentration c
The 3D Laplacian is therefore

∇2c̃1(r , θ, φ, t) =(c1)rr Y
m
� (θ, φ) + 2

r
(c1)r Y

m
� (θ, φ)

+ c1
r2

[
1

sin2 θ

∂2Ym
� (θ, φ)

∂2φ
+ 1

sin θ
∂θ

(
sin θ

∂Ym
� (θ, φ)

∂φ

)]
,

(60)
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where c1 on the right-hand side is the radial part c1�m(r , t). Substituting (56) into the above
3D Laplacian in the spherical coordinate, and since

d

dθ

(
sin θ

dc

dθ

)
= −

(
μ sin θ − γ

sin θ

)
c1Y

m
� (θ, φ), (61)

where μ = �(� + 1) and γ = m2. Following these, we have

∇2c1(r , θ, φ) =(c1)rr Y
m
� (θ, φ) + 2

r
(c1)r Y

m
� (θ, φ)

+ c1
r2

(
1

sin2 θ
(−m2)Ym

� (θ, φ) + 1

sin θ

(
−μ sin θ + γ

sin θ

)
Ym

� (θ, φ)

)

=
(

(c1)rr + 2

r
(c1)r − μ

r2
c1

)
Ym

� (θ, φ).

(62)
Therefore, plugging (62) into (6) gives us

− ∇2c + λc = 0

⇒ −
(

(c1)rr + 2

r
(c1)r − μ

r2
c1

)
Ym

� (θ, φ) + λc1Y
m
� (θ, φ) = 0

⇒ r2(c1)rr + 2r(c1)r − (λr2 + μ)c1 = 0,

(63)

where μ = �(� + 1), and since the standard form of the modified spherical Bessel equation
of order n is

x2
d2y

dx2
+ 2x

dy

dx
− (x2 + n(n + 1))y = 0. (64)

We can convert
r2(c1)rr + 2r(c1)r − (λr2 + μ)c1 = 0 (65)

to the standard form by change of variables, namely, c1(r) = y(z)/
√
z with z = √

λr .
Therefore, the solution to (65) is

y(z) = C1 Iw(z) + C2Kw(z), (66)

where w = � + 1
2 . Since the solution is bounded at z = 0, which sets C2 = 0,

c1(r) =
C1 I�+ 1

2
(
√

λr)√√
λr

. (67)

Given the BCs:
∂r c0(R(t), t) + c1(R(t), t) = 0. (68)

Thus from (68) and substituting in the derived result for c0 from (35), we obtain

c1(R(t), t) = −cB
√

λ cosh(
√

λR)

sinh(
√

λR)
.

By using the BCs in (59), we have

− cB
√

λ cosh(
√

λR)

sinh(
√

λR)
= C1

I�+ 1
2
(
√

λR)√√
λR

. (69)
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Therefore, for the in vitro model, we have the concentration inside the tumor:

c1(r , t) = cBa1(t)
I�+ 1

2
(
√

λr)√√
λr

(70)

and the leading-order term c0(r , t) for this case is given by (68). Rename C1 as a1, and we
have

a1(R(t)) = −
√

λ cosh(
√

λR)
√√

λR

sinh(
√

λR)I�+ 1
2
(
√

λR)
. (71)

The concentration outside the tumor is the constant cB .
Step 2: Construct pressure p1
The PDE for the pressure p is

− ∇2 p1(r , θ, φ, t) = G0c1(r , θ, φ, t) in D̃(t) (72)

with BC
∂r p0(R(t), t) + p1(R(t), t) = 0. (73)

Since −∇2c1(r , θ, φ, t) + λc1(r , θ, φ, t) = 0, meaning that c1 = 1
λ
∇2c1, therefore⎧⎨

⎩
− ∇2 p1(r , θ, φ, t) = G0c1(r , θ, φ, t),

− ∇2 p1 − G0

λ
∇2c1 = 0.

(74)

Thenwe substitute the Laplacian in the 3D spherical coordinate for the pressure p, combining
the pressure and concentration equations as in (7), which gives us the Laplace’s equation for
u1 = p1 + G0

λ
c1. Since we have the Laplace operator after perturbation as in (62), we have

r2
d2u1
dr2

+ 2r
du1
dr

− �(� + 1)u1 = 0. (75)

This is in the CE form, and has the general solution

u = H1r
� + H2r

−�. (76)

Since the solution is bounded, hence we get

u = H1(R)r�. (77)

We then apply the BCs in (73), and substitute p0 as in (40), and we obtain

p1(R, t) = G0cB
λ

(
− 1

R
+

√
λ cosh(

√
λR)

sinh(
√

λR)

)
. (78)

Since p1 = u1 − G0c1/λ, we have

p1(R, t) = H1R
� − G0

λ
c1(R), (79)

where c1(R) can be derived by plugging r = R into (70) with (71).
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We combine (78) and (79), and substitute (70) for c1(R(t), t) in the above equation to
solve for H1(R), and we get

H1(R) = R−�

[(
RG0cB sinh(

√
λr)

r2λ sinh(
√

λR)
− RG0cB cosh(

√
λr)

r
√

λ sinh(
√

λR)

)
−G0

λ

(
cB

√
λ cosh(

√
λR)

sinh(
√

λR)

)]

⇒ H1(R) = −R−�−1

(
G0cB sinh(

√
λR)

λ sinh(
√

λR)

)
= −R−�−1

(
G0cB

λ

)
. (80)

We then substitute (80) into (79), and we get the solution for p1:

p1(r , t) = −G0cB
λ

⎛
⎝− r�

R�+1 +
√

λ cosh(
√

λR)
√
R

sinh(
√

λR)I�+ 1
2
(
√

λR)

I�+ 1
2
(
√

λr)
√
r

⎞
⎠ . (81)

Step 3: Construct δ−1 dδ
dt

From the previous perturbation analysis we have the evolution function

δ−1 dδ

dt
= −(∂2r p0(R, t) + ∂r p1(R, t)). (82)

