Journal of Computational Physics 545 (2026) 114465

L Journal of
Computational
Physics

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Check for

Data assimilation models for computing probability distributions
of complex multiscale systems

Di Qi ¥ 2% Jian-Guo Liu®

2 Department of Mathematics, Purdue University, 47907, West Lafayette, IN, USA
b Department of Mathematics, Department of Physics, Duke University, 27708, Durham, NC, USA

ARTICLE INFO ABSTRACT
Keywords: We introduce a data assimilation strategy aimed at accurately capturing key non-Gaussian struc-
Nonlinear data assimilation tures in probability distributions using a small ensemble size. A major challenge in statistical

Statistical modeling
Multiscale system
Ensemble method

forecasting of nonlinearly coupled multiscale systems is mitigating the large errors that arise
when computing high-order statistical moments. To address this issue, a high-order stochastic-
statistical modeling framework is proposed that integrates statistical data assimilation into finite
ensemble predictions. The method effectively reduces the approximation errors in finite ensem-
ble estimates of non-Gaussian distributions by employing a filtering update step that incorporates
observation data in leading moments to refine the high-order statistical feedback. Explicit fil-
ter operators are derived from intrinsic nonlinear coupling structures, allowing straightforward
numerical implementations. Performance of the proposed method is first demonstrated through
extensive numerical experiments on a prototype triad system, which offers an instructive and com-
putationally manageable platform mimicking essential aspects of nonlinear turbulent dynamics.
Further experiments on the Lorenz 96 system are conducted to assess potential generalization
to high-dimensional systems. The numerical results show that the statistical data assimilation
algorithm consistently captures the mean and covariance, as well as various non-Gaussian prob-
ability distributions exhibited in various statistical regimes. The modeling framework can serve
as a useful tool for efficient sampling and reliable forecasting of complex probability distribu-
tions commonly encountered in a wide variety of applications involving multiscale coupling and
nonlinear dynamics.

1. Introduction

Predicting the distinct statistical behaviors observed in nonlinear dynamical systems involving multiple spatial and temporal scales
remains a fundamental challenge across various natural and engineering problems [1-4]. One primary difficulty arises from accurately
quantifying the multiscale nonlinear interactions between the large-scale mean state and small-scale stochastic fluctuations amplified
by inherent instability. Such interactions often lead to non-Gaussian probability distributions characterized by high-order statistics
and intermittent extreme events, driven by the intricate multiscale coupling mechanism [5-7]. Developing efficient computational
algorithms capable of capturing these critical non-Gaussian probabilistic features remains a central issue in practical applications
[8-10]. Ensemble-based methods together with data assimilation strategies [8,11-13] have been successfully applied for recovering
leading-order statistics in linear dynamical systems from noisy and partial observations. However, as nonlinear coupling effects
become dominant, low-order approaches such as Kalman filters using only the leading two moments often suffer inherent difficulties
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$u\in \mathbb {R}^{d}$


$u\left (0;\omega \right )\sim \mu _{0}$


$\mu _{0}$


\begin {equation}\frac {\mathrm {d}u}{\mathrm {d}t}=\Lambda u+B\left (u,u\right )+F\left (t\right )+\sigma \left (t\right )\dot {W}\left (t;\omega \right ).\label {eq:modelgeneral}\end {equation}


$\Lambda =L-D$


$L^{*}=-L$


$D<0$


$F$


$\sigma \left (t\right )\dot {W}\left (t;\omega \right )$


$B\left (u,u\right )$


$u\cdot B\left (u,u\right )=0$


$u$


$B\left (u,u\right )$


$d$


$\rho $


$u$


\begin {equation}u\left (t;\omega \right )=\bar {u}\left (t\right )+u^{\prime }\left (t;\omega \right )=\bar {u}\left (t\right )+\sum _{k=1}^{d}Z_{k}\left (t;\omega \right )\hat {v}_{k}.\label {eq:decomp}\end {equation}


$u$


$\bar {u},R$


$Z$


$\bar {u}\left (t\right )\in \mathbb {R}^{d}$


$R\left (t\right )\in \mathbb {R}^{d\times d}$


$\rho ^{N}$


$Z$


$N$


$\rho \left (\cdot ;y^{N}\right )$


$Z^{i}$


$\mathcal {P}\left (\mathbb {R}^{d}\right )$


\begin {equation}\begin {aligned}\partial _{t}\rho = & \mathcal {L}^{*}\left (\bar {u}^{N},R^{N}\right )\rho ^ {},\\ \mathrm {d}\bar {u}^{N}= & \left [\mathbb {E}H^{m}\left (Z\right )+h_{m}\left (\bar {u}^{N}\right )\right ]\mathrm {d}t+\Gamma _{m}^{N}\mathrm {d}B_{m},\\ \mathrm {d}R^{N}= & \left [\mathbb {E}H^{v}\left (Z\right )+h_{v}\left (\bar {u}^{N},R^{N}\right )\right ]\mathrm {d}t+\Gamma _{v}^{N}\mathrm {d}B_{v}. \end {aligned} \label {eq:filterdyn}\end {equation}


$y^{N}\left (\omega \right )$


\begin {equation}\mathbb {E}^{N}H\left (Z\right )\mathrm {d}t\cong \mathbb {E}H\left (Z\right )\mathrm {d}t+\Gamma ^{N}\mathrm {d}B.\label {eq:obsapprox}\end {equation}


$\rho $


$\mathcal {G}_{t}$


$t$


$\hat {\rho }$


$\mathcal {G}_{t}$


\begin {equation}\begin {aligned}\mathrm {d}\hat {\rho }_{}= & \:\mathcal {L}^{*}\left (y_{}\right )\hat {\rho }_{}\mathrm {d}t+\mathcal {\hat {C}}\mathcal {H}^{*}\Gamma ^{-2}\left \{ \mathrm {d}y_{t}-\left [\mathcal {H}\hat {\rho }+h\left (y_{}\right )\right ]\mathrm {d}t\right \} ,\\ \mathrm {d}\hat {\mathcal {C}}_{}= & \left [\mathcal {L}_{}^{*}\left (y_{}\right )\mathcal {\hat {C}}_{}+\mathcal {\hat {C}}\mathcal {L}\left (y\right )\right ]\mathrm {d}t-\mathcal {\hat {C}}_{}\mathcal {H}^{*}\Gamma ^{-2}\mathcal {H}\mathcal {\hat {C}}\mathrm {d}t, \end {aligned} \label {eq:KB-pdf}\end {equation}


$\hat {\rho }$


$\tilde {Z}\sim \tilde {\rho }$


$\ensuremath {\tilde {\mathbb {E}}H=\mathcal {H}\hat {\rho }}$


$H$


$\mathcal {H}$


$\tilde {Z}$


\begin {equation}\begin {aligned}\mathrm {d}\tilde {Z}^{i}&= L\left (\bar {u}_{}^{N}\right )\tilde {Z}_{}^{i}\mathrm {d}t+Q_{v}\left (\tilde {Z}_{}^{i}\otimes \tilde {Z}^{i}-R^{N}\right )\mathrm {d}t+\sigma \mathrm {d}\tilde {W}_{}^{i}\\ &\quad + a^{m}\left (\tilde {Z}^{i};\tilde {\rho }\right )\mathrm {d}t+K^{m}\left (\tilde {Z}^{i};\tilde {\rho }\right )\mathrm {d}I^{m}+a^{v}\left (\tilde {Z}^{i};\tilde {\rho }\right )\mathrm {d}t+K^{v}\left (\tilde {Z}^{i};\tilde {\rho }\right )\mathrm {d}I^{v}, \end {aligned} \label {eq:filteringfull}\end {equation}


$a,K$


\begin {equation}\begin {aligned}a^{m}\mathrm {\Delta }t+K^{m}\Delta I^{m}&= \frac {1}{2}\left [\tilde {Z}_{}^{i}H_{m}^{\prime T}\left (\tilde {Z}_{}^{i}\right )\Gamma _{m}^{-2}\right ]\left (\Delta \bar {u}_{}-\Delta \bar {u}_{}^{N}\right )\\ &\quad +\frac {\Delta t}{2}\left [\tilde {Z}^{i}H_{m}^{\prime T}\left (\tilde {Z}^{i}\right )\Gamma _{m}^{-2}\right ]\bar {H}_{m}^ {}+\frac {\Delta t}{4}\left [\tilde {Z}^{i}H_{m}^{\prime T}\left (\tilde {Z}^{i}\right )\Gamma _{m}^{-2}H_{m}^{\prime }\left (\tilde {Z}^{i}\right )\right ],\\ a^{v}\mathrm {\Delta }t+K^{v}\Delta I^{v}&= \frac {1}{3}\left [\tilde {Z}^{i}H_{v}^{\prime T}\left (\tilde {Z}^{i}\right )\Gamma _{v}^{-2}\right ]\left (\Delta R-\Delta R^{N}\right )\\ &\quad +\frac {\Delta t}{3}\left [\tilde {Z}^{i}H_{v}^{\prime T}\left (\tilde {Z}^{i}\right )\Gamma _{v}^{-2}\right ]\bar {H}_{v}+\frac {\Delta t}{9}\left [\tilde {Z}^{i}H_{v}^{\prime T}\left (\tilde {Z}^{i}\right )\Gamma _{v}^{-2}H_{v}^{\prime }\left (\tilde {Z}^{i}\right )\right ]. \end {aligned} \label {eq:filterscheme}\end {equation}


$\tilde {\rho }$


$\tilde {\rho }^{N}$


$u$


$\omega $


$\bar {u}=\mathbb {E}\left (u\right )$


$u^{\prime }$


$\left \{ \hat {v}_{k}\right \} _{k=1}^{d}$


$\bar {u}$


$Z\left (t;\omega \right )=\left \{ Z_{k}\left (t;\omega \right )\right \} _{k=1}^{d}$


$u^{\prime }$


$\hat {v}_{k}$


\begin {equation}\begin {aligned}\frac {\mathrm {d}\bar {u}}{\mathrm {d}t} & =\Lambda \bar {u}+B\left (\bar {u},\bar {u}\right )+F+\sum _{k,l=1}^{d}B\left (\hat {v}_{k},\hat {v}_{l}\right )\mathbb {E}\left (Z_{k}Z_{l}\right ),\\ \frac {\mathrm {d}R}{\mathrm {d}t} & =L\left (\bar {u}\right )R+RL^{T}\left (\bar {u}\right )+Q_{\sigma }+Q_{F}\left (\mathbb {E}\left (Z\otimes Z\otimes Z\right )\right ). \end {aligned} \label {eq:dynstat}\end {equation}


$Z\left (t;\omega \right )\in \mathbb {R}^{d}$


$\left (\bar {u},R\right )$


\begin {equation}\mathrm {d}Z=L\left (\bar {u}\right )Z\mathrm {d}t+Q_{v}\left (Z\otimes Z-R\right )\mathrm {d}t+\sigma \mathrm {d}W.\label {eq:dynstoc}\end {equation}


$Q_{\sigma }=\sigma \sigma ^{T}$


$L\left (\bar {u}\right )$


$Q_{F}$


$Z\otimes Z\otimes Z=\left \{ Z_{m}Z_{n}Z_{k}\right \}$


$Q_{v}$


$Z\otimes Z=\left \{ Z_{m}Z_{n}\right \}$


$B\left (u,u\right )$


$k,l=1,\cdots ,d$


\begin {equation}\begin {aligned}L_{kl}\left (\bar {u}\right )= & \hat {v}_{k}\cdot \left [\Lambda \hat {v}_{l}+B\left (\bar {u},\hat {v}_{l}\right )+B\left (\hat {v}_{l},\bar {u}\right )\right ],\\ Q_{F,kl}= & \sum _{m,n=1}^{d}\left [\gamma _{kmn}\mathbb {E}\left (Z_{m}Z_{n}Z_{l}\right )+\gamma _{lmn}\mathbb {E}\left (Z_{m}Z_{n}Z_{k}\right )\right ],\\ Q_{v,k}= & \sum _{m,n=1}^{d}\gamma _{kmn}\left (Z_{m}Z_{n}-R_{mn}\right ), \end {aligned} \label {eq:couplingcoeff}\end {equation}


$\gamma _{kmn}=\hat {v}_{k}\cdot B\left (\hat {v}_{m},\hat {v}_{n}\right )$


$u$


$\bar {u}$


$R$


$Z$


$\rho $


$Z$


$\left \{ \bar {u},R\right \}$


$Z$


$\mathbf {Z}=\left \{ Z^{i}\right \} _{i=1}^{N}$


\begin {equation}\rho ^{N}\left (z,t\right )=\frac {1}{N}\sum _{i=1}^{N}\delta \left (z-Z^{i}\left (t\right )\right ),\quad \mathbb {E}^{N}\left (f\left (\mathbf {Z}\right )\right )=\frac {1}{N}\sum _{i=1}^{N}f\left (Z^{i}\right ).\label {eq:empricalpdf}\end {equation}


$\mathbf {Z}$


$\bar {u}^{N},R^{N}$


\begin {equation}\begin {aligned}\frac {\mathrm {d}Z^{i}}{\mathrm {d}t}&= \:L\left (\bar {u}^{N}\right )Z^{i}+Q_{v}\left (Z^{i}\otimes Z^{i}-R^{N}\right )+\sigma \dot {W}^{i},\quad i=1,\cdots ,N,\\ \frac {\mathrm {d}\bar {u}_{}^{N}}{\mathrm {d}t}&= \:\Lambda \bar {u}^{N}+B\left (\bar {u}^{N},\bar {u}^{N}\right )+\sum _{k,l}B\left (\hat {v}_{k},\hat {v}_{l}\right )\mathbb {E}^{N}\left (\mathbf {Z}_{k}\otimes \mathbf {Z}_{l}\right )+F,\\ \frac {\mathrm {d}R^{N}}{\mathrm {d}t}&= \:L\left (\bar {u}^{N}\right )R_{}^{N}+R_{}^{N}L^{T}\left (\bar {u}^{N}\right )+Q_{F}\left (\mathbb {E}^{N}\left (\mathbf {Z}\otimes \mathbf {Z}\otimes \mathbf {Z}\right )\right )+Q_{\sigma }\\ & \quad +\epsilon ^{-1}\left (\mathbb {E}^{N}\left [\mathbf {Z}\otimes \mathbf {Z}\right ]-R_{t}^{N}\right ). \end {aligned} \label {eq:nummodel}\end {equation}


$\rho \left (z,t\right )$


$Z$


\begin {equation}\frac {\partial \rho _{}}{\partial t}=\mathcal {L}^{*}\left (\bar {u},R\right )\rho :=-\nabla \cdot \left [L\left (\bar {u}\right )z\rho +Q_{v}\left (z\otimes z-R\right )\rho \right ]+\frac {1}{2}\nabla \cdot \left [\nabla \cdot \left (Q_{\sigma }\rho \right )\right ],\label {eq:dynpdf}\end {equation}


$\bar {u}^{N},R^{N}$


$\epsilon >0$


$R^{N}$


$L\left (\bar {u}\right )$


$u_{1}$


$u_{1},u_{2},u_{3}$


$t=5$


$\mathrm {MC}=1\times 10^{5}$


$N=100$


$\bar {u}_{1}$
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$\rho ^{N}$


$Z^{i}$


$\rho ^{N}\rightarrow \rho $


$N\rightarrow \infty $
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$Z^{i}$


$\mathcal {L}_{}^{*}$


$\mathcal {L}$


$\bar {u}_{}$


$R$


$N$


$\rho ^{N}$


$L\left (\bar {u}\right )$


$B\left (\bar {u},\hat {v}_{l}\right )\cdot \hat {v}_{k}$


$y=\left \{ \bar {u},R\right \}$


$\rho ^{N}$


$\rho $


$\rho $


$Z$


$\rho $


$Z^{i}$


$\bar {u}^{N},R^{N}$


$\mathcal {L}\left (\bar {u},R\right )$


$\rho $


$\bar {u}^{N},R^{N}$


$\mathbb {E}^{N}$


$h_{m}$


$h_{v}$


$\rho $


$H^{m}\in \mathbb {R}^{d}$


$H^{v}\in \mathbb {R}^{d\times d}$


$z$


\begin {equation}H_{k}^{m}\left (z\right )=\sum _{p,q=1}^{d}\gamma _{kpq}z_{p}z_{q},\quad H_{kl}^{v}\left (z\right )=\sum _{p,q=1}^{d}\left (\gamma _{kpq}z_{p}z_{q}z_{l}+\gamma _{lpq}z_{p}z_{q}z_{k}\right ).\label {eq:operatorsobs}\end {equation}


$\Gamma _{m}^{N}$


$\Gamma _{v}^{N}$


$\bar {u}^{N},R^{N}$


$\rho $


$\Gamma ^{N}\mathrm {d}B$


$N$


$\mathbb {E}H\left (Z\right )$


$\rho $


$\mathcal {P}\left (\mathbb {R}^{d}\right )$


$\mathcal {G}_{t}=\sigma \left \{ y\left (s\right ),s\leq t\right \}$


$y\left (t\right )=\left \{ \bar {u}^{N}\left (t\right ),R^{N}\left (t\right )\right \}$


$\rho $


\begin {equation}\mathrm {d}y_{}^ {}=\left [\mathcal {H}\rho +h\left (y^ {}\right )\right ]\mathrm {d}t+\Gamma \mathrm {d}B,\quad \mathcal {H}\rho =\mathbb {E}H\left (Z\right )=\int H\left (z\right )\rho \left (z\right )\mathrm {d}z,\label {eq:obsgeneral}\end {equation}


$\mathcal {H}$


$\rho $


$H=\left [H^{m},H^{v}\right ]$


$h=\left [h_{m},h_{v}\right ]$


$\Gamma \mathrm {d}B=\left [\Gamma _{m}\mathrm {d}B_{m},\Gamma _{v}\mathrm {d}B_{v}\right ]$


$\rho $


$\hat {\rho }=\mathbb {E}\left [\rho _{}\mid \mathcal {G}_{t}\right ]$


$\hat {\mathcal {C}}\left (\omega \right ):L^{2}\left (\mathbb {R}^{d}\right )\rightarrow L^{2}\left (\mathbb {R}^{d}\right )$


$\hat {\mathcal {C}}^{*}=\hat {\mathcal {C}}$


$\hat {\rho }$


$\hat {\rho }$


$\tilde {Z}$


$\tilde {Z}\sim \tilde {\rho }$


$\hat {\rho }$


$\tilde {Z}$


$Z$


$N$


$\tilde {\mathbf {Z}}=\left \{ \tilde {Z}^{i}\right \} _{i=1}^{N}$


$I^{m},I^{v}$


$\mathrm {d}y=\left (\mathrm {d}\bar {u},\mathrm {d}R\right )$


\begin {equation}\begin {aligned}\mathrm {d}I^{m}\left (t\right )= & \:\mathrm {d}\bar {u}-\left [H^{m}\left (\tilde {Z}^{i}\right )+h_{m}\left (\bar {u}_{}^{N}\right )\right ]\mathrm {d}t,\\ \mathrm {d}I^{v}\left (t\right )= & \:\mathrm {d}R-\left [H^{v}\left (\tilde {Z}^{i}\right )+h_{v}\left (\bar {u}_{}^{N},R_{}^{N}\right )\right ]\mathrm {d}t. \end {aligned} \label {eq:modelinnov}\end {equation}


$\tilde {Z}$


$K$


$a$


$\tilde {Z}^{i}\sim \tilde {\rho }$


\begin {equation}-\nabla \cdot \left (K^{T}\tilde {\rho }\right )=\tilde {\rho }\Gamma ^{-2}\left [H\left (\tilde {Z}\right )-\tilde {\mathbb {E}}\left (H\right )\right ],\quad a=\nabla \cdot \left (K\Gamma ^{2}K^{T}\right )-K\Gamma ^{2}\nabla \cdot K^{T}.\label {eq:filterops}\end {equation}


