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 A B S T R A C T

We present a new strategy for the statistical forecasts of multiscale nonlinear systems involving non-Gaussian 
probability distributions with the help of observation data from leading-order moments. A stochastic-statistical 
modeling framework is designed to enable systematic theoretical analysis and support efficient numerical 
simulations. The nonlinear coupling structures of the explicit stochastic and statistical equations are exploited 
to develop a new multiscale filtering system using statistical observation data, which is represented by 
an infinite-dimensional Kalman–Bucy filter satisfying conditional Gaussian dynamics. To facilitate practical 
implementation, a finite-dimensional stochastic filtering model is proposed that approximates the intractable 
infinite-dimensional filter solution. We prove that this approximating filter effectively captures key non-
Gaussian features, demonstrating consistent statistics with the optimal filter first in its analysis step update, 
then at the long-time limit guaranteeing stable convergence to the optimal filter. Finally, we build a practical 
ensemble filter algorithm based on the stochastic filtering model. Robust performance of the modeling and 
filtering strategies is demonstrated on prototype models, implying wider applications on challenging problems 
in statistical prediction and uncertainty quantification of multiscale turbulent states.
1. Introduction

Complex turbulent phenomena characterized by nonlinearly cou-
pled spatiotemporal scales and inherent internal instability are widely 
observed in science and engineering systems [1–4]. A probabilistic for-
mulation is required to quantify uncertainties in the high-dimensional 
turbulent states [5–7]. Traditional ensemble approaches using a par-
ticle system to approximate the probability evolution quickly become 
computationally prohibitive since a sufficiently large sample size is 
necessary to capture the extreme non-Gaussian outliers even for rel-
atively low-dimensional systems [8,9]. As a result, rigorous analysis 
often becomes intractable and direct numerical simulations are likely 
to be expensive and inaccurate [10,11].

Filtering strategies [12–15] have long been used for finding the 
optimal probability estimate of a stochastic state based on partial and 
noisy observation data. Filtering theories [16–19] and corresponding 
numerical solutions [20–22] for general nonlinear systems have been 
investigated through different approaches. In predicting nonlinear tur-
bulent signals, ensemble Kalman filters [23,24] as well as the related 
particle methods [25–27] provide effective tools for state and param-
eter estimations. Despite wide applications [28–30], difficulties persist 
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for accurate statistical forecast of turbulent states especially when non-
Gaussian features are present in the target probability distribution. 
Conventional ensemble-based approaches often suffer inherent diffi-
culties in estimating the crucial higher-order moment statistics and 
maintaining stable prediction with finite number of particles [11,31,
32]. Instead of using a single trajectory observation of the stochastic 
signal, observations of low-order statistics, such as the mean and covari-
ance of the large-scale states, can be obtained to improve the prediction 
and uncertainty quantification of high-order statistical information in 
filtering. For example, statistical data can be retrieved from coarse-
grained statistical observations from local average in a small spatial 
neighborhood or temporal average during a short period of time given 
ergodicity of the stochastic systems [33,34], as well as many low-
order strategies adopting observation operators from the equilibrium 
measure [6,35,36]. Therefore, a promising research direction is to 
propose new filtering models that have skill to recover crucial high-
order moments information in non-Gaussian probability distributions 
using partial observation data from statistical observations from the 
leading-order mean and covariance [37]. 
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Fig. 1. Diagram illustrating main ideas in constructing the filtering framework.
1.1. General problem setup

We start with a general mathematical formulation [7] modeling a 
high-dimensional stochastic state 𝑢𝑡 ∈ R𝑑 involving nonlinear multi-
scale interactions satisfying the following stochastic differential equa-
tion (SDE) 
d𝑢𝑡
d𝑡

= 𝛬𝑢𝑡 + 𝐵
(

𝑢𝑡, 𝑢𝑡
)

+ 𝐹𝑡 + 𝜎𝑡𝑊̇𝑡. (1)

On the right hand side of the above equation, the linear operator, 
𝛬 = 𝐿 − 𝐷 ∶ R𝑑 → R𝑑 , represents linear dispersion 𝐿⊺ = −𝐿 and 
dissipation 𝐷 < 0 effects. The nonlinear effect in the dynamical system 
is introduced via a bilinear quadratic operator, 𝐵 ∶ R𝑑 ×R𝑑 → R𝑑 . The 
system is subject to external forcing effects that are decomposed into a 
deterministic component, 𝐹𝑡, and a stochastic component represented 
by a Gaussian white noise 𝑊̇𝑡 ∈ R𝑠 with coefficient 𝜎𝑡 ∈ R𝑑×𝑠. The 
model emphasizes the important role of quadratic interactions through 
𝐵 (𝑢, 𝑢). Importantly, the quadratic term is assumed to satisfy an energy 
conservation law (see next in (3a)) so that the first two moments of 𝑢𝑡
remains finite. The structure property in (1) is inherited from a finite-
dimensional truncation of the corresponding continuous equation, for 
example, a spectral projection of the nonlinear advection in the fluid 
models [38,39]. Many realistic systems with wide applications [40–42] 
can be categorized in this general dynamical Eq. (1).

The evolution of the model state 𝑢𝑡 depends on the sensitivity to the 
randomness in initial conditions and external stochastic effects, which 
will be further amplified in time by the inherent internal instability 
due to the nonlinear coupling term [6]. Then 𝑢𝑡 induces a probability 
measure on (0,∞) × R𝑑 . The time evolution of the probability density 
function (PDF) 𝑝𝑡 is governed by the associated Fokker–Planck equation 
(FPE) starting from an initial distribution 𝑝𝑡=0 = 𝑝0
𝜕𝑝𝑡
𝜕𝑡

= FP𝑝𝑡 ∶= −∇𝑢 ⋅
[(

𝛬𝑢 + 𝐵 (𝑢, 𝑢) + 𝐹𝑡
)

𝑝𝑡
]

+ 1
2
∇𝑢 ⋅

[

∇𝑢 ⋅
(

𝜎𝑡𝜎
⊺
𝑡 𝑝𝑡

)]

, (2)

where FP represents the Fokker–Planck operator, and ∇ ⋅ (∇ ⋅ 𝐴) =
∑

𝑘,𝑙
𝜕2𝐴𝑘𝑙
𝜕𝑢𝑘𝜕𝑢𝑙

. The existence and uniqueness of solution 𝑝𝑡 to the linear 
FPE (2) is guaranteed by the uniformly elliptic operator FP [43] and 
we have that the second moments of the state 𝑢𝑡 remain bounded during 
the time evolution from the finite initial distribution (see Lemma  1 
in Section 2.1). However, it remains a challenging task for directly 
solving the FPE (2) as a high-dimensional PDE. As an alternative 
approach, ensemble forecast by tracking the Monte-Carlo solutions 
estimates the essential statistics through empirical averages among a 
group of samples drawn i.i.d. from the initial distribution 𝑢(𝑖) (0) ∼ 𝑝0
at the starting time 𝑡 = 0. In practice, large errors will still be introduced 
to the empirical estimations since only a finite sample approximation 
is available in modeling the non-Gaussian probability distribution and 
statistics in a high dimensional space.

It is expected that the prediction errors from the finite ensemble 
estimation of the PDF of stochastic states can be effectively corrected 
by filtering with the help of the available observation data. In designing 
new filtering strategies, we propose to use statistical observations from 
mean and covariance to improve the accuracy and stability in the fore-
casts of higher-order moments through finite ensemble approximations. 
However, the general formulation (1) as well as the associated FPE 
(2) becomes inconvenient to use since all the multiscale stochastic 
processes are mixed together in the equation as well as all high-order 
moments of the PDF. The main goal of this paper is thus to develop a 
2 
systematic modeling framework with strategies to accurately capture 
the (potentially highly non-Gaussian) PDF 𝑝𝑡 assisted by statistical 
measurements in the leading moments.

1.2. Overview of the paper

In this paper, we study nonlinear filtering of the general mul-
tiscale turbulent system (1). The new multiscale nonlinear filtering 
model is constructed under the following step-by-step procedure, which 
will finally lead a nonlinear ensemble filtering strategy to recover 
non-Gaussian PDFs:

• First, we propose a coupled stochastic-statistical system (11) 
demonstrating rigorous statistical consistency with the original 
system (1): the stochastic dynamics will serve as the signal process 
in filtering including high-order non-Gaussian features, while the 
reinforced statistical equations provide the observation process;

• Second, a statistical filtering problem is formulated based on the 
coupled stochastic-statistical model: optimal filter Eqs. (32) are 
derived as the precise unbiased least square estimate for the non-
Gaussian stochastic state of (11), conditional on the mean and 
covariance as a natural choice of the observed state;

• Third, a statistical filtering model (36) is developed as an approx-
imation to the optimal filter solution in leading-order statistics: a 
stochastic McKean–Vlasov equation is adapted from the optimal 
filter for practical implementation.

The coupled stochastic-statistical model (11) by itself can serve as an 
effective tool for statistical forecasts and uncertainty quantification [39,
41,44]. Further, combined with the observation data, the resulting 
filtering McKean–Vlasov SDE (36) is linked to the probability distribu-
tion only through the moments, which can be computed directly from 
the corresponding statistical equations. This enables efficient computa-
tional schemes (58) to effectively improve the accuracy and stability in 
capturing high-order non-Gaussian features based on only observation 
from the lower moments. The main steps in building effective models 
for capturing probability distributions is illustrated in Fig.  1.