We substitute p0(R) = −G0
λ

1
r
cB R sinh(

√
λR)

sinh(
√

λR)
+ G0cB

λ
and p1 as in (81), so we get

δ−1 dδ

dt
=
RcBG0 I�+ 1

2
(
√

λR)R−1−� sinh(
√

λR)R�+ 5
2 �

√
λ

λ3/2R7/2 sinh(
√

λR)I�+ 1
2
(
√

λR)

+
RcBG0 I�+ 1

2
(
√

λR)(2
√

λ
√
R + λ3/2R5/2) sinh(

√
λR)

λ3/2R7/2 sinh(
√

λR)I�+ 1
2
(
√

λR)

−
2RcBG0 I�+ 1

2
(
√

λR) cosh(
√

λR)λR3/2

λ3/2R7/2 sinh(
√

λR)I�+ 1
2
(
√

λR)

−
(−λ(� + 1)I�+ 1

2
(
√

λR) + I�− 1
2
(
√

λR)λ3/2R)R5/2 cosh(
√

λR)

2λ3/2R7/2 sinh(
√

λR)I�+ 1
2
(
√

λR)

def=M1(λ, �, R).

(83)

Step 4: Boundary stability analysis
The goal is to determine the sign of the evolution function δ−1 dδ

dt , and then determine the
stability of the tumor boundary. By substituting the asymptotic expansions for the modified
Bessel functions and the hyperbolic functions as in Appendix A, we arrive at (111) in Sect. 5,
which are summarized as Corollary 1 and indicate the negative sign of the evolution function
in the 3D in vitro scenario. From Figs. 8, 9 below, we can also see that the evolution function
δ−1 dδ

dt < 0 is always true, meaning that in the 3D in vitro model, the perturbation will
degenerate and the tumor boundary will always become stable.
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Fig. 8 3D in vitro λ = 0.8, � = 3, 8, 10, 12, 14, 16, 18

Fig. 9 3D in vitro λ = 5, � = 3, 8, 10, 12, 14, 16, 18

4.4 Stability of 3D Spherically Symmetric in the in VivoModel

The PDEs for the 3D in vivo problem is{
− ∇2c(i)

1 (r , θ, t) + λc(i)
1 (r , θ, t) = 0,

− ∇2c(o)
1 (r , θ, t) + c(o)

1 (r , θ, t) = 0
(84)
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with the solution of the concentration (c(i)
1 (0, t)) bounded everywhere, the BCs and ICs:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c(o)
1 (∞, t) = 0,

c(i)
1 (R(t), t) = c(o)

1 (R(t), t),

∂r c
(i)
1 (R(t), t) = ∂r c

(o)
1 (R(t), t),

∂2r c
(i)
0 (R(t), t) + ∂r c

(i)
1 (R(t), t) = ∂2r c

(o)
0 (R(t), t) + ∂r c

(o)
1 (R(t), t).

(85)

Step 1: Construct the concentration c
For the in vivo model, the idea is to plug the expansion as in (58) into (84), where

μ = �(� + 1), γ = m2. The construction for the concentration inside the tumor c(i)(r , t)
is exactly the same as that in the in vitro model when solving c(r , t), and thus we skip the
construction of c(i)(r , t) and arrive at the general solution

c(i)(r , t) = C1

I�+ 1
2
(
√

λr)√√
λr

. (86)

Then we consider the concentration outside the tumor c(o)(r , t) governed by the second
equation in (84) and since we have ∇2c1(r , θ, φ) = r2(c1)rr + 2r(c2)r − μc1 as derived in
(62), we get

⇒
[
r2(c1)rr + 2r(c1)r −

(
m2

r2 sin2 θ
+ μ

r2
− γ

r2 sin2 θ
+ 1

)
c1

]
Ym

� (θ, φ) = 0

⇒ r2(c1)rr + 2r(c1)r − (r2 + μ)c1 = 0, (87)

where μ = �(� + 1), and since the standard form for the modified spherical Bessel function
is as in (64), and we can convert (65) to the standard form by change of variables, namely,
c(r) = y(r)/

√
r . Therefore, the solution to the governing equation for concentration outside

the tumor is

c(o)(r , t) = C3
Iν(r)√

r
+ C4

Kν(r)√
r

, (88)

where ν = � + 1
2 as before. Since Iν blows up when r → ∞, C3 = 0, and the general

solution becomes

c(o)(r , t) = C4
Kν(r)√

r
. (89)

Then we apply the BCs as in (85) to get the constants C1,C4 and write in a consistent form.
Hence, for any k ∈ N

+ we have

c(i)
1 (r , t) = cBa1(t)

I�+ 1
2
(
√

λr)√√
λr

for r � R(t), (90)

c(o)
1 (r , t) = cBb1(t)

K�+ 1
2
(r)

√
r

for r � R(t). (91)

Recall that the leading-order terms c(i)
0 (ξ) and c(o)

0 (ξ) are given by (44) and (45). Then
applying the BCs (85) yields
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a1(t) =
(((R + 1)λ3/2 − √

λ) sinh (
√

λR) + cosh (
√

λR)Rλ)(
√

λR)3/2K�+ 1
2
(R)

λRC(R)
,

(92)

b1(t) =
2(((R + 1)λ3/2 − √

λ) sinh (
√

λR) + cosh (
√

λR)Rλ)I�+ 1
2
(
√

λR)

2C(R)
, (93)

where

C(R) = (
√

λ cosh (
√

λR) + sinh (
√

λR))

(
K�− 1

2
(R)R −

K�+ 1
2
(R)

2

)
I�+ 1

2
(
√

λR)

+ RI�− 1
2
(
√

λR)K�+ 1
2
(R)(cosh (

√
λR)λ + sinh (

√
λR)

√
λ).

(94)

Step 2: Construct pressure p1
By now, c1(r , t) is determined, therefore, c1(r , θ, φ) is also determined. Then, by solving

the equation for the pressure p:

− ∇2 p1(r , θ, φ, t) = G0c1(r , θ, φ, t) in D̃(t) (95)

with the BC
∂r p0(R(t), t) + p1(R(t), t) = 0, (96)

and expansion p1(r , θ, t) = p1(r , t)Ym
� (θ, φ) and p0 given by (52), we can solve for p1.