$\left (\bar {u}^{N},R^{N}\right )$


$\mathrm {d}y_{t}$


$y_{n}=y\left (t_{n}\right )$


$t_{n}=n\Delta t$


$\Delta t$


$t_{n}$


$t\in \left (t_{n},t_{n+1}\right ]$


\begin {equation}\mathrm {d}y\left (t\right )\cong \Delta y_{n}=y_{n+1}-y_{n}.\label {eq:obsinterp}\end {equation}


$\Delta y_{n}$


$\Delta y_{n}$


$\left (K^{m},K^{v}\right )$


$\left (a^{m},a^{v}\right )$


$H^{m},H^{v}$


$\tilde {\rho }$


$\tilde {Z}^{i}$


$\hat {\rho }$


$\tilde {\rho }$


$\tilde {Z}$


$H$


$\tilde {\mathbb {E}}\left [H\left (\tilde {Z}\right )\right ]=\mathcal {H}\hat {\rho }$


$\tilde {Z}$


$\hat {\rho }$


$K$


$a$


$\tilde {\rho }$


$H^{m}$


$H^{v}$


$a_{}^{m},K_{}^{m}$


$a_{}^{v},K^{v}$


$s$


$\left (a,K\right )$


$H^{m}\in \mathbb {R}^{s}$


$H^{v}\in \mathbb {R}^{s\times s}$


$1\leq k,l\leq s$


\begin {equation}\begin {aligned}H_{k}^{m}\left (z\right )= & \sum _{p,q}\gamma _{kpq}z_{p}z_{q},\\ H_{kl}^{v}\left (z\right )= & \sum _{p,q}\gamma _{kpq}z_{p}z_{q}z_{l}+\gamma _{lpq}z_{p}z_{q}z_{k}, \end {aligned} \label {eq:obsfunc}\end {equation}


$\gamma _{kpq}=\hat {v}_{k}\cdot B\left (\hat {v}_{p},\hat {v}_{q}\right )$


$H^{m},H^{v}$


$H^{m}$


$H^{v}$


\begin {equation}\begin {aligned}z\cdot \nabla H^{m}\left (z\right )=\sum _{j}z_{j}\partial _{j}H^{m}= & \:2H^{m}\left (z\right ),\\ z\cdot \nabla H^{v}\left (z\right )=\sum _{j}z_{j}\partial _{j}H^{v}= & \:3H^{v}\left (z\right ). \end {aligned} \label {eq:obssymm}\end {equation}


$K\left (z;\tilde {\rho }\right )$


\begin {equation*}-\nabla \cdot \left (K^{T}\tilde {\rho }\right )=\tilde {\rho }\Gamma ^{-2}\left [H\left (\tilde {Z}\right )-\bar {H}\right ],\end {equation*}


$H=H^{m}$


$H^{v}$


$\bar {H}=\tilde {\mathbb {E}}\left [H\left (\tilde {Z}\right )\right ]$


$\tilde {\rho }$


$H$


$K$


\begin {equation}\tilde {\mathbb {E}}\left [K^{T}\nabla H\right ]=\Gamma ^{-2}C_{}^{H},\label {eq:kalmangain}\end {equation}


$C^{H}=\tilde {\mathbb {E}}\left [\left (H-\bar {H}_{}\right )\left (H-\bar {H}\right )^{T}\right ]$


$H$


$\tilde {\rho }$


$K_{t}$


$K^{m}\in \mathbb {R}^{d\times s}$


$K^{v}\in \mathbb {R}^{d\times s^{2}}$


$H^{m}$


$H^{v}$


\begin {equation}\begin {aligned}K^{m}\left (Z\right )= & \frac {1}{2}Z\left [H^{m}\left (Z\right )-\bar {H}^{m}\right ]^{T}\Gamma _{m}^{-2},\\ K_{}^{v}\left (Z\right )= & \frac {1}{3}Z\left [H^{v}\left (Z\right )-\bar {H}^{v}\right ]^{T}\Gamma _{v}^{-2}, \end {aligned} \label {eq:kalmanalgm}\end {equation}


$Z\in \mathbb {R}^{d}$


$\Gamma _{m}\in \mathbb {R}_{\mathrm {sym}}^{s\times s}$


$\Gamma _{v}\in \mathbb {R}_{\mathrm {sym}}^{s^{2}\times s^{2}}$


$\bar {H}=\tilde {\mathbb {E}}\left [H\left (Z\right )\right ]$


$a\left (z;\tilde {\rho }\right )$


$K_{}$


\begin {equation}a=\nabla \cdot \left (K\Gamma ^{2}K^{T}\right )-K\Gamma ^{2}\nabla \cdot \left (K^{T}\right ).\label {eq:drift}\end {equation}


$K^{m}$


$K^{v}$


\begin {equation}\begin {aligned}a^{m}\left (Z\right )= & \frac {1}{4}Z\left [H^{m}\left (Z\right )-\bar {H}^{m}\right ]^{T}\Gamma _{m}^{-2}\left [3H^{m}\left (Z\right )-\bar {H}^{m}\right ],\\ a^{v}\left (Z\right )= & \frac {1}{9}Z\left [H^{v}\left (Z\right )-\bar {H}^{v}\right ]^{T}\Gamma _{v}^{-2}\left [4H^{v}\left (Z\right )-\bar {H}^{v}\right ]. \end {aligned} \label {eq:driftalgm}\end {equation}


$\tilde {\rho }$


$\tilde {\rho }$


$H$


$t_{n}$


\begin {equation}\begin {aligned}\Delta \bar {u}_{n}^{N}=\bar {u}_{n+1}^{N}-\bar {u}_{n}^{N}= & \int _{t_{n}}^{t_{n+1}}\left [\mathbb {E}^{N}H^{m}\left (\tilde {\mathbf {Z}}\left (s\right )\right )+h_{m}\left (\bar {u}^{N}\left (s\right )\right )\right ]\mathrm {d}s,\\ \Delta R_{n}^{N}=R_{n+1}^{N}-R_{n}^{N}= & \int _{t_{n}}^{t_{n+1}}\left [\mathbb {E}^{N}H^{v}\left (\tilde {\mathbf {Z}}\left (s\right )\right )+h_{v}\left (\bar {u}^{N}\left (s\right ),R^{N}\left (s\right )\right )\right ]\mathrm {d}s. \end {aligned} \label {eq:updatestat}\end {equation}


$\mathbb {E}^{N}\left (\cdot \right )$


$\left (\Delta \bar {u},\Delta R\right )$


$\tilde {Z}^{i}$


\begin {equation}\begin {aligned}\tilde {Z}_{n+1}^{i}= & \hat {Z}_{n+1}^{i}+\left (a^{m}\mathrm {\Delta }t+K^{m}\Delta I^{m}\right )+\left (a^{v}\mathrm {\Delta }t+K^{v}\Delta I^{v}\right ),\\ \hat {Z}_{n+1}^{i}= & \tilde {Z}_{n}^{i}+L\left (\bar {u}_{n}^{N}\right )\tilde {Z}_{n}^{i}\mathrm {\Delta }t+Q_{v}\left (\tilde {Z}_{n}^{i}\otimes \tilde {Z}_{n}^{i}-R^{N}\right )\mathrm {\Delta }t+\sigma \Delta \tilde {W}_{n}^{i}. \end {aligned} \label {eq:filteringupdate}\end {equation}


$\hat {Z}^{i}$


$\left (\Delta \bar {u},\Delta R\right )$


$\left (\Delta \bar {u}^{N},R^{N}\right )$


$\tilde {Z}^{i}$


$\bar {H}_{}^ {}=\mathbb {E}^{N}\left [H\left (\tilde {\mathbf {Z}}\right )\right ]$


$H^{\prime }=H\left (\tilde {Z}\right )-\bar {H}$


$\tilde {Z}^{i}$


$H^{m}$


$H^{v}$


$H^{m}\in \mathbb {R}^{s}$


$H^{v}\in \mathbb {R}^{s\times s}$


$s\leq d$


$O\left (N(s+s^2)\right )$


$N$


$\tilde {Z}^{i}$


$\mathbb {E}^{N}\left [\tilde {Z}H_{}^{\prime T}\left (\tilde {Z}\right )\Gamma ^{-2}\right ]$


$\mathbb {E}^{N}\left [\tilde {Z}H_{}^{\prime T}\left (\tilde {Z}^ {}\right )\Gamma ^{-2}H_{}^{\prime }\left (\tilde {Z}\right )\right ]$


$K$


$\tilde {Z}$


\begin {equation}K=\tilde {\mathbb {E}}\left [\tilde {Z}\left (H\left (\tilde {Z}\right )-\bar {H}\right )^{T}\right ]\Gamma ^{-2}=\tilde {C}^{ZH}\Gamma ^{-2},\quad \mathrm {and}\quad a=0.\label {eq:kalmandeterm}\end {equation}


$\tilde {C}^{ZH}$


$\tilde {Z}$


$H\left (\tilde {Z}\right )$


\begin {equation}\begin {aligned}\tilde {Z}_{n+1}^{i}&= \tilde {Z}_{n}^{i}+L\left (\bar {u}_{n}^{N}\right )\tilde {Z}_{n}^{i}\mathrm {\Delta }t+Q_{v}\left (\tilde {Z}_{n}^{i}\otimes \tilde {Z}_{n}^{i}-R^{N}\right )\mathrm {\Delta }t+\sigma \Delta \tilde {W}_{n}^{i}\\ &\quad + \tilde {C}^{ZH^{m}}\Gamma _{m}^{-2}\left \{ \Delta \bar {u}-\left [H^{m}\left (\tilde {Z}_{n}^{i}\right )+h_{m}\right ]\Delta t\right \} +\tilde {C}^{ZH^{v}}\Gamma _{v}^{-2}\left \{ \Delta R-\left [H^{v}\left (\tilde {Z}_{n}^{i}\right )+h_{v}\right ]\Delta t\right \} , \end {aligned} \label {eq:EnKF}\end {equation}


$\hat {C}^{ZH}=\tilde {\mathbb {E}}^{N}\left [\hat {\mathbf {Z}}H^{\prime }\left (\hat {\mathbf {Z}}\right )^{T}\right ]$


$\tilde {\mathbf {Z}}_{n+1}$


$K_{m}$


$K_{v}$


$Z$


$H^{m}$


$H^{v}$


$H\left (\tilde {Z}^{i}\right )$


$M_{3}=\mathbb {E}\left (u^{\prime }_{1}u^{\prime }_{2}u^{\prime }_{3}\right )$


$N$


$\Gamma ^{m}$


$\Gamma ^{v}$


$N=100$


$\mathrm {MC}=1\times 10^{5}$


$t=5$


$N=100$


$\tilde {\rho }^{N}\left (z,t\right )=\frac {1}{N}\sum _{i=1}^{N}\delta \left (z-\tilde {Z}^{i}\left (t\right )\right )$


$N$


$\tilde {\rho }\left (z,t\right )$


$\mathcal {P}\left (\mathbb {R}^{d}\right )$


$\tilde {Z}$


$\mathcal {G}_{t}$


$\left \{ \tilde {Z}_{0}^{i}\right \} _{i=1}^{N}$


$\tilde {\rho }_{0}$


$\tilde {Z}^{i}\sim \tilde {\rho }$


$N$


$\tilde {\rho }^{N}$


$\tilde {\rho }$


$N\rightarrow \infty $


$B:\mathbb {R}^{d}\times \mathbb {R}^{d}\rightarrow \mathbb {R}^{d}$


$L:\mathbb {R}^{d}\rightarrow \mathbb {R}^{d\times d}$


$\beta >0$


\begin {equation*}\left |B\left (u,u\right )-B\left (v,v\right )\right |\leq \beta \left |u-v\right |,\quad \left \Vert L\left (u\right )-L\left (v\right )\right \Vert \leq \beta \left |u-v\right |.\end {equation*}


$\gamma _{kmn}=\hat {v}_{k}\cdot B\left (\hat {v}_{m},\hat {v}_{n}\right )$


$C>0$


$k,m,n$


\begin {equation*}\left |\gamma _{kmn}\right |\leq C.\end {equation*}


$\mathcal {G}_{t}$


$\varphi \in C_{b}^{2}\left (\mathbb {R}^{d}\right )$


$\tilde {\rho }^{N}$


$\tilde {\rho }$


\begin {equation}\left \langle \tilde {\rho }_{}^{N},\varphi \right \rangle =\frac {1}{N}\sum _{i=1}^{N}\varphi \left (\tilde {Z}^{i}\right )\rightarrow \mathbb {E}\left [\varphi \left (\tilde {Z}\right )\mid \mathcal {G}_{t}\right ]=\left \langle \tilde {\rho },\varphi \right \rangle ,\label {eq:lln}\end {equation}


$N\rightarrow \infty $


$\left \langle \tilde {\rho }_{t}^{N},\varphi \right \rangle :=\mathbb {E}^{N}\varphi =\frac {1}{N}\sum \varphi \left (\tilde {Z}^{i}\left (t\right )\right )$


$\left \langle \tilde {\rho }_{t},\varphi \right \rangle :=\tilde {\mathbb {E}}\left [\varphi \left (\tilde {Z}\left (t\right )\right )\right ]$


$T>0$


\begin {equation}\mathbb {E}\left [\sup _{0\leq t\leq T}\left |\left \langle \tilde {\rho }_{t}^{N},\varphi \right \rangle -\left \langle \tilde {\rho }_{t},\varphi \right \rangle \right |^{2}\right ]\leq \frac {C_{T}}{N}\left \Vert \varphi \right \Vert _{\infty }^{2}.\label {eq:convpdf}\end {equation}


$\left (\bar {u},R\right )$


$H^{m},H^{v}$


$\tilde {Z}\sim \tilde {\rho }$


\begin {equation}\begin {aligned}\frac {\mathrm {d}\bar {u}}{\mathrm {d}t}= & \:\Lambda \bar {u}\left (t\right )+B\left (\bar {u}\left (t\right ),\bar {u}\left (t\right )\right )+F+\tilde {\mathbb {E}}H^{m}\left (\tilde {Z}\left (t\right )\right ),\\ \frac {\mathrm {d}R_{}}{\mathrm {d}t}= & \:L\left (\bar {u}\left (t\right )\right )R\left (t\right )+R\left (t\right )L\left (\bar {u}\left (t\right )\right )^{T}+Q_{\sigma }+\tilde {\mathbb {E}}H^{v}\left (\tilde {Z}\left (t\right )\right ). \end {aligned} \label {eq:modelconti}\end {equation}


$\left (\bar {u}^{N,\delta },R^{N,\delta }\right )$


$\left \{ \tilde {Z}^{i}\right \}$


$\tilde {\rho }^{N}$


\begin {equation}\begin {aligned}\frac {\mathrm {d}\bar {u}^{N,\delta }}{\mathrm {d}t}= & \:\Lambda \bar {u}^{N,\delta }\left (\tau \left (t\right )\right )+B\left (\bar {u}^{N,\delta }\left (\tau \left (t\right )\right ),\bar {u}^{N,\delta }\left (\tau \left (t\right )\right )\right )+F+\frac {1}{N}\sum _{i=1}^{N}H^{m}\left (\tilde {Z}^{i}\left (\tau \left (t\right )\right )\right ),\\ \frac {\mathrm {d}R^{N,\delta }}{\mathrm {d}t}= & \:L\left (\bar {u}^{N,\delta }\left (\tau \left (t\right )\right )\right )R^{N,\delta }\left (\tau \left (t\right )\right )+R^{N,\delta }\left (\tau \left (t\right )\right )L\left (\bar {u}^{N,\delta }\left (\tau \left (t\right )\right )\right )^{T}+Q_{\sigma }+\frac {1}{N}\sum _{i=1}^{N}H^{v}\left (\tilde {Z}^{i}\left (\tau \left (t\right )\right )\right ), \end {aligned} \label {eq:modelstatens}\end {equation}


$\tau \left (t\right )=n\Delta t$


$t\in \left [t_{n},t_{n+1}\right ]$


$\epsilon $


$\bar {u}^{N,\delta },R^{N,\delta }$


$\bar {u},R$


$\left \{ \tilde {Z}^{i}\right \}$


$\mathcal {G}_{t}$


$N$


$\Delta t$


$\left (\bar {u}_{n}^{N,\delta },R_{n}^{N,\delta }\right )=\left (\bar {u}^{N,\delta }\left (t_{n}\right ),R^{N,\delta }\left (t_{n}\right )\right )$


$\Delta t$


$\left (\bar {u}_{n},R_{n}\right )=\left (\bar {u}\left (t_{n}\right ),R\left (t_{n}\right )\right )$


\begin {equation}\begin {aligned}\mathbb {E}\left [\sup _{n\Delta t\leq T}\left |\bar {u}_{n}^{N,\delta }-\bar {u}_{n}\right |^{2}\right ] & \leq \left (C_{1,T}\Delta t^ {}+\frac {C_{2,T}}{N}\right )\left \Vert H^{m}\right \Vert _{\infty },\\ \mathbb {E}\left [\sup _{n\Delta t\leq T}\left \Vert R_{n}^{N,\delta }-R_{n}\right \Vert ^{2}\right ] & \leq \left (C_{1,T}^{\prime }\Delta t^ {}+\frac {C_{2,T}^{\prime }}{N}\right )\left (\left \Vert H^{m}\right \Vert _{\infty }+\left \Vert H^{v}\right \Vert _{\infty }\right ), \end {aligned} \label {eq:statbnds}\end {equation}


$C_{1,T},C_{2,T},C_{1,T}^{\prime },C_{2,T}^{\prime }$


$T$


\begin {equation*}\bar {u}^{N,\delta }\left (t\right )-\bar {u}\left (t\right )=\int _{0}^{t}\left [M\left (\bar {u}^{N,\delta }\left (\tau \left (s\right )\right )\right )-M\left (\bar {u}\left (s\right )\right )\right ]\mathrm {d}s+\int _{0}^{t}\left [\left \langle \tilde {\rho }_{\tau \left (s\right )}^{N},H^{m}\right \rangle -\left \langle \tilde {\rho }_{s},H^{m}\right \rangle \right ]\mathrm {d}s,\end {equation*}


$M\left (u\right )=\Lambda u+B\left (u,u\right )+F$


$F$


$Q_{\sigma }$


$M$


\begin {equation}\begin {aligned} \mathbb {E}\left [\sup _{t\leq T}\left |\bar {u}^{N}\left (t\right )-\bar {u}\left (t\right )\right |^{2}\right ] &\leq 2T \beta ^{2}\mathbb {E}\int _{0}^{T}\left |\bar {u}^{N,\delta }\left (\tau \left (s\right )\right )-\bar {u}\left (s\right )\right |^{2}\mathrm {d}s +2T\mathbb {E}\int _{0}^{T}\left |\left \langle \tilde {\rho }_{\tau \left (s\right )}^{N},H^{m}\right \rangle -\left \langle \tilde {\rho }_{s},H^{m}\right \rangle \right |^{2}\mathrm {d}s\\ &\leq C_{1}T\int _{0}^{T}\mathbb {E}\left [\sup _{s^{\prime }\leq s}\left |\bar {u}^{N,\delta }\left (s^{\prime }\right )-\bar {u}\left (s^{\prime }\right )\right |^{2}\right ]\mathrm {d}s +C_{2}T^{2}\Delta t\left \Vert H^{m}\right \Vert _{\infty }^{2}+\frac {C_{3}T^{2}}{N}\left \Vert H^{m}\right \Vert _{\infty }^{2}. \end {aligned}\label {eq:estm}\end {equation}


$\bar {u}^{N,\delta }\left (\tau \left (t\right )\right )$


$\bar {u}^{N,\delta }\left (t\right )$


\begin {equation*}\left |\bar {u}^{N,\delta }\left (\tau \left (t\right )\right )-\bar {u}^{N,\delta }\left (t\right )\right |^{2}\leq \left |t-\tau \left (t\right )\right |^{2}\left [\left |M\left (\bar {u}^{N,\delta }\left (\tau \left (s\right )\right )\right )\right |^{2}+\left |\left \langle \tilde {\rho }_{\tau \left (t\right )}^{N},H^{m}\right \rangle \right |^{2}\right ]\leq \Delta t^{2}\left (\left \Vert M\right \Vert _{\infty }^{2}+\left \Vert H^{m}\right \Vert _{\infty }^{2}\right ).\end {equation*}