Still, developing complete and rigorous theories for approximate 
filtering models involving dominant nonlinear terms remains an inher-
ently challenging task. In this paper, we seek to establish a comprehen-
sive theoretical formulation to help improve the understanding of the 
complex phenomena arising from nonlinear dynamics, so that practical 
numerical strategies and applications can follow based on this adaptive 
general framework. In addition, we present initial results addressing the 
forecast and analysis steps of filtering separately, demonstrating the po-
tential and validating the predictive capacities within the approximate 
filtering models: (i) Proposition  3 shows that the highly tractable cou-
pled stochastic-statistical model (11) demonstrates consistent statistics 
as the original system (1); (ii) the equation for optimal filter solution 
(32) is given by exploiting the conditional Gaussian structure of the 
forward equation, and the approximate filter model is found to recover 
the same key statistics during the analysis step update in Theorem 
8; (iii) the long-time convergence in statistics to the optimal filter is 
demonstrated in Theorem  11 concerning the entire filtering procedure 
using the statistical filtering model (36). Finally, the effectiveness of the 
new filtering model is tested on the prototype triad and Lorenz models.
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The structure of the paper is organized as follows: In Section 2, we 
first set up a statistically consistent formulation for the general multi-
scale system (1) that is suitable for the construction of the statistical 
filtering models. The main ideas of finding the optimal filter solution 
and constructing the approximating filter are shown in Section 3. Long-
time convergence and stability of the filtering model is then discussed 
in Section 4. Combining each component of the ideas, the ensemble 
filtering algorithm is developed in Section 5, followed by preliminary 
numerical tests in Section 6. A summary of this paper is given in 
Section 7. More discussions on the filtering formulation and detailed 
proofs of the results are shown in the Appendices.

2. A statistically consistent modeling framework for multiscale 
dynamics

We start with a new formulation for the system (1) using an explicit 
macroscopic and microscopic decomposition of the multiscale state. 
In particular, we show that the new formulation provides consistent 
statistics with the original system including higher-order statistics. In 
addition, the new formulation also enjoys a more tractable dynamical 
structure to be adapted to the filtering methods.

2.1. The statistical and stochastic equations

In the first place, the well-posedness of the SDE (1) can be estab-
lished guaranteeing finite statistical moments of 𝑢𝑡 with respect to the 
law 𝑝𝑡 from the PDF solution of (2) during the time evolution by the 
following lemma. 

Lemma 1.  Assume that the linear coupling term in the system (1) is 
negative definite and the quadratic term conserves energy such that 
𝑢 ⋅ 𝛬𝑢 < 0, 𝑢 ⋅ 𝐵 (𝑢, 𝑢) = 0, (3a)

for all 𝑢 ∈ R𝑑 , and the forcing terms are uniformly bounded and satisfy 
uniformly elliptic condition 
|

|

𝐹𝑡|| ≤ 𝐶, 𝜎𝑡𝜎
⊺
𝑡 ⪰ 𝑐𝐼, (3b)

with positive constants 𝐶 > 0 and 𝑐 > 0. Then, given finite moments in the 
initial condition ∫ (

1 + |𝑢|2𝑘
)

𝑝0 (𝑢) d𝑢 < ∞ for 𝑘 = 1, 2,…, there will exist 
a unique global probability density function 𝑝𝑡 ∈ 

(

R𝑑
)

∩ 𝐶
(

R𝑑
) to the 

FPE (2) for time 𝑡 > 0, and all moments of the distribution will maintain 
bounded for all 𝑡 > 0

∫R𝑑
(

1 + |𝑢|2𝑘
)

𝑝𝑡 (𝑢) d𝑢 < ∞. (4)

The assumptions in (3a) can be implied by the conservation of 
energy in the nonlinear coupling and the linear term only containing 
dissipation effect. A statistical energy equation [45] is induced from 
the conservation law that maintains the finite second moments in the 
statistical solution. Conditions in (3b) guarantee that the operator is 
coercive in the FPE. These assumptions are commonly satisfied in 
many applications of fluid systems considering the physical energy 
conservation and dissipation laws. Then, (4) implies the existence of 
a unique probability solution with all finite moments. The proof of this 
lemma can be found in Appendix  B.

In order to identify the detailed multiscale interactions in the gen-
eral system (1), we decompose the random model state 𝑢𝑡 into a 
statistical mean 𝑢̄𝑡 and stochastic fluctuations 𝑢′𝑡 in a finite-dimensional 
representation under an orthonormal basis {𝑣̂𝑘

}𝑑
𝑘=1 with 𝑣̂𝑘 ⋅ 𝑣̂𝑙 = 𝛿𝑘𝑙

𝑢𝑡 = 𝑢̄𝑡+𝑢′𝑡 =
𝑑
∑

𝑘=1
𝑢̄𝑘,𝑡𝑣̂𝑘+

𝑑
∑

𝑘=1
𝑍𝑘,𝑡𝑣̂𝑘, with 𝑢̄𝑘,𝑡 = 𝑣̂𝑘 ⋅ 𝑢̄𝑡, 𝑍𝑘,𝑡 = 𝑣̂𝑘 ⋅

(

𝑢𝑡 − 𝑢̄𝑡
)

.

(5)

Above, the deterministic 𝑢̄𝑡 ∈ R𝑑 represents the statistical mean struc-
ture (for example, the zonal jets in geophysical turbulence or the 
3 
coherent radial flow in fusion plasmas), and the stochastic modes 
𝑍𝑡 =

[

𝑍1,𝑡,… , 𝑍𝑑,𝑡
]⊺ ∈ R𝑑 are random fluctuations projected on each 

eigenmode 𝑣̂𝑘, whose randomness illustrates the uncertainty in each 
single scale of 𝑢′𝑡. In particular, we will show that the dynamics of the 
stochastic modes 𝑍𝑡 contain nonlinear interactions among a large num-
ber of multiscale fluctuations, which demonstrate the characterizing 
feature of strong energy cascades in turbulent systems [6,46,47].

2.1.1. Statistical equations for the macroscopic states
First, we define the leading-order mean and covariance according 

to the state decomposition (5)

𝑢̄𝑡 = E𝑝𝑡 [𝑢] ∶= ∫R𝑑
𝑢𝑝𝑡 (𝑢) d𝑢,

𝑅𝑘𝑙,𝑡 = E𝑝𝑡
[

𝑍𝑘,𝑡𝑍𝑙,𝑡
]

∶= ∫R𝑑
𝑣̂𝑘 ⋅

(

𝑢 − 𝑢̄𝑡
) (

𝑢 − 𝑢̄𝑡
)

⋅ 𝑣̂𝑙𝑝𝑡 (𝑢) d𝑢, 1 ≤ 𝑘, 𝑙 ≤ 𝑑,

(6)

It implies from Lemma  1 that the first two moments in (6) will maintain 
finite values in time due to the finite total statistical energy conser-
vation, 𝐸 = 1

2

(

|

|

𝑢̄𝑡||
2 + tr𝑅𝑡

)

< ∞. Statistical states of mean 𝑢̄𝑡 and 
covariance 𝑅𝑡 represent the macroscopic physical quantities that are 
easiest to achieve from direct measurements. The mean and covariance 
can be solved by the following statistical equations 
d𝑢̄𝑘,𝑡
d𝑡

= 𝑣̂𝑘 ⋅
[

𝛬𝑢̄𝑡 + 𝐵
(

𝑢̄𝑡, 𝑢̄𝑡
)]

+
𝑑
∑

𝑚,𝑛=1
𝛾𝑘𝑚𝑛E𝑝𝑡

[

𝑍𝑚,𝑡𝑍𝑛,𝑡
]

+ 𝑣̂𝑘 ⋅ 𝐹𝑡, (7a)

d𝑅𝑘𝑙,𝑡
d𝑡

=
𝑑
∑

𝑚=1

[

𝐿𝑘𝑚
(

𝑢̄𝑡
)

𝑅𝑚𝑙,𝑡 + 𝑅𝑘𝑚,𝑡𝐿𝑙𝑚
(

𝑢̄𝑡
)]

+𝑄𝑡,𝑘𝑙 , (7b)

+
𝑑
∑

𝑚,𝑛=1
𝛾𝑘𝑚𝑛E𝑝𝑡

[

𝑍𝑚,𝑡𝑍𝑛,𝑡𝑍𝑙,𝑡
]

+ 𝛾𝑙𝑚𝑛E𝑝𝑡
[

𝑍𝑚,𝑡𝑍𝑛,𝑡𝑍𝑘,𝑡
]

.

The above equations for the mean and covariance can be derived 
by directly applying Itô’s formula to the model states (see Appendix 
B for the detailed derivation). We define the nonlinear coupling co-
efficients 𝛾𝑘𝑚𝑛 = 𝑣̂𝑘 ⋅ 𝐵

(

𝑣̂𝑚, 𝑣̂𝑛
)

, and the white noise coefficient as 
𝛴𝑡 =

[(

𝑣̂⊺1𝜎𝑡
)⊺ ,… ,

(

𝑣̂⊺𝑑𝜎𝑡
)⊺]⊺ with 𝑄𝑡 = 𝛴𝑡𝛴

⊺
𝑡 ∈ R𝑑×𝑑 . The operator 

𝐿
(

𝑢̄𝑡
)

∈ R𝑑×𝑑 dependent on the statistical mean state 𝑢̄𝑡 is defined as 

𝐿𝑘𝑙 (𝑢) = 𝑣̂𝑘 ⋅
[

𝛬𝑣̂𝑙 + 𝐵
(

𝑢, 𝑣̂𝑙
)

+ 𝐵
(

𝑣̂𝑙 , 𝑢
)]

. (8)

Notice that the right hand side of (7b) involves the fluctuation modes 
𝑍𝑡 defined from 𝑢𝑡 in (5), then the expectations on third moments are 
taken w.r.t. the PDF 𝑝𝑡. Therefore, the resulting statistical Eqs. (7) are 
not closed and need to be combined with the FPE (2) to achieve a 
complete formulation for the leading-order mean and covariance in the 
nonlinear system.