Specifically, since −∇2c1(r , θ, φ, t) + λc1(r , θ, φ, t) = 0, meaning that c1 = 1
λ
∇2c1,

therefore ⎧⎨
⎩

− ∇2 p1(r , θ, φ, t) = G0c1(r , θ, φ, t),

− ∇2 p1 − G

λ
∇2c1 = 0.

(97)

Thenwe substitute the Laplacian in the 3D spherical coordinate for the pressure p, combining
the pressure and concentration equations as in (7), which gives us the Laplace’s equation for
u1 = p1 + G

λ
c1. Since we have the Laplace operator after perturbation as in (62), we have

r2
d2u1
dr2

+ 2r
du1
dr

− μu1 = 0. (98)

This is in the CE form, and has the general solution u1 = D1(R)r� + D2(R)r−�, since the
solution is bounded at the origin, D2(R) = 0, and we have u1 = D1(R)r�.

By applying the BCs and substituting p0 as in (52) and a0 given in (45). Therefore,

p1(R(t), t) = −∂r p0(R(t), t)

= G0cB
λ

R + 1

R2

λR cosh(
√

λR) − √
λ sinh(

√
λR)

λ cosh(
√

λR) + √
λ sinh(

√
λR)

,
(99)

and since p1(R, t) = u1(R) − G0c1/λ, we have

p1(R, t) = D1(R)R� − G0

λ
c1(R). (100)

We combine (99) and (100), and substitute (90) for c(i),1
1 (R(t), t) in the above equation to

solve for constant D1(R). We get

D1(R) = G0cB
λ

⎛
⎝ R + 1

R2+�

λR cosh(
√

λR) − √
λ sinh(

√
λR)

λ cosh(
√

λR) + √
λ sinh(

√
λR)

+ a1
R�

I�+ 1
2
(
√

λR)√√
λR

⎞
⎠ , (101)
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where b1 is shown in (93).
We then substitute (101) and (93) into (100), and we get the solution for p1 for the in vivo

model

p1(t) = G0cB
λ

⎡
⎣
⎛
⎝ R + 1

R2+�

λR cosh(
√

λR) − √
λ sinh(

√
λR)

λ cosh(
√

λR) + √
λ sinh(

√
λR)

+ a1
R�

I�+ 1
2
(
√

λR)√√
λR

⎞
⎠ r�

−a1
I�+ 1

2
(
√

λR)√√
λR

⎤
⎦ ,

(102)
where a1 is shown in (92).

Step 3: Construct δ−1 dδ
dt

Since we have the expression for the evolution function δ−1 dδ
dt :

δ−1 dδ

dt
= −(∂2r p0(R, t) + ∂r p1(R, t)) (103)

with

p0(r , t) = −G0cB
λ

(
a0(R) sinh(

√
λr)

r
+ a0(R) sinh(

√
λR)

R

)
, (104)

where a0 is constructed in (45), and p1 is constructed as in (102).
We substitute them into (103), which gives us

δ−1 dδ

dt
= T1

T2

def= M2(λ, �, R), (105)

where

T1 = − G0cB(((−2R((3R + 2)λ3/2 + √
λ(R − 2))(� + 1/2)K�+ 1

2
(R)

− 2(R(R − �/2 − 1)λ3/2 − √
λ(� + 2)(R − 2)/2)(R + 1)K�− 1

2
(R))

· cosh (
√

λR)
3 − 2 sinh (

√
λR)(R(� + 1/2)((λ2 + 3λ)R + λ2 − 1)K�+ 1

2
(R)

+ ((λ2 + λ)R2 − 2λ(� + 2)R + (λ + 1)(� + 2))(R + 1)K�− 1
2
(R)/2)

· cosh (
√

λR)
2 + (2R((2R + 2)λ3/2 + √

λ(R − 2))(� + 1/2)K�+ 1
2
(R)

+ 2(R2λ3/2 − √
λ(� + 2)(R − 2)/2)(R + 1)K�− 1

2
(R)) cosh (

√
λR)

+ 2 sinh (
√

λR)(R(� + 1/2)(λR + λ − 1)K�+ 1
2
(R)

+ K�− 1
2
(R)(R + 1)(R2λ + � + 2)/2))I�+ 1

2
(
√

λR)

+ I�− 1
2
(
√

λR)(R2 + (� + 2)R + � + 2)(λ(−2 + (λ + 1)R) cosh (
√

λR)
3

+ 2 sinh (
√

λR)((R − 1/2)λ3/2 − √
λ/2) cosh (

√
λR)

2

− λ(R − 2) cosh (
√

λR) + sinh (
√

λR)
√

λ)K�+ 1
2
(R) (106)
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and

T2 =√
λR3K�+ 1

2
(R)(cosh (

√
λR)λ + sinh (

√
λR)

√
λ)I�− 1

2
(
√

λR)

+ I�+ 1
2
(
√

λR)K�− 1
2
(R)(

√
λ cosh (

√
λR) + sinh (

√
λR)))

· (cosh (
√

λR)λ + sinh (
√

λR)
√

λ)(
√

λ cosh (
√

λR) + sinh (
√

λR)).

(107)

Step 4: Boundary stability analysis
We have the evolution function as in (105)–(110). To determine the sign of the evolution

function, we can substitute the asymptotic expansions of the modified Bessel functions and
the hyperbolic trigonometric functionswhen r → ∞ and r → 0. Specifically, in our analysis,
we first substitute the given asymptotic expansions into the evolution function. This step is
followed by simplifying the expression and arranging the terms in the descending order of
powers of R. For the case when r → ∞, we focus on the highest power term of R due
to its dominance in the evolution function for large R values. We extract its coefficient as
the key term. Conversely, when r → 0, the lowest power term of R becomes significant.
Here, we isolate this term from the evolution function after the substitution of the relevant
asymptotic expansions and retrieve its coefficient. This analysis clarifies the behavior of
the evolution function near zero and infinity, pivotal for determining the tumor boundary
stability; a negative evolution function denotes the stability, whereas a positive evolution
function indicates the instability. The results of this will be shown in Sect. 5.1.