\begin {equation*}\begin {aligned} \left |\bar {u}^{N,\delta }\left (\tau \left (s\right )\right )-\bar {u}\left (s\right )\right |^{2}\leq &2\left |\bar {u}^{N,\delta }\left (\tau \left (s\right )\right )-\bar {u}^{N,\delta }\left (s\right )\right |^{2}+2\left |\bar {u}^{N,\delta }\left (s\right )-\bar {u}\left (s\right )\right |^{2}\\ \leq &C\Delta t^{2}\left \Vert H^{m}\right \Vert _{\infty }^{2}+2\sup _{s^{\prime }\leq s}\left |\bar {u}^{N,\delta }\left (s^{\prime }\right )-\bar {u}\left (s^{\prime }\right )\right |^{2}. \end {aligned}\end {equation*}


$H^{m}$


\begin {align*}\mathbb {E}\left [\left |\left \langle \tilde {\rho }_{\tau \left (t\right )}^{N},H^{m}\right \rangle -\left \langle \tilde {\rho }_{t},H^{m}\right \rangle \right |^{2}\right ] & \leq 2\mathbb {E}\left [\left |\left \langle \tilde {\rho }_{\tau \left (t\right )}^{N},H^{m}\right \rangle -\left \langle \tilde {\rho }_{t}^{N},H^{m}\right \rangle \right |^{2}\right ]+2\mathbb {E}\left [\left |\left \langle \tilde {\rho }_{t}^{N},H^{m}\right \rangle -\left \langle \tilde {\rho }_{t},H^{m}\right \rangle \right |^{2}\right ]\\ & \leq \left (C\Delta t+\frac {C_{T}}{N}\right )\left \Vert H^{m}\right \Vert _{\infty }^{2}.\end {align*}


\begin {align*}R^{N,\delta }\left (t\right )-R\left (t\right )= & \int _{0}^{t}L\left (\bar {u}\left (s\right )\right )\left [R^{N,\delta }\left (\tau \left (s\right )\right )-R\left (s\right )\right ]\mathrm {d}s+\int _{0}^{t}\left [L\left (\bar {u}^{N,\delta }\left (\tau \left (s\right )\right )\right )-L\left (\bar {u}\left (s\right )\right )\right ]R\left (s\right )\mathrm {d}s\\ & +\int _{0}^{t}\left [L\left (\bar {u}^{N,\delta }\left (\tau \left (s\right )\right )\right )-L\left (\bar {u}\left (s\right )\right )\right ]\left [R^{N,\delta }\left (\tau \left (s\right )\right )-R\left (s\right )\right ]\mathrm {d}s+c.c.\\ & +\int _{0}^{t}\left [\left \langle \tilde {\rho }_{\tau \left (s\right )}^{N},H^{v}\right \rangle -\left \langle \tilde {\rho }_{s},H^{v}\right \rangle \right ]\mathrm {d}s.\end {align*}


$c.c.$


$RL\left (\bar {u}\right )^{T}$


$L$


$\left \Vert L\left (u\right )\right \Vert \leq \beta \left |u\right |+\beta _{1}$


\begin {align*}\mathbb {E}\left [\sup _{t\leq T}\left \Vert R^{N,\delta }\left (t\right )-R\left (t\right )\right \Vert ^{2}\right ] & \leq C_{1}T\beta ^{2}\mathbb {E}\left [\sup _{t\leq T}\left |\bar {u}\right |^{2}\int _{0}^{T}\left \Vert R^{N,\delta }\left (\tau \left (s\right )\right )-R\left (s\right )\right \Vert ^{2}\mathrm {d}s\right ]\\ &\quad +C_{2}T\beta ^{2}\mathbb {E}\left [\sup _{t\leq T}\left |\bar {u}^{N,\delta }\left (t\right )-\bar {u}\left (t\right )\right |^{2}\sup _{t\leq T}\left \Vert R\left (t\right )\right \Vert ^{2}\right ]\\ &\quad +C_{3}\mathbb {E}\int _{0}^{T}\left |\left \langle \tilde {\rho }_{\tau \left (s\right )}^{N},H^{v}\right \rangle -\left \langle \tilde {\rho }_{s},H^{v}\right \rangle \right |^{2}\mathrm {d}s+C_{T}\Delta t^{2}.\end {align*}


$\bar {u},R$


$H^{v}$


$\mathbb {E}\left [\sup _{t\leq T}\left |\bar {u}^{N,\delta }\left (t\right )-\bar {u}\left (t\right )\right |^{2}\right ]$


$H^{m},H^{v}$


$H^{m}$


$H^{v}$


$\tilde {\mathbb {E}}\left [H\left (\tilde {Z}_{t}\right )\right ]$


$\hat {\rho }$


$\mathbf {u}=\left (u_{1},u_{2},u_{3}\right )^{T}$


\begin {equation}\begin {aligned}\frac {\mathrm {d}u_{1}}{\mathrm {d}t}= & \lambda _{2}u_{3}-\lambda _{3}u_{2}-d_{1}u_{1}+B_{1}u_{2}u_{3}+\sigma _{1}\dot {W}_{1},\\ \frac {\mathrm {d}u_{2}}{\mathrm {d}t}= & \lambda _{3}u_{1}-\lambda _{1}u_{3}-d_{2}u_{2}+B_{2}u_{3}u_{1}+\sigma _{2}\dot {W}_{2},\\ \frac {\mathrm {d}u_{3}}{\mathrm {d}t}= & \lambda _{1}u_{2}-\lambda _{2}u_{1}-d_{3}u_{3}+B_{3}u_{1}u_{2}+\sigma _{3}\dot {W_{3}}. \end {aligned} \label {eq:triad}\end {equation}


\begin {equation*}\Lambda =\begin {bmatrix}-d_{1} & -\lambda _{3} & \lambda _{2}\\ \lambda _{3} & -d_{2} & -\lambda _{1}\\ -\lambda _{2} & \lambda _{1} & -d_{3} \end {bmatrix},\quad B\left (\mathbf {u},\mathbf {u}\right )=\begin {bmatrix}B_{1}u_{2}u_{3}\\ B_{2}u_{3}u_{1}\\ B_{3}u_{1}u_{2} \end {bmatrix},\end {equation*}


$\Lambda $


$B\left (\mathbf {u},\mathbf {u}\right )$


$B_{1}+B_{2}+B_{3}=0$


$\frac {\sigma _{1}^{2}}{2d_{1}}=\frac {\sigma _{2}^{2}}{2d_{2}}=\frac {\sigma _{3}^{2}}{2d_{3}}=\sigma _{\mathrm {eq}}^{2}$


$p_{\mathrm {eq}}\sim \exp \left (-\frac {1}{2}\sigma _{\mathrm {eq}}^{-2}\mathbf {\left |u\right |}^{2}\right )$


$u_{1}$


$u_{2},u_{3}$


$u_{1}$


$u_{2},u_{3}$


$d_1=-0.4$


$u_{1}$


$u_{2},u_{3}$


$u_{1}$


$u_{2},u_{3}$


$u_{2},u_{3}$


$u_{1}$


$\mathbf {u}_{0}\sim \mathcal {N}\left (\bar {\mathbf {u}}_{0},\mathbf {r}_{0}\right )$


$\bar {\mathbf {u}}_{0}$


$\mathbf {r}_{0}$


$\mathrm {MC}=1\times 10^{5}$


$\Delta t=1\times 10^{-3}$


$\bar {\mathbf {u}}_{0}$


$\mathbf {r}_{0}$


$B_{1}>0$


$B_{2},B_{3}<0$


$T=10$


$p\left (\mathbf {u},t\right )$


$d_{1}=-0.4$


$\bar {u}^{N}$


$R^{N}$


$\left \{ Z^{i}\right \} _{i=1}^{N}$


$N=100$


$\mathrm {MC}=1\times 10^{5}$


$\left (\bar {u}^{N},R^{N}\right )$


$\{Z^{i}\}$


$N=100$


$L\left (\bar {u}\right )$


$N$


$T$


$u_{1}$


$\epsilon ^{-1}=0$


$\mathbb {E}^{N}\left [ZZ^{T}\right ]$


$R_{t}$


$\epsilon ^{-1}=0.1$


$\epsilon ^{-1}=0.1$


$\Gamma _{m}^{N}$


$\Gamma _{v}^{N}$


$N$


$\bar {u}^{N}$


$R^{N}$


$y^{N}=\left (\bar {u}^{N},R^{N}\right )$


$\mathbb {E}^{N}H\mathrm {d}t=\mathbb {E}H\mathrm {d}t+\Gamma ^{N}\mathrm {d}B$


$N$


$H$


$\Gamma _{m}^{N}$


$\Gamma _{v}^{N}$


\begin {equation*}\begin {aligned}\mathrm {d}y & =\mathbb {E}H\mathrm {d}t,\\ \mathrm {d}y^{N} & =\mathbb {E}^{N}H\mathrm {d}t=\mathbb {E}H\mathrm {d}t+\Gamma ^{N}\mathrm {d}B. \end {aligned}\end {equation*}


$y$


$\bar {u},R$


$y^{N}$


\begin {equation}\mathbb {E}\left (\left \Vert y^{N}-y\right \Vert ^{2}\right )\approx \int _{0}^{t}\left (\Gamma ^{N}\right )^{2}\mathrm {d}s\approx t\left (\Gamma ^{N}\right )^{2}.\label {eq:noiseestimate}\end {equation}


$N$


$N^{-\frac {1}{2}}$


$N$


$y_{n}=\left \{ \bar {u}_{n},R_{n}\right \}$


$\tilde {\mathbf {Z}}_{n}=\left \{ \tilde {Z}_{n}^{i}\right \}$


$\tilde {\mathbf {Z}}_{n}$


$\mathrm {d}\bar {u},\mathrm {d}R$


$\bar {u}^{N}$


$R^{N}$


$\mathbf {\tilde {Z}}_{n}$


$u_{1},u_{2},u_{3}$


$\mathrm {MC}=1\times 10^{5}$


$N=100$


$\Delta t=1\times 10^{-3}$


$L$


$B$


$u_{1}$


$u_{2},u_{3}$


$u_{1},u_{2},u_{3}$


$u_{2}$


$u_{3}$


$M_{3}=\mathbb {E}\left (u^{\prime }_{1}u^{\prime }_{2}u^{\prime }_{3}\right )$


$M_{3}$


\begin {equation}\begin {aligned}\mathrm {d}r_{1}= & 2\left [\left (-d_{1}r_{1}+\lambda _{2}c_{2}-\lambda _{3}c_{3}\right )+B_{1}\left (\bar {u}_{2}c_{2}+\bar {u}_{3}c_{3}\right )+B_{1}\left \langle u_{1}^{\prime }u_{2}^{\prime }u_{3}^{\prime }\right \rangle +\sigma _{1}^{2}\right ]\mathrm {d}t,\\ \mathrm {d}r_{2}= & 2\left [\left (-\lambda _{1}c_{1}-d_{2}r_{2}+\lambda _{3}c_{3}\right )+B_{2}\left (\bar {u}_{1}c_{1}+\bar {u}_{3}c_{3}\right )+B_{2}\left \langle u_{1}^{\prime }u_{2}^{\prime }u_{3}^{\prime }\right \rangle +\sigma _{2}^{2}\right ]\mathrm {d}t,\\ \mathrm {d}r_{3}= & 2\left [\left (\lambda _{1}c_{1}-\lambda _{2}c_{2}-d_{3}r_{3}\right )+B_{3}\left (\bar {u}_{1}c_{1}+\bar {u}_{2}c_{2}\right )+B_{3}\left \langle u_{1}^{\prime }u_{2}^{\prime }u_{3}^{\prime }\right \rangle +\sigma _{3}^{2}\right ]\mathrm {d}t. \end {aligned} \label {eq:triadcor}\end {equation}


$M_{3}$


$M_{3}$


$M_{3}$


$M_{3}$


$\Delta t_{\mathrm {obs}}$


$N$


$\Delta t_{\mathrm {obs}}$


$N$


$\Delta t_{\mathrm {obs}}$


$N$


$J$


\begin {equation}\frac {\mathrm {d}u_{j}}{\mathrm {d}t}=-u_{j}+F+\left (u_{j+1}-u_{j-2}\right )u_{j-1},\;j=1,\cdots ,J,\label {eq:l96}\end {equation}


$u_{J+1}=u_{1}$


$u_{j}$


$J$


$F$


$J$


$J=3$


$F=6$


$u_{j}$


$J=10$


$J=40$


\begin {equation}u_{j}=\bar {u}_{j}+\frac {1}{J}\sum _{\left |k\right |\leq J/2}Z_{k}\left (t\right )e^{i2\pi k\frac {j}{J}}.\label {eq:decomp-l96}\end {equation}


$\hat {v}_{k}=\{\frac {1}{J}e^{i2\pi k\frac {j}{J}}\}_{j=1}^{J}$


$\mathrm {MC}=5\times 10^{4}$


$\Delta t=1\times 10^{-3}$


$Z_{k}$


$T=5$


$J=10$


$J=40$


$J=10$


$J=40$


$Z_{k}$


$L\left (\bar {u}\right )$


$N=100$


$J=10$


$J=10$


$N=100$


$\mathrm {MC}=5\times 10^{4}$


$k=0$


$k=2$


$N=100$


$J=40$


$N=100$


$\mathrm {MC}=5\times 10^{4}$


$J=40$


$J=40$


$J=10$


\begin {align*}\partial _{j}H_{k}^{m} & =\gamma _{kjq}z_{q}+\gamma _{kpj}z_{p},\\ \partial _{j}H_{kl}^{v} & =\left (\gamma _{kjq}z_{q}z_{l}+\gamma _{kpj}z_{p}z_{l}+\gamma _{kpq}z_{p}z_{q}\delta _{lj}\right )\\ & \quad +\left (\gamma _{ljq}z_{q}z_{k}+\gamma _{lpj}z_{p}z_{k}+\gamma _{lpq}z_{p}z_{q}\delta _{kj}\right ).\end {align*}


$z_{j}$


$j$


\begin {align*}z^{T}\nabla H_{k}^{m}=z_{j}\partial _{j}H_{k}^{m} & =\gamma _{kjq}z_{j}z_{q}+\gamma _{kpj}z_{p}z_{j}=2H_{k}^{m},\\ z^{T}\nabla H_{kl}^{v}=z_{j}\partial _{j}H_{kl}^{v} & =\left (\gamma _{kjq}z_{l}+\gamma _{ljq}z_{k}\right )z_{j}z_{q}+\left (\gamma _{kpj}z_{l}+\gamma _{lpj}z_{k}\right )z_{p}z_{j}\\ &\quad +\left (\gamma _{kpq}z_{l}+\gamma _{lpq}z_{k}\right )z_{p}z_{q}=3H_{kl}^{v}.\end {align*}


\begin {align*}\tilde {\mathbb {E}}\left [\left (K^{m}\right )^{T}\nabla H^{m}\right ] & =\frac {1}{2}\Gamma _{m}^{-2}\tilde {\mathbb {E}}\left [\left (H^{m}-\bar {H}^{m}\right )\left (Z^{T}\nabla H^{m}\right )\right ]\\ & =\Gamma _{m}^{-2}\tilde {\mathbb {E}}\left [\left (H^{m}-\bar {H}^{m}\right )\left (H^{m}\right )^{T}\right ]\\ & =\Gamma _{m}^{-2}\tilde {\mathbb {E}}\left [\left (H^{m}-\bar {H}^{m}\right )\left (H^{m}-\bar {H}^{m}\right )^{T}\right ]=\Gamma _{m}^{-2}C^{H^{m}}.\end {align*}


$\tilde {\mathbb {E}}\left [H^{m}-\bar {H}^{m}\right ]=0$


\begin {align*}\tilde {\mathbb {E}}\left [\left (K^{v}\right )^{T}\nabla H^{v}\right ] & =\frac {1}{3}\Gamma _{v}^{-2}\tilde {\mathbb {E}}\left [\left (H^{v}-\bar {H}^{v}\right )\left (Z^{T}\nabla H^{v}\right )\right ]\\ & =\Gamma _{v}^{-2}\tilde {\mathbb {E}}\left [\left (H^{v}-\bar {H}^{v}\right )\left (H^{v}\right )^{T}\right ]\\ & =\Gamma _{v}^{-2}\tilde {\mathbb {E}}\left [\left (H^{v}-\bar {H}^{v}\right )\left (H^{v}-\bar {H}^{v}\right )^{T}\right ]=\Gamma _{v}^{-2}C^{H^{v}}.\end {align*}


$\left (\Gamma _{m}^{-2}\right )_{pq}=\gamma _{pq}^{-2}$


\begin {equation*}\left (K^{m}\Gamma _{m}^{2}K^{mT}\right )_{ij}=\frac {1}{4}Z_{i}Z_{j}\sum _{p,q}\gamma _{pq}^{-2}H_{p}^{m\prime }\left (Z\right )H_{q}^{m\prime }\left (Z\right ),\end {equation*}


$H^{\prime }\left (Z\right )=H\left (Z\right )-\bar {H}$


\begin {align}\nabla \cdot \left (K^{m}\Gamma _{m}^{2}K^{mT}\right )_{i}= & \sum _{j}\partial _{j}\left (K^{m}\Gamma _{m}^{2}K^{mT}\right )_{ij}=\frac {1}{4}\sum _{j,p,q}\gamma _{pq}^{-2}\partial _{j}\left [Z_{i}Z_{j}H_{p}^{m\prime }\left (Z\right )H_{q}^{m\prime }\left (Z\right )\right ]\nonumber \\ = & \frac {1}{4}\sum _{j,p,q}\gamma _{pq}^{-2}\left [\delta _{ij}Z_{j}H_{p}^{m\prime }\left (Z\right )H_{q}^{m\prime }\left (Z\right )+Z_{i}H_{p}^{m\prime }\left (Z\right )H_{q}^{m\prime }\left (Z\right )\right .\nonumber \\ & \qquad \left .Z_{i}H_{q}^{m\prime }\left (Z\right )Z_{j}\partial _{j}H_{p}^{m}\left (Z\right )+Z_{i}H_{p}^{m\prime }\left (Z\right )Z_{j}\partial _{j}H_{q}^{m}\left (Z\right )\right ]\nonumber \\ = & \frac {1}{4}\sum _{p,q}\gamma _{pq}^{-2}Z_{i}\left [H_{p}^{m\prime }\left (Z\right )H_{q}^{m\prime }\left (Z\right )+dH_{p}^{m\prime }\left (Z\right )H_{q}^{m\prime }\left (Z\right )\right ]\nonumber \\ & +\frac {1}{4}\sum _{p,q}\gamma _{pq}^{-2}Z_{i}\left [2H_{p}^{m}\left (Z\right )H_{q}^{m\prime }\left (Z\right )+2H_{q}^{m}\left (Z\right )H_{p}^{m\prime }\left (Z\right )\right ]\nonumber \\ = & \frac {5+d}{4}Z_{i}\sum _{p,q}\gamma _{pq}^{-2}H_{p}^{m\prime }\left (Z\right )H_{q}^{m\prime }\left (Z\right )+\frac {1}{2}Z_{i}\sum _{p,q}\gamma _{pq}^{-2}\left [\bar {H}_{p}^{m}H_{q}^{m\prime }\left (Z\right )+\bar {H}_{q}^{m}H_{p}^{m\prime }\left (Z\right )\right ].\label {eq:am-1}\end {align}


