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Abstract

Background: Oropharyngeal cancer (OPC) exhibits varying responses to
chemoradiation therapy, making treatment outcome prediction challenging. Tra-
ditional imaging-based methods often fail to capture the spatial heterogeneity
within tumors, which influences treatment resistance and disease progression.
Advances in modeling techniques allow for more nuanced analysis of this
heterogeneity, identifying distinct tumor regions, or habitats, that drive patient
outcomes.

Purpose: To interrogate the association between treatment-induced changes in
spatial heterogeneity and chemoradiation resistance of oropharyngeal cancer
(OPC) based on a novel tumor habitat analysis.

Methods: A mathematical model was used to estimate tumor time dynamics
of patients with OPC based on the applied analysis of partial differential equa-
tions. The position and momentum of each voxel was propagated according to
Fokker-Planck dynamics, that is, a common model in statistical mechanics. The
boundary conditions of the Fokker-Planck equation were solved based on pre-
and intra-treatment (i.e., after 2 weeks of therapy) '8F-FDG-PET SUV images
of patients (n = 56) undergoing definitive (chemo)radiation for OPC as part of
a previously conducted prospective clinical trial. Tumor-specific time dynamics,
measured based on the solution of the Fokker-Planck equation, were generated
for each patient. Tumor habitats (i.e., non-overlapping subregions of the primary
tumor) were identified by measuring vector similarity in voxel-level time dynam-
ics through a fuzzy c-means clustering algorithm. The robustness of our habitat
construction method was quantified using a mean silhouette metric to measure
intra-habitat variability. Fifty-four habitat-specific radiomic texture features were
extracted from pre-treatment SUV images and normalized by habitat volume.
Univariate Kaplan-Meier analyses were implemented as a feature selection
method, where statistically significant features (p < 0.05, log-rank) were used to
construct a multivariate Cox proportional-hazards model. Parameters from the
resulting Cox model were then used to construct a risk score for each patient,
based on habitat-specific radiomic expression. The patient cohort was stratified
by median risk score value and association with recurrence-free survival (RFS)
was evaluated via log-rank tests.

Results: Dynamic tumor habitat analysis partitioned the gross disease of each
patient into three spatial subregions. Voxels within each habitat suggested dif-
ferential response rates in different compartments of the tumor. The minimum
mean silhouette value was 0.57 and maximum mean silhouette value was 0.8,
where values above 0.7 indicated strong intra-habitat consistency and val-
ues between 0.5 and 0.7 indicated reasonable intra-habitat consistency. Nine
radiomic texture features (three GLRLM, two GLCOM, and three GLSZM) and
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1 | INTRODUCTION

Oropharyngeal cancers (OPC) are a major contributor
to the number of overall cancer diagnoses and deaths
in the United States.! Whilst therapeutic strategies for
the treatment of OPC are multimodal, including surgery
and/or neoadjuvant chemoradiation, normal tissue toxic-
ities remain a key challenge and often negatively impact
quality of life2 Adaptive therapy has emerged as a
promising technique, whereby dose and/or treatment
volumes are modified throughout the course of ther-
apy, for example deintensification® of dose for early
responding HPV-positive OPC tumors.*® Imaging may
provide important prognostic information that can guide
adaptive therapies. For example, '8F-FDG PET images
can quantify the underlying metabolic properties of
OPC tumors’~® as a surrogate biomarker of adaptive
intervention. Recent work has also suggested that intra-
treatment '8F-FDG-PET imaging, where patients are
additionally imaged during the chemoradiation regiment,
may provide further prognostic information to guide
adaptive therapy.'%!

Spatial heterogeneity of tumor metabolism measured
with '8F-FDG-PET has been identified as an impor-
tant feature associated with patient outcomes.'?'6
Prior work has suggested that heterogeneity in tumor
metabolism is correlated with hypoxic tumor sub-
regions,!” which has been further investigated using
targeted hypoxia radiotracers.'*'819 Spatial hetero-
geneity in OPC tumors is primarily characterized either
by aggregate metrics, such as maximum standardised
uptake value (SUVmax), or high-throughput computa-
tional techniques, such as radiomics. Tumor SUVmax
has been extensively studied as a potential prognos-
tic biomarker and has been linked to poor patient
outcomes.'29-25 However, recent studies argue that
reducing complex tumor biology to a single number is
an oversimplification?® and that the association between
SUV-based parameters and patient outcomes is not
robust?”?® As a result, high-throughput radiomic tech-
niques have increasingly been applied to derive more
complex features that could be used to adapt treatment
strategies. For example, pre-treatment '®F-FDG-PET

SUVmax were found to be prognostically significant and were used to build
the multivariate Cox model. The resulting risk score was associated with RFS
(p = 0.032). By contrast, potential confounding factors (primary tumor volume
and mean SUV) were not significantly associated with RFS (p = 0.286 and
p = 0.231, respectively).