5 Results and Discussion

5.1 Results for 3D TumorModel

Theorem 1 In the three dimensions, given the growing rate G0 > 0, background concentra-
tion cB > 0, nutrient consumption rate λ > 0, and perturbation degree � and order m of
the spherical harmonic function Ym

� (θ, φ) as in (56). If the radius of the tumor is around R,
where the corresponding unperturbed tumor has radius R, the evolution function δ−1 dδ

dt for
the in vitro model is given by (83):

δ−1 dδ

dt
=
RcBG0 I�+ 1

2
(
√

λR)R−1−� sinh(
√

λR)R�+ 5
2 �

√
λ

λ3/2R7/2 sinh(
√

λR)I�+ 1
2
(
√

λR)

+
RcBG0 I�+ 1

2
(
√

λR)(2
√

λ
√
R + λ3/2R5/2) sinh(

√
λR)

λ3/2R7/2 sinh(
√

λR)I�+ 1
2
(
√

λR)

−
2RcBG0 I�+ 1

2
(
√

λR) cosh(
√

λR)λR3/2

λ3/2R7/2 sinh(
√

λR)I�+ 1
2
(
√

λR)

−
(−λ(� + 1)I�+ 1

2
(
√

λR) + I�− 1
2
(
√

λR)λ3/2R)R5/2 cosh(
√

λR)

2λ3/2R7/2 sinh(
√

λR)I�+ 1
2
(
√

λR)

def= M1(λ, �, R)
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and for the in vivo model, it is given by (105):

δ−1 dδ

dt
= T1

T2

def= M2(λ, �, R), (108)

where

T1 = − G0cB(((−2R((3R + 2)λ3/2 + √
λ(R − 2))(� + 1/2)K�+ 1

2
(R)

− 2(R(R − �/2 − 1)λ3/2 − √
λ(� + 2)(R − 2)/2)(R + 1)K�− 1

2
(R))

· cosh (
√

λR)
3 − 2 sinh (

√
λR)(R(� + 1/2)((λ2 + 3λ)R + λ2 − 1)K�+ 1

2
(R)

+ ((λ2 + λ)R2 − 2λ(� + 2)R + (λ + 1)(� + 2))(R + 1)K�− 1
2
(R)/2)

· cosh (
√

λR)
2 + (2R((2R + 2)λ3/2 + √

λ(R − 2))(� + 1/2)K�+ 1
2
(R)

+ 2(R2λ3/2 − √
λ(� + 2)(R − 2)/2)(R + 1)K�− 1

2
(R)) cosh (

√
λR)

+ 2 sinh (
√

λR)(R(� + 1/2)(λR + λ − 1)K�+ 1
2
(R)

+ K�− 1
2
(R)(R + 1)(R2λ + � + 2)/2))I�+ 1

2
(
√

λR)

+ I�− 1
2
(
√

λR)(R2 + (� + 2)R + � + 2)(λ(−2 + (λ + 1)R) cosh (
√

λR)
3

+ 2 sinh (
√

λR)((R − 1/2)λ3/2 − √
λ/2) cosh (

√
λR)

2

− λ(R − 2) cosh (
√

λR) + sinh (
√

λR)
√

λ)K�+ 1
2
(R)

(109)

and

T2 =√
λR3K�+ 1

2
(R)(cosh (

√
λR)λ + sinh (

√
λR)

√
λ)I�− 1

2
(
√

λR)

+ I�+ 1
2
(
√

λR)K�− 1
2
(R)(

√
λ cosh (

√
λR) + sinh (

√
λR)))

· (cosh (
√

λR)λ + sinh (
√

λR)
√

λ)(
√

λ cosh (
√

λR) + sinh (
√

λR)).

(110)

Note that the scaling parameters G0, cB > 0 do not influence the quantitative behavior of
δ−1 dδ

dt . Also, in our analysis, the wave number m is canceled out in (62). This is reasonable,
considering that although m primarily specifies orientations or symmetries, the fundamental
characteristics of the solutions are predominantly determined by the parameter �. This is due
to the dependency of m on �, as indicated by the relationship −� � m � �. Essentially, it is
the wave number � that plays the central role in defining the nature of these solutions. For
the in vitro model, we will show that M1(λ, �, R) is always negative, where they are shown
in Figs. 8 and 9. For the in vivo model, fix the values of G0, cB > 0, M2(λ, �, R) is plotted
in Figs. 10, 11, 12, 13, for a different choice of λ and perturbation parameter �. Based on the
expression of δ−1 dδ

dt for the two nutrient models and the figures, we establish the following
remarks.

Remark 3 M1(λ, 1, R) = M2(λ, 1, R) = 0 for any λ, R > 0, since the model 1 perturbation
corresponds to a trivial translation instead of the change of the boundary geometry.

Remark 4 When 0 < λ < λ∗(�), fix any degree � � 2 and order −� � m � � of the
spherical harmonic function Ym

� (θ, φ) in the perturbation, M1(λ, 1, R) is always negative
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Fig. 10 3D in vivo, G0 = 1, cB = 100, λ = 100, � = 8, 10, 12, 14, 16, 18, 20, R ∈ [0, 15]

Fig. 11 3D in vivo, G0 = 1, cB = 100, λ = 100, � = 8, 10, 12, 14, 16, 18, 20, R ∈ [0, 1]

and monotone increases in R (see Figs. 10, 11, 12, 13). From a physical perspective, when
the nutrient consumption rate λ is relatively low, the perturbation amplitude will continue
to decrease to zero, where λ∗(�) is the threshold of λ, and may be dependent on the wave
number �. This means that the tumor in this range will always evolve from an irregular shape
to a regular shape like a sphere (with a larger size).