$\sum _{j}Z_{j}\partial _{j}H^{m}=2H^{m}$


$\bar {H}^{m}$


\begin {align*}\left (\nabla \cdot \left (K^{m}\right )^{T}\right )_{q} & =\sum _{j}\partial _{j}\left (\frac {1}{2}ZH^{m\prime }\left (Z\right )^{T}\Gamma _{m}^{-2}\right )_{jq}=\frac {1}{2}\sum _{j,p}\gamma _{pq}^{-2}\partial _{j}\left [Z_{j}H_{p}^{m\prime }\left (Z\right )\right ]\\ & =\frac {1}{2}\sum _{j,p}\gamma _{pq}^{-2}\left [H_{p}^{m\prime }\left (Z\right )+Z_{j}\partial _{j}H_{p}^{m}\left (Z\right )\right ]\\ & =\frac {1}{2}\sum _{p}\gamma _{pq}^{-2}\left [dH_{p}^{m\prime }\left (Z\right )+2H_{p}^{m}\left (Z\right )\right ]\\ & =\frac {d+2}{2}\sum _{p}\gamma _{pq}^{-2}H_{p}^{m\prime }\left (Z\right )+\sum _{p}\gamma _{pq}^{-2}\bar {H}_{p}^{m}.\end {align*}


\begin {align}\left (K^{m}\Gamma _{m}^{2}\nabla \cdot \left (K^{m}\right )^{T}\right )_{i} & =\frac {1}{2}Z_{i}\left (H^{m\prime }\right )^{T}\nabla \cdot \left (K^{m}\right )^{T}\nonumber \\ & =\frac {d+2}{4}Z_{i}\sum _{p,q}\gamma _{pq}^{-2}H_{p}^{m\prime }H_{q}^{m\prime }+\frac {1}{2}Z_{i}\sum _{p,q}\gamma _{pq}^{-2}\bar {H}_{p}^{m}H_{q}^{m\prime }.\label {eq:am-2}\end {align}


\begin {align*}a_{i}^{m} & =\nabla \cdot \left (K^{m}\Gamma _{m}^{2}K^{mT}\right )_{i}-K_{m}\Gamma _{m}^{2}\nabla \cdot \left (K^{mT}\right )_{i}\\ & =\frac {3}{4}Z_{i}\sum _{p}\gamma _{pq}^{-2}H_{p}^{m\prime }H_{q}^{m\prime }+\frac {1}{2}Z_{i}\sum _{p,q}\gamma _{pq}^{-2}\bar {H}_{q}^{m}H_{p}^{m\prime }\left (Z\right )\\ & =\frac {1}{4}Z_{i}\sum _{p}\gamma _{pq}^{-2}H_{p}^{m\prime }\left (3H_{q}^{m\prime }+2\bar {H}_{q}^{m}\right )\\ & =\frac {1}{4}Z_{i}\sum _{p}\gamma _{pq}^{-2}\left (H_{p}^{m}-\bar {H}_{p}^{m}\right )\left (3H_{q}^{m}-\bar {H}_{q}^{m}\right ).\end {align*}


$a^{v}$


\begin {align*}a^{m}\mathrm {\Delta }t+K_{}^{m}\Delta I_{}^{m}= & \frac {1}{4}Z\left [H^{m}\left (Z\right )-\bar {H}^{m}\right ]^{T}\Gamma _{m}^{-2}\left [3H^{m}\left (Z\right )-\bar {H}^{m}\right ]\Delta t\\ & +\frac {1}{2}Z\left [H^{m}\left (Z\right )-\bar {H}^{m}\right ]^{T}\Gamma _{m}^{-2}\left [\Delta \bar {u}_{}-\left [H^{m}\left (Z\right )+h_{m}\left (\bar {u}^{N}\right )\right ]\Delta t\right ]\\ = & \frac {3}{4}ZH^{m\prime }\left (Z\right )^{T}\Gamma _{m}^{-2}H^{m\prime }\left (Z\right )\Delta t+\frac {1}{2}ZH^{m\prime }\left (Z\right )^{T}\Gamma _{m}^{-2}\bar {H}^{m}\Delta t\\ & +\frac {1}{2}ZH^{m\prime }\left (Z\right )^{T}\Gamma _{m}^{-2}\left [\Delta \bar {u}-\Delta \bar {u}^{N}-H^{m\prime }\left (Z\right )\Delta t\right ]\\ = & \frac {1}{4}ZH^{m\prime }\left (Z\right )^{T}\Gamma _{m}^{-2}H^{m\prime }\left (Z\right )\Delta t+\frac {1}{2}ZH^{m\prime }\left (Z\right )^{T}\Gamma _{m}^{-2}\bar {H}^{m}\Delta t+\frac {1}{2}ZH^{m\prime }\left (Z\right )^{T}\Gamma _{m}^{-2}\left (\Delta \bar {u}-\Delta \bar {u}^{N}\right ).\end {align*}


$\bar {H}^{m}=\mathbb {E}^{N}\left [H^{m}\left (\tilde {\mathbf {Z}}\right )\right ]$


$H^{m\prime }=H^{m}\left (\tilde {Z}\right )-\bar {H}^{m}$


\begin {align*}a^{v}\mathrm {\Delta }t+K^{v}\Delta I^{v}= & \frac {1}{9}Z\left [H^{v}\left (Z\right )-\bar {H}^{v}\right ]^{T}\Gamma _{v}^{-2}\left [4H^{v}\left (Z\right )-\bar {H}^{v}\right ]\\ & +\frac {1}{3}Z\left [H^{v}\left (Z\right )-\bar {H}^{v}\right ]^{T}\Gamma _{v}^{-2}\left [\Delta R-\left [H^{v}\left (Z\right )+h_{v}\left (\bar {u}^{N},R^{N}\right )\right ]\Delta t\right ]\\ = & \frac {4}{9}ZH^{v\prime }\left (Z\right )^{T}\Gamma _{v}^{-2}H^{v\prime }\left (Z\right )\Delta t+\frac {1}{3}ZH^{v\prime }\left (Z\right )^{T}\Gamma _{v}^{-2}\bar {H}^{v}\Delta t\\ & +\frac {1}{3}ZH^{v\prime }\left (Z\right )^{T}\Gamma _{v}^{-2}\left [\Delta R-\Delta R^{N}-H^{v\prime }\left (Z\right )\Delta t\right ]\\ = & \frac {1}{9}ZH^{v\prime }\left (Z\right )^{T}\Gamma _{v}^{-2}H^{v\prime }\left (Z\right )\Delta t+\frac {1}{3}ZH^{v\prime }\left (Z\right )^{T}\Gamma _{v}^{-2}\bar {H}^{v}\Delta t+\frac {1}{3}ZH^{v\prime }\left (Z\right )^{T}\Gamma _{v}^{-2}\left (\Delta R-\Delta R^{N}\right ).\end {align*}


$\mathbf {x}\in \left [-\pi ,\pi \right ]\times \left [-\pi ,\pi \right ]$


\begin {equation}\frac {\partial q}{\partial t}+\nabla ^{\bot }\psi \cdot \nabla q=\nu \Delta q,\quad \Delta \psi =q,\label {eq:qg}\end {equation}


$\nabla ^{\bot }=\left (-\partial _y,\partial _x\right )$


$\mathbf {k}=\left (k_{x},k_{y}\right )$


$\mathcal {K}$


$\psi $


$q$


\begin {equation*}\psi =\sum _{\mathbf {k}\in \mathcal {K}}\hat {\psi }_{\mathbf {k}}e^{i\mathbf {k\cdot x}},\quad q=\sum _{\mathbf {k}\in \mathcal {K}}\left (-\left |\mathbf {k}\right |\right )\hat {\psi }_{\mathbf {k}}e^{i\mathbf {k\cdot x}}.\end {equation*}


$\hat {\psi }_{\mathbf {k}}$


\begin {equation*}\frac {\mathrm {d}\hat {\psi }_{\mathbf {k}}}{\mathrm {d}t}+\sum _{\mathbf {k=-m-n}}\frac {\left |\mathbf {n}\right |^{2}}{\left |\mathbf {k}\right |^{2}}\mathbf {m}^{\bot }\cdot \mathbf {n}\hat {\psi }_{\mathbf {m}}\hat {\psi }_{\mathbf {n}}=-\nu \left |\mathbf {k}\right |^{2}\hat {\psi }_{\mathbf {k}}.\end {equation*}


$\hat {\psi }_{\mathbf {k}},\hat {\psi }_{\mathbf {m}},\hat {\psi }_{\mathbf {n}}$


$\mathbf {k+m+n=0}$


\begin {equation}\frac {\mathrm {d}\hat {\psi }_{\mathbf {k}}}{\mathrm {d}t}+A_{\mathbf {kmn}}\hat {\psi }_{\mathbf {m}}\hat {\psi }_{\mathbf {n}}=0,\quad \mathbf {k+m+n=0},\label {eq:barotriad}\end {equation}


$A_{\mathbf {kmn}}=\frac {\left |\mathbf {n}\right |^{2}}{\left |\mathbf {k}\right |^{2}}\mathbf {m^{\bot }\cdot n}$


$A_{kmn}+A_{mnk}+A_{nkm}=0$


\begin {equation*}\frac {\mathrm {d}}{\mathrm {d}t}\left (\left |\mathbf {k}\right |^{2}\left |\hat {\psi }_{\mathbf {k}}\right |^{2}+\left |\mathbf {m}\right |^{2}\left |\hat {\psi }_{\mathbf {m}}\right |^{2}+\left |\mathbf {n}\right |^{2}\left |\hat {\psi }_{\mathbf {n}}\right |^{2}\right )=0.\end {equation*}


$p\left (\mathbf {u},t\right )$


\begin {equation}\partial _{t}p=-\left (B\left (\mathbf {u},\mathbf {u}\right )+\Lambda \mathbf {u}\right )\cdot \nabla _{\mathbf {u}}p+\sum _{i=1}^{3}\left (d_{i}p+\frac {1}{2}\sigma _{i}^{2}\partial _{u_{i}}^{2}p\right ),\label {eq:FP}\end {equation}


$p\left (\mathbf {u},t\right )\mid _{t=0}=p_{0}\left (\mathbf {u}\right )$


$p$


$p_{\mathrm {eq}}$


$d_{i}$


$\sigma _{i}$


\begin {equation}\sigma _{\mathrm {eq}}^{2}=\frac {\sigma _{1}^{2}}{2d_{1}}=\frac {\sigma _{2}^{2}}{2d_{2}}=\frac {\sigma _{3}^{2}}{2d_{3}}.\label {eq:equimeasure}\end {equation}


\begin {equation}p_{\mathrm {eq}}\left (\mathbf {u}\right )=C_{\mathrm {eq}}^{-1}\exp \left (-\frac {1}{2}\sigma _{\mathrm {eq}}^{-2}\left |\mathbf {u}\right |^{2}\right ).\label {eq:invarm}\end {equation}


$\sigma _{\mathrm {eq}}^{2}$


$p_{\mathrm {eq}}$


$\bar {\mathbf {u}}=\left (\bar {u}_{1},0,0\right )^{T}$


$\delta u_{1}$


$\frac {d\delta u_{1}}{dt}=0$


$\delta u_{2},\delta u_{3}$


\begin {equation*}\frac {\mathrm {d}^{2}}{\mathrm {d}t^{2}}\left (\delta u_{2}\right )=\left (B_{2}B_{3}\bar {u}_{1}^{2}\right )\delta u_{2},\quad \frac {\mathrm {d}^{2}}{\mathrm {d}t^{2}}\left (\delta u_{3}\right )=\left (B_{2}B_{3}\bar {u}_{1}^{2}\right )\delta u_{3},\end {equation*}


$u_{2},u_{3}$


$\bar {u}_{1}$


$B_{2}B_{3}>0$


$B_{1}+B_{2}+B_{3}=0,$


$\left (\bar {u}_{1},0,0\right )$


$u_{1}$


$u_{2}$


$u_{3}$


$B_{1}$


$B_{2}$


$B_{3}$


$\mathbf {u}$


$\bar {\mathbf {u}}=\left (u_{1},u_{2},u_{3}\right )^{T}$


\begin {equation}\begin {aligned}\mathrm {d}\bar {u}_{1}= & \left [\left (-d_{1}\bar {u}_{1}-\lambda _{3}\bar {u}_{2}+\lambda _{2}\bar {u}_{3}\right )+B_{1}\bar {u}_{2}\bar {u}_{3}+B_{1}\left \langle u_{2}^{\prime }u_{3}^{\prime }\right \rangle \right ]\mathrm {d}t,\\ \mathrm {d}\bar {u}_{2}= & \left [\left (\lambda _{3}\bar {u}_{1}-d_{2}\bar {u}_{2}-\lambda _{1}\bar {u}_{3}\right )+B_{2}\bar {u}_{1}\bar {u}_{3}+B_{2}\left \langle u_{1}^{\prime }u_{3}^{\prime }\right \rangle \right ]\mathrm {d}t,\\ \mathrm {d}\bar {u}_{3}= & \left [\left (-\lambda _{2}\bar {u}_{1}+\lambda _{1}\bar {u}_{2}-d_{3}\bar {u}_{3}\right )+B_{3}\bar {u}_{1}\bar {u}_{2}+B_{3}\left \langle u_{1}^{\prime }u_{2}^{\prime }\right \rangle \right ]\mathrm {d}t, \end {aligned} \label {eq:triadmean}\end {equation}


$\left \langle \cdot \right \rangle $


$\mathbf {u}^{\prime }=\left (u_{1}^{\prime },u_{2}^{\prime },u_{3}^{\prime }\right )^{T}$


\begin {equation}\begin {aligned}\mathrm {d}u_{1}^{\prime }= & \left [\left (-d_{1}u_{1}^{\prime }-\lambda _{3}u_{2}^{\prime }+\lambda _{2}u_{3}^{\prime }\right )+B_{1}\left (\bar {u}_{2}u_{3}^{\prime }+\bar {u}_{3}u_{2}^{\prime }\right )+B_{1}\left (u_{2}^{\prime }u_{3}^{\prime }-c_{1}\right )\right ]\mathrm {d}t+\sigma _{1}\mathrm {d}W_{1},\\ \mathrm {d}u_{2}^{\prime }= & \left [\left (\lambda _{3}u_{1}^{\prime }-d_{2}u_{2}^{\prime }-\lambda _{1}u_{3}^{\prime }\right )+B_{2}\left (\bar {u}_{1}u_{3}^{\prime }+\bar {u}_{3}u_{1}^{\prime }\right )+B_{2}\left (u_{1}^{\prime }u_{3}^{\prime }-c_{2}\right )\right ]\mathrm {d}t+\sigma _{2}\mathrm {d}W_{2},\\ \mathrm {d}u_{3}^{\prime }= & \left [\left (-\lambda _{2}u_{1}^{\prime }+\lambda _{1}u_{2}^{\prime }-d_{3}u_{3}^{\prime }\right )+B_{3}\left (\bar {u}_{1}u_{2}^{\prime }+\bar {u}_{2}u_{1}^{\prime }\right )+B_{3}\left (u_{1}^{\prime }u_{2}^{\prime }-c_{3}\right )\right ]\mathrm {d}t+\sigma _{3}\mathrm {d}W_{3}. \end {aligned} \label {eq:triadfluc}\end {equation}


$\mathbf {c}=\left (c_{1},c_{2},c_{3}\right )^{T}$


\begin {equation}\begin {aligned}\mathrm {d}c_{1}= & \left [-\left (d_{2}+d_{3}\right )c_{1}+\lambda _{3}c_{2}-\lambda _{2}c_{3}+\lambda _{1}\left (r_{2}-r_{3}\right )\right .\\ & \left .+\left (B_{2}\bar {u}_{1}r_{3}+B_{3}\bar {u}_{1}r_{2}\right )+\left (B_{2}\bar {u}_{3}c_{2}+B_{3}\bar {u}_{2}c_{3}\right )+\left (B_{2}\left \langle u_{1}^{\prime }u_{3}^{\prime 2}\right \rangle +B_{3}\left \langle u_{1}^{\prime }u_{2}^{\prime 2}\right \rangle \right )\right ]\mathrm {d}t,\\ \mathrm {d}c_{2}= & \left [-\lambda _{3}c_{1}-\left (d_{1}+d_{3}\right )c_{2}+\lambda _{1}c_{3}+\lambda _{2}\left (r_{3}-r_{1}\right )\right .\\ & \left .+\left (B_{1}\bar {u}_{2}r_{3}+B_{3}\bar {u}_{2}r_{1}\right )+\left (B_{1}\bar {u}_{3}c_{1}+B_{3}\bar {u}_{1}c_{3}\right )+\left (B_{1}\left \langle u_{2}^{\prime }u_{3}^{\prime 2}\right \rangle +B_{3}\left \langle u_{1}^{\prime 2}u_{2}^{\prime }\right \rangle \right )\right ]\mathrm {d}t,\\ \mathrm {d}c_{3}= & \left [\lambda _{2}c_{1}-\lambda _{1}c_{2}-\left (d_{1}+d_{2}\right )c_{3}+\lambda _{3}\left (r_{1}-r_{2}\right )\right .\\ & \left .\left (B_{1}\bar {u}_{3}r_{2}+B_{2}\bar {u}_{3}r_{1}\right )+\left (B_{1}\bar {u}_{2}c_{1}+B_{2}\bar {u}_{1}c_{2}\right )+\left (B_{1}\left \langle u_{2}^{\prime 2}u_{3}^{\prime }\right \rangle +B_{2}\left \langle u_{1}^{\prime 2}u_{3}^{\prime }\right \rangle \right )\right ]\mathrm {d}t. \end {aligned} \label {eq:triadxcor}\end {equation}


$\mathbf {r}=\left (r_{1},r_{2},r_{3}\right )^{T}$
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and fail to capture the essential higher-order moment statistics [14-16]. As a result, accurate and efficient methods for quantification
and prediction of these high-order statistics and the associated non-Gaussian probability distributions are still needed for reliable
forecasting of the complex phenomena.

We consider the nonlinear statistical forecast problem formulated as the following general stochastic dynamical equation (SDE)
[14,17] describing the uncertainty evolution of the random state u € R¢ starting from u(0; ) ~ y, according to the initial distribution
Uy and driven by external forcing and nonlinear interactions

‘31—‘: = Au+ B(u,u) + F(t) + c()W (t; w). (1.1)
On the right hand side of the above Eq. (1.1), the first term, A = L — D, represents linear dispersion and dissipation effects, where
L* = —L is an energy-conserving skew-symmetric operator; and D < 0 is a negative definite operator. Inhomogeneous forcing effects

are introduced in a deterministic component, F, and a stochastic component represented by a Gaussian random process, o(tH)W (t; ®).
Most importantly, nonlinear coupling effect has a non-negligible contribution in the dynamical system introduced via a quadratic
form, B(u,u), which satisfies the energy conservation law by u - B(u, u) = 0. The model structures in (1.1) are representative in a wide
variety of multiscale systems found in many fields [3,18,19]. In computing key statistical predictions of the model state u, the low-
order moments become intricately connected to the high-order statistical information due to the nonlinear coupling B(u,u). In this
case even with low dimensionality d, finite ensemble approximation frequently suffers from collapse of particles, with the group of
particles concentrating in the center region of the PDF and failing to capture the outliers charactering the key non-Gaussian statistics
and extreme events [6,16,20]. Thus effective algorithms require to capture the entire probability density functions (PDFs) including
high-order information using a moderate ensemble size to maintain the affordable computational cost.

1.1. Related works in data assimilation

Sequential data assimilation strategies [11,21,22] have long been used for finding the optimal probability estimate of a stochastic
state based on observation data. Among them, ensemble Kalman filters [23,24] based on Gaussian or near-Gaussian assumptions
provide effective tools for state and parameter estimations in relatively high-dimensional settings. In accommodating nonlinear
systems involving highly non-Gaussian statistics, particle-type filters [25-27] are proposed to approximate the probability distribution
of model state through a set of weighted particles. A rich variety of techniques have been introduced in recent advances of nonlinear
filtering methods for modeling nonlinearly coupled signals, such as feedback particle filters [28,29], variational mapping filters
[30], and particle flow filters [31], just to name a few. A hybrid ensemble Kalman and particle filter is also proposed [32] aiming
to combine the benefits of both filters. Furthermore, learning filters [33,34] have emerged recently exploiting score-based generative
models [35,36] and variational Bayes techniques [37,38] to aid the model forecast and analysis steps with machine learning strategies
to achieve better filter behaviors. Despite wide applications, major difficulties persist for accurate statistical forecast of stochastic
states especially when non-Gaussian statistics are present combined with inherent model instability. Conventional ensemble-based
approaches often suffer difficulties in accurately capturing the crucial higher-order moments information thus become insufficient to
maintain stable and accurate prediction with a finite number of samples [39,40].