Conclusion: We interrogated spatial heterogeneity of oropharyngeal tumors
through the application of a novel algorithm to identify spatial habitats on
SUV images. Our habitat construction technique was shown to be robust and
habitat-specific feature spaces revealed distinct underlying radiomic expression
patterns. Radiomic features were extracted from dynamic habitats and used to
build a risk score which demonstrated prognostic value.

radiomics have been used to predict clinically relevant
endpoints for OPC, such as locoregional recurrence,?’
overall survival® and normal tissue toxicities3" Still,
the scientific results of these studies have been mixed,
with some highlighting predictive value®>-** and others
finding no such value.'%:35

Data assimilation of radiomic expression with deter-
ministic, mathematical models may enhance the fidelity
of purely data-driven radiomics research.'?-36-3° These
models often address key limitations in quantitative
imaging research and offer the potential for deeper
and more nuanced analysis of radiomic feature expres-
sion. For example, novel clustering algorithms (based
on mathematical models commonly used in statisti-
cal mechanics) have been developed to partition OPC
patients based only on '8F-FDG-PET radiomic expres-
sion patterns®’ Likewise, deterministic models have
also been used to link the biological effect of radia-
tion dose to deep learning outcome predictions for OPC
patients.3® Finally, these approaches also add utility to
study time interval analyses, that is, characterization
of image time evolution to interrogate the progression
of disease between different timepoints.>® Collectively,
these approaches can quantify changes in spatial het-
erogeneity of tumors during treatment by modeling
the time dynamics of the tumor and incorporating that
information into the radiomic analysis.

In this work, we propose a novel approach to con-
struct spatial tumor habitats based on the time evolution
of metabolic uptake measured on '®F-FDG-PET SUV
images of OPC patients. While previous studies rely
on image thresholding or static clustering methods
to create spatial tumor habitats,'®16:40-45 our habitat
approach incorporates time dynamics into the problem,
allowing for a more detailed characterisation of underly-
ing spatial heterogeneity in response to treatment. Our
implementation is based on an underlying mathemat-
ical framework to model tumor-specific time dynamics
parameterized by clinical PET images. We use a fuzzy
clustering algorithm to construct spatial-temporal habi-
tats and demonstrate that habitat-specific radiomic
features are associated with patient outcomes. Inter-
rogation of underlying spatial-temporal heterogeneity
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in oropharyngeal tumors will likely enable robust and
biologically informed studies that connect the disease
phenotype to patient outcomes.

2 | METHODS

2.1 | Patients, treatment, and image
acquisition

We developed and evaluated our dynamic tumor habitat
approach based on patients enrolled on a prospective,
single-institution clinical trial (NCT01908504) conducted
at Duke University Medical Center.!" Specifically, we
considered patients that underwent curative radiother-
apy for oropharyngeal cancer (OPC). Patients were
prescribed a course of intensity-modulated radiation
therapy (IMRT) according to standard clinical practice,
and the majority received concurrent chemotherapy. The
dose prescription was either 70 Gy in 35 fractions, or
67.5 Gy in 30 fractions, with the sequential boost strat-
egy. Fifty-six patients with confirmed OPC were studied.
All patients had known primary disease, no prior surgi-
cal removal or resection of the primary tumor, no prior
chemotherapy, and single primary tumors. Follow-up
included fiberoptic laryngoscopy, additional imaging as
needed, and biopsies of suspicious lesions. Recurrence-
free survival (RFS) was the primary clinical endpoint
and defined as the time from conclusion of radiation
treatment to disease recurrence. Patients lost to follow-
up were censored at the last date of follow-up. The full
patient characteristics are shown in Table S1.

Each patient received two '8F-FDG-PET/CT scans,
one prior to radiation treatment and one intra-treatment,
that is, after 2 weeks (20 Gy) of therapy. Scanner type,
imaging protocols, and acquisition parameters were
consistent across all patients. Primary gross tumor seg-
mentation was performed by a radiation oncologist on
CT images and subsequently transferred to the PET
images. Images were interpolated to an isotropic res-
olution of 1.17 mm and re-sampled based on IBSI
recommendations.*® Image registration and verification
were performed according to a previously published
technique.® Tumor staging was conducted according to
the AJCC 8th edition.*’

2.2 | Dynamic habitat construction

Figure 1 shows an overview of our methodology, where
tumor habitats are identified as unique solutions to the
Fokker-Planck equation given pre-treatment and intra-
treatment imaging as boundary conditions. Each habitat
represents similarity in modeling dynamics for a set of
clustered voxels within the tumor. Intra-habitat differ-
ences (i.e., 1, 2, 3) represent contrastive dynamics of
tumor metabolism during treatment.