Remark 5 For the regime λ � λ∗(�), we have the following.

i. There exists a threshold R∗(�) such that F2(λ, 1, R) < 0 for 0 < R < R∗(�), and
F2(λ, 1, R) > 0 for R > R∗(�) (see Figs. 10, 11). This means considering the degree �

and the order m, and assuming the nutrient consumption rate is significant, the pertur-
bation amplitude will degenerate for tumors with a small radius, and increase when the
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Fig. 12 3D in vivo, G0 = 1, cB = 100, λ = 1.0, � = 8, 10, 12, 14, 16, 18, 20, R ∈ [0, 50]

Fig. 13 3D in vivo, G0 = 1, cB = 100, λ = 0.8, � = 8, 10, 12, 14, 16, 18, 20, R ∈ [0, 50]

tumor boundary exceeds the threshold radius (R∗), namely, the tumor will evolve from
an irregular shape to a circular shape before the threshold radius R∗. Then it will continue
to evolve after R∗, but from a spherical shape to an irregular 3D shape.

ii. Fix a proper value of R0, there exists �0 such that M2(λ, �, R) > 0 for � < �0 and
M2(λ, �, R) < 0 for � > �0 (see Figs. 10, 11), which implies that when the tumor
size is around R0, the perturbation of the lower degree � is easier to become unstable.
However, the value of orderm is canceled in (62), and thus the threshold of tumor radius
is independent of the order m.

iii. With the size of the tumor expanding, R(t) exceeds more threshold R∗(�), therefore the
corresponding degree � perturbation becomes unstable successively.
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Fig. 14 3D in vivo λ = 1, � = 2, 4, 6, 8, 10, 12, 14, R ∈ [0, 150]

Fig. 15 3D in vivo λ = 1.1, � = 2, 4, 6, 8, 10, 12, 14, R ∈ [0, 150]

Wehypothesize that there exists the threshold λ∗ between 1.0 and 1.1, as shown in Figs. 14
and 15, since the evolution function remains negative when λ = 1.0 as in Fig. 14 and start
going above y = 0 when λ = 1.1 as in Fig. 15.

Remark 6 Compared with the PME model (1), the incompressible limit model (5), (6) can
also be seen as the sharp interface model. The rigorous analysis of such the incompressible
limit is hard in general, and one can find [16–20, 26] as references. Unfortunately, due to
the complicated nature of the analysis, currently, there is no direct evidence showing that we
could find the relation between these two models in the sense of the boundary stability.
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Corollary 1 Fix G0 > 0 and CB > 0. For any λ > 0 and � > 0, M1(λ, �, R) for the in vitro
model is given as⎧⎪⎪⎨

⎪⎪⎩
M1(λ, �, R) ∼ −10(� − 1)

3
+ O(R) as R ∼ 0,

M1(λ, �, R) ∼ 20
√

λR

(� + 1)
(− 1

4�
2 − 1

4� + 1
2

)
�

+ O(1) as R ∼ ∞.

(111)

Therefore, M1(λ, �, R) < 0 as R → 0 and as R → ∞, thus M1(λ, �, R) < 0 always holds,
since � � 1 is always true. This indicates that the perturbation amplitude always decays for
the in vitro model. Furthermore, for the in vivo model, we can infer from the figures that the
function M2(λ, �, R) is always negative as R ∼ 0, and is positive as R ∼ ∞. The existence of
the threshold can be shownby the intermediate value theorem,where the function M2(λ, �, R)

must intersect the horizontal axis, changing the sign from negative to positive. This implies
that the tumor boundary will change from stable to unstable. Note that the threshold λ∗(�)
may also depend on the degree � as the perturbation parameter of spherical harmonics Ym

� .
These can be seen more clearly in Figs.10, 11, 12, 13. In order to determine the critical
threshold value λ∗(�), we expect to substitute the asymptotic expansions of modified Bessel
functions and hyperbolic functions into the evolution function as in (105). The focus will be
on the coefficient of the highest order term, as it dominates the behavior of M2(λ, �, R). By
setting this leading coefficient to zero, we can ascertain the value of λ∗ that induces a sign
transition in M2(λ, �, R). This transition, from negative to positive in the evolution function,
marks the critical point where the stability of the tumor changes.

5.2 2D and 3D Results Comparison

In our comparative analysis of 2D and 3D tumor growth models, as initially discussed in [10]
and summarized in Sect. 2, we gained further insights into the tumor boundary stability in
different dimensions. In summary, the 2D and 3D models are essentially the same, and they
both exhibit similar divergences between the in vitro and in vivo models. Particularly, for
both the in vitro 2D and 3D models, the evolution function consistently remains negative,
indicating stable tumor boundaries.

For both the 2Dand 3D in vitromodels, the evolution function remains negative (indicating
stability) when the consumption rate λ is below the threshold λ∗, where λ∗ = 1 for the
2D model. Further investigation is required for the 3D model. When the rate exceeds this
threshold, symbolized by λ∗, the function transitions from negative to positive, suggesting
a shift from stable to unstable tumor boundaries. The threshold of the evolution function λ∗
in the three dimensions, and its possible dependence on the wave number � will be further
studied and compared with the 2D scenario, beyond Figs. 14 and 15.

The stability of tumor boundaries is thus determined by the sign of the evolution function: a
negative evolution function indicates stable boundaries, whereas a positive evolution function
signals instability. This distinction is crucial for understanding the dynamic behavior of the
tumor growth in different dimensional models, and the difference in 2D and 3D in vivo
models marks the significance of our work.
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6 Conclusion

In conclusion, this study leverages numerical methods to validate and extend the analytical
results presented in [10] concerning 2D tumor PDE models and the boundary instability.
By reconstructing and analyzing the main findings in [10], we successfully expanded these
concepts into a 3D context. This extension is particularly significant as it offers a more
applicable and insightful perspective on the tumor behavior, especially regarding its instability
and potential malignancy. A key aspect of our approach is the combination of numerical
simulations with analytical methods. This dual approach not only enriches our understanding
of the tumor models but also serves as a cross-validation mechanism, ensuring the robustness
of our findings.