1.2. Contributions and paper outline

In this paper, we introduce a practical modeling and computational strategy designed to accurately capture the probability dis-
tributions and key statistical characteristics of the solution to (1.1). Based on the theoretical framework presented in [17] and the
filtering approach using statistical observations, we develop a new data assimilation algorithm aimed at achieving accurate statistical
prediction in finite ensemble approximation of potentially highly non-Gaussian probability distributions. To cope with the compu-
tational limitation in practical applications, the ensemble of simulated samples needs to be constrained in a small size. We propose
to correct the large fluctuating errors that commonly appear using small ensemble size by exploiting partial observation data of
the low-order statistical moments. An effective data assimilation algorithm is then formulated to improve the model accuracy by
capturing the higher-order moment information and reduce the high computational cost at the same time. In particular, we conduct
detailed numerical study on the proposed ensemble data assimilation scheme based on the systematic statistical modeling framework
and applied on a representative triad system [41] with multiple distinctive statistical regimes.

The main ideas in constructing the data assimilation model using statistical observation data is illustrated in the flow chart in Fig. 1.
We propose to compute the probability distribution p of the model state « in (1.1) using a set of more tractable stochastic-statistical
Egs. (2.2). The target probability distribution will be approximated by an empirical probability distribution p” through an interacting
particle simulation of the stochastic coefficients Z. However, in practice this ensemble-based approach will often become insufficient
to accurately capture the essential PDF structures when only a small sample size N is available. To study the evolution of uncertainty
from a finite sample size, we consider the continuous distribution p(-; y"') of each sample Z' as a P(R“)-valued random field defined
by (2.7). The randomness is introduced due to the finite sample estimation of the leading moments y () in the statistical Eq. (2.9).
This leads to a natural filtering problem to find the optimal state estimation of the random field p based on the observation data G,
generated by the low-order statistical moments observed up to the time ¢. The optimal filter solution j then can be found through
the projection on the space of G,-measurable square-integrable random fields and is given by the Kalman-Bucy filter (2.11) as an
infinite-dimensional functional equations. To propose an efficient computational strategy to solve j, a new stochastic process Z ~ j
is designed so that they can provide consistent high-order statistics EH = M according to the nonlinear observation function H and

2
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Fig. 1. Flow chart illustrating ideas in constructing the data assimilation model for statistical forecast.

Table 1

Key notations for the data assimilation model in this paper.
target probability density distribution of model state P
empirical approximation of the target distribution N
sample trajectories generated by the target distribution zZ
observations and filtration of observation data y,"’ N
observation function and associated observation operator H,H
surrogate stochastic process and the filter distribution Z~plG,
Kalman gain and drift operator in the filtering process K.a

the associated observation operator H. In particular, the governing SDE for the new process Z (2.12) is derived with explicit forms
of the filtering coefficients a, K in (3.9). Finally, this new probability distribution 5 can be computed efficiently by a finite sample
approximation 5" which provides accurate high-order statistical consistency and generates samples giving a better representation of
the target distribution of the model. For clarity in presentation, we list the key notations used in this paper in Table 1.

In the structure of this paper, we first discuss the general multiscale modeling framework and develop the data assimilation model
based on the coupling structure in the stochastic-statistical model in Section 2. Then, the detailed the ensemble data assimilation equa-
tions involving the explicit filtering operators and practical computational algorithms are constructed in Section 3. The performance
of the new data assimilation model and its skill in recovering both leading-order mean and covariance and the crucial higher-order
statistical feedbacks are extensively tested under a representative prototype triad system demonstrating different statistical regimes
in Section 4, and are further examined on the higher-dimensional Lorenz 96 system in Section 5. A summarizing discussion and
potential future research directions are given in Section 6. Additional proofs of the results presented in the main text are provided in
Appendix A and detailed equations and properties of the triad system with direct link to realistic applications are listed in Appendix B.

2. An integrated multiscale modeling framework with data assimilation

We start with describing the multiscale modeling strategy for solving the statistical solution to the general system (1.1). In par-
ticular, we propose the coupled stochastic-statistical equations and the associated ensemble approximation that can be naturally
combined with data assimilation for improved sampling of the target probability distributions.

2.1. The coupled stochastic-statistical formulation for multiscale dynamics

To characterize the uncertainty in the stochastic model state, the solution u is represented as a random field (denoted by w) and
decomposed into the multiscale composition of a statistical mean state # = E(u) and stochastic fluctuations «’ in a high-dimensional
representation under a proper orthonormal basis {ﬁk}z=l, that is,

d
u(t; ) = at) + ' (t; ) = a(t) + Z Z(t; 0)0y.. 2.1)
k=1

Above, i represents the statistical mean field of the dominant largest scale structure; and Z(1; w) = {Z k(t;co)}z= , are the stochastic
processes characterizing the uncertainty in the fluctuation processes u’ on each eigenmode 9;.. Such decomposition is commonly used,
for example, in describing the zonal jets in geophysical turbulence and the coherent radial flow in fusion plasmas [42,43].

Under the decomposition (2.1), we can reformulate the full statistics in the original stochastic state u as the leading two statistical
moments i, R and a mean-zero stochastic process Z governed by coupled statistical and stochastic dynamical equations. In particular,
the statistical dynamical equations describing the evolution of the mean a(f) € R? and covariance R(f) € R¥*¢ can be found to satisfy
the following equations

— d
9 _ Aa+ B@@+F+ Y B(0. 0)E(ZZ),

d P (2.2a)
dR

e L@R+ RLT (@) + 0, +0rE(Z®ZQ Z)).
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Accordingly, the stochastic process Z(t; w) € R¢ satisfies the following stochastic differential equation coupled with the leading-order
statistical moments (i, R) solved from (2.2a)

dZ = L@@ Zdt+ Q,(Z ® Z — R)dt + odW'. (2.2b)

In the statistical Eq. (2.2a), we define the stochastic forcing Q, = 6o from the white noise process, the coupling coefficients L(iz)
due to interactions between the mean and covariance, and Q due to the higher-order moments feedback from the triad modes
ZQR®ZQRZ = {ZmZ,,Zk}. In stochastic Eq. (2.2b), Q, represents the stochastic quadratic coupling between modes from Z ® Z =
{Zm Z,,}. The explicit expressions for these coefficients can be found according to the nonlinear coupling function B(u,u) defined by
all the modes k,/ =1,---,d as

Ly @) =0, - [AD, + B(a, 0,) + B(0,,a)].
d
QF,kl = Z [ykmnlE(ZmZnZI) +ylmn|E(ZmZnZk)]7
m,n=1 (2.3)
d
QUA,k = Z ykmn(ZmZn - Rmn)7
m,n=1

with the coupling coefficients y;,,, = 0y - B(,,,0,) due to the quadratic nonlinear coupling.

The above coupled stochastic-statistical equations (2.2) provide a self-consistent closed formulation for recovering the statistical
solution of u. The leading-order moments @ and R are solved by the statistical Eq. (2.2a) involving the higher-order moments of the
stochastic coefficients Z, and all high-order statistical information is recovered through the law p of the stochastic process Z from
(2.2b) dependent on the solutions {i, R}. More detailed discussions on the derivation and advantages of this new formulation can be
found in [17]. It demonstrates that this new set of equations provides consistent statistical solutions with the original system (1.1),
while enjoys additional advantages that are more adaptive to various model reduction and data assimilation strategies [14,41].

2.2. Predicting probability density functions using statistical observation data

A practical approach for numerically implementing the coupled stochastic-statistical Egs. (2.2) is to adopt a particle approximation
to the probability distribution of the stochastic process Z. Thus the expectations required in the statistical Eq. (2.2a) can be estimated
through an empirical average of the samples Z = { Z' }i]ll, that is

N N
1 i 1 i
Man = ,»:215(2 -Z'o), EYy@) = g,f(z ). (2.4)

Therefore, the statistical solution can be computed by solving the following equations as an interacting particle system by evolving
the ensemble Z coupled with the moments &V, RN

dd_Ztl= L(@")Z'+Q,(Z2'®Z' - RY) + W', i=1, N,

da” AN+ B(aN,aV) + Y B(04. 0)EN (2, ®2) + F

_dt N (2.5)
dRN L(aNRN + RN LT (aN ENZ R 7 &7

= L@V )RY + RVLT (1) + 04 (EV 2 ®Z® 1) + 0,

+e ' (EN[Z®Z]-RY).

Several modifications are introduced in the numerical model (2.5) compared to the original Eqgs. (2.2). Instead of computing the exact
law p(z, t) of the stochastic process Z by solving the following PDE (2.6), a finite particle approximation in the form of (2.4) is used to
estimate the crucial higher moments feedback in the mean and covariance equations. The samples are generated by a McKean-Vlasov
SDE implicitly dependent on all the sample trajectories through the statistical solutions #", RV . In addition, a relaxation term with
an additional parameter ¢ > 0 is added to the covariance equation for R" to enforce consistency in the finite particle approximation
of the covariance. It is found that this term is essential for maintaining stable numerical especially with strong mean-fluctuation
coupling from the term L(ii) (see Fig. 4 in Section 4.1).

It can be shown [44] that the empirical measure pV converges to the law of each Z’, pN — p, as N — oo. The solution of the
probability distribution p of Z' is given by the corresponding Fokker-Planck equation

)
a—’: =L*@, R)p 1= -V - [L@zp+ Q,(z® z— R)p| + %v <[V (Q,0)]. (2.6)

where £* is the adjoint of the generator £ that is dependent on the mean & and covariance R. Still, a major difficulty remains if
only a very small number of samples N is affordable to estimate the empirical distribution p". Furthermore, the internal instability
(that is, the positive eigenvalues in L(i7) due to the mean-fluctuation coupling B(i, §;) - §,) may lead to fast growth of the sample
errors and quick divergence of the numerical solutions (see [41,45] and Fig. 3 in Section 4.1.2). This sets an inherent obstacle for
efficient computation of the statistical solutions in the multiscale coupling system. To address this inherent difficulty, we assume that
additional observation data y = {i, R} containing only the first two moments is available to improve the prediction of the probability

4
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distribution p" from the stochastic samples. Especially when the nonlinear coupling plays a dominant role in the dynamics, many
non-Gaussian features will emerge in the probability distribution p. Our goal is then to filter the non-Gaussian PDF p of Z containing
crucial higher-order statistics by taking into account observations from the leading two moments that are often easy to access.

In order to introduce the data assimilation strategy to improve the prediction of the computational model, we rewrite the coupled
stochastic-statistical Eq. (2.5) as a conditional linear system about the probability distribution p of the samples Z coupled with the
empirical moments iV, RV also as stochastic processes

ap =L*(@™, RN)p,
di™ =[EH™(Z) + h,,(a")|dt + TN dB,, 2.7
dRN =[EH"(Z) + h,(a",RN)]dt + TN dB,.

Above, L(@, R) is given by the infinitesimal generator in (2.6) and p is the continuous density solution. In the equations for #", R,
we summarize all the deterministic terms (that is, all terms in (2.5) beside the ones with EV) in the functions h,, and h, respectively.
Higher-order moment feedbacks can be then written as expectations with respect to the continuous probability distribution p. We
introduce the observation functions H” € R¢ and H' € R%“ with explicit expressions found in (2.3) as quadratic and cubic functions
about z
d d
Hi(2)= Z YipaZpZe  Hig(2) = 2 (YipaZoZaZi + VipgZpZaZc)- (2.8)
pq=1 pg=1

Importantly, the additional noise terms with coefficients 'Y and I'" are introduced in the observed states ", RV to calibrate the
errors from finite ensemble approximation. In fact, we can assume that the empirical average in the mean and covariance equations
can be both decomposed into the expectation with p and the additional noise as an unbiased correction to the finite sample estimation

ENH(Z)dt =~ EH(Z)dt + TV dB. (2.9

Thus, the additional noise term T'NdB is used to represent the fluctuating error from the N samples approximation to the true
expectation EH (Z). It is confirmed from the numerical tests in Section 4.2.1 that (2.9) offers desirable characterization of the ap-
proximation errors in practical applications. In this way, the coupled system (2.7) sets up a standard linear filtering problem given
by an infinite-dimensional signal process p as a P([Rd )—Valued stochastic process and the observation process G, = o{y(s), s < t} with
(1) = {uN (), RN (t)} satisfying the linear equation with respect to the signal process p

dy =[Hp+ h(y)ldt+TdB, Hp=EH(Z)= / H(z)p(z)dz, (2.10)

where H becomes a linear operator acting on the probability density p with H = [H™, H"], h = [h,,,h,|, and [dB = [,,dB,,.T,dB,].

Applying the Kalman-Bucy filter in the infinite-dimensional Hilbert space [46,47] for the stochastic process p in (2.7) conditional
on the observation processes in (2.10), we find the optimal high-order filter solution p = E [p | Q,] satisfying the following closed system
of functional equations

dp =L£*(y)pdt + CH*T™2{dy, — [Hp + h(y)]dt},

R SN . R (2.11)
d€ =[£*(y)C + CL(y)|dt — CH* T H L,

where C(w) : L*(R?) — L?(R?) is the self-adjoint covariance operator with C* = C. The idea of filtering the probability distributions
starts from the Fokker-Planck filter in [13], and a systematic filtering model is developed in [17] based on the specific nonlinear
coupling structure in the stochastic-statistical model (2.2). Still, it remains intractable to directly solve the functional system (2.11).
The final step is to construct effective ensemble solvers for the above optimal filter solution 4.

2.3. The approximate ensemble data assimilation with consistent high-order statistics

As a final step, we introduce a practical strategy to efficiently compute the optimal filtering solution j based on the observed
statistics. The idea is to construct a surrogate process Z so that its corresponding probability distribution of Z ~ j can serve as an
effective representation of the optimal filter solution 5. Then, efficient particle approaches can be adopted to capture the probability
distribution of Z instead of solving the infinite-dimensional equations (2.11).

Associated with the forecast Eq. (2.5) for the stochastic process Z, given N particles for the sampling solution of the stochastic
state, Z = { Z' }fi] , we can construct the following filtering updating equation with an additional update according to the observation

in the second line

dZ' = L(a")Z'dt+ Q,(Z' ® Z' — RN )dt + odW'
. . - .y (2.12)
+d"(Z"p)dt + K" (Z', 5)dI" + a*(Z'; p)dt + K* (Z; p)dI",

where the innovations I™, IV for the statistical observations are defined based on the observation data dy = (diz, dR) and the ensemble
statistical dynamics as
dI™n =di— [H™(Z") + h,, (a")]dt,

. 2.13
dI°(ty=dR - [H"(Z') + h,(a",RN)]dr. @13)
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In the new filter Eq. (2.12) for the stochastic process Z, the first line follows the same dynamical equation (2.2b) as the forecast
model, while the second line introduces additional control correction based on the observation data. In the filtering equation, two
new functionals known as the Kalman gain K and the drift a are defined based on the probability distribution of Z’ ~ 5, and needs
to be solved by the Eq. (2.15) shown below. Notice that the filter Eq. (2.12) is also dependent on the first two moments (", R")
which can be solved by integrating the two statistical equations in (2.5). In addition, we need to introduce continuous observations
to estimate dy, in the filtering scheme. Assume that the observation data y, = y(1,) comes at times 7, = nAr with a short observation
interval Ar. We can approximate the increment at 7, in the observation data from the linear interpolation for 1 € (1,.1,]

dy() = Ay, = V41 — Yn- (2.14)

Furthermore, even though consecutive observations are required in a short interval for the estimate of Ay,, we may not require to
have continuous observation data at each time updating step. The updating step of data assimilation in the second line of the equation
(2.12) can be applied only at the steps when observation data Ay, is received.

Finally, the development of effective filtering scheme relies on the construction of the Kalman gain operators (K", K") and the
drift terms (@™, a") in the second line of the filter update in (2.12) based on the observation functions H™, H". In general, these
terms should be chosen so that the probability distribution 5 of the constructed stochastic Z' can correctly reflect the optimal filter
solution p in (2.11). From the standard procedure of developing the mean field evolution equations [27,29], they can be solved by
the following equations according to the probability distribution 5 of Z

-V (K"p) =T ?[H(Z) -EWH)], a=V-(K’K")-KI?V-K". (2.15)

Detailed analysis in [17] shows that the high-order filtering Eq. (2.12) generates consistent statistics with the optimal filter solution
(2.11) in the analysis update if the above conditions (2.15) are satisfied. Importantly, high-order statistics according to the nonlinear
observation operators H in (2.8), E [H (Z )] = Hp, are preserved in the filter updating equation. This indicates that the new filtering
model for Z is able to capture the crucial high-order statistics in the optimal filter solution j rather than only the first two moments
in the linear ensemble Kalman filters. However, efficient ways to compute the Kalman gain and drift operator through (2.15) are
still needed without losing the essential high-order moments information. In the next section, we will propose an easy-to-implement
scheme to compute these key filter operators K and a without the need to solve the distribution function 3.

3. Ensemble data assimilation schemes maintaining high-order statistics

In this section, we construct a practical numerical scheme for implementing the ensemble filtering Eq. (2.12). The goal is to gener-
ate a better empirical representation (2.4) of the probability distribution using only a small ensemble size. The accurate computation
of the model statistics requires that the non-Gaussian statistics involved in the observation function H” and H"Y are properly repre-
sented through the filtering update. This leads to several key treatments in the construction of the filtering operators. In particular, we
exploit the detailed structures of the observation functions to derive explicit expressions for the functions o™, K™ and @', K" according
to the mean and covariance observations in the filter equation.

3.1. Construction of explicit filter operators with nonlinear observation functions

Assuming that the first s components of the mean and covariance are observed, we can derive the filter operators (a, K) by
exploiting the specific quadratic and cubic structures of the observation functions H”™ € R* and H" € R from (2.8) for all the
observed modes 1 < k,/ < s

Hi(z) = Z YkpaZpZq>
» X))
H}\(z) = Z YkpaZpZq21 t VipgZpZqZks
pq
where we define the coefficient y,, = 0, - B( Dy ﬁq). The following property of the observation functions H™, H can be found from
direct computation using the above quadratic and cubic structures.

Lemma 1. The observation functions H™ and H"Y defined in (3.1) satisfy the relation

z-VH"(z)= ) z;0,H" =2H"(z),

J 3.2

z-VHY(z) = Z 2;0;H" =3H"(z).
J

With the above symmetry in the observation functions (3.2), we are able to find explicit expressions for the Kalman gain and drift
operators that enable efficient computation of these terms. In the following, we summarize the useful results and put detailed proofs
and derivations of the formulas in Appendix A.
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3.1.1. The explicit forms of the Kalman gain and drift operators
With the above explicit relations for the observation functions, we can first find special solutions to the Eq. (2.15) to recover the
Kalman gain operator K(z; p), that is,
=V (K"p) =pr[H(Z) - H],

where H = H™ or HY is the stretched vector and A = E[H(Z)]. Still, we would like to avoid directly solving the above equation
since the probability distribution j is usually intractable and can be only estimated from an ensemble approach. By multiplying H
on both sides, the identity for K implies a necessary condition

E[KTVH| =T"2CH, (3.3)

where CH = [(H -H)(H-H )T] is the second-order moment of H with respect to 5. Then we may solve instead the above equation

to find proper candidate for the gain function K,. In this way, we can compute the detailed expressions for the Kalman gain operators
based on the explicit forms and their particular symmetry in the observation functions (3.2).

Proposition 2. The following expressions for Kalman gain operators K™ € R4*S and KV € R? xs? give solutions to the Eq. (3.3) corresponding
to observation functions H™ and H"

K™(Z) =%Z[H'"(Z) - a2,

1 T (3.4)
K%(Z) =§Z[H”(Z) - A2,
: d . . 2552 5=
with the state vector Z € R?, observation noises I',, € Rj;(fn, r,e ng:ﬁ ,and H = E[H(Z)].
Next, the function a(z; §) can be directly solved using the explicit expressions of K in (3.4) according to
a=V-(KI?*KT) - KI?*v - (KT). (3.5)

We can also find the explicit forms of the drift terms through direct computation using (3.5) and again the specific structures in
observation functions (3.2).