MEDICAL PHYSICS 21"

2.2.1 | High-dimensional image analysis
via Fokker—Planck dynamics

We hypothesized that the time evolution between
pre- and intra-treatment PET imaging could be mod-
eled as a continuous process which obeys canonical
laws of mathematics. To test this hypothesis, a pre-
viously developed method based on Fokker—Planck
dynamics*® was used to construct high dimensional
representations of tumors parameterized by PET imag-
ing. In this approach, which is formally known as an
equilibrium-driven deformation*® '8F-FDG-PET SUV
images (pre-treatment and intra-treatment) are inter-
preted as boundary conditions to solve a mathematical
representation of the image evolution. The process is
commonly known as “inbetweening auto-animation”and
is based on techniques from statistical mechanics. Math-
ematically, the time evolution of gray-level intensities
within animage volume is modeled by the Fokker-Planck
equation,?

sp=2p+V-(eV9)=V-(zv(2)) ()
where p € R® represents the gray-level intensities of
the image and 7 « e? defines the equilibrium density
function (i.e., a Gibbs measure®') which is a station-
ary solution to Equation 1. The variable ¢ is the system
Hamiltonian, and by analogy to classical mechanics, can
be interpreted as the energy of the system. For our
application, we interpret this as the potential force which
drives evolution between the pre- and intra-treatment
images.®® Specifically, the intra-treatment PET image
defined an “energy landscape”, that is, the driver of a
potential force that uniquely determines the evolution
between the initial condition (pre-treatment image) and
the equilibrium (intra-treatment image). We argue that
this is an appropriate formalism, as the intra-treatment
PET image contains extensive information about the
disease metabolism in response to (chemo)radiation
therapy. Given that the disease phenotype is captured
in detail by PET imaging, we argue that the energy
landscape derived from the intra-treatment imaging
defines a reasonable driving force between the initial
(pre-treatment) and equilibrium (intra-treatment) states.
Here, pg, which is defined by the pre-treatment PET
image in units of SUV, satisfies the following constraint,

/mW:/nw. P

The pre-treatment and intra-treatment images define
no-flux boundary conditions of the Fokker-Planck equa-
tion (Equation 1). This is expressed mathematically by
the following equation,

n-V(7r

|

)=00naQ 3)
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FIGURE 1 Habitat construction methodology. Temporally registered PET images were input into a Fokker-Planck based algorithm which

generated mathematical representations of the in-between images. The resulting tensor object was used to identify spatial tumor habitats

based on metabolic expression of tumors during treatment.

where, n defines the normal vector to the boundary sur-
face, 0Q. Equation 1 was solved numerically using a
previously published finite-volume method on structured
grids.®?

The solution of Equation 1 is a 4D tensor (three
spatial dimensions and one temporal dimension) that
describes the simulated time evolution between the
pre- and intra-treatment images. This can be expressed
mathematically by the tensor ¥, where

PCR* ={(xyztIxyzeR teR"} (4)

2.2.2 | Spatial habitat construction using a
fuzzy clustering algorithm

Equations 1-4 were applied to the PET images of
patients on NCT01908504, where ¥ represents the
simulated image dynamics of each patient. To identify
spatial tumor habitats of W, a fuzzy c-means cluster-
ing algorithm was used to partition voxels into separate
groups based on local similarity in the time dynamics.%®
First, N tumor voxel indices were extracted by a sim-
ple binary search algorithm applied to the gross tumor
contour. The corresponding values of p were sorted into
vectors x;,

X =[x1,%2 %3, X7],1<J<N ()

where, T is the number of time points and each vec-
tor x; represents the time evolution of a given tumor
voxel. Cluster centers were computed by the algorithm
and defined by the vectors c;,

C,'=[C,'1,C,'2,C,'3,...,C,'T],1SiSC (6)

where, C is the number of clusters. The fuzzy cluster-
ing algorithm then assigns membership values for each
vector that represents the degree to which that vec-
tor belongs to each cluster. This was accomplished by
minimizing the following objective function,

=

()" ™

=

1

C
:1]

I
-

Here,m > 1 is an exponent that controls the fuzziness
of the clustering algorithm (i.e., the degree of overlap
between distinct clusters), ,ulfj." is the membership value

for the ji" vector of the /" cluster (corresponding to a
particular exponent m),and dj is the Euclidean distance

from the ji" vector to the /" cluster,

dj = llx; — ¢;|? (8)

where, |- || is the standard L2 norm. Cluster cen-
ters, membership values, and Euclidean distances
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were iteratively computed until the objective function
reached a pre-defined minimum threshold value. Each
voxel was then assigned to the cluster with maximum
membership value. Tumor habitat masks were created
by assigning each voxel within the gross tumor the
appropriate cluster index.