During our research, we encountered two notable challenges in the numerical simulations,
both of which provided significant insights. The first challenge arose when comparing the
numerical tumor radius (R) over time against the analytical speed (σ ) over time in [10]. The
direct time derivative of numerical R data amplified errors, leading to impractical comparison
results.Weaddressed this by integrating the analyticalσ−t data for direct comparisonwith the
numerical R(t) data, thereby minimizing error margins and aligning closely with analytical
predictions in [10]. The second challenge involved the instability encountered in the ADI
method when separately solving the reaction-diffusion equations for the tumor density u and
the concentration c. Although the implementation of the ADI scheme was straightforward,
its weakly decoupled system lacked the stability required for varied parameter inputs. To
overcome this, we explored multiple splitting approaches within the ADI method, ultimately
adopting the most stable splitting scheme.

In our final analysis, we examined the 3D in vivo evolution function by plotting it against
various values of � and λ. This led us to hypothesize the existence of a threshold, λ∗(�),
which may or may not be influenced by the order �. We observed that the evolution func-
tion remains negative for λ < λ∗(�), and transits from negative to positive as λ exceeds the
threshold λ∗(�). We propose that λ∗(�) could be determined using a methodology akin to
the asymptotic analysis presented in Corollary 1, and the boundary stability analysis in Sect.
5.3 in [10]. However, due to the limitations of numerical tools like Maple or Mathematica,
currently, it is hard to find the explicit formation of λ∗(�). We save such formation for future
studies.Moreover, our intention encompasses extending beyond the current scope of the linear
stability analysis, which primarily focuses on the perturbation cos(mφ) in the two dimen-
sions and Ym

� (θ, φ) in the three dimensions. Our planned trajectory involves incorporating
nonlinear terms, aligning with our prospective research objectives.
Supplementary informationRelevant code are available at: https://github.com/JiaqiZhang988/
Tumor-Growth-PDE-Model-Relevant-Code

Appendix A 2D Numerics

A.1 Numerical Methods Introduction

To implement our numerical scheme in the 2D model, we describe the � function for the in
vivo regime as

�(ρ, c) =
{

λρc inside tumor (ρ > 0),

− (cB − c) outside tumor (ρ = 0).
(A1)
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Combining these, we define an H(ρ) function to represent the function�(ρ, c) in numerical
simulations, where

�(ρ, c) = −(cB − c) + (λρc + (cB − c))H(ρ), (A2)

and we define the function H(u) using the hyperbolic tangent function⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H(ρ) =
{
0 if ρ � 0,

tanh(hρ) if ρ > 0,

H ′(ρ) =
{
0 if ρ < 0,

ksech2(hρ) if ρ > 0,

(A3)

where k is a constant, and the bigger the k is, the narrower the smooth part of the step function
is. Including the hyperbolic function with the constant k gives us an approximation of the
smoothed step function and helps us avoid the sharp change of the step function when using
the indicator function 1, thus avoiding some problems brought by the steep step function in
the numerical process.

A.1.1 2D ADI Model

The general PDEs for the 2D reaction-diffusion system based on (1) and (2), after rewriting
the PME part (with power uk), we have⎧⎪⎨

⎪⎩
ρt = k

k + 1
((ρk+1)xx + (ρk+1)yy) + G0cρ,

ct = 1

τ
(cxx + cyy − �(ρ, c)).

(A4)

Therefore, using finite difference and rewriting the discrete points above as ρi+1, j , below
ρi−1, j , to the right ρi, j+1 and to the left ρi, j−1 of the center point ρi, j , where i is the index
in the x direction, and j is the index in the y direction, same applies to c.

We have the discretized version of this 2D reaction-diffusion system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρi, j − ρi, j,old

�t
= k

k + 1

⎛
⎝
⎛
⎝ρk+1

i, j+1 − 2ρk+1
i, j + ρk+1

i, j−1

�x2

⎞
⎠+

⎛
⎝ρk+1

i+1, j − 2ρk+1
i, j + ρk+1

i−1, j

�y2

⎞
⎠
⎞
⎠

+ G0ciρi ,

ci, j − ci, j,old
�t

= 1

τ

((
ci, j+1 − 2ci, j + ci, j−1

�x2

)
+
(
ci+1, j − 2ci, j + ci−1, j

�y2

))

− 1

τ
�(ρi , ci ),

(A5)

where ρc and ρc,old represent the u(x, y, t) values of the i, j th discretized grid points at the
current time and the previous time, respectively. We then multiply both sides by �t , move
all terms to the same side, and use them as the functions where we apply Newton’s method
to find its zeros.

The IC for the density u takes the 2D axisymmetric form of the similarity solution of
PME:

ρ(t = 0, r) =
(
1 − k

4(k + 1)2
(r(t + 1)

−1
2k+2 )2

) 1
k

(t + 1)
−1
k+1 . (A6)
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The IC for the concentration c is the constant cB = 0.1 in this 2D case. The BCs we used
are still Neumann BCs at both ends of the x and y directions, that is

∂ρ

∂x

∣∣∣∣
x=0

= 0,
∂c

∂x

∣∣∣∣
x=0

= 0,
∂ρ

∂x

∣∣∣∣
x=R

= 0,
∂c

∂x

∣∣∣∣
x=R

= 0,

∂ρ

∂ y

∣∣∣∣
y=0

= 0,
∂c

∂ y

∣∣∣∣
y=0

= 0,
∂ρ

∂ y

∣∣∣∣
y=R

= 0,
∂c

∂ y

∣∣∣∣
y=R

= 0.

The parameters remain the same as the 1D scenario, namely, the growth constant G0 = 1,
the consumption rate λ = 0.5 (involved in � term), and the characteristic time scale of the
nutrients evolution τ = 0.1, and the constant for the approximated smoothed step function
k = 5.

A.1.2 2D Axisymmetric Model

We also consider the 2D axisymmetric model for comparison. Since the Laplacian for 2D is

� = 1

r

∂ρ

∂r

(
r
∂(ρk+1)

∂r

)
, (A7)

thus the general PDEs for the 2D axisymmetric model are

⎧⎪⎪⎨
⎪⎪⎩

ρt = k

k + 1

1

r

∂ρ

∂r

(
r
∂(ρk+1)

∂r

)
+ G0cρ,

ct = 1

τ

(
1

r

∂c

∂r

(
r
∂(c)

∂r

)
− �(ρ, c)

)
.