Proposition 3. With the solutions of K"and K" in (3.4), the corresponding drift terms satisfying (3.5) can be found as

a™(Z) =iz [H™(Z) - H’"]Trr;2 [3H™Z)- A™),
) - . (3.6)
a’(Z) =§Z[H”(Z) - B°|'T2[4H"(2) - 7).

Notice that the solution to (3.3) only satisfies a necessary condition for the original equation for the Kalman gain. Still, it already
accounts for the crucial high-order statistics with respect to j involving in the nonlinear observation functions (3.1). Therefore, the
achieved explicit forms of Kalman gain and drift terms (3.4) and (3.6) can serve as suitable candidate for the construction of high-
order filtering schemes. It shows to be a better choice than that in the standard EnKF scheme (shown next in Section 3.2 and the
numerical comparisons in Section 4) which only considers Gaussian projection of j thus neglects the crucial high-order statistics
information in H.

3.1.2. Numerical implementation of the filter operators

Based on the explicit expressions of the filtering operators in (3.4) and (3.6), we are able to construct direct algorithms for effective
implementation of the filtering scheme. At each time updating step 7,, the mean and covariance can be computed by integrating the
statistical Eq. (2.5)

Tnt
AN =gl —aV =/ 1 [EN H™(Z(5)) + h,, (@ (5))]ds,

n nl~ “n .
Tntl . (3.7
ARY =RY - RV =/ [EN HY(Z(5)) + h, (@™ (s), RN (5))]ds.
1,

n

Above, the empirical expectation EN () is computed as in (2.4) using the ensemble average of all the simulated samples from the
filter Eq. (2.12). Then the filter updating step combines the observation data (A&, AR) in (2.14) and the model forecast (3.7) to find
an optimal estimate for the ensemble distribution for Z’ in the following two-step updating procedure
Z, =Z, . +(@" At+K"AI") + (a’At + KVAIY), 3.8
ZA";H =Z + L(aY)Z!At+ Q,(Z! @ ZI — RN ) At + c AW
Above, we split the filtering procedure in the standard two-step process, where Z' gets the forecast step update for the stochastic state
then the prior forecast is corrected through the filtering operators when the observation data is available. The following proposition
provides the explicit expressions for directly computing the filter updates using the samples and observation data.

7



D. Qi and J.-G. Liu Journal of Computational Physics 545 (2026) 114465

Proposition 4. Given the observations (Aii, AR) and the model predicted increments (Aa™, RY), the filter update in the filtering Eq. (3.8)
can be computed directly based on the samples Z' as

a"At+ K"AI™ = %[ZiH,’nT(Z’)F;Z] (Aa - AaV)
+ 2 (2, + G2 (2, (2), .
a’At+ K°AIY = %[Z"H;T(z”")rgz] (AR- ARV) ¢
Wz (22, + Az (2 ().

with H =EN[H(Z)] and H' = H(Z) - H.

Using the explicit formulas in (3.8), we can directly update each filtering sample Z’ during the time updating interval containing
the higher-order moments information in the observation functions H” and H". Notice that the most expensive part in computing
the filter update is the observation functions H” € R* and HY € R** in (3.1), where s < d is the size of the observed modes. Luckily,
these two functions are already computed in solving the forecast Eq. (2.5). The additional computational cost for solving the Kalman
gain and drift operators in (3.9) thus can be estimated in the order O(N (s + 32)). Therefore, no large computational demand will be
required from the additional filtering update step and the algorithm scales well with dimension as long as the number of particles N
is kept in moderate size. To summarize, the dynamical equations for the particles are coupled through the empirical average among
all the samples according to Algorithm 1.

Algorithm 1 Ensemble probability filter with statistical observations.

Model Setup: Given the discrete time step At with M Ar = T, the sequence of statistical observations are generated by the increments
of the mean and covariance Ay, = {A#,, AR, } measured at time instants t, = nAt.

Initial condition: At initial time ¢ = 0, draw an ensemble of samples {Zé}ji , from the initial distribution 3.

i

1: for n = 0 while n < M, during the time updating interval 1 € [t,,7,,,]. do
2: Integrate the samples to the next time step {Z;H } using the forecast model given by the second equation in (3.8).

N
n+1’

3 Integrate the statistical mean and covariance to the next time step {ﬁ

4: Compute the filtering update terms using the explicit formulas in (3.9) and the observation data Ay,,.
5

6

Rr’,‘ﬁr . } by (3.7) using the average of all samples.

: Update the samples {Z; " } from the prior states {Z; " } using the first equation in (3.8).
: end for

Remark 1. 1. In practical implementations, it is observed that some outliers of the samples Z’ may occasional introduce large errors
by creating some extremely large values in the high-order terms in (3.9). To improve stability in the highly unstable regime, it is
found useful to use the expectation values EN [ZH'T(Z)I'~%] and EN [ZH'T (Z)I'"2H'(Z)] instead of each ensemble evaluation to
improve filter stability without sacrificing too much accuracy.

2. High computational cost may become a major issue in solving realistic problems involving a high-dimensional SDE (2.12). This
difficulty could be mitigated by adopting reduced-order and data-driven algorithms such as the random batch methods [15,48]. We
aim to combine the efficient forecast models with the data assimilation strategy in high-dimensional problems in the following-up
research.

3.2. Comparison with ensemble Kalman filter schemes

For comparison, we also describe the strategy commonly used in ensemble Kalman filters [27]. Assuming that the Kalman gain
K is a deterministic matrix with no randomness, this leads to the following choice of the deterministic Kalman gain matrix from the
overall moment of Z, and a zero drift term due to the constant Kalman gain according to the Eq. (2.15)

K=E[2(H(2)- /)" |r2 =212, and a=0. (3.10)
where the covariance matrix C## is given by the cross-covariance between the process Z and the observation function H(Z). The
ensemble Kalman filter scheme then yields the following filter equations

7 =7+ (@) ZIA1+ 0, (7! ® Z! — R¥) A+ 6AW,

~zm iy - i (3.11)
+CZH T 2N — [H™(Z1) + hy,| At} + CZH T2 { AR - [H"(Z!) + h,| At}

A ~ A A T ~
where the covariance C#H = EN |ZH' (Z) is computed according to the empirical average among all the sample forecast Z,,

from the second equation of (3.8). The above updating scheme (3.11) is usually referred to as the ensemble Kalman filter (EnKF). It
has been shown that the EnKF approach can effectively drive the probability density functions to the equilibrium such as using the
ensemble Fokker-Planck filter [13].
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However, in our modeling framework consisting of the coupled stochastic-statistical equations, the high-order moments are playing
a central role as the high-order feedbacks in the statistical Eq. (2.2a) for accurate statistical prediction. Notice that in the EnKF
approach, constant Kalman gains K,, and K, matrices are used independent of each sample realization. It adopts the Gaussian
projection on the stochastic process Z thus only statistics up to the second-order moments are considered in the filter update. As a
result, this approximation deliberately neglected the crucial high-order statistics contained in the observation functions H” and H".
Compared with the more precisely calibrated filter operators (3.9), directly applying the EnKF in the coupled stochastic-statistical
model (2.5) may miss the crucial high-order statistical information in the sampled observation H(Z') thus lead to larger errors
and instability in the filter updates. The degeneracy of particles failing to capture the essential high-order information in the EnKF
prediction is demonstrated in Figs. 10 and 11 from direct numerical tests.

3.3. Convergence of the statistical ensemble filter approximation

In this final part, we discuss the convergence of the discrete numerical scheme for the statistical estimates using finite ensemble
approximation. Let 5V (z,t) = % Z,’i ,8(z=Z'(1)) be the random field from the finite ensemble approximation of the N stochastic
samples in (3.8), and j(z,1) is the corresponding continuous distribution of the P([R")—valued random field from the law of each
stochastic process Z in (2.12) conditional on the observations G,.

First, assume that the initial samples {26}11 are drawn i.i.d. from the initial distribution p,, and a unique solution exists for
the McKean-Vlasov SDE (2.12) for each sample Z' ~ 5. From established conclusions from the limit of the N interacting particle
system [44,49], the empirical probability distribution 5" estimated with finite samples will converge to the continuous measure j as
the ensemble size N — co. In addition, we will need the following assumptions on the structures of the coupled stochastic-statistical
Eq. (2.2).

Assumption 5. The model structure functions B : R? x R? - R? and L : R? — R% in the mean and covariance equations (2.2a)
are Lipschitz continuous, that is, there is a constant g > 0 so that

[B(u,u) — B(v,v)| £ plu—vl, [IL@w)— L) < Blu—vl.

In addition, the nonlinear coupling coefficients y,,,, = 0y - B(9,,.0,) in (2.2b) are uniformly bounded, that is, there exists a constant
C > 0, so that for all k,m,n

|ykmn| <C.

Given the observations G,, we have for any test function ¢ € Cf(Rd ) the empirical measure 5V converges to the continuous
distribution for each sample j in the sense

N
(7.0) =+ Y 0(Z) = E[0(2) 16] = (o). (3.12)
i=1

a.s. as N — co. Furthermore, there is the error estimate for the empirical estimate (5", p) :=EN¢p = % Yo(Z'() and (5,, ) :=
E[e(Z®)] for T >0

2 C
E[ sup [(7Y.0) = (7. 0)| ] < —Flel: (3.13)
0<t<T

Proofs on (3.12) and (3.13) follow directly from the law of large numbers [see, for example in 50, Thm. 9.18].

Next, we consider the finite ensemble and discrete time estimation of the statistical mean and covariance states in the data
assimilation model. The statistical equations for the continuous solutions (i, R) can be written based on their coupling dynamics in
(2.2a) and the high-order terms according to the observation functions H”, H" in (2.8) with respect to the continuous probability
Z~p

da

d_ = Aii(t) + B@@), a(t)) + F + EH"(Z()),
d 1; (3.14)
T L@®)R() + ROL@NY" +Q, + EH (Z()).

On the other hand, the numerical mean and covariance estimates ("%, RV9) from the discrete time numerical updates and with the
ensemble approximation {Z'} are computed from the equations (3.7) with respect to the discrete empirical distribution 5

=N.,6 . . N o
d“T = AaVO(z() + B(aV P (z(1), AN (z (1)) + F + % ; H"(Z'(1(1))).
= . (3.15)
dRN# NS NG NG N T 1 o i
& = L(a" @) RY°(z(t) + RN ) L(a™° (z(1))) + O, + i ZH (Z'(z(1))),
i=1

where the forward Euler scheme is adopted here with the discrete time update using a constant z(¢) = nAt during the time interval
te [t,,, Lyl ] Above in (3.14) and (3.15), we neglect the last relaxation term with e since it will automatically vanish with the resulting
consistency. Notice that #V-%, RN and #, R are stochastic processes due to the random samples { Z'} and the conditional expectation
dependent on the observations G,. We have the following result for the convergence of finite ensemble N and finite time step At
approximation to the continuous model prediction.



D. Qi and J.-G. Liu Journal of Computational Physics 545 (2026) 114465

Theorem 6. If Assumption 5 is satisfied and under the same initial condition, the statistical solution (uN 3, RY ’5) = (@*(t,), RN (1,)) of

the finite ensemble model (3.15) with discrete time step At converges to the true statistical solution (i,, R,) = ((t,). R(t,)) of the continuous
model (3.14) with the error estimates

N - |? Cor m
E| sup |a) —u,,‘ CITAI+T [1H ™[l oo
nAt<T (3 16)

n

fE[ sup ”R,’,\”’3 - R
nAt<T

2 Cr ,
| = (ctrars 25 o s,

Cé,T are constants depending on the final time T.

where Cy 1,Co 1, C| 1.,

Proof. First, considering the mean equations in (3.14) and (3.15) from the same initial state, we have

aN i) — a(r) =/0 [M (a2 (z(s))) - M(Et(s))]ds+/0 [(ﬁf&),H"’> - <ﬁ:,H”’>]ds,

where we define M (u) = Au+ B(u,u) + F and assume that the forcing F and Q, are constants for simplicity. Using the Lipschitz
condition for M from Assumption 5 and applying Cauchy-Schwarz inequality, there is

2
ds

[sup( N(l)—u(t)‘ ] < 2TH’E / | ”(r(s))—u(s)\ ds+2T[E/ ' Prisy "’>—<ﬁs,H’”>

T
SC]T/ [E[sup ave(s') —a(s')
0 s/ <s

Above in the first term of the last inequality, we estimate the error by comparing the discretized time solution @"V-%(z(r)) following
(3.15) with the corresponding continuous time solution &-(t)

12 (3.17)
2

2 2 3 2

]dS+ CZT Al‘“I{m”m + T”Hm”oo

e - a0 < 1e— s || m (@) +| (5%, 1) | < e (imi2, + nemi)
T = T T p‘r(t)’ = [ o /"
Thus the error estimation follows
- 2 2 2
|aN B((s)) — ﬁ(s)‘ gz(aN B(z(s)) — aV “S(s)| + 2(121" B(s) — ﬁ(s)‘
o (s') —a(s)|
And for the second term involving expectation of H™, the convergence of the empirical measure (3.13) gives

H T(l)’ - (/),, ] < 2|EH ‘r(l)’ > <pr ’

CAt+ — Cr ||H'"||
N

Finally applying Gronwall’s inequality to (3.17), we get the mean state estimate in (3.16).
Next, under a similar fashion, we have for the covariance equation

<CAZ||H™||%,

2
+2E

[N <ﬁ,,H’">1Z]

t t
RNy = R(r) = /0 L(@(s)|[RN*(1(s)) = R(s)]ds + /0 [L(@N°(z(5))) — L(@(s))| R(s)ds

+ / [L(@N°(z(5))) = L(@(s)] [RN?(z(5)) = R(s)]ds + c.c.

/[ Py H —(pS,H )]ds

Above, c.c. represents the symmetric terms from the transposes RL(i1) . Again, using the Lipschitz condition of L in Assumption 5,
[IL@)|| < plul + B, we can compute errors from the covariance equation

[E[sup “RN,a(t)_ R(I)HZ] < ClTﬁz[E[sup|ﬁ|2 /T “RNﬁ(T(s))— R(s)”zdS]
1<T 0

t<T

+C,THE [sup ja”(t) - H(I)\z sup IIR(t)II2]
1<T t<T

T
ree [
0

Using the uniform boundedness of i, R and (3.13) for HY together with the previous error estimate of the mean state for

2
ds + CpAL.

(AN H) = (o HY)

E [sup,g |:2N By — a(r)|2], we reach the final covariance error estimate in (3.16).
Theorem 6 guarantees that the discrete numerical scheme of the approximating ensemble data assimilation model can recover
the leading-order statistics in mean and covariance. It implies that the performance of the ensemble filter estimation relies on the
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accurate approximations of the expectation of the observation functions H”, H". Usually, the higher-order moments in H” and H"
in (3.1) become extremely difficult to capture with a small sample size. This leads to the rapidly growing model errors (as in Fig. 3
shown in the numerical tests). On the other hand, the design of the new high-order filtering scheme guarantees consistent statistics
[E[H (Z,)] in the observation functions with the optimal filter solution j (see Theorem 7 in [17]). This leads to the much improved
performance of the statistical forecasts using the new filter model.

4. Numerical performance on the prototype triad system

Using the explicit filtering Eq. (3.9), we first test the performance of the proposed data assimilation algorithm on a prototype triad
system with instructive implications to many practical applications. The triad system is given by a three-dimensional ODE system
[14] for the state u = (u 1 Uy, u3)T with both linear and nonlinear coupling combined with stochastic forcing

du .
d—t‘ =Ayuty — Ay — dyuy + Biuyus + o, W),

du .
d_t2 =Ayuy — Auy — dyuy + Byuzuy + o, W5, 4.1
dus .
@ =Muy — Ayuy — dyuy + Byujuy + o3 Wi,
It can be seen that the above triad system (4.1) fits into our general formulation (1.1), where the model coefficients defined by
-dy -k A Byuyu
A= 23 —-d, —A; |, B(uu)=|Byuzu |,
A A —d Byuyu,

contain the linear skew-symmetric (off-diagonal) and dissipation (diagonal) operator A, together with the nonlinear quadratic cou-
pling B(u,u) satisfying energy conservation with B| + B, + B; = 0. The triad system can serve as an elementary building block of
many more general turbulent systems emphasizing the key energy conserving nonlinear interactions. Though low-dimensional, this
system can demonstrate a wide variety of different statistical regimes (as shown next in Fig. 2), making it a nice first test model for a
thorough study of the prediction skill of the proposal ensemble data assimilation strategy in dealing with different statistical features.

4.1. Typical statistical regimes in the triad system

One attractive feature of the triad system (4.1) as a prototype test model is that it is able to generate a wide variety of dynamical
regimes demonstrating distinctive statistical features ranging from near-Gaussian to highly non-Gaussian probability distributions.
This sets up a desirable testbed for examining the skill of different statistical prediction methods in dealing with vastly different
statistical dynamics.

4.1.1. Statistical regimes with distinctive statistical features

The triad systems (4.1) constitutes the generic linear and nonlinear coupling mechanism between any three modes in larger sys-
tems with quadratic nonlinearity. A direct three-dimensional Galerkin truncation of many complex turbulent dynamics possesses the
energy-conserving nonlinearity as in the general formulation (1.1). For example, a direct link can be built to interpret the triad system
as a prototype three-mode interaction with forward and backward energy cascades in geophysical turbulence (see Appendix B.1).
The random forcing together with the damping term simulates the inhomogeneous effects of the interaction with other modes that
are not resolved in the projected three dimensional subspace. Thus, the stochastic triad system can serve as a qualitative model for a
wide variety of turbulent phenomena regarding energy exchange and cascades and supply important intuition for many phenomena
[1,51,52]. They also provide elementary test models with subtle features for prediction and uncertainty quantification. Additional
dynamical and statistical properties of the triad system are summarized in Appendix B.2 showing an explicit equilibrium invariant
measure and detailed nonlinear energy exchanging mechanism.

In our testing cases, we consider the following three typical dynamical regimes of the triad system (4.1) containing representative
statistical structures. Model parameters used for the three test regimes are listed in Table 2.

* Regime I: Near-Gaussian regime with equipartition of energy. This regime considers the convergence to a Gaussian equilibrium distri-
2 2

2
bution with the competition of linear and nonlinear effects. The equipartition of energy, that is il I R - aezq,

vl ve is designed

so that a Gaussian distribution, p.q ~ exp (—%ae‘qzlu|2>, will be reached at the final equilibrium state. The linear and nonlinear
parameters are chosen to have comparable values in this case to induce strong interactions during the transient state;

* Regime II: Nonlinear regime with forward energy cascade. This regime focuses on strong quadratic coupling with weak linear damping
and forcing effects. Skew-symmetric linear terms are set to be zero and only small damping and noise effects are added. The first
mode u; is set to have large initial mean and covariance while the other two modes u,,u; only have small initial values. This
induces strong energy cascades from u; to the other two less energetic modes u,, u; driven by the dominant nonlinear coupling;

o Regime III: Unstable regime with dual energy cascades. This regime is used to simulate the inherent internal instability observed in
turbulent systems. The instability is introduced by a negative damping d, = —0.4 in the first mode u,, while the other two modes
u,, uy are stable with positive damping. On the other hand, the first mode is weakly forced by stochastic forcing while the other
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Fig. 2. Joint PDFs of the triad modes u,,u,, u; at t = 5 in the three test regimes shown in scatter plots from a direct MC simulation using MC = 1 x 10°
samples. The density of particles is represented by colors in the scatter plots.