As the optimal number of clusters to use in fuzzy
clustering algorithms is non-trivial, we calculated a valid-
ity index®* and performed fuzzy clustering 10 times,
changing the number of clusters from 2 to 11. This
procedure was repeated using imaging data from each
patient included in the study, which yielded a patient-
specific validity index. The optimal number of clusters
was defined as the number of clusters which minimized
the validity index for each patient. Finally, the overall
number of clusters was chosen as the most frequent
optimal value across all patients. For our dataset, the
optimal number of clusters was determined to be 3.

In addition, the optimal number of timepoints from
which to sample the tensor defined by Equation 4
required a quantitative evaluation based on habitat-
derived metrics. To address this, we constructed habitats
for each patient using multiple values of T (from 1 to
50) and characterized differences in the resulting habi-
tats. To identify the optimal value, we used the ratio of
habitat volumes as a stability metric. Specifically, we cal-
culated the habitat volumes for each patient (normalized
to tumor volume) and took the mean to obtain an aggre-
gate measure of the habitat volume ratios across the
entire patient cohort. This process was repeated for dif-
ferent values of T. We then plotted the mean habitat
volume of each habitat against T and then calculated
the moving variance to determine the minimum value of
T such that the mean volume became stable for each
habitat.

To quantify the robustness of our habitat construction
algorithm, we used a silhouette metric.>® The silhouette
metric measures both intra-habitat consistency (cohe-
sion) and inter-habitat separability (separation). For a
given point i (in this case the value of voxel i), the
silhouette metric s is defined as

_ b,' —a;
~ max(a;, by)

©)

S;

where, a; is the mean distance between i and all other
points within the same cluster and b; represents the min-
imum mean distance between i and points in a different
cluster. For each patient, voxel-specific silhouette metrics
were calculated and subsequently averaged to quantify
the habitat quality with a single number. These mean sil-
houette metrics were then plotted across patients and
an overall metric, known as the silhouette coefficient,
was defined,

SC = mgxé(C) (10)
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where, S is the average of silhouette metrics (Equa-
tion 9) taken over all patients and C is the number
of clusters. The silhouette metric ranges from —1 to 1,
with values close to 1 indicating well defined and sep-
arated clusters. Silhouette coefficients above 0.7 indi-
cate robust clusters, and silhouette coefficients above
0.5 indicate reasonable clusters®® To ensure self-
consistency when comparing habitats across patients,
we sorted each habitat in decreasing order by
volume.

2.3 | Habitat-specific radiomic feature
extraction

Radiomic features were extracted to characterize
each tumor habitat. Feature extraction was performed
using an externally validated,’” IBSI-benchmarked*®
radiomics platform.°® Images were discretised using a
fixed-bin number (FBN) method with 64 gray levels, jus-
tified based on prior work.>® Habitat specific intensity
masks were created through voxel-wise multiplication
of each habitat mask (constructed using the method
described in Section 2.2.2) and the pre-treatment SUV
image. This yielded 3 intensity masks for each patient,
from which 54 radiomic texture features were extracted.
The list of radiomic features extracted is provided in
Table S2. To mitigate potential bias introduced by varia-
tion in habitat volumef° radiomic features were scaled
by a weighting factor W, defined as the normalised
habitat volume,

V:
W, = —1 (11)
: Viotal
where, V; is the volume of the i" tumor habitat for
a given patient. The resulting feature space can be
mathematically described by the set of matrices

F ={F4, Fa, F3} (12)
where,
T = (fiy) € R™T (13)

is the radiomic feature space corresponding to the K
habitat (K = 1, 2, 3), and the coordinates (j, j) represent
the i radiomic feature observed for the j# patient.
Each feature vector was normalized to zero-mean and
unit variance. To ensure repeatability of radiomic fea-
tures extracted, we performed a sensitivity analysis by
repeating the habitat construction and feature extraction
five times. For comparison, the same radiomic features
were extracted from the GTV and the peritumoral region,
defined as a 3-mm wide annular region enclosing the
GTVS!

858017 SUOWWIOD A1) 3ot jdde 8y A peuienob ae sspiie YO ‘8sn Jo SNl 10} AIq1T8UIUO 48] 1M UO (SUORIPUOD-PUR-SLULIBY/LI0O" A3 1M AeIq 1 BUI|UO//Sdny) SUORIPUOD pue S8 1 8y} 88S *[6202/60/8T] U0 AriqIT8ullUO A8]IM ‘Sa1keiqi AisieAlun @na Aq ZeosT dw/z00T 0T/I0p/wo0 A8 i Afe.d jeuljuo"widee//:sdny Wwo.y pepeojumod ‘6 ‘S202 ‘602rELYE



STEVENS ET AL.