(A8)

Therefore, using the finite difference method and denote u at the center point as ρi with the
discretization steps �r and �t , we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρi − ρi,old

�t
= k

k + 1

1

ri�r

[
(ri +0.5�r)(ρk+1

i+1 − ρk+1
i )

�r
− (ri − 0.5�r)(ρk+1

i − ρk+1
i−1 )

�r

]

+ G0ciρi ,

ci − ci,old
�t

= 1

τ

1

ri�r

[
(ri + 0.5�r)(ci+1 − ci )

�r
− (ri − 0.5�r)(ci − ci−1)

�r

]
− 1

τ
�(ρi , ci ),

(A9)
where ρi and ρi,old represent the u(x, t) values of the i th discretized grid point at the current
time and the previous time, respectively. We then multiply both sides by �t , move all terms
to the same side, and use them as the functions where we apply Newton’s method to find its
zeros.

The IC for the density u and the concentration c is the same as the 2D ADI model, and
the parameters are also the same. The BCs are the same, where we have Neumann BCs on
both ends: ⎧⎪⎨

⎪⎩
∂ρ

∂r

∣∣∣
r=0

= 0,
∂c

∂r

∣∣∣
r=0

= 0,

∂ρ

∂r

∣∣∣
r=R

= 0,
∂c

∂r

∣∣∣
r=R

= 0.
(A10)
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A.2 Numerical Methods Implementation

A.2.1 2D ADI for PME

In this section, we follow the ADI scheme introduced in [28] to solve the 2D PME and the
reaction-diffusion equation systems in [10]. Specifically,weuse the approximate factorization
and numerically solve the 2D nonlinear PDE problem by solving the 1D nonlinear problem
twice, namely, first in x , and then in the y direction.

We consider the PME in the two dimensions:

ρt = ∇2(ρk+1). (A11)

Using the backward Euler implicit method in the finite difference method, we can discretize
the equation

ρ − ρold

�t
= ∇2(ρk+1) + O(�t). (A12)

To use Newton’s iteration method to solve this implicit scheme, we write

F(ρ) = ρ − �t∇2(ρk+1) − ρold + O(�t2). (A13)

We set ρ0 = ρold and write F(u) = 0 as{
Jn�ρn = −Fn,

ρn+1 = ρn + �ρn .
(A14)

Here, Jn�ρn = δF
δρ

�u is the functional derivative of F (the Jacobian), whichwe approximate
by F(ρ + �ρ) − F(u), plug in ρ + �ρ and ρ into (A13) and only keep the linear terms in
�ρ and neglect the higher order terms, we can arrive at

Jn�ρn = F(ρ + �ρ) − F(ρ)

= �ρn − �t∇2((k + 1)ρk
n�ρn)

= �ρ − �t(k + 1)(ρk
n�ρ)xx − �t(k + 1)(ρk

n�ρ)yy .

(A15)

The matrix operators following this are (I : identity matrix)

(I − �t Dxx − �t Dyy)�ρ, (A16)

where we denote Dxx = (k + 1)(ρk
n�ρ)xx and Dyy = (k + 1)(ρk

n�ρ)yy .
Therefore, we can approximate the 2D Jacobian matrix J via{

(I − �t Dxx )(I − �t Dyy)�u,

(I − �t Dxx − �t Dyy + O(�t2))�u,
(A17)

where we can ignore the order O(�t2) term, which means that we can use (I − �t Dxx −
�t Dyy) as an approximation of Jn+1�un+1, namely, (I − �t Dxx − �t Dyy) ≈ J�un+1.

Therefore, we have

(I − �t Dxx )[(I − �t Dyy)�ρ] = −Fn, (A18)

and let v = (I − �t Dyy)�ρ, we have{
(I − �t Dxx )v = −Fn,

(I − �t Dyy)�ρ = v.
(A19)
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We first solve the Dxx equation to get v, and then substitute v into the Dyy equation to
solve for �ρ, which will be used to update the initial guess in the Newton iteration, and
obtain improved approximation through each update until the solution converges.

Specifically, we first solve the Dxx equation for v (substitute in expression for Dxx :)

(I − �t Dxx )v = −Fn

⇒ v − �t Dxxv = −Fn

⇒ v − �t(k + 1)(ρkv)xx = −Fn

⇒ vi − �t(k + 1)

(
ρk
i+1vi+1 − 2ρk

i vi + ρk
i−1vi−1

�x2

)
= −Fn .

(A20)

This can be expressed in the matrix form:⎡
⎢⎢⎢⎢⎢⎣I − (k + 1)

�t

�x2

⎛
⎜⎜⎜⎜⎜⎝

−2ρk
i ρk

i−1
ρk
i+1 2ρk

i ρk
i−1

. . .
. . .

. . .

ρk
i+1 2ρk

i ρk
i−1

−2ρk
i ρk

i+1

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎝

v1
v2
...

vM

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

F1
F2
...

FM

⎞
⎟⎟⎟⎠ . (A21)

Using backslash in MATLAB, we can get the vector v. Note that for this first step, we
solve in the x direction, we take each row of the matrix F , and solve the corresponding vector
v for each row of the matrix F . All vectors v together form a matrix v. Then we use a similar
method to calculate�u in the y direction. Note that we take each column of the matrix v, and
use the matrix form (I − �t Dyy)�ρ = v to calculate corresponding �ρ for each column of
v. Finally, we add �ρ on ρ0 to update the initial guess and derive the numerical result of the
solution ρ of PME using the 2D ADI scheme.

In summary, the key idea in the ADI scheme is to approximate the big Jacobian matrix
(J ) for the 2D PME by factorization in x and y directions, namely we factorize the Jacobian
matrix J = Jx Jy , where Jx = I − �t Dxx and Jy = I − �t Dyy .