Table 2
Parameters for the triad system (4.1) in the three test regimes.
(By. By, By) (A5 4. 43) (dy,d. dy) (01,05,03) 4, )
regime I (1,-0.6,-0.4) (3,-2,-1) (0.2,0.1,0.1) (1.58,1.12,1.12) (2,1.6,-2) (0.5,0.5,1)
regimell  (1,-0.6,-04)  (0,0,0) (0.02,0.01,0.01) (05,035,035  (3,-0.1,0.1)  (0.5,0.01,0.01)
regime IIT 2,-1,-1) (0.09,0.06,—-0.03) (-0.4,2,2) (0.1,0.32,0.32) 2,1,1.5) (0.5,5,10)

two are strongly excited by random noises. The nonlinear coupling first makes that energy cascades forwardly from mode u,; to
the other less energetic modes u,, u; then backwardly from the excited modes u,,u; back to u,.

The initial state u, ~ N (i, ry) is set to satisfy an independent Gaussian distribution with mean ui and variance r,. The true statistical
solutions of the triad system (4.1) in the above dynamical regimes are solved through direct Monte-Carlo simulations. We run an
ensemble of MC = 1 x 10° particles, which shall be enough for capturing the statistics in a three-dimensional phase space. A fourth-
order Runge-Kutta scheme with time step At = 1 x 1073 is used to integrate the system in time (in practice, other numerical integrators
could be also adopted with no major difference as long as the discrete time step offers stable numerical update). The stochastic forcing
is simulated through the standard Euler-Maruyama scheme. The initial ensemble is chosen from a standard Gaussian random sampling
with the mean @, and variance r listed in Table 2. In particular, we choose B, > 0 and B,, B; < 0 to induce nonlinear instability (see
the stability analysis in (B.6)). The model is run up to a final time 7' = 10 where near equilibrium state is reached.

The projected probability distributions of the triad state p(u,7) captured by direct Monte-Carlo simulations are demonstrated in
Fig. 2. Representative non-Gaussian probability distributions are observed among all test regimes with distinctive statistical structures.
The first test regime is the simplest but nevertheless representative showing the route of transient convergence to equipartition of
energy. Still, as we will show in the following numerical tests in Section 4.2, higher-order moments are playing a pivoting role
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Fig. 3. Statistical forecasts using the stochastic-statistical model with N = 100 samples. First two rows: different realizations of the predicted mean
i, and variance r; in comparison with the truth in black lines; Third row: the Lyapunov exponent of the system indicating the unstable growth rate.

in this case and cannot be simply ignored in determining the correct final near-Gaussian equilibrium distribution. The second test
regime emphasizes the nonlinear quadratic coupling between the three modes, leading to more complicated non-Gaussian probability
distributions. In particular, we observe the wider spread of the samples in the scatter plots representing extreme events that are
crucial but difficult to capture with a small ensemble. The third test regime introduces stronger interactions and dual energy cascades
between the interacting modes. This leads to a strange attractor with star-shaped joint-distribution, showing a strongly nonlinear
regime dominated by highly non-Gaussian statistics. Especially in this regime, the negative damping d, = —0.4 in the first mode
introduces persistent internal instability into the system. In addition, the skew-symmetric linear interaction terms add extra emphasis
on the cross-covariances. This regime becomes especially interesting and challenging because of the strong and persistent instability.

4.1.2. Small ensemble prediction with the coupled stochastic-statistical model

We start with testing direct forecast of the coupled stochastic-statistical model (2.5) to capture key model statistics. Using this
coupled modeling framework, the statistical equations will be used to compute the leading moments #V and R", combined with an
ensemble simulation for the stochastic coefficients {Z i}i’il aiming to capture the high-order moments feedback. To cope with the
realistic scenario where only a small number of samples are affordable, we check the model forecast skill using a moderate ensemble
size N = 100, in contrast to the truth in the previous section generated by MC = 1 x 10° samples. Due to the dominant nonlinear
coupling terms, the higher-order moments are involved in the statistical Eq. (2.2a), requiring accurately capturing the non-Gaussian
statistics from the limited samples even only to predict the leading-order mean and covariance. This sets an especially challenging task
demanding good characterization of the non-Gaussian distributions (including the extreme outliers observed in the PDFs in Fig. 2)
using only the small number of samples.

First, the direct numerical predictions by running the coupled stochastic-statistical model (see the detailed equations for the triad
model in Appendix B.3) in the three test regimes are shown in Fig. 3. To demonstrate the unavoidable large amount uncertainty
induced through the small ensemble forecast, we plot multiple realizations of the mean and variance trajectories (", RV) from
different randomly sampled initial stochastic states { Z'} using the small sample size N = 100. Model errors in the mean and variance
forecasts are shown to rapidly grow in time among all three test regimes starting from accurate initial states. To further illustrate
the development of such errors, we also plot the Lyapunov exponent, that is, the real parts of eigenvalues of the linearized matrix
L(#) in (2.2a), characterizing the inherent instability due to the interaction with the mean state. Positive eigenvalues indicate the
unstable growth rate that amplifies small uncertainties in the variance. It can be observed clearly that persistent instability maintains
in time amplifying the spread of different realizations of the solutions in all three test regimes, especially in regimes II and III
which are experiencing stronger unstable growth during longer time periods. In the exact Eq. (2.2a), such unstable growth rate
will be marginally balanced by the higher moments terms through the nonlinear coupling between the states. However, due to the
insufficient representation of the highly non-Gaussian structures (as illustrated later in Fig. 10) with the limited number of samples,
larger errors are introduced into the system. As a result, the trajectories of the mean and variance fail to track the truth and quickly
diverge from the initial state. The accuracy of the predicted mean and variance will improve if we increase the number of samples N
as indicated in Theorem 6. However, this will usually require an enormous sample size (due to the 7" dependence in the coefficients
in (3.16)) even in this low-dimensional example, making any direct numerical approach impractical. These simple examples offer a
typical illustration of the inherent difficulty in accurate prediction of model statistics when only a small sample size is affordable.

In addition, to further enforce the convergence of the numerical scheme, we show that the additional relaxation term added in
the covariance equation of the numerical model (2.5) is essential especially in the regimes with stronger instability. In Fig. 4, we plot
the model prediction of the variance in the most unstable mode u, in regime III by directly applying the forecast model. It shows
that without the relaxation term ¢~ = 0 enforcing the consistency between the sample approximation EV [Z Z T] and the covariance
R,, large numerical errors will start to develop in time even using an extremely large sample size. This is due to the persistent
model instability among the states (see also the last row of Fig. 3 for the internal growth rate). On the other hand, it shows that
the numerical errors can be effectively corrected by just introducing a small relaxation term with a small parameter ¢~!' = 0.1, thus
accurate statistical convergence is guaranteed for the long-term time integration. In all the following numerical tests, we adopt this
small relaxation parameter ¢~! = 0.1.
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Fig. 4. Model prediction of the variance in the most unstable mode u, with and without the additional relaxation term in the numerical model
(2.5).
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Fig. 5. Estimate of the observation noise with different sample sizes N. The noise parameters for the mean I'"” and covariance I'” are computed
according to the approximation errors in the three modes of the triad system.

4.2. Numerical performance using the data assimilation model

Next, we demonstrate that the proposed data assimilation model can effectively improve both stability and accuracy in the pre-
diction of the key statistics in the triad system. Furthermore, it shows that maintaining the high-order correction terms constructed
in the new filtering Eq. (3.9) is essential to achieve stable statistical prediction compared with the ensemble Kalman filters (3.11)
where only the low-order moments information is used.

4.2.1. Calibration of observation noises

In setting up the filtering equations, we need to first estimate the observation noises FZ and I LV in (2.7) based on the finite
ensemble size N. From the direct model simulations for & and RN in Fig. 3, it shows that it is reasonable to treat y¥ = (&, RY)
as a stochastic process and the randomness generated from the errors in the finite ensemble approximation in (2.9), such that the
empirical estimate EN Hdt = EHdt + 'VdB. In general, we can only expect upper bounds for the errors in the empirical averages
as in (3.16) regarding to the sample size N and observation function H. Still in practical implementations, it is sufficient to get an
estimate of the noise levels of 'Y and I'"Y. In particular, we propose the following equations for the observation states according to
(2.10) where we assume that error from the finite sample is dominant in the observation equation

dy =EHdt,
dyN =ENHdr = EHdr +TNdB.
Above, y is the true deterministic observed states i, R, and y" is the stochastic observation process modeled with an additional noise

term accounting for the randomness with finite ensemble estimation. Therefore, we find the following way to estimate the observation
errors by assuming that the noise amplitude remains a constant in time for simplicity

(b =ol) = [ o

In Fig. 5, we plot the estimated noise amplitudes in the observed states of mean and variance using (4.2) using different sample sizes

1
N. The numerical results confirm the N~ 2 convergence rate (3.16) found in Theorem 6 depending on the sample size N. It also
provides a systematic way to estimate the observation noise level in different filtering model simulations according to the scaling law
without repeating the different ensemble simulations many times.

14



D. Qi and J.-G. Liu Journal of Computational Physics 545 (2026) 114465

prediction of mean state rediction of covariance

- - R
5 2 / \ ) :_N -- nr:wfilter
21 \ =, S2 EnKF
8 0 m——r \; ----’----noﬁlter
£ 4 - - new filter 0 8 0/ :.,;
0 2 4 6 EnKF 0 2 4 6 8
~ 21 7
=]
= 0
©
g -2
— 2[ 7
(32 /
=] |
c 0y
g |
£ -2

. 6 4 6 8 0 2 4 6 8 10
time time time

Fig. 6. Statistical prediction of the mean, variance, and covariance in regime I of the triad system. Results from the high-order data assimilation
model are compared with the direct prediction without filter (2.5) and the EnKF (3.11) with N = 100 samples. The truth is generated with a direct
MC approach with MC = 1 x 10° samples.

4.2.2. Prediction of the statistical mean and covariance

Then, we compare the performance of the high-order data assimilation model in the triad system. To be adaptive to the general
high-dimensional systems, we focus on testing the forecast skill of the models using a small sample size. As illustrated in Fig. 3,
this small sample size has already become insufficient to capture the key statistical features in the simple triad system, and leads
to large fluctuating errors in the prediction of mean and covariance by directly running the forecast model without using filtering.
The additional observation data y, = {@,, R, } is then introduced aiming to correct the errors in the finite ensemble forecast of the
stochastic coefficients Z, = {Z!} in (2.12). The goal is to generate representative samples Z, that can accurately characterize the
high-order moments and PDF structure of model states. Notice that in the filter updating scheme only the information of derivatives
diz, dR of leading-order moments are used from the observation data for the updates of stochastic samples. The model forecasts of the
mean and covariance @ and RV are still directly updated through the statistical Eq. (2.5), thus the observed mean and covariance are
not involved in updating the forecast mean and covariance. Therefore, their accuracy closely replies on the finite sample estimates of
the higher-order moments due to their nonlinear dynamics. In the following, we check the prediction of mean and covariance using
different models as an indicator for the model skill to capture key high-order statistics in Z,,.

In Figs. 6-8, we plot the model predictions of the mean, variance, and cross-covariance between the three modes u;,u,,u; in
the three typical test regimes respectively. The true statistics are compared with the forecast model without filter (2.5) and two
data assimilation models. The first model is the EnKF (3.11) using only the low-order information and a constant Kalman gain in
the filter update, while higher-order moments are considered according to the nonlinear observation operators in the new high-
order filter model (3.9). The truth is captured by running the original triad system (4.1) using a very large ensemble size MC =
1 x 10°. Only a small ensemble size N = 100 is used in the model forecasts for all the tests. Frequent observation data is generated
with the time integration step Af = 1 x 1073. First in regime I, the model state will converge to the final near-Gaussian equilibrium
probability distribution. However, this regime demonstrates strong interactions between the linear operator L and the quadratic
nonlinear operator B. This can be illustrated by the persistent positive growth rate in Fig. 3. The competing effects lead to strong
oscillatory motions between the three modes indicating frequent exchange of energy between the scales. Non-Gaussian distributions
will also be generated during the transient evolution of the states. As a result, even starting from accurate initial value large errors
will gradually develop in the direct forecast model without filter in both the mean and covariance. The low-order EnKF model can
correct the errors a bit from the forecast but still largely deviates from the true statistical values. In contrast, the high-order filter
maintains the high accuracy in the predictions during the entire evolution time. In regime II, we focus on the nonlinear effect in the
model driving strong cascade from mode u; to u,,u;. In this case, the system is dominated by the nonlinear coupling, and an accurate
characterization of the high-order feedbacks in the statistical equations will play a central role in achieving good prediction result.
As illustrated in Fig. 7, the predictions from the direct forecast model and low-order EnKF quickly diverge from the truth due to
their insufficient sampling of the target probability distributions. This indicates that the stochastic samples in these models failed to
correctly recover the higher-order moments in the nonlinear feedback terms in the statistical equations. Again, the high-order data
assimilation scheme keeps stable and accurate predictions in both the mean and covariance up to the final prediction time. Finally,
regime III sets a most challenging test case containing inherent internal instability from the linear operator. The nonlinear term then
is needed to introduce the stabilizing effect that needs to be accurately quantified. Similarly to the other two test cases, we observe
that the direct forecast model and EnKeF fail to track the target trajectories of the mean and covariance with quick divergence to the
truth due to the strong instability quickly amplifying the errors, while the high-order data assimilation model maintains its high skill
against the persistently instability using only a very small sample size.
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Fig. 7. Statistical prediction of the mean, variance, and covariance in regime II of the triad system, with the same setup as in Fig. 7.
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Fig. 8. Statistical prediction of the mean, variance, and covariance in regime III of the triad system, with the same setup as in Fig. 7.

4.3. Prediction of probability distributions and non-Gaussian features

The successful prediction of the mean and covariance confirms that the high-order data assimilation model is able to generate
accurate samples covering the entire spread of the probability distribution containing essential non-Gaussian statistical features.
As a more detailed illustration of the model forecast skill, we show the sampled probability distributions in Fig. 9. The projected
distributions of the joint states are plotted in scatter plots together with the marginal PDFs of the three states u,, u,, u;. First, it can
be observed that the typical non-Gaussian features are generated in all the three test regimes demonstrating highly skewed or fat-
tailed PDFs. These features make important contribution in the high-order feedback terms in the statistical equations, thus failing
to accurately characterizing their effects in the finite ensemble approximation will lead to quick divergence that is shown in the
statistical prediction. This explains the large errors and unstable performance observed in the direct model forecast and EnKF shown
in Figs. 6-8 due to the insufficient sampling of these key probability distribution structures. On the other hand, it shows that the
high-order data assimilation model drives enough samples to the suitable extreme locations so that the entire non-Gaussian PDFs
are will represented among all the test regimes. This guarantees the high skill of the data assimilation model to recover the key
model statistics including high-order moment information without requiring a large ensemble size. The uniformly high accuracy and
stability of the new high-order filtering model among all the three test regimes with distinctive statistical features demonstrate the
universal skill and robustness of the proposed filtering model.

To demonstrate more clearly how the direct forecast model and EnKF approach fail to reach the accurate time-series predictions in
Figs. 6-8, we show one snapshot of the finite ensemble estimate of the probability distributions. In particular, Fig. 10 gives the scatter
plots of samples representing the joint PDF of u, and u; in the most non-Gaussian regime III. It is shown that the extended four branches
of the PDF tail structures are largely missed in the two models. In the direct forecast model, the small number of samples cannot
sufficiently cover the regions containing extreme events, and only a few samples can reach the extended wings of the distribution. The
corrections from the EnKF however draw the samples even closer to a Gaussian distribution rather than reaching the non-Gaussian
features. In contrast, as shown in Fig. 9, the new high-order data assimilation model achieves a much better characterization of the key
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Fig. 9. Probability distributions of the model states at time 7 = 5 from the high-order data assimilation model using N = 100 samples. The 2D scatter
plots of the truth (blue) are compared with the ensemble filter forecast (red) as well as the 1D marginal distributions. Gaussian density functions
with the same mean and variance are shown in dashed black lines. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 10. Sampling of the target model distribution from a small ensemble forecast using the direct forecast model without filter (2.5) and the EnKF
(3.11).

structures in the probability distribution, thus guarantees accurate prediction of the statistics. This example demonstrates the crucial
role of accurately sampling the non-Gaussian PDFs in achieving accurate statistical prediction involving the nonlinear dynamics.

As a further illustration of the model prediction of higher-order moments, Fig. 11 plots the ensemble recovery of the third-order
moments M; = [E(u’1 u’zu;) in the three test regimes of the triad model. M5 appears in the dynamical equations for the variances and
plays a central role of balancing the instability from the linear couple terms (see the explicit statistical equations in (B.10)). First

notice that non-zeros values in M; emerge in all three regimes, showing the non-negligible role of this high-order feedback term.
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Fig. 11. Prediction of the third moment M; = [E(u’l u;u;) through the ensemble approximation using the different models in the three test regimes.

Table 3
Prediction errors with different observation times Az, compared with the direct forecast with no filter in three test regimes.
regime I regime II regime III
At s 0.001 0.01 0.05 no filter 0.001 0.01 0.05 no filter 0.001 0.01 0.05 no filter
RMSE in mean 0.034 0.058 0.084 0.309 0.022 0.130 0.142 0.480 0.021 0.142 0.240 0.632
RMSE in variance 0.263 0.437 0.572 1.129 0.234 0.631 0.768 1.099 0.560 1.897 2911 3.970

Table 4
Prediction errors with different ensemble sizes N using the data assimilation model in three test regimes.
regime I regime II regime III
N 50 100 200 500 50 100 200 500 50 100 200 500

RMSE in @ 0.095 0.034 0.015 0.013 0.068 0.022 0.021 0.020 0.037 0.021 0.005 0.002
RMSE in R 0.701 0.263 0.172 0.126 0.373 0.234 0.105 0.077 1.347 0.560 0.441 0.238
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Fig. 12. Statistical energy spectra and quasilinear growth rate of the L-96 system with J = 10 (left) and J = 40 (right).

However, in the direct forecast model without filter, it can be observed that the sample estimates of M; are largely missed especially
in the bursts of extreme values. This leads to the final large errors in the statistical predictions in the mean and covariance shown
in Figs. 6-8 as well as confirming the biased estimate of the PDF in Fig. 10. From the EnKF prediction, on the other hand, near zero
values are assigned to M; from the samples due to the Gaussian nature of this filter. This is also consistent with the PDF shown in
Fig. 10 and explains the lack of skill in EnKF prediction of the key statistics. In contrast, the new high-order filter accurately tracks
the true values of Mj in the time-series, thus guarantees the successful predictions of the key statistics.

Finally, we also check the filter performance using different observation time frequencies At and scaling with different ensemble
sizes N. The total root mean square errors (RMSE) for the predicted mean and variance are listed in Tables 3 and 4. As expected, using
shorter observation time At and a larger number of sample N will increase the prediction accuracy, while the good performance
is maintained even with less frequent observations and an even smaller ensemble size. In terms of computation time, the full MC
simulation will run between 20-30 mins for the triad system with a large ensemble, while the data assimilation model simulations will
all finish within in 1 minute on a laptop computer. This further confirms the robust performance of the high-order data assimilation

model to successfully recover the leading statistics and generate samples that better represent the key non-Gaussian features in the
probability distributions.
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Fig. 13. Statistical prediction of the L-96 system with dimension J = 10. Statistical mean and variances from the high-order data assimilation model
are compared with direct prediction using N = 100 samples. Joint probability distributions of the stochastic coefficients are compared in scatter
plots. The truth is generated with a direct MC simulation using MC = 5 x 10* samples.

5. Numerical performance on Lorenz 96 system

To further evaluate the performance on higher-dimensional systems, we apply the proposed data assimilation algorithm on the
Lorenz 96 (L-96) system [53] that is used as a prototype model to examine data assimilation schemes. The L-96 system can be
expressed as a J-dimensional ODE system as

du, .

I=—uj+F+(uj+1—uj,2)uj,1,j=1,~--,J, (5.1
with periodic boundary condition u,,, = u; and constant uniform forcing and damping effects. The model state u; is defined to mimic
geophysical waves at J equally distributed locations along a constant mid-latitude circle. Various representative statistical features
can be found in the L-96 solution by varying the constant forcing F and state dimension J [41]. Notice that by taking the dimension of
the system J = 3, the L-96 Eq. (5.1) shares similar dynamical structures as the triad system (4.1) with homogeneous linear terms and
energy-conserving quadratic nonlinear coupling. In the numerical tests here, we adopt the constant forcing F = 6 that demonstrates
strong non-Gaussian statistics in the state solution u ;- Two cases with moderate (J = 10) and high (J = 40) dimension are considered
to test the model performance with increasingly high dimension and non-Gaussian PDFs.