2.1.2. Stochastic equations for the microscopic processes
Second, we introduce the SDE describing the time evolution of the 

multiscale stochastic processes 𝑍𝑡 as the microscopic state consisting of 
the many subscale fluctuations 
d𝑍𝑡 = 𝐿

(

𝑢̄𝑡
)

𝑍𝑡d𝑡 + 𝛤
(

𝑍𝑡𝑍
⊺
𝑡 − 𝑅𝑡

)

d𝑡 + 𝛴𝑡d𝑊𝑡. (9)

Above, 𝐿 (

𝑢̄𝑡
) is the same mean-fluctuation coupling operator defined 

in (8) involving the statistical mean 𝑢̄𝑡. The multiscale feature of 
the system is also represented by the nonlinear coupling among the 
different projected modes in (5). We define the quadratic coupling 
operator 𝛤 ∶ R𝑑×𝑑 → R𝑑 as a linear combination of the entries of the 
input matrix 𝑅 ∈ R𝑑×𝑑 describing the nonlinear coupling involving the 
covariance 𝑅𝑡

𝛤𝑘 (𝑅) =
𝑑
∑

𝑚,𝑛=1
𝑣̂𝑘 ⋅ 𝐵

(

𝑣̂𝑚, 𝑣̂𝑛
)

𝑅𝑚𝑛. (10)

The form of the stochastic dynamics (9) can be found by directly 
subtracting the mean Eq. (7a) from the original equation for 𝑢  then 
𝑡
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projecting on the basis 𝑣̂𝑘 based on the state decomposition (5). De-
tailed derivation for (9) and (7a) can be found in Appendix  B and in [7]. 
Similar to the statistical equations (7), the dynamics on the right hand 
side of (9) is linked to the macroscopic quantities 𝑢̄𝑡 and 𝑅𝑡, which 
in turn requires additional information of 𝑝𝑡 from the original model 
state 𝑢𝑡. This makes the stochastic equation also unclosed requiring 
additional information from the PDF solution of (2). The derivations of 
the above statistical and stochastic Eqs. (9) and (7a) from the original 
general formulation (1) can be found in the proof of Proposition  3.

2.2. A coupled stochastic-statistical model with explicit higher-order feed-
backs

Combining the ideas in the stochastic Eq. (9) and the statistical 
equations (7), we propose a statistically consistent stochastic-statistical 
model based on the following self-consistent coupling of the microscopic 
stochastic processes 𝑍𝑡 and the macroscopic statistics 𝑢̄, 𝑅𝑡
d𝑍𝑡 = 𝐿

(

𝑢̄𝑡
)

𝑍𝑡d𝑡 + 𝛤
(

𝑍𝑡𝑍
⊺
𝑡 − 𝑅𝑡

)

d𝑡 + 𝛴𝑡d𝑊𝑡,
d𝑢̄𝑡
d𝑡

=𝑀
(

𝑢̄𝑡
)

+𝑄𝑚
(

E
[

𝑍𝑡 ⊗𝑍𝑡
])

+ 𝐹𝑡,

d𝑅𝑡
d𝑡

= 𝐿
(

𝑢̄𝑡
)

𝑅𝑡 + 𝑅𝑡𝐿
(

𝑢̄𝑡
)⊺ +𝑄𝑣

(

E
[

𝑍𝑡 ⊗𝑍𝑡 ⊗𝑍𝑡
])

+ 𝛴𝑡𝛴
⊺
𝑡 .

(11)

Above, the expectations are all w.r.t. the PDF 𝜌𝑡 of the stochastic 
states 𝑍𝑡. In the first moment equation for 𝑢̄𝑡, with a bit abuse of 
notation, we denote 𝑢̄𝑡 =

[

𝑢̄1,𝑡,… , 𝑢̄𝑑,𝑡
]⊺ ∈ R𝑑 with each component 

𝑢̄𝑘,𝑡 = 𝑢̄𝑡 ⋅ 𝑣̂𝑘, 𝑀 =
[

𝑀1,… ,𝑀𝑑
]⊺ ∈ R𝑑 where 𝑀𝑘

(

𝑢̄𝑡
)

=
∑

𝑝,𝑞 𝑣̂𝑘 ⋅
[

𝛬𝑣̂𝑝𝑢̄𝑝,𝑡 + 𝐵
(

𝑣̂𝑝, 𝑣̂𝑞
)

𝑢̄𝑝,𝑡𝑢̄𝑞,𝑡
] for 1 ≤ 𝑘 ≤ 𝑑 and 𝐹𝑡 =

[

𝑣̂1 ⋅ 𝐹𝑡,… , 𝑣̂𝑑 ⋅ 𝐹𝑡
]⊺ ∈

R𝑑 ; in the second moment equation for 𝑅𝑡 ∈ R𝑑×𝑑 , the operator 𝐿 (

𝑢̄𝑡
)

∈
R𝑑×𝑑 indicates mean-fluctuation interactions defined in (8); and in the 
stochastic equation for 𝑍𝑡, 𝛤 ∶ R𝑑×𝑑 → R𝑑 is the quadratic coupling 
operator defined in (10). The two higher-moment feedbacks for the 
mean and covariance, 𝑄𝑚, 𝑄𝑣, related to the second and third moments 
of 𝑍𝑡 respectively, are defined as 

𝑄𝑚,𝑘
(

E
[

𝑍𝑡 ⊗𝑍𝑡
])

=
𝑑
∑

𝑝,𝑞=1
𝛾𝑘𝑝𝑞E

[

𝑍𝑝,𝑡𝑍𝑞,𝑡
]

,

𝑄𝑣,𝑘𝑙
(

E
[

𝑍𝑡 ⊗𝑍𝑡 ⊗𝑍𝑡
])

=
𝑑
∑

𝑝,𝑞=1
𝛾𝑘𝑝𝑞E

[

𝑍𝑝,𝑡𝑍𝑞,𝑡𝑍𝑙,𝑡
]

+ 𝛾𝑙𝑝𝑞E
[

𝑍𝑝,𝑡𝑍𝑞,𝑡𝑍𝑘,𝑡
]

,

(12)

for 1 ≤ 𝑘, 𝑙 ≤ 𝑑 with coupling coefficients 𝛾𝑘𝑝𝑞 = 𝑣̂𝑘 ⋅ 𝐵
(

𝑣̂𝑝, 𝑣̂𝑞
)

. 
Above, 𝑄𝑚 models the feedback in the mean equation due to the 
second moments E [

𝑍𝑡 ⊗𝑍𝑡
]

, and 𝑄𝑣,𝑘𝑙 is the symmetric feedback in 
the covariance equation due to all the third moments E [

𝑍𝑡 ⊗𝑍𝑡 ⊗𝑍𝑡
]

. 
Notice that 𝑄𝑚, 𝑄𝑣 can be both viewed as linear operators w.r.t. 𝜌𝑡.

Different from the unclosed stochastic and statistical Eqs. (9) and 
(7a) inherently dependent on the intractable PDF 𝑝𝑡 of the origi-
nal model state 𝑢𝑡, the new coupled stochastic-statistical model (11) 
provides a clean self-consistent formulation for tractable theoretical 
analysis and direct numerical implementations. A new PDF 𝜌𝑡 of the 
stochastic process 𝑍𝑡 is introduced to close the system. The statisti-
cal states 𝑢̄𝑡, 𝑅𝑡 are first treated as new individual processes subject 
to higher-order moments w.r.t. 𝜌𝑡. Then, the microscopic stochastic 
equation for 𝑍𝑡 models the high-dimensional multiscale process with 
explicit dependence on the macroscopic states 𝑢̄𝑡 and 𝑅𝑡.

In the rest part of this section, we built a precise link between the 
new model (11) and the coupled Eqs. (9) and (7a) from the original 
system (1). First, the following lemma provides the self-consistency in 
the leading moments of the stochastic modes 𝑍𝑘 and statistical states 
𝑢̄𝑡, 𝑅𝑡 in (11). 

Lemma 2.  With consistent initial conditions E [

𝑍0
]

= 0 and E [

𝑍0𝑍
⊺
0
]

=
𝑅0, the leading moments of the stochastic modes 𝑍𝑡 of the coupled model 
(11) satisfy 
E
[

𝑍
]

= 0, E
[

𝑍 𝑍⊺] = 𝑅 , (13)
𝑡 𝑡 𝑡 𝑡

4 
for all 𝑡 > 0 where the expectation is taken w.r.t. the PDF 𝜌𝑡 of 𝑍𝑡, and 𝑅𝑡
is the solution of the second-order moment equation in (11).

The identities (13) can be found through the direct application of 
Itô’s formula and we put the proof in Appendix  B. Lemma  2 demon-
strates that the mean zero coefficients 𝑍𝑡 maintain the same covariance 
with the statistical equation of 𝑅𝑡, while it also contains more in-
formation of the higher-order statistics. Furthermore, we show that 
the coupled stochastic-statistical model generates the same statistical 
solution as the original system (1). The following proposition describes 
the statistical consistency between the coupled model (11) and the 
original system (1). 