8o | \EDICAL PHYSICS
TABLE 1

Average morphology features for each habitat across the patient cohort.

Surface-to-volume

Habitat number Volume [cm?] Surface Area [cm?] ratio Compactness 1 Sphericity
1 14.56 83.85 6.89 0.012 0.36
10.07 59.15 7.20 0.013 0.39
3 5.79 22.81 5.14 0.032 0.70
2.4 | Association of habitat-derived Representative morphology features, averaged

radiomic features with clinical outcomes

We implemented a univariate feature selection pro-
cess to identify potential drivers of prognostic sig-
nal. Kaplan—Meier survival curves were calculated for
each feature, where the patient cohort was sepa-
rated into two groups by the median feature value,
and log-rank tests were used to assess statisti-
cal significance (p < 0.05).5% Analysis was conducted
using the MATLAB-based survival analysis package
MATSURVS?

To calculate the risk score, multivariate Cox propor-
tional hazards models were defined using the features
selected above as covariates. Additionally, SUVmax was
included as a covariate to test if our method could
augment standard image-based intensity metrics. Mod-
els were built using the MATLAB function coxphfit. We
defined the risk score for the j patient, RS; = ZL fi bj,
where f; is the i feature value and b; is the corre-
sponding Cox model coefficient® The risk score was
assessed for prognostic value through Kaplan-Meier
analysis, where a log-rank p-value less than 0.05 was
considered statistically significant.

To demonstrate the potential added utility of our
Fokker-Planck algorithm, we compared this risk score
with an equivalent derived only from the averaged pre-
and intra-treatment images. Furthermore, we compared
our radiomic features extracted from the dynamic habi-
tats with benchmark features extracted from the GTV
and peritumoral region.

3 | RESULTS

3.1 | Dynamic tumor habitat analysis

3.1.1 | Tumor habitat visualisation
Implementation of the habitat construction methodol-
ogy outlined in Section 2.2 yielded patient specific
dynamic tumor habitats (Figure 2). Tumor habitats var-
ied in phenotype among patients based on differences
in image time dynamics according to the Fokker-Planck
algorithm. As shown in Figures 2 and 3, tumor habi-
tats qualitatively reflected spatial sub-compartments of
disease.

across the patient cohort, are shown in Table 1.

3.1.2 | Timepoint sampling frequency
Implementation of the parameter selection process
described in Section 2.2.2 yielded an optimal sampling
frequency of 18 in-between timepoints. Figures 4 and 5
show the criteria used to select this value, where sta-
bility in the variance of habitat volume ratios (Figure 5)
was identified as a surrogate for stability in the habitat
construction algorithm.

The distributions of habitat volumes for individual
patients across timepoint sampling frequencies are
shown in Figures S1,S2, and S3.

3.1.3 | Habitat consistency

Quantification of habitat consistency demonstrated the
robustness of our methodology (Figure 6). Calculation
of silhouette coefficients for each patient (Figure 6a)
revealed a minimum value of 0.57 and a maximum value
of 0.8.Most patients had silhouette coefficients between
0.5 and 0.7, which indicated reasonable intra-habitat
consistency. Furthermore, 14 patients had silhouette
coefficients above 0.7, suggesting robust tumor habitats.
Figure 6b shows illustrating examples of silhouette plots
for two patients: one with the lowest intra-habitat con-
sistency, that is, the least robust habitats; and one with
the highest intra-habitat consistency, that is, the most
robust habitats. The silhouette plot groups all voxels
within a given habitat and plots the corresponding sil-
houette metrics (Equation 9). The ideal case would be all
points equal to 1 for each habitat, that is, the plot would
appear rectangular with each horizontal line having a
length of one. The degree to which each group “falls
off”indicates the amount of inconsistency in each habi-
tat. Voxels with negative silhouette metrics are the least
consistent with the rest of the voxels within a habitat.

3.2 | Prognostic value of habitat-derived
radiomics

Univariate feature selection performed using Kaplan—
Meier survival curves and log-rank tests revealed

858017 SUOWWIOD A1) 3ot jdde 8y A peuienob ae sspiie YO ‘8sn Jo SNl 10} AIq1T8UIUO 48] 1M UO (SUORIPUOD-PUR-SLULIBY/LI0O" A3 1M AeIq 1 BUI|UO//Sdny) SUORIPUOD pue S8 1 8y} 88S *[6202/60/8T] U0 AriqIT8ullUO A8]IM ‘Sa1keiqi AisieAlun @na Aq ZeosT dw/z00T 0T/I0p/wo0 A8 i Afe.d jeuljuo"widee//:sdny Wwo.y pepeojumod ‘6 ‘S202 ‘602rELYE



STEVENS ET AL.