Following the general stochastic-statistical formulation in (2.1), we introduce the mean-fluctuation decomposition for the L-96
state as

W =i+ Yz (5.2)

j= Y
J |k|<J /2

Above, Fourier basis ), = {}e’z”"J }J!=1 is taken as a natural choice for the periodic boundary condition. To sufficiently resolve the

true statistical solution, we run the above Eq. (5.1) using a large ensemble size MC = 5 x 10*. To show the adaptiveness to different
numerical integrators, we use the first-order forward Euler scheme for the time integration with time step At = 1 x 1073. The model
state starts with an initial distribution with independent Gaussian distribution in each mode Z, with small variances, while the
internal instability will rapidly amplify the uncertainty among the modes. The model is simulated up to the final time 7" = 5 where
the final equilibrium state has been reached. True statistical solutions with dimensions J = 10 and J = 40 are shown in Fig. 12. The L-
96 system maintains a wide spectrum of energetic modes indicating nonlinear interactions between the stochastic spectral modes Z,.
Similar to the triad system case, we also plot the Lyapunov exponent as the eigenvalues of the linearized operator L(z) in (2.3). It can
be observed that strong internal instability automatically arises in the leading modes of both test cases with multiple positive growth
rates that increase the uncertainty among the modes, leading to the wide-spread spectral structure. This indicates a challenging test
case for stable statistical prediction that requires an accurate characterization of the third-order coupling terms in (2.3) that play the
crucial role in balancing the unstable positive growth and driving the system to the final equilibrium state.
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Fig. 14. Statistical prediction of the L-96 system with dimension J = 40. Statistical mean and variances from the high-order data assimilation model
are compared with direct prediction using N = 100 samples. Joint probability distributions of the stochastic coefficients are compared in scatter
plots. The truth is generated with a direct MC simulation using MC = 5 x 10* samples.

Now, we apply the data assimilation model on the L-96 system containing a large number of internal unstable modes. Still, we
aim to capture the key model statistics using a small number of samples N = 100. First, the prediction results for the mean and
variances as well as the joint PDFs capured by the particles in the moderate dimension J = 10 case are plotted in Fig. 13. Similar to
the triad model results, the direct numerical prediction of the stochastic-statistical model (2.5) using a small ensemble size fails to
capture the statistical solution. Large numerical fluctuations are observed in the mean state and variance modes, and the predictions
of variances in unstable modes (that is, k =0 and k = 2) quickly diverge due to the insufficient characterization of the stabilizing
third moments using small samples. Then, using the data assimilation model by incorporating additional statistical observations of
low-order moments, the predictions of mean and variances are tracked accurately during the entire evolution time and the inherent
instability is effectively balanced. The joint PDFs captured by the ensemble approximation are also shown with the truth from large
ensemble simulation and filter prediction in small samples. Typical non-Gaussian distributions are observed in the scatter plots,
confirming the crucial role the high-order statistics to guarantee accurate and stable prediction. Using only N = 100 samples, the
data assimilation model successfully captures the key non-Gaussian structure in the probability distributions, thus achieve accurate
statistical prediction. In the final test, Fig. 14 shows the prediction results in the high-dimensional case with J = 40. As illustrated in
Fig. 12, this higher-dimensional case contains a wider spectrum of large unstable modes. This leads to the more rapid divergence in
the direct approach. Again, the data assimilation model maintains the high skill in accurately capturing both the mean and variances
with long time stability as well as the scattered probability distributions. In terms of computational time, the direct MC simulations
of the L-96 system will take more than 1 hr to finish, while the data assimilation model runs around 5 mins for J = 40 case and
below 1 min for J = 10 case on a laptop. The robust and efficient performance of the data assimilation algorithm implies the potential
application of the method to more general systems with high dimensionality and strong non-Gaussian statistics.

6. Summary

In this paper, we developed an explicit high-order data assimilation framework for effective ensemble prediction of probability dis-
tributions exhibiting highly non-Gaussian statistics. By leveraging observation data from lower-order statistical moments, the stability
and accuracy of statistical predictions are significantly enhanced using a computational affordable finite ensemble approach. Specif-
ically, detailed filtering operators are derived utilizing the explicit quadratic and cubic structures of the nonlinear coupling terms,
resulting in a straightforward numerical implementation without high computational cost. We performed comprehensive numerical
experiments using an illustrative triad system and the more general L-96 system with different dimensions, which generates represen-
tative turbulent phenomena across different statistical regimes, to systematically evaluate the skill of the numerical scheme. Inherent
computational barriers for accurate statistical prediction with the finite ensemble approaches are demonstrated under this simple test
model. Direct numerical comparisons confirm that accurately capturing non-Gaussian distributions is essential for precise statistical
prediction in highly nonlinear dynamics under restricted sampling constraint. The filtering updates within the proposed data assim-
ilation model consistently show robust performance in capturing the various types of non-Gaussian features across multiple tested
statistical regimes requiring only on a small sample size and observation data of leading-moments. In contrast, traditional ensemble
Kalman filter approaches with near-Gaussian assumptions typically fail to capture such crucial high-order statistical information.
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Limitations of the data assimilation model and future research directions

Still, many interesting problems remain open in both theoretical analysis and practical strategies of the approximate data assimi-
lation model. In this paper, we aim to provide a thorough computational investigation of the new data assimilation strategy on typical
non-Gaussian and nonlinear structures by experimenting on simple and highly tractable prototype models in the test examples. In
practice, the systems may be subject to further constraints. For example, the Lipschitz conditions for the model coefficients in As-
sumption 5 may not be valid. This requires further exploration exploiting specific structures such as the detailed energy conservation
laws [17] in the nonlinear terms to equip the computational strategy with a better understanding of its approximation skill and scope
of application on different realistic scenarios. In addition, sensitivity to errors in the imperfect prediction model and the observation
data is another issue that requires further investigation. From the numerical tests, we observe robust model performance against the
large errors from the stochastic-statistical model prediction and noisy observation data. A detailed study is needed based on the errors
from the finite ensemble approximation and a systematic strategy is required to calibrate the observation noises to achieve optimal
prediction performance.

In the immediate application of this proposed computational scheme, additional model reduction strategies will be needed to
further enhance the new data assimilation strategy for really high-dimensional realistic turbulent systems. In dealing with the poten-
tially high computational cost of solving a really high-dimensional system, we plan to combine our approach with high-order moment
closure methods incorporating the random batch approximations [15,48]. Another approach is to combine the stochastic-statistical
modeling framework with the rapidly developing data-driven approaches [54,55] to automatically learn the unresolved high-order
terms from data. The additional model reduction strategies will create practical and computational efficient algorithms suitable for
high-dimensional problems. Immediate applications of these developments include statistical forecasting in geophysical turbulence
[56] and modeling viscoelastic fluids [57]. Further research may also explore the extension and validation of the modeling and com-
putational framework combined with the recent optimal transport and particle flow filtering strategies [58,59], potentially enabling
more accurate predictions of complex turbulent phenomena in broader classes of multiscale dynamical systems.
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Appendix A. Proofs of theorems

Proof of Lemma 1By taking partial derivatives using the explicit expressions in (3.1), we get
O )" = VijgZq + Vipi%ps
9 Hyy = (YijaZaZt + Vi %071 + VipaZpZad1s)
+ (V1jgZq 2k + Vipi 2k + VipgZpZgBis)-
Above, for convenience double appearance of the subindex implies the summation about the index. Next, multiplying z; and taking
the summation about j yield
2 VH = 2,0, H}' = 2,2, + Vip2p2; = 2H,
2 VHY = 20, Hyy = (Viga?i + 115g70) 2170 + (s 21+ V1ipy70) 77
+ (Yipg 21 + Vipg2k) 224 = 3H).
Proof of Proposition 2 We can check the solution (3.4) by directly putting the expressions back into the Eq. (3.3). Therefore, for

the mean observation we have

E[kmyvE"] = %F;}[E[(Hm - A" (2"VH")]
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= 12| (H" - A7) ™|
= 12| (H7 = A7) (7 - A7) | = T2,

Above, the second equality uses the first identity in (3.2) and the third uses £[H™ — A™] = 0. In the same way, we can check the case
for variance observation only with a difference in the coefficient

B[k vH?| = %F‘ZE[(HU - %) (2"VH")]|
=T 2E[ (0 - 7)) ]
=T 2E[ (e - A0 (0 - 0| =12

= y_z

Pq

Proof of Proposition 3 Using the explicit formula in (3.4), we can compute for the mean observation case with (F;f)pq

2 T -2 / ’
(K"T2K"™T) = —Z z; Z LEHM(Z)H!(Z),
where we denote H'(Z) = H(Z) — H. By taking the divergence on the above identity, we can compute
V. (K"T2K"T). 2 0 (K"T2K") = z noo |z 2,1y 2 H) (2)
== z Yot [5, ; ZJH’"/(Z)H;"’(Z) + ZI-H‘:”’(Z)H;“(Z)
]Pq
Z,H!"(2)Z,0,H!(Z) + Z,H" (2)Z;0,H!" (Z)]
o -
=1 X2z [ 2y (2) + a2 H) (2)|
.q
+ % Z 72z, [ZH (D) H!"(Z)+ 21-1’”(2)}1’”’(2)]

=3 + d 2tdz Z VY (DH)(Z)+ 5 1z z 72 [H”’H””(Z) n H'”H'“’(Z)] (A1)

The second from last equality above again uses the identity (3.2), 3}, Z;0; H" = 2H". Notice that additional term in the last line
above due to the mean term A™. In the same way, we can use (3.2) again and find

<V~(K’")> Za( ZH"(2)'T; ) = Z ;zaj[Z,H;”’(Z)]

=1 Z v [H'"/(Z) +2,0; H'"(Z)]

2 Z v [dH'”’(Z) + 2H’”(Z)]

_d+2 —2 ' -2
== H"(Z) + Z vy HY.
Thus the second term in (3.5) gives with the above identity
1

m\T m\T
EZi(H ) V(K™

—4d+ 22 z 2H"H! + %Z,- N v 2HTH™. (A.2)
p.q

(K'"anv - (K’")T>i

Combining the final results in (A.1) and (A.2), we find
PV (KPRKT), <K (KOT),

— 3 =2 gym! gym! 1 =2 ggm gym!

_Zzizyqup H, +§Z"27MH4 H,(Z)
» Pa

_ 1 =2 gym! ml ym

=% Zypq H! (3Hq +2A! )

Z 23’,,,,( _HI')”)<3H;”—FIZ'>.

This gives the expression for the drift term of the mean in (3.6). Repeating the same procedure for the variance, we can arrive at the
expression for @' in a similar fashion.
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Proof of Proposition 4 Using the explicit expressions derived in (3.4) and (3.6) as well as the discrete integration of (3.7), we can
compute the filtering update terms from the observation of the mean as

1 I _
a"Ar+ K"AI™ :ZZ[H’"(Z) —H"|'T2[3H™(Z) - H™|At

1 Fm T =2 A = _
+5Z[H"(Z) - A" r2[Ad — [H™(Z) + h,, (V)] At
=%ZH'"’(Z)T1“;"2 H™(Z)At + %ZH’"’(Z)TF;Z H"At
+ %ZH'”’(Z)TF;,z [Aa— AaN — H™ (Z)At]
1 - 1 e 1 2 n A
=ZZH'"’(Z)TFm2H'"’(Z)At + EZH’”’(Z)TFmQH'”At + EZH’"’(Z)TFMZ(Au - Aa").

Above, we define the mean and fluctuation terms, " = EN [H"(Z)| and H™ = H"(Z) — H", w.r.t. the empirical ensemble averages.
Similarly, we can compute

a’At + KPATY =%Z[H”(Z) - 1°)'r2[4aH%(Z) - A’

+ %Z[H”(Z) — A°)" T [AR - [HY(Z) + h, (@, RN )] ]
=gZH”/(Z)TF;2H”/(Z)At + %ZH”’(Z)TFfH”At

+ %ZH”’(Z)TF;2 [AR— ARN — HY(Z)A]

:%ZH”’(Z)TF;ZH”’(Z)At + %ZH”’(Z)TF;ZH“N + %ZH”/(Z)TFL—,2 (AR - ARY).

Appendix B. Details on the triad system
Here, we provide more details on the dynamical and statistical properties on the triad model (4.1).
B.1. A direct link to geophysical turbulent fluid

Consider the quasi-geostrophic (QG) potential vorticity equation with forcing and dissipation defined on a two-dimensional peri-
odic domain x € [-r, 7] X [-7, 7]

0
a—‘f +Viy Vg=vAq, Ay =g, (B.1)

where V! = (—ay, d,). Under projection to the Fourier spectral modes k = (k,, ky) inside a set of finite wavenumber truncation K,
the flow streamfunction y and potential vorticity g can be expressed as

v= 2 i g= Y (-IkDine™™

kex kek

The QG system (B.1) then can be expressed for each spectral mode ¥, under the above decomposition as

dijy |n|2 1 2

—_ + —m~ - ny, ¥, = —VvIK|“¥.

dr kiz |k|2 Ym¥n | | Yk

=—m-n

Therefore, we have the barotropic triads of three wavenumber components, i, ¥, ¥,, obeying the selecting rule k + m +n = 0.
Consider an initial condition in which only these three components of a particular triad are excited, then these three modes will only
interact with each other while no other modes will get excited due to the particular triad relations as the system evolves in time. By
projecting the above equation to the active triad modes, we get the dynamical equations for the selected modes neglecting the forcing
and dissipation terms on the right hand side

di

% + Agun ¥ =0, K+m+n=0, (B.2)

[n|

2
where Ay, = Wmi -n is the triad interaction coefficient with the detailed symmetry A;,,, + A,,.x + A = 0, showing the conser-

nkm

vation of kinetic energy,
d . . -
& (K o+ I + 0] *) = 0

The typical forward and backward cascades of energy and enstrophy in turbulent flow are characterized by the triad interactions
between the three models. Hence from the above discussion, in the two-dimensional QG turbulence, the nonlinear energy transfer is
exactly governed by the barotropic triads the same as (4.1) in the nonlinear interaction part. More detailed characterization of these
coupling effects with link to geophysical turbulence can be found in [14].
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B.2. Statistical and dynamical properties of the triad system

The triad system (4.1) is subject to stochasticity from the initial state and external forcing. The probability density function p(u, 7)
associated with the triad equations satisfies the following Fokker-Planck equation

3
1
0,p=—(Bu,u)+ Au)- Vyp+ z (d,-p + -afaflp), (B.3)
i=1

with initial state p(u,t) |,—o= py(u). While the original triad system (4.1) is nonlinear, the statistical dynamics (B.3) becomes linear
equation for the smooth PDF p. However, in general the explicit solution of the Fokker-Planck equation is still difficult to achieve due
to the nonlinear interaction terms in the triad system.

B.2.1. Equilibrium invariant measure with equipartition of energy
Under a special arrangement about the damping and noise coefficients, one special solution of a Gaussian invariant measure, pe,,
can be reached at the equilibrium. Assume that the damping operator d; and random noise forcing o; satisfy the following relation in
each component
2 2 2
(o2 e (e
2 1 2 3
o2 =—L=_2=_3 B.4
« " 2, 2d, 2d, (B.4)

Therefore, a Gaussian invariant measure can be found with equipartition of energy in each component, that is,
_ 1 L 212
Peq(w) = ch exp <_§ch |u] ) (B.5)

Above cgq is the equilibrium variance in the Gaussian invariant distribution p,, that controls the variability in each mode. To see this,
we can substitute the invariant measure (B.5) back into the Fokker-Planck Eq. (B.3). It is a special case from Theorem 3.1 in [60].
In the general case with additional external forcing and inhomogeneous structure, energy is injected into the modes and transferred
to each other due to the nonlinear quadratic interaction through more complicated mechanism, thus strong nonlinear non-Gaussian
statistics with energy cascade and internal instabilities can be generated. Detailed energy mechanism and stability for the triad system
can be also found in [14,41].

B.2.2. Typical dynamical regimes in the triad system

Though simple in appearance, the triad system (4.1) has representative statistical features including energy cascade between modes
and internal instabilities that can be created in this simple set-up. A fundamental factor in the triad system is the internal instabilities
that make the mean unstable over various directions in phase space as is typical for anisotropic fully turbulent systems. Elementary
intuition about energy transfer in such models can be gained by looking at the special situation with only the nonlinear interactions

in (4.1). We examine the linear stability of the fixed point, &t = (ﬁl,O,O)T. Elementary calculations show that the perturbation du,
déuy

satisfies
dr

= 0 while the perturbations du,, Su; satisfy the second-order equations

d? 2 d? -2
@(5,42) = (B, Bsity ) buy, E(5u3) = (B, Bsity)us,

so that we find that there is instability in the states u,,u; from a non-zero i, if B, B; > 0. Combined with the energy conservation
principle B, + B, + B = 0, we find that from the initial state (&,,0,0)

the energy in u,, Suz grows provided that (B.6)
B, has the opposite sign with B, and B;.

The elementary analysis in (B.6) suggests that we can expect a flow or cascade of energy from u; to u, and u; where it is dissipated
provided the interaction coefficient B, has the opposite sign from B, and B;. Then energy cascades can be induced from the strongly
forced unstable energetic mode to the stable less energetic modes with stronger damping effects.

B.3. Moment equations for the triad system

Here, we provide the detailed moment equations for the mean mean and covariances of the triad state u. First, the mean state
0= (uy,uy, u3)T of the triad model can be written as

(
dity =[(A3ity — dyily — Ayit) + Byityits + By (u}uf )] dr, (B.7)
dity =[(=Ayity + Ayily — dsit3) + Byilyity + By {(uudl Y] dr,
where we use (-) to represent the expectation. Correspondingly, the stochastic fluctuation u’ = (u’l N7 u’3)T of the triad model satisfies
the following set of SDEs
dl/1 =[(—d1u'l - /1314'2 + Azu;) + B, (ﬁzug + 12314;) + B (u;ug - cl)]dt +o0,dW,
du) =[(i3u’1 — dyuy - /1114’3) + B, (ﬁlu; + 1231/1) + Bz(u'lug - 02)]dt +0,dW,, (B.8)
du; =[(—12u’1 + Alu; - d3u;) + B; (ﬁlu; + ﬁzu’l) + B; (ugu'2 - C3)]dl + o3dW;.
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Above, the stochastic equations are coupled with the cross-covariances ¢ = (c;, ¢, c3)T that satisfy the following statistical equations

dey =[=(dy +d3)e; + Azey = Ayez + Ay (ry = 13)
)
)

+(Byityrs + Byiiyry) + (Byitsey + Baiiyes) + (By (uhut?) + By (uifuy ) )] dr,
des =[Aye; = Aoy = (dy + dy)es + A3(r) = 13)

(B1ﬁ3r2 + 32ﬁ3r1) + (Blﬁzcl + Bzﬁlcz) + (Bl<u'22ug> + B2<u’12u; )]dt.

+(B2121r3 + BSﬁlrz) + (B2123c2 + Bsilycs) + (Bz<u'lu’32> + B3<u'1u’22 )]dl‘,
dey =[-Aze; = (dy + d3)er + Ajes + Ay (13 — 7 ®9)

And similarly, the statistical equations for the variances r = (r,r,, r3)T satisfy the following equations

dr, =2[(—d1r1 + Ayey — A3e3) + By (ilacy + il3¢3) + By (u’lu’2u3> + zrﬂdt,
dry =2[(=Ayc; = dyry + Ases) + By (it ¢y + fizcs) + By (ujubul) + 03] dt, (B.10)

dr; =2[(/llcl — Aoy — d3r3) + B3 (ﬁlcl + 12202) + B3<u'1u;u'3> + G:ﬂdl.
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