Proposition 3.  Assume that 𝑝𝑡 is the PDF that solves the FPE (2) of the 
system (1) for 𝑢𝑡, and the solution 

{

𝑢̄𝑡, 𝑅𝑡;𝑍𝑡
} of the stochastic-statistical 

model (11) has the PDF 𝜌𝑡 for 𝑍𝑡 together with the deterministic solutions 
for 𝑢̄𝑡 and 𝑅𝑡. Then from the same initial conditions, the two models give 
the same statistical solution, that is, for all 𝑡 > 0

E𝑝𝑡
[

𝑢𝑡
]

= 𝑢̄𝑡, E𝑝𝑡
[

𝑢′𝑡𝑢
′⊺
𝑡
]

= 𝑅𝑡, (14)

where 𝑢′𝑡 = 𝑢𝑡 − E𝑝𝑡
[

𝑢𝑡
]

. Furthermore, for any function 𝜑 ∈ 𝐶2
𝑏
(

R𝑑
) we 

have 
E𝑝𝑡

[(

1 + |

|

𝑢′𝑡||
2
)

𝜑
(

𝑢′𝑡
)

]

= E𝜌𝑡
[(

1 + |

|

𝑢̃𝑡||
2
)

𝜑
(

𝑢̃𝑡
)

]

, (15)

where 𝑢̃𝑡 =
∑𝑑
𝑘=1𝑍𝑘,𝑡𝑣̂𝑘 is the fluctuation component in the coupled model 

(11).

Notice that the left hand sides of (14) and (15) consist of the 
statistics requiring solving the PDF 𝑝𝑡 of the original system, while 
the right hand sides are purely w.r.t. the PDF 𝜌𝑡 from the coupled 
model. The proof of Proposition  3 can be found in Appendix  B through 
detailed computation of each moments of (1) compared with that of 
(11). Together with Lemma  1, (15) shows that all higher-order statistics 
with each high-order of moments are also preserved in finite amplitude 
in the new model formulation (11), thus the new PDF solution 𝜌𝑡 can be 
effectively used to represent the statistics in the original system under 
𝑝𝑡.

Remark.  1. Proposition  3 confirms the direct link between the new 
stochastic-statistical model (11) to the statistics in the original fully 
coupled multiscale system. The consistency in the statistical solution 
guarantees the existence of solution for the proposed new system given 
the original system has a unique statistical solution that starts from 
the same initial condition. Still, more care may be required for the 
ergodic properties of the original SDE (1). In our case of high but fixed 
dimensional stochastic problems, ergodicity holds as long as there is 
a quadratic trap potential due to (3a), 12 ⟨𝑢,𝐷𝑢⟩ > 0, at far field. The 
existence of equilibrium invariant measures and ergodicity of SPDEs 
become a more delicate problem. There have been a series of studies 
demonstrating ergodic behaviors for the Lorenz equation [48], the 2D 
Navier–Stokes equations with degenerate random forcing [33], and 
the Rayleigh–Bénard convection with an additive noise [49] as typical 
examples of the general stochastic model.

2. We can also propose a first-order coupled model involving only 
the statistical mean equation coupled with the McKean–Vlasov SDE 
d𝑍𝑡 = 𝐿

(

𝑢̄𝑡
)

𝑍𝑡d𝑡 + 𝛤
(

𝑍𝑡𝑍
⊺
𝑡 − E

[

𝑍𝑡𝑍
⊺
𝑡
])

d𝑡 + 𝛴𝑡d𝑊𝑡,
d𝑢̄𝑡
d𝑡

=𝑀
(

𝑢̄𝑡
)

+
∑

𝑝,𝑞
E
[

𝑍𝑝,𝑡𝑍𝑞,𝑡
]

𝐵
(

𝑣̂𝑝, 𝑣̂𝑞
)

+ 𝐹𝑡.
(16)

(16) can serve as an intermediate model for uncertainty quantification 
and filtering schemes. However, the above first-order equations can 
only rely on the stochastic model to compute the second moments and 
the dynamics of the SDE for 𝑍𝑡 will directly involve expectation w.r.t. 
its law 𝜌𝑡. Thus this model will often suffer larger numerical errors and 
instability in practical applications using finite sample sizes [41].
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2.3. The stochastic closure equation as a multiscale interacting system

From the stochastic-statistical formulation (11), the SDE for 𝑍𝑡 is 
given by a stochastic McKean–Vlasov equation depending on its own 
probability distribution 𝜌𝑡. In particular, the resulting McKean–Vlasov 
SDE can be viewed naturally as the mean-field limit of the ensemble 
approximation of 𝑁 individual trajectories 

d𝑍(𝑖)
𝑡 = 𝐿

(

𝑢̄𝑁𝑡
)

𝑍𝑡d𝑡 + 𝛤
(

𝑍(𝑖)
𝑡 𝑍

(𝑖)⊺
𝑡 − 𝑅𝑁𝑡

)

d𝑡 + 𝛴𝑡d𝑊
(𝑖)
𝑡 , 𝑖 = 1,… , 𝑁,

(17)

where 
{

𝑊 (𝑖)
𝑡

}𝑁

𝑖=1
 are independent white noise processes, and the initial 

samples 
{

𝑍(𝑖)
0

}𝑁

𝑖=1
 are drawn from the same initial distribution 𝜌0 of 

𝑍𝑡. Notice that the ensemble members 𝑍(𝑖)
𝑡  as interacting particles are 

not evolving independently with each other, but are coupled through 
feedbacks of the leading-order statistics 𝑢̄𝑁𝑡  and 𝑅𝑁𝑡  according to the 
statistical equations 
d𝑢̄𝑁𝑡
d𝑡

=𝑀
(

𝑢̄𝑁𝑡
)

+𝑄𝑚
(

E𝑁
[

𝐙𝑡 ⊗ 𝐙𝑡
])

+ 𝐹𝑡,

d𝑅𝑁𝑡
d𝑡

= 𝐿
(

𝑢̄𝑁𝑡
)

𝑅𝑁𝑡 + 𝑅𝑁𝑡 𝐿
⊺ (𝑢̄𝑁𝑡

)

+𝑄𝑣
(

E𝑁
[

𝐙𝑡 ⊗ 𝐙𝑡 ⊗ 𝐙𝑡
])

+ 𝛴𝑡𝛴
⊺
𝑡 + 𝜖

−1 (E𝑁
[

𝐙𝑡𝐙
⊺
𝑡
]

− 𝑅𝑁𝑡
)

.

(18)

The statistical equations (18) involving high-order moments computed 
directly by the law of the stochastic state 𝑍𝑡 from the ensemble estimate 
in (17) can be viewed as the closed model, and no additional information 
is needed for the PDF 𝑝𝑡 of the original system. The expectations are 
computed through the empirical average of the interacting particles 
𝐙𝑡 =

{

𝑍(𝑖)
𝑡

}𝑁

𝑖=1
 from the ensemble simulation 

E𝑁
[

𝜑
(

𝐙𝑡
)]

= 1
𝑁

𝑁
∑

𝑖=1
𝜑
(

𝑍(𝑖)
𝑡

)

. (19)

In general, large errors will be introduced by computing the statistics 
using (18) from a finite ensemble approximation of the stochastic pro-
cess (17). In the second moment equation for 𝑅𝑁𝑡 , one major difficulty 
found in many realistic situations for accurate prediction [7,47] is 
the inherent instability represented by the positive eigenvalues in the 
coefficient 𝐿 (

𝑢̄𝑁𝑡
)

. This will induce positive growth rate in the unstable 
modes, while this unbounded growth can be only balanced by the 
third-moment feedback in 𝑄𝑣. An additional relaxation term with a 
parameter 𝜖 > 0 is thus introduced. This term will not modify the origi-
nal statistical dynamics given the consistent second-order moment from 
Proposition  3, and is playing a crucial role as a ‘reinforcement’ term in 
maintaining stable performance by introducing an ‘effective damping’ 
effect with the negative sign in 𝑅𝑁𝑡  (see [44] for examples in numerical 
tests) especially with high instability induced by the strong mean-
fluctuation coupling from 𝐿 (

𝑢̄𝑁𝑡
) while the finite sample approximation 

becomes not sufficient to balance the strong linear instability.
The coupled ensemble approximation Eqs. (17) and (18) have ad-

vantages in practical applications. Unlike the general McKean–Vlasov 
SDEs [50], (17) avoids the direct inclusion of the PDF of 𝑍𝑡, which is 
very difficult to approximate accurately from finite particles. Instead, 
the mean and covariance equations are used to link the contributions 
from higher moments, enabling the effective computational algorithm 
shown in Section 5. Effective computational algorithms with consistent 
statistics then can be proposed (such as using the efficient random 
batch methods [41,44]) for the straightforward ensemble model ap-
proximation. Besides in practical computation, the relaxation term 
in 𝑅𝑁𝑡  provides additional restoring forcing as a correction term to 
numerical errors with finite sample approximation to reinforce stable 
dynamics and consistent statistics especially in the case where internal 
instability is involved.

In particular, it is well-known [51] that the empirical measure 
converges weakly to the true distribution, 𝜌𝑡, as well as the leading-
order statistics in (17), 𝑢̄𝑁 → 𝑢̄, 𝑅𝑁 → 𝑅 , as 𝑁 → ∞ under relatively 
𝑡 𝑡

5 
weak assumptions. The dynamical equation for the continuous density 
function 𝜌𝑡 of 𝑍𝑡 is given by the corresponding equation
𝜕𝜌𝑡
𝜕𝑡

= ∗
𝑡
(

𝑢̄𝑡, 𝑅𝑡
)

𝜌𝑡 ∶= −∇𝑧 ⋅
[

𝐿
(

𝑢̄𝑡
)

𝑧𝜌𝑡 (𝑧) + 𝛤
(

𝑧𝑧⊺ − 𝑅𝑡
)

𝜌𝑡 (𝑧)
]

+ 1
2
∇𝑧 ⋅

[

∇𝑧 ⋅
(

𝛴𝑡𝛴
⊺
𝑡 𝜌𝑡 (𝑧)

)]

, (20)

where ∗
𝑡  is the adjoint of the generator 𝑡 that is also dependent on 

the law of 𝑍𝑡 shown in the statistics of the mean 𝑢̄𝑡 and covariance 
𝑅𝑡. In general, the probability density 𝜌𝑡 will demonstrate non-Gaussian 
features due to the nonlinear stochastic coupling effects. On the other 
hand, quantification of non-Gaussian statistics in 𝑍𝑡 relies on the ac-
curate estimation of the leading-order mean and covariance, which 
can be assisted from the observation data. These desirable structure 
inspires the construction of effective filtering methods next in Section 3 
to include leading-order statistical observations to improve forecast of 
highly non-Gaussian statistics.