MEDICAL PHYSICS -2

(@) | PET/CT Image | (b) | Gross Tumor

Tumor habitats

&
¢
¢

e

A
g

O

»
&

Y S S Y Y !

Cp@eTa

N ¢

Q

¢
-
&
' 4
<

FIGURE 2 Visualisation of tumor habitats for six representative patients. (a) Axial slices of PET/CT images illustrating metabolic activity of
OPC tumors. (b) Volumetric renderings of the gross tumor volume and the dynamic tumor habitats generated in our study, in decreasing order

of habitat volume.

TABLE 2 Statistical results from feature selection and Cox proportional hazards model.

Habitat Log-rank Cox Regression

Number Feature family Feature Name p-value Hazard Ratio (95% ClI) coefficient

3 GLRLM Normalized run-length 0.0073 4.67 (1.75-12.5) —0.0397
non-uniformity

3 GLRLM Run percentage 0.0085 4.55 (1.71-12.1) 1.0590

3 GLRLM Short run emphasis 0.0396 3.05(1.14-8.12) —0.6700

3 GLCOM Sum entropy 0.0396 3.05 (1.14-8.12) —0.7774

3 GLCOM Joint entropy 0.0396 3.05 (1.14-8.12) 0.7245

3 GLSzZM Zone size entropy 0.0048 4.97 (1.86-13.3) —0.3984

3 GLSzZM Large Zone Emphasis 0.0238 3.36 (1.26-8.97) —7.4720

3 GLSZM Zone size variance 0.0238 3.36 (1.26-8.97) 7.1658

N/A N/A SUVmax 0.045 2.97 (1.11-7.91) —0.8502

habitat-specific radiomic features that were associ-
ated with recurrence free survival. These statistical
parameters and multivariate Cox regression coeffi-
cients are summarized in Table 2. Notably, all prognostic
features were derived from habitat 3 and included

three run-length matrix features > two co-occurrence
matrix features®® and three size-zone matrix
features 5’

Potential confounding surrogates for these features,
thatis,mean SUV, and tumor volume, were tested for sta-
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(a) Axial visualisation of habitat masks for a representative patient. (b) Image evolution according to the Fokker-Planck equation,

separated by tumor habitat, which highlights the heterogenous tumor metabolism throughout the treatment period.
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FIGURE 4 Change in mean habitat volume as sampling
frequency is increased.

tistical significance and were not prognostic (p = 0.430
and p = 0.110, respectively). SUVmax was found to
be associated with recurrence-free survival (p = 0.045),
indicating a potential advantage over other common
aggregate metrics (Figure 7b). Our radiomic sensitiv-
ity analysis revealed no variation in features extracted
when the process was independently repeated five
times.

‘10“4 R S FEER EEEETY T i TR, MR i, FEer, SR, S e EREET S i Crer FEEEEE O S FEr R
Habitat 1
Habitat 2

10° Habitat 3|

Moving variance of habitat volume
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N
S
>
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Timepoint sampling frequency

FIGURE 5 Variance in habitat volume calculated using a sliding
window to visualise the stability of the algorithm as the timepoint
sampling frequency is increased.

Calculation of the patient specific risk score and strat-
ification of the patient cohort by median risk score value
allowed for the construction of a Kaplan-Meier survival
curve (Figure 7a). This survival curve demonstrated sta-
tistically significant (p = 0.032) separation of patients
by median risk score. The equivalent risk score derived
from only the pre- and intra-treatment images (i.e.,
without using the Fokker—Planck algorithm to generate
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(a) Silhouette coefficient across patients
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FIGURE 6 Quantifying habitat quality. (a) Silhouette coefficient (Equation 10) for each patient in the study. The green region represents
patients with very consistent tumor habitats, and the yellow region represents patients with consistent tumor habitats. (b) Representative
silhouette plots for the patients with the most (SC = 0.8) and least (SC = 0.57) robust tumor habitats. Silhouette coefficients, that is, the mean of
all silhouette metrics for a given patient, are indicated by the vertical red lines.

approximate image dynamics) was not associated with
recurrence-free survival (p= 0.102). Additionally, bench-
mark features extracted from the GTV and peritumoral
region did not yield a prognostic risk score (for further
details, see Figures S6, S7, and S8). This highlights the
importance of the dynamical aspect of our work.