A.2.2 2D Axisymmetric for PME

As introduced in the general 2D axisymmetric model, we have the finite difference discretiza-
tion for the PME part, which is

k

k + 1

1

ri�r

[
(ri + 0.5�r)(ρk+1

i+1 − ρk+1
i )

�r
− (ri − 0.5�r)(ρk+1

i − ρk+1
i−1 )

�r

]
, (A22)

where the IC is the similarity solution for the 2D axisymmetric version of PME as in (A6),
and the BCs are the Neumann BCs at both ends, as given in (A10).

The parameters are L = 20, T = 50, M = 100, N = 1 000, k = 2, where L is the
total length, T is the final time, M is the number of grid points in spatial direction, N is the
number of grid points in time discretization, and k is the power of the PME.We use Newton’s
method to obtain the approximated solution that we believe converges fast andwell to the true
solution. The check of this is achieved by drawing the plot of the similarity and numerical
solutions in the same figure for comparison (Fig. A1). We also draw the log-log plot of the
maximum of the approximated solution and the log-log plot of (1+ t)−1/4 in the same figure
for comparison (Fig. A2).
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Fig. A1 2D axisymmetric PME-Comparison of numerical and analytical solutions

Fig. A2 Validation of 2D axisymmetric PME

A.2.3 2D ADI and 2D Axisymmetric Comparison

In this section, we consider the PME, and match up the 2D ADI method with the 2D axisym-
metric case, thus proving that the ADI method is valid, and we can have an irregular shape
or add perturbation (φ dependence) to be the IC and investigate the stability of the bound-
ary after some time, namely simulating the perturbation analysis and the instability tumor
boundary in the two dimensions and match up to [10]. Specifically, we try to compare with
the 2D axisymmetric similarity solution starting from an IC in the center of a square ADI
domain. Then we started with a different IC, like a small ellipse, and we saw that it became
more and more circular.
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A.2.4 Method for Matching up

First, we want to find the center of the initial shape, so that we can allow MATLAB to easily
find the center of any irregular shape. This can be achieved by utilizing the mass conservation
of PME with Neumann-Neumann BCs. Specifically, for ρt = ∇2(ρk) with ρx = 0, we have∫

ρ dA = constant,
∫

xρ dA = constant,
∫

yρ dA = constant (A23)

and thus, the center (x̄, ȳ) is

x̄ =
∫
xρ dA∫
ρ dA

, ȳ =
∫
yρ dA∫
ρ dA

. (A24)

In this way, we can do this calculation and get the position of the x and y center points
calculated from the last time, so that we can define the center of any strange irregularly shaped
tumor.

The top view of the result of ADI is the circular region. Thus, we can go from that center
point and go to four radial directions of the circular region. Either one of these four directions
can be used to check against the 2D axisymmetric case. Specifically, for the ADI, we use one
of the directions and find its corresponding ρ(r)with r going from the center to the endpoint,
and draw the ρ(r) versus r plot. We then compare this to the ρ(r) versus r plot generated
at the final time in the 2D axisymmetric case. We can see that the 2D ADI plot and the 2D
axisymmetric case match up to be the same with the same IC.

This means that the 2D ADI can work to simulate the 2D axisymmetric tumor considered
in [10]. The advantage of this is that for the axisymmetric case, we can not have any φ

dependence and only depend on r , but for ADI, we can let the solution evolve in φ. This
allows us to simulate the stability of the tumor boundary after some perturbation dependent
on φ. Specifically, if we start from IC ρ0 = f (r), then for the tumor model, we will have
some ρ̂0 = f (r)+εg(φ) (small perturbation depends on φ), which leads to a small change in
the shape of the tumor. With the ADI code, we can observe the stability of the tumor, namely,
does the tumor go back to being almost circular, or does the perturbation grow and the tumor
shape changes from being nice to being more messy looking. Note that we also check that
the ADI scheme by plotting the Umax versus time (t) and the t−1/(k+1) versus time (t) in the
same log log plot and we can see that they fit together to be a straight line with a negative
slope and are the same as each other. This is because the maximum of ρmax(r) = t−1/(m+1)

and thus log(ρmax(r)) = (−1/(k + 1)) log t .
The comparison is shown in Fig.A3, and we can see that the results from 2D ADI and 2D

axisymmetric match up.

A.3 Validating Numerical Simulations Against Analytical Results and Predictions in
[10]

A.3.1 2D ADI Reaction-Diffusion Systems Numerical Check for Analytical Results in [10]

We implement the 2D ADI scheme on the reaction-diffusion systems to numerically check
against the analytical results in [10]. The discretization for the 2D axisymmetric reaction-
diffusion system is given in (A5). For the BCs, we use the ghost point method to include the
BCs in the Fu and Fc equations, where
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Fig. A3 Comparison of 2D ADI and axisymmetric

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fρi =ρc − ρc,old − k�t

k + 1

((
ρk+1
p − 2ρk+1

c + ρk+1
k

�x2

)
+
(

ρk+1
u − 2ρk+1

c + ρk+1
d

�y2

))

− �tG0ciρi ,

Fci =cc − cc,old − �t

τ

((
cp − 2cc + cm

�x2

)
+
(
cu − 2cc + cd

�y2

))
+ �t

τ
�(ρi , ci ).

(A25)
Then we use Fu, Fc to apply Newton’s method as introduced before.

δ−1 dδ
dt check for the in vivo model.

We also used the numerical simulation to check the perturbation analysis in [10]. The
analytical results for the tumor boundary instability after perturbation are: for the in vivo
model, when the consumption rate 0 < λ � 1, if we fix any wave number l � 2 in the
perturbation, then the instability will degenerate and the tumor boundary will become stable.
Hence, the shape will change from irregular to circular with 0 < λ � 1. On the other hand,
if the consumption rate λ > 1, and we fix any wave number l � 2 in the perturbation, then
there is a threshold radius R∗. This means that when the tumor radius R � R∗, then the
tumor is stable, and after the radius exceeds R∗, the tumor will eventually become unstable.
Therefore, the shape will change from irregular to circular and then become irregular again
with λ > 1. The results showing the shape evolution of the tumor boundary are shown in
Figs. 2, 3 in Sect. 2.
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