3. Filtering models using observations in mean and covariance

In this section, we propose a new strategy of predicting the probabil-
ity distribution in the coupled stochastic-statistical model (11) involv-
ing highly non-Gaussian statistics. An optimal filter for the ensemble 
estimate of 𝜌𝑡 from the coupled equations (17) and (18) is developed 
by combining the stochastic forecast model describing unobserved mi-
croscopic states and leading-order statistics introduced as macroscopic 
observations. We start with a precise description of the optimal filter 
equations satisfying a functional conditional Gaussian process, then a 
new statistical filtering model is proposed approximating the optimal 
filtering solution showing equivalent statistics.

3.1. Filtering probability distributions using statistical observations

We first formulate the filtering problem for predicting probability 
distributions based on observations from the leading-order statistics. 
From the stochastic-statistical Eqs. (11), we can reformulate the gen-
eral multiscale system (1) for 𝑢𝑡 as a composition of the macroscopic 
state from the first two moments 𝑢̄𝑡, 𝑅𝑡 and the microscopic stochastic 
processes 𝑍𝑡. In practice, statistical observations are often available 
through measurements of the macroscopic states. The macroscopic 
mean state could be achieved from taking the local average in coarse-
grained grids and variances estimated by the local fluctuations from the 
mean state. Another situation includes uncertainty quantification for 
low-order model predictions. Especially, there has been a large group 
of data-driven models [52,53] that can be used to produce low-order 
statistical data while lacking the skill to predict high-order moments. 
Other reduced-order approaches such as the statistical response the-
ory [47] can also be adopted to exact the low-order statistics in certain 
problems using the available equilibrium distribution. Therefore, it 
is natural to incorporate the statistical observation data to improve 
the estimation of the unobserved microscopic processes, especially to 
recover the unobserved higher-order statistics (such as the deviation 
from the normal distribution indicating the occurrence of high impact 
extreme events).

We start with the target process of the original model state 𝑢𝑡 with 
the associated PDF 𝑝𝑡 ∈ 

(

R𝑑
) belonging to the space of continuous 

probability density functions on R𝑑 with all finite moments (from 
Lemma  1). Using the statistical consistency in Proposition  3, we can 
track the dynamical evolution of the equivalent PDF solution 𝜌𝑡 with 
the coupled stochastic-statistical Eqs. (11). Furthermore, in practical 
numerical implementations, the signal process in the forecast model is 
generated by the ensemble simulation with particles in (17) satisfying 
the law 𝑍(𝑖)

𝑡 ∼ 𝜌𝑁𝑡 . The observation process is generated by the 
higher-order statistical moments computed from the finite ensemble 
approximation (18) denoted as 𝑦𝑁𝑡 =

(

𝑢̄𝑁𝑡 , 𝑅
𝑁
𝑡
)

∈ R𝑝. This leads to the 
following infinite-dimensional filtering system with statistical observations 
d𝜌𝑁 = ∗ (𝑦𝑁

)

𝜌𝑁d𝑡, 𝜌𝑁 ∼ 𝜇 , (21a)
𝑡 𝑡 𝑡 𝑡 𝑡=0 0
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d𝑦𝑁𝑡 =
[

𝜌𝑁𝑡 + ℎ𝑡
(

𝑦𝑁𝑡
)]

d𝑡 + 𝛤𝑡d𝐵𝑡, 𝑦𝑁𝑡=0 = 𝑦0, (21b)

where 𝜇0 is a probability measure of the 
(

R𝑑
)

-valued random field. 
Above, 𝑡 is the infinitesimal generator of the corresponding SDE for 
𝑍(𝑖)
𝑡  given by the explicit form in (20); the general observation process 

𝑦𝑁𝑡  satisfies the dynamical equation subject to a linear observation 
operator  ∶ 

(

R𝑑
)

→ R𝑝 (with the explicit forms shown next in 
(24)) acting on the continuous PDF 𝜌𝑁𝑡 , as well as the deterministic 
function ℎ𝑡 ∶ R𝑝 → R𝑝. The additional noise term 𝛤𝑡d𝐵𝑡 is introduced 
to account for the errors from finite ensemble approximation (further 
explanation will be given next in the explicit model (23)). Notice 
here 𝜌𝑁𝑡  becomes a random field due to the randomness in the finite 
ensemble approximation for the dynamics of 𝑦𝑁𝑡  as well as its initial 
uncertainty. Given the observation process 𝑦𝑁𝑠 , 𝑠 ≤ 𝑡, 𝜌𝑁𝑡  satisfies a 
conditional linear dynamics. Thus we can solve the solution for 𝜌𝑁𝑡 ∈

(

R𝑑
) satisfying a conditional Gaussian probability measure. Next, we 

give a detailed formulation for the observation data 𝑦𝑡 as in (23) based 
on the first two moments.

Remark.  In practice, it is common that only partial observation data in 
the mean and covariance are available for the filtering update. In this 
case, the forecast Eq. (21a) can be further decomposed into the part 
only dependent on the observation process, and the residual process 
containing all the unobserved states (possibly also using proper closure 
models). This introduces an imperfect model approximation that allows 
models errors and maintains the conditional Gaussian dynamics [54].

3.1.1. Statistical observations from leading-order moments
Let 𝑝𝑡 be the (unknown) PDF of the state 𝑢𝑡 in (1), that is, the deter-

ministic solution of the FPE (2). Then, we can assume that observations 
are drawn from the mean and covariance of the state 𝑢𝑡 as 
𝑢̄𝑘,𝑡 = E𝑝𝑡

[

𝑢𝑡 ⋅ 𝑣̂𝑘
]

, 𝑅𝑘𝑙,𝑡 = E𝑝𝑡
[(

𝑣̂𝑘 ⋅ 𝑢
′
𝑡
) (

𝑢′𝑡 ⋅ 𝑣̂𝑙
)]

, (22)

projected to the observed large-scale modes 𝑣̂𝑘, 𝑘 ≤ 𝑑′ in (5). We refer 
it as the full observation case with 𝑑′ = 𝑑, and partial observation 
case with 𝑑′ < 𝑑. For simplicity, we may always consider the full 
observation case 𝑑′ = 𝑑 (that is, 𝑦𝑡 =

(

𝑢̄𝑡, 𝑅𝑡
)

∈ R𝑝 with 𝑝 = 𝑑 + 𝑑2) in 
this paper without confusion. According to Proposition  3, the statistical 
equations for 𝑢̄𝑡, 𝑅𝑡 in (11) provide statistical solutions consistent with 
the law 𝑝𝑡 of the state 𝑢𝑡. Thus, the dynamical equations for 𝑢̄𝑡, 𝑅𝑡 can 
be introduced according to the coupled model (11).

On the other hand, model errors always exist in the numerical 
schemes due to the finite ensemble approximation in the practical 
implementation model (17) and (18). The detailed equations for the 
observation process (21b) can be rewritten according to the finite 
particle estimate (18) as the following SDEs for 𝑢̄𝑁𝑡 ∈ R𝑑 and 𝑅𝑁𝑡 ∈ R𝑑2

d𝑢̄𝑁𝑡 =
[

𝑚𝜌
𝑁
𝑡 + ℎ𝑚,𝑡

(

𝑢̄𝑁𝑡
)]

d𝑡 + 𝛤𝑚d𝐵𝑚,𝑡,

d𝑅𝑁𝑡 =
[

𝑣𝜌
𝑁
𝑡 + ℎ𝑣,𝑡

(

𝑢̄𝑁𝑡 , 𝑅
𝑁
𝑡
)]

d𝑡 + 𝛤𝑣d𝐵𝑣,𝑡.
(23)

where ℎ𝑚,𝑡 (𝑢̄) =𝑀 (𝑢̄) + 𝐹𝑡 and ℎ𝑣,𝑡 (𝑢̄, 𝑅) = 𝐿 (𝑢̄)𝑅 + 𝑅𝐿 (𝑢̄)⊺ + 𝛴𝑡𝛴
⊺
𝑡  are 

deterministic functions, while the linear observation operators, 𝑚,𝑣, 
are defined by the high-order statistical feedback functions (12)

𝑚,𝑘𝜌 = ∫R𝑑
𝐻𝑚
𝑘 (𝑧) 𝜌 (𝑧) d𝑧, 𝐻𝑚

𝑘 =
𝑑
∑

𝑝,𝑞=1
𝛾𝑘𝑝𝑞𝑧𝑝𝑧𝑞 ,

𝑣,𝑘𝑙𝜌 = ∫R𝑑
𝐻𝑣
𝑘𝑙 (𝑧) 𝜌 (𝑧) d𝑧, 𝐻𝑣

𝑘𝑙 =
𝑑
∑

𝑝,𝑞=1

(

𝛾𝑘𝑝𝑞𝑧𝑝𝑧𝑞𝑧𝑙 + 𝛾𝑙𝑝𝑞𝑧𝑝𝑧𝑞𝑧𝑘
)

.