4 | DISCUSSION

In this study, we designed a novel algorithm to construct
dynamic tumor habitats based on the application of
mathematical models and demonstrated an application

of our technique to oropharyngeal cancer. The key
innovation in our work is the method of habitat con-
struction based on modeling image dynamics during
therapy. Other studies have argued for the importance
of habitats to study spatial heterogeneity in oropha-
ryngeal tumors. However, the majority are based on
image thresholding approaches, for example, the Otsu
method which maximises the variance between groups
of voxels to construct habitats. While these approaches
can provide useful information, they can only capture
spatial heterogeneity at a particular snapshot in time.
Our approach incorporates dynamics directly into habi-
tat construction. The field of study from which the
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FIGURE 7

Prognostic value of the habitat-derived risk score. (a) Kaplan—Meier curve and risk table demonstrating statistically significant

separation of the patient group by median risk score value. (b) Kaplan—Meier curve and risk table where patients are stratified by median

SUV-max, which highlights the potential prognostic benefit of this metric.

mathematical model originates, that is, statistical
mechanics, focuses on the characterisation of complex
physical systems by their macroscopic behavior. While
studying each microscopic component of a system may
provide a complete description of its physical behavior,
this quickly becomes intractable when applied to real
life problems. The innovation of our work is the appli-
cation of these traditional physics techniques to solve
problems in medicine, realising that the fundamental
methods are independent of the specific application.
Our results demonstrate new radiomics data that is
more specific to different compartments of the disease
and based on differences in local tumor response during
treatment.

Our dynamic tumor habitat analyses revealed spa-
tial heterogeneity in the evolution of metabolic activity
measured on SUV images of patients with OPC. This
heterogeneity was characterized using habitat-specific
radiomics features, which were then used to construct
a prognostic risk score. We showed that separating
tumors into sub-regions based on metabolic activity over
time can provide useful information when combined
with high throughput radiomics techniques. There are
a several potential explanations for the prognostic sig-
nal that we observed. By separating the gross tumor
into spatial subregions, we increased the amount of
information that can be used in downstream radiomics
analysis. Our habitats may therefore describe the gross
disease in finer detail than previously studied meth-
ods, such as regions of aerobic disease and/or regions
of hypoxic disease.'* %58 Furthermore, given that the
mathematical model was defined using both pre- and
intra-treatment imaging, dynamic habitats may also
reveal information about differential resistance to radi-

ation therapy. Future work will aim to translate the
habitats constructed in this study to potential biological
phenomena (e.g., hypoxia, immune dysregulation, etc.).

Qualitatively, we observed similar patterns in habi-
tat formation across most of the patient cohort. In 55
of the 56 patients studied, habitat 3 (i.e., the small-
est by volume) corresponded to an interior region of
the GTV which could represent the tumor core. Fur-
thermore, 46 patients had habitats that were consistent
with those shown in Figure 3, that is, the largest habitat
corresponded to the tumor periphery. These observa-
tions are particularly intriguing, given that our algorithm
was based on an unsupervised clustering approach.
Therefore, we hypothesize that there exist some intrinsic
similarities between these distinct regions that was cap-
tured by our dynamic algorithm. However, as this study
was data-driven and conducted with a relatively small
sample size, we cannot make broader interpretations
of these results. Future work on independent, prospec-
tive trial data could confirm the preliminary findings
presented in this study.

Some studies have suggested that the central tumor
region corresponds to the highest metabolic uptake®
and others have linked regions of greater metabolism
with higher radioresistance.”%’" Therefore, it is pos-
sible that the innermost habitat represents the most
aggressive and nonresponsive area of the disease and
drives patient outcomes. While these interpretations
are currently speculative, characterization of the tumor
microenvironment and linking it to patient outcomes is
an exciting research frontier.

Numerous prior studies have argued the importance
of spatial heterogeneity in the characterization of
underlying tumor phenotype across various imaging
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modalities and disease sites. MRI is often used to
define spatial tumor habitats due to the large amount of
anatomical/physiological information that can be cap-
tured. Bailo, et al.'? investigated spatial heterogeneity,
hypoxia, and perfusion in malignant gliomas utilizing
diffusion-weighted MRI and PET imaging. Similarly,
Jeong, et al*' investigated the physiology of CNS
lymphoma by constructing tumor habitats based on
ADC and cerebral blood volume measurements from
susceptibility MR imaging. Quantitative MR habitat
analyses have also been used to assess treatment
response in the tumor microenvironment for breast
cancer patients*2*° and to differentiate radionecro-
sis from disease recurrence*344 Beyond MR, habitat
derived PET/CT radiomics has shown promise in pre-
dicting mutation of colorectal cancer'® and survival of
patients with high-grade ovarian cancer.'® Our work
complements these studies and is especially unique
due to the longitudinal nature of our data, as we can
extend our analyses to the dynamics of the tumor
microenvironment.