(24)

Importantly, additional correction terms, modeled by independent 
white noises, 𝐵𝑚,𝑡 and 𝐵𝑣,𝑡, are added to the statistical equations ac-
counting for errors from the finite ensemble approximations. In fact, the 
empirical averages in the mean and covariance equations (18) can be 
both decomposed into the expectation w.r.t. the continuous 𝜌𝑁  and the 
additional noises are used to represent the fluctuating errors from the 
finite 𝑁 sample estimation, that is, E𝑁𝐻 𝑍 d𝑡 ≈ E𝐻 𝑍 d𝑡+𝛤d𝐵. The 
( ) ( )

6 
left hand side of the identity contains randomness from the empirical 
average (19), while the right hand side uses the white noise to model 
the uncertainty according to the central limit theorem. Therefore, the 
observation data in (22) can be viewed as a special realization of the 
observation processes with noises (23).

We assume that 𝜌𝑁 ∈ 
(

R𝑑
) is the probability density with finite 

moments in all orders, thus we have 𝑚,𝑘𝜌𝑁 < ∞ and 𝑣,𝑘𝑙𝜌𝑁 < ∞
for all modes 𝑘, 𝑙. Then (23) fits into the general observation equa-
tion (21b) by setting 𝑦𝑁𝑡 =

(

𝑢̄𝑁𝑡 , 𝑅
𝑁
𝑡
)

∈ R𝑝 with 𝑝 = 𝑑 + 𝑑2 in a 
column vector, and letting  =

(

𝑚,𝑣
)⊺, ℎ𝑡 =

(

ℎ𝑚,𝑡, ℎ𝑣,𝑡
)⊺, and 

𝛤𝑡 = diag
(

𝛤𝑚, 𝛤𝑣
)

. With this explicit setup of the signal and observation 
processes for filtering, we will consider the optimal filtering solution 
for the probability density 𝜌𝑡 of 𝑍𝑡 based on the statistical observation 
data 𝑌𝑡 =

{(

𝑢̄𝑠, 𝑅𝑠
)

, 𝑠 ≤ 𝑡
} we abuse the notation a bit by neglecting the 

superscript 𝑁 in the following sections for the theoretical development.

3.2. Optimal filter with conditional Gaussian structure

Let (𝛺, ,P) be the complete probability space, and denote 2
(

R𝑑
)

as the space of probability density functions with bounded second 
moments. We first define the 2

(

R𝑑
)

-valued stochastic process 𝜌𝑡 (de-
noting 𝜔 ∈ 𝛺 as the random event and will be dropped in the following 
notation) as 

𝜌𝑡 ∶ R𝑑 ×𝛺 → R+, (𝑧, 𝜔) ↦ 𝜌𝑡 (𝑧;𝜔) , with 𝜌𝑡 (⋅;𝜔) ∈ 2
(

R𝑑
)

, (25)

which is thereafter referred to as a random field. In contrast to the 
standard filtering problem concerning the nonlinear SDE of the random 
model states 𝑍𝑡, for derivation purpose of the exact optimal equations, 
we lift the problem into filtering the random field 𝜌𝑡 based on the ob-
servation information 𝑦𝑠, 𝑠 ≤ 𝑡 as in (21). A stochastic model (36) on R𝑑
will follow for practical implementations next in Section 3.4. Let 𝑡 =
𝜎
{

𝜔 ∶ 𝑦𝑠, 𝑠 ≤ 𝑡
} be the 𝜎-algebra generated by the observations. We 

define the space 𝑡 as the collection of 𝑡-measurable square-integrable 
random fields 

𝑡 ∶= 𝐿2 (𝛺,𝑡,P;2
(

R𝑑
)

∩ 𝐿2 (R𝑑
))

, (26)

satisfying ∫ ‖𝜈 (⋅;𝜔)‖2
𝐿2(R𝑑

) dP (𝜔) < ∞ and 𝜈 (⋅;𝜔) ∈ 2
(

R𝑑
)

∩ 𝐿2 (R𝑑
)

for 𝜈 ∈ 𝑡. In this infinite-dimensional filtering problem, we aim to find 
the optimal approximation of 𝜌𝑡 in the space 𝑡. The optimal filtering 
solution 𝜌̂𝑡 is then introduced as the least-square estimate with the 
minimum variance as 

𝜌̂𝑡 ∶= argmin
𝜈∈𝑡

E
[

‖

‖

𝜌𝑡 − 𝜈‖‖
2
𝐿2(R𝑑

)

]

= 𝖯𝑡
[

𝜌𝑡
]

, (27)

where the optimal solution 𝜌̂𝑡 can be viewed as the unbiased projection 
of 𝜌𝑡 onto the space 𝑡. (27) indicates that 𝜌̂𝑡 gives the estimation closest 
to the true distribution 𝜌𝑡 in the mean square sense in agreement with 
the observations 𝑡.

Accordingly, we define the optimal filter distribution 𝜇𝑡 ∶ 2
(

R𝑑
)

×
𝛺 → [0, 1] as the regular conditional measure of the stochastic process 
𝜌𝑡 given 𝑡. That is, for any Borel set 𝐴 ∈ 

(

2
(

R𝑑
))

, 𝜇𝑡 is given by 
the conditional probability of 𝜌𝑡 given 𝑡 such that 

𝜇𝑡 (𝐴; ⋅) ∶= P
(

𝜌𝑡 ∈ 𝐴 ∣ 𝑡
)

, P − a.s. (28)

Notice that 𝜇𝑡 (𝐴; ⋅) ∈ 𝑡 is still a stochastic process. For any func-
tional 𝐹 ∈ 𝐶

(

2
(

R𝑑
)) and 𝑡 > 0, we can introduce the conditional 

expectation w.r.t. the measure 𝜇𝑡 given 𝑡 as

E
[

𝐹
(

𝜌𝑡
)

∣ 𝑡
]

∶= ∫(

R𝑑
)

𝐹 (𝜌)𝜇𝑡 (d𝜌) .

Therefore, the optimal filter solution (27) is the following random field 

𝜌̂ = E
[

𝜌 ∣ 
]

(29)
𝑡 𝑡 𝑡



D. Qi and J.-G. Liu Physica D: Nonlinear Phenomena 484 (2025) 135013 
given by the conditional expectation of 𝜌𝑡 w.r.t. 𝜇𝑡. Furthermore, for 
any linear operator  ∶ 𝐿2 (R𝑑

)

→ R𝑝, we have 𝜌̂𝑡 = E
[

𝜌𝑡 ∣ 𝑡
]

. 
And the second moment of 𝜌𝑡 is given by
E
[(

𝜌𝑡 −𝜌̂𝑡
) (

𝜌𝑡 −𝜌̂𝑡
)⊺ ∣ 𝑡

]

= ̂𝑡∗,

where ̂𝑡 (𝜔) ∶ 𝐿2 (R𝑑 ;R𝑝
)

→ 𝐿2 (R𝑑 ;R𝑝
) with ̂∗

𝑡 = ̂𝑡 is the self-adjoint 
covariance operator for any 𝑓 ∈ 𝐿2 (R𝑑 ;R𝑝

)

, such that 

̂𝑡𝑓 = E
[

(

𝜌 − 𝜌̂𝑡
)

∫R𝑑
(

𝜌 − 𝜌̂𝑡
)

(𝑧) 𝑓 (𝑧) d𝑧 ∣ 𝑡
]

. (30)

Notice again ̂𝑡𝑓 (𝑧; ⋅) is also a random field conditional on 𝑡. For 
clarification of notations, we will call 𝜌̂𝑡 and ̂𝑡 the optimal filter 
solution and its covariance, and 𝜇𝑡 the optimal filter distribution in the 
rest part of the paper.

We can characterize the optimal filter solution 𝜌̂𝑡 as the best esti-
mate in each order of moments. The following result describes the accu-
racy of the filter approximations in any finite-dimensional projections 
with the proof in Appendix  B. 

Proposition 4.  Let 𝜌𝑡 be the random field from the system (21) and 
𝜌̂𝑡 = E

[

𝜌𝑡 ∣ 𝑡
] the optimal filter solution given the observations 𝑡. For any 

linear operator  ∶ 2
(

R𝑑
)

→ R𝑝 defined by 𝜌 = ∫ 𝑀 (𝑧) 𝜌 (d𝑧) and 
𝑀 ∈ 𝐶

(

R𝑑 ;R𝑝
)

, 𝜌̂𝑡 = E
[

𝜌𝑡 ∣ 𝑡
] gives the best unbiased estimate of 

𝜌𝑡 in the sense of minimum mean square error, that is, 

E
[

|

|

𝜌𝑡 −𝜌̂𝑡||
2
]

= min
𝜈∈𝑡

E
[

|

|

𝜌𝑡 −𝜈|
|

2
]

, with E
[

𝜌̂𝑡
]

= E
[

𝜌𝑡
]

.

(31)

By taking the operator  as the expectation on 𝑀 (

𝑍𝑡
)

= |

|

𝑍𝑡||
𝑚

with any integer 𝑚, 𝜌𝑡 and 𝜌̂𝑡 give the 𝑚th order moments of 𝑍𝑡
under the random field 𝜌𝑡 in (25) and the optimal filter approximation 
𝜌̂𝑡 respectively. A direct implication from (31) shows that we have 
the unbiased statistics in all finite-dimensional moments E [

𝜌̂𝑡
]

=
E
[

𝜌𝑡
] with the minimum error E

[

|

|

𝜌𝑡 −𝜌̂𝑡||
2
]

 from the infinite-
dimensional optimal filter solution.

Importantly, the model equations (21) satisfy the desirable con-
ditional Gaussian process [55], that is, given the observations of
𝑌𝑡 =

{

𝑦𝑠 =
(

𝑢̄𝑠, 𝑅𝑠
)

, 𝑠 ≤ 𝑡
} and Gaussian initial distribution for 𝜌0, 

the random field 𝜌𝑡 follows a Gaussian distribution at each time 𝑡. 
Let 𝜌𝑡 be the signal state satisfying linear dynamics (21a), and 𝑦𝑡 the 
observed statistical process subject to linear observation operators in 
(21b). The optimal filter distribution 𝜇𝑡 (28) conditional on 𝑌𝑡 then 
becomes an infinite-dimensional Gaussian distribution, 𝜇𝑡 = 

(

𝜌̂𝑡, ̂𝑡
)

, 
where the mean 𝜌̂𝑡 and covariance ̂𝑡 give the solution to (29) and (30) 
respectively. Therefore, the equations for the mean and covariance are 
given by the generalized version of Kalman–Bucy (KB) filter [56] for 
the infinite-dimensional conditional Gaussian process 

d𝜌̂𝑡 = ∗
𝑡
(

𝑢̄𝑡, 𝑅𝑡
)

𝜌̂𝑡d𝑡 + ̂𝑡∗
𝑚𝛤

−2
𝑚

{

d𝑢̄𝑡 −
[

𝑚𝜌̂𝑡 + ℎ𝑚,𝑡
(

𝑢̄𝑡
)]

d𝑡
}

+ ̂𝑡∗
𝑣𝛤

−2
𝑣

{

d𝑅𝑡 −
[

𝑣𝜌̂𝑡 + ℎ𝑣,𝑡 (𝑢̄, 𝑅)
]

d𝑡
}

,

d̂𝑡 =
[

∗
𝑡
(

𝑢̄𝑡, 𝑅𝑡
)

̂𝑡 + ̂𝑡𝑡
(

𝑢̄𝑡, 𝑅𝑡
)]

d𝑡 − ̂𝑡
(

∗
𝑚𝛤

−2
𝑚 𝑚 +∗

𝑣𝛤
−2
𝑣 𝑣

)

̂𝑡d𝑡.

(32)

The existence and uniqueness of solution to the equations of the con-
ditional Gaussian processes (32) are shown in Chapter 12 of [55] for 
finite-dimensional systems. The results are then generalized to infinite-
dimensional Hilbert space [57,58] (see a summary of the results in 
Appendix  A). The system (32) gives a closed set of coupled SPDEs 
(due to the randomness in 𝑢̄𝑡, 𝑅𝑡) enabling more detailed analysis and 
development of practical methods for computing the optimal solution.

Remark.  A similar filtering problem using statistical observations is 
introduced and analyzed as the ensemble Fokker–Planck filter by [37]. 
Inspired by the idea, we propose the filtering equations (32) for the 
7 
more general nonlinearly coupled conditional processes. Very different 
from the linear setup in [37], we propose a new nonlinear filter-
ing model that incorporates the general stochastic-statistical modeling 
framework (11) that is suitable for effective statistical forecasts of 
non-Gaussian statistics.

3.3. A surrogate filtering model for approximating the optimal filter solution

The resulting optimal filtering problem from (21) requires solving 
the infinite-dimensional system (32) concerning the function 𝜌̂𝑡 and the 
operator ̂𝑡. It becomes intractable in finding such infinite-dimensional 
solutions from direct methods. In developing practical strategies to 
realize the optimal filter solution, it is more useful to find a surrogate 
model for the stochastic process 𝑍̃𝑡, based on which effective ensemble-
based approaches can be built. Therefore, we aim to construct an 
approximating filter from designing a new dynamical equation for 𝑍̃𝑡, 
whose PDF 𝜌̃𝑡 constrained in the probability space ∞

(

R𝑑
) with all 

finite moments to effectively represent that of the optimal filter solution 
𝜌̂𝑡.

3.3.1. Filtering updating cycle in a split two-step procedure
For a clear characterization of the filtering process, we follow the 

general procedure in [27] to first describe the filtering process by 
concatenated iterations of transporting maps on the corresponding 
probability distribution. We propose a new stochastic process 𝑍̃𝑡, whose 
law 𝜌̃𝑡 ∈ 𝑡 is a ∞

(

R𝑑
)

-valued random field dependent on the same 
statistical observation 𝑌𝑡 as in the optimal filter satisfying (32). Thus, 
the filtering updating cycle during the time interval [𝑡, 𝑡 + 𝜏] can be 
characterized by the transport of the probability density 𝜌̃𝑡 of 𝑍̃𝑡 in a 
split two-step procedure.

First, the forecast step can be viewed as the push-forward operator 
acting on the probability density at time instant 𝑡 with time step 𝜏 > 0

𝜌̃𝑡 → 𝜌̃−𝑡+𝜏 ∶=  𝜏
𝑡 𝜌̃𝑡 = 𝑒∫

𝑡+𝜏
𝑡 ∗

𝑠
(

𝑦𝑠
)

d𝑠𝜌̃𝑡, (33)

where  𝜏
𝑡  represents the forecast updating operator with forward time 

step 𝜏, and 𝑡
(

𝑦𝑡
) is the same generator as in (20). Second, the analysis 

step updates the prior distribution 𝜌̃− to the posterior distribution 𝜌̃+ by 
incorporating the observation data up to 𝑌𝑡+𝜏 =

{

𝑦𝑠, 𝑠 ≤ 𝑡 + 𝜏
}

, that is 

𝜌̃−𝑡+𝜏 → 𝜌̃+𝑡+𝜏 ∶= 𝜏
𝑡
(

𝜌̃−𝑡+𝜏 ; 𝑌𝑡+𝜏
)

, (34)

where 𝜏
𝑡  represents the analysis updating operator. Therefore, the full 

filtering cycle from 𝑡 to 𝑡 + 𝜏 can be summarized as the composition of 
the two maps 

𝜌̃𝑡+𝜏 = 𝜏
𝑡
(

 𝜏
𝑡 𝜌̃𝑡; 𝑌𝑡+𝜏

)

. (35)

Notice that  𝜏
𝑡  is a linear operator on 𝜌̃𝑡, while 𝜏

𝑡  could contain nonlin-
ear actions due to the normalization of the probability distribution. The 
continuous equation for 𝜕𝑡𝜌̃𝑡 = lim𝜏→0

1
𝜏

(

𝜌̃𝑡+𝜏 − 𝜌̃𝑡
) is then achieved by 

letting the discrete time step 𝜏 → 0. Next, we first propose the general 
new filtering model for 𝑍̃𝑡 ∼ 𝜌̃𝑡 as a combination of the above two-step 
procedure, then detailed analysis can be done according to the design 
of the forecast and analysis step operators  𝜏

𝑡  and 𝜏
𝑡  accordingly.

3.3.2. Construction of the statistically equivalent approximating filter
For simplicity of notations, we still use the general statistical obser-

vation processes (23) for 𝑦𝑡 =
(

𝑢̄𝑡, 𝑅𝑡
) taking the compact formulation

d𝑦𝑡 =
[

𝜌𝑡 + ℎ𝑡
(

𝑦𝑡
)]

d𝑡 + 𝛤𝑡d𝐵𝑡,

where the general observation operator (24), 𝜌𝑡 = ∫ 𝐻 (𝑧) 𝜌𝑡 (𝑧) d𝑧, 
is defined with the general observation function 𝐻 ∈ 𝐶

(

R𝑑 ;R𝑝
)

acting on the density function 𝜌𝑡. Following the general construction 
in [17,19], we seek the approximating filtering model adopting the 
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following McKean–Vlasov representation with functionals 𝑎𝑡, 𝐾𝑡
d𝑍̃𝑡 = 𝐿

(

𝑢̄𝑡
)

𝑍̃𝑡d𝑡 + 𝛤
(

𝑍̃𝑡𝑍̃
⊺
𝑡 − 𝑅𝑡

)

d𝑡 + 𝛴𝑡d𝑊̃𝑡

+𝑎𝑡
(

𝑍̃𝑡; 𝜌̃𝑡
)

d𝑡 +𝐾𝑡
(

𝑍̃𝑡; 𝜌̃𝑡
) {

d𝑦𝑡 −
[

𝐻
(

𝑍̃𝑡
)

+ ℎ𝑡
(

𝑦𝑡
)]

d𝑡 − 𝛤𝑡d𝐵̃𝑡
}

,

(36)

where 𝑊̃𝑡, 𝐵̃𝑡 are white noise processes independent of 𝑊𝑡, 𝐵𝑡. We use 
the name ‘statistical filtering’ to refer the above new approximating 
filtering model emphasizing our main goal of filtering statistical mo-
ments different from the common filtering case. The first row of the 
above equation models the forecast step of the filtering process, while 
the second row is the analysis step. The forecast step accepts the same 
dynamical model of (21a) dependent on the mean and covariance 
(

𝑢̄𝑡, 𝑅𝑡
)

. On the other hand, the analysis step serves as an additional 
correction as an control over statistical observations 𝑦𝑡. New functionals 
known as the drift 𝑎𝑡 ∶ R𝑑 × ∞

(

R𝑑
)

→ R𝑑 and the gain operator 
𝐾𝑡 ∶ R𝑑 × ∞

(

R𝑑
)

→ R𝑑×𝑝 are introduced, resulting in an approxi-
mating filtering model about the process 𝑍̃𝑡. Most importantly, as will 
be shown next in Theorem  8 under proper condition, 𝑎𝑡 and 𝐾𝑡 are 
only implicitly dependent on the PDF 𝜌̃𝑡 through its leading moments, 
without the need to compute the (potentially highly non-Gaussian) 
density function 𝜌̃𝑡 explicitly.