Prior work has already identified that intratumor
heterogeneity can pose a challenge for personalized
medicine. Specifically, genomic and molecular biopsy-
based assays often represent only small sub-regions
of the tumor, as opposed to the entire phenotype.’273
This is further complicated when radiation, which repre-
sents a significant perturbation of the underlying biology;,
is introduced. Indeed, differential rates of cell killing in
various subclonal regions of the gross disease could
be a contributing factor in the tumor habitats that were
observed in this study. Spatial variation in radiosensitiv-
ity, which is potentially captured by our tumor habitats,
could represent an important aspect of response to
radiation therapy. Further work, including incorpora-
tion of radiation-induced cell killing, such as the lethal
and potentially lethal (LPL) model,”* may lead to addi-
tional insight on the relationship between spatial tumor
habitats and radiation therapy.

In this work, we did not directly encode the effects
of radiation dose into our algorithm. Since the dataset
that we used was from a prospective trial with a uni-
form dose prescription regime, we argue that direct
modelling of radiation dose was not necessary in this
preliminary study. Furthermore, other studies using the
same dataset have shown that dosimetry is a shal-
low feature, and that the most important information
can be derived from the PET signal alone®® How-
ever, incorporating dose information into our algorithm
is a natural extension and prior studies have already
shown promising results when incorporating radiation
dose into deterministic models, specifically when inte-
grating the result into deep learning frameworks>? In
the future, we aim to combine models of radiation
dose with patient specific dose distributions to cap-
ture heterogeneities that are induced by treatment.
Furthermore, we did not include low dimensional clin-

ical features in the multivariate Cox model in this
work. These features were not associated with recur-
rence free survival when tested using univariate or
multivariate analyses. However, emerging data-fusion
methodologies’® that can integrate low dimensional
clinical features with high dimensional radiomics fea-
tures may enhance the clinical interpretability of future
studies.

Our work presents an original method for construct-
ing dynamic tumor habitats, but there are some key
limitations that warrant discussion. The main limitation
of this study is the lack of an independent dataset for
external validation. Our analysis is based on data from
a recently completed prospective clinical trial, where
intra-treatment PET images were acquired via a stan-
dardized, prospectively controlled imaging protocol on
a single scanner. This limits immediate external valida-
tion, and so the current TRIPOD’® Type 1a study was
conducted to demonstrate apparent performance and
produce hypothesis generating data. That said, the core
impact of this work lies not in the specific clinical find-
ings, but in the development of a generalized algorithmic
framework and the introduction of dynamic habitats as
a model for spatiotemporal tumor heterogeneity. While
c-means clustering involves tuneable parameters that
should eventually be evaluated on external data, the
solutions to the Fokker—Planck equation are determinis-
tic and patient-specific. Model parameters are therefore
not learned from population data, but rather fit individu-
ally for each patient, reducing the risk of overfitting and
enhancing interpretability. Nevertheless, external vali-
dation remains an important future step to maximize
scientific value.

Furthermore, our feature selection algorithm used to
identify potential drivers of prognostic signal was rudi-
mentary. Given the number of features extracted was
much greater than the sample size, a feature selec-
tion algorithm was required. Univariate feature selection
methods are not unprecedented,”” but there are many
other possible feature selection algorithms to choose
from,’® which often rely on splitting the data into sep-
arate training and testing sets. However, recent work’®
has shown that in the case of small datasets, the par-
ticular split into training and testing sets can change
the resulting analysis. Given the size of our dataset,
we chose a simple univariate feature selection algo-
rithm to avoid these types of issues. In the future, we
plan to address this limitation by using a larger dataset
and investigating different feature selection algorithms
to enhance the robustness of our findings. Larger sam-
ple sizes may also allow for more advanced feature
selection methods that have already shown promise in
radiomics studies, such as principal component analy-
sis (PCA)2% We confirmed that the prognostic signal
observed in Figure 7 was reflected qualitatively when
the sampling frequency was changed (see Figures S4
and S5 for examples).
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5 | CONCLUSION

Qualitative differences in habitat morphology suggested
connections between habitats and response to ther-
apy, such as tumor shrinkage. Key parameters, such
as timepoint sampling frequency and optimal num-
ber of clusters were quantitatively derived from the
patient dataset. The derived patient-specific risk score
demonstrated prominent patient outcome prognostic
value in multivariate analysis. Our study provides a pre-
liminary approach to a more nuanced understanding
of tumor heterogeneity, with potential implications for
patient-specific precision oncology.
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