In a more clear identification of the filtering updates involving 
several levels of approximations, we take the split-step strategy to 
analyze the coupled forecast step and analysis step of the filtering 
equation (36) separately. In particular, the forecast step in the first 
row of (36) is given by the exactly same form as the stochastic-
statistical equations (11) developed in Section 2. Thus in practice, the 
updating step with the forecast operator can be implemented adopting 
the efficient uncertainty prediction methods such as [41,44]. Then, the 
remaining task is to propose proper analysis step update in the second 
line of (36) concerning consistent statistics with the optimal solution 𝜌̂𝑡
in (32).

3.4. Statistical consistency in analysis step update of the approximating 
filter

Now, we focus on updating posterior PDF 𝜌̃𝑡 in (34) of the proposed 
approximating filter (36) based on the statistical observation 𝑦𝑡 satisfy-
ing (23). Concentrating on the analysis step, the resulting optimal filter 
Eqs. (32) for the mean and covariance (𝜌̂𝑡, ̂𝑡

) become 
d𝜌̂𝑡 = ̂𝑡∗𝛤−2

𝑡
{

d𝑦𝑡 −
[

𝜌̂𝑡 + ℎ𝑡
(

𝑦𝑡
)]

d𝑡
}

,

d̂𝑡 = − ̂𝑡∗𝛤−2
𝑡 ̂𝑡d𝑡.

(37)

Correspondingly, the approximating statistical filtering model for 𝑍̃𝑡
satisfies the second line of the SDE (36) as 
d𝑍̃𝑡 = 𝑎𝑡

(

𝑍̃𝑡
)

d𝑡 +𝐾𝑡
(

𝑍̃𝑡
) {

d𝑦𝑡 −
[

𝐻
(

𝑍̃𝑡
)

+ ℎ𝑡
(

𝑦𝑡
)]

d𝑡 − 𝛤𝑡d𝐵̃𝑡
}

. (38)

Following the similar idea in the McKean–Vlasov representation of the 
filtering equation [19,59], we expect the PDF 𝜌̃𝑡 of 𝑍̃𝑡 to satisfy the 
following Kushner–Stratonovich-type equation (with requirements on 
𝑎𝑡, 𝐾𝑡 given next in (41)) 
𝜕𝜌̃𝑡
𝜕𝑡

=
[

𝐻 (𝑧) −𝜌̃𝑡
]⊺ 𝛤−2

𝑡

[

d𝑦𝑡
d𝑡

−𝜌̃𝑡 − ℎ𝑡
(

𝑦𝑡
)

]

𝜌̃𝑡. (39)

Again, the goal here is to approximate the optimal filter mean 𝜌̂𝑡 in 
(37) by 𝜌̃𝑡 generated by the surrogate SDE model (38) in the sense of 
consistent statistics.

Unfortunately, the approximation (39) and the optimal filtering 
Eq. (37) will in general have different continuous solutions for 𝜌̃𝑡 and 
𝜌̂𝑡 due to their distinctive dynamics. In order to compare key statistics 
of the two distributions, we apply the linear operator  to the optimal 
Eqs. (37) as a finite-dimensional projection on leading moments based 
on observations. The resulting optimal mean and covariance equations 
become finite dimensional as 

d
(

𝜌̂𝑡
)

=
(

̂𝑡∗)𝛤−2
𝑡

{

d𝑦𝑡 −
[

𝜌̂𝑡 + ℎ𝑡
(

𝑦𝑡
)]

d𝑡
}

,
( ∗) ( ∗) −2 ( ∗) (40)
d ̂𝑡 = − ̂𝑡 𝛤𝑡 ̂𝑡 d𝑡.
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Above, remind that the observation operator  ∶ 𝐿2 (R𝑑
)

→ R𝑝 and 
its adjoint ∗ ∶ R𝑝 → 𝐿2 (R𝑑

) are defined based on the observation 
function 𝐻 ∈ 𝐶2 (R𝑑 ;R𝑝

) as

𝜌 = ∫ 𝐻 (𝑧) 𝜌 (𝑧) d𝑧,
[

∗𝑢
]

(𝑧) = 𝑢 ⋅𝐻 (𝑧) ,

and the covariance operator ̂𝑡 ∶ 𝐿2 (R𝑑
)

→ 𝐿2 (R𝑑
) is defined in (30). 

Therefore, (40) gives the equations for the finite-dimensional quantities 
𝜌̂𝑡 ∈ R𝑝 and ̂𝑡∗ ∈ R𝑝×𝑝 as the first two moments of 𝐻 w.r.t. 𝜌̂𝑡. 
The idea then is to design the analysis step operator 𝜏

𝑡  according to 
the approximating filter process 𝑍̃𝑡 in (38), so that consistency in the 
first and second-order moments (40) can be achieved.

Denote the expectation, Ẽ [⋅] ∶= E
[

⋅ ∣ 𝑡
]

= E𝜌̃𝑡 [⋅], w.r.t.𝜌̃𝑡 in 
(39) conditional on the observation 𝑡. We define 𝐻̄𝑡 = Ẽ𝐻

(

𝑍̃𝑡
)

=
∫ 𝐻 (𝑧) 𝜌̃𝑡 (𝑧) d𝑧 and 𝐶𝐻𝑡 = Ẽ

[

𝐻𝑡
(

𝑍̃𝑡
)

− 𝐻̄𝑡
] [

𝐻𝑡
(

𝑍̃𝑡
)

− 𝐻̄𝑡
]⊺ as the first 

and second-order moments of 𝐻 w.r.t. 𝜌̃𝑡. Assume that the drift 𝑎𝑡 and 
gain 𝐾𝑡 in the SDE approximation (38) satisfy the following identities 

𝑎𝑡 = ∇ ⋅
(

𝐾𝑡𝛤
2
𝑡 𝐾

⊺
𝑡
)

−𝐾𝑡𝛤 2
𝑡 ∇ ⋅𝐾⊺

𝑡 , −∇ ⋅
(

𝐾⊺
𝑡 𝜌̃𝑡

)

= 𝜌̃𝑡𝛤
−2
𝑡

(

𝐻 (𝑧) − Ẽ𝐻
)

,

(41)

where the divergence on a matrix is defined columnwise as (∇ ⋅ 𝐴)𝑖 =
∑

𝑗 𝜕𝑧𝑗𝐴𝑖𝑗 . We first have the following result concerning the evolution 
equations of 𝐻̄𝑡 and 𝐶𝐻𝑡  given the realization 𝑌𝑡 =

{

𝑦𝑠, 𝑠 ≤ 𝑡
}

. 

Lemma 5.  Given that 𝛤𝑡 ≻ 0 in (21) and the identities in (41) are satisfied, 
the evolution equations for the mean and covariance of the observation 
function 𝐻 (

𝑍̃𝑡
) associated with the SDE (38) are given by 

d𝐻̄𝑡 = 𝐶𝐻𝑡 𝛤
−2
𝑡

{

d𝑦𝑡 −
[

𝐻̄𝑡 + ℎ𝑡
(

𝑦𝑡
)]

d𝑡
}

,

d𝐶𝐻𝑡 =𝑄𝐻𝑡 𝛤
−2
𝑡

{

d𝑦𝑡 −
[

𝐻̄𝑡 + ℎ𝑡
(

𝑦𝑡
)]

d𝑡
}

− 𝐶𝐻𝑡 𝛤
−2
𝑡 𝐶𝐻𝑡 d𝑡,

(42)

where 𝑄𝐻𝑡 ∶ R𝑝 → R𝑝×𝑝 is defined as
𝑄𝐻𝑡 = Ẽ

[(

𝐻 ′
𝑡𝐻

′⊺
𝑡
)

⊗𝐻 ′⊺
𝑡
]

,

containing third moments of 𝐻 ′
𝑡 = 𝐻

(

𝑍̃𝑡
)

− 𝐻̄𝑡.

We put the detailed derivation of (42) in Appendix  B. Notice that 
(42) goes back to the Kalman–Bucy filter if we set linear observation 
𝐻

(

𝑍̃𝑡
)

= 𝑍̃𝑡 satisfying a normal distribution as in [37]. However, here 
we are considering the more general nonlinear dynamics and quadratic 
and cubic observation functions from (24).

Comparing (40) and (42) implies that the same statistical solution 
can be reached in (𝐻̄𝑡, 𝐶𝐻𝑡

) and (𝜌̂𝑡,̂𝑡∗) if we have 𝑄𝐻𝑡 = 0. In 
order to achieve this, we further introduce the projection operator on 
the space of probability distributions using the Kullback–Leibler (KL) 
divergence as an unbiased metric. 

Definition 6.  Define the operator 𝐻  making symmetric projection on 
the probability density 𝜌 ∈ ∞

(

R𝑑
) with finite moments 

𝐻𝜌 = argmin
𝜈∈𝐻

𝑑KL (𝜈 ∥ 𝜌) , (43)

where 𝑑KL is the KL-divergence between two probability measures. The 
minimization is among the probability measures in the following set
𝐻

(

𝐻̄, 𝐶𝐻)

=
{

𝜈 ∈ ∞
(

R𝑑) ∶ E𝜈𝐻 = 𝐻̄, E𝜈
[

𝐻 ′𝐻 ′⊺] = 𝐶𝐻 , and E𝜈
[

𝐻 ′
𝑙𝐻

′
𝑚𝐻

′
𝑛

]

= 0
}

,

for all 1 ≤ 𝑙, 𝑚, 𝑛 ≤ 𝑑 and 𝐻 ′ (𝑍) = 𝐻 (𝑍) − E𝜈 [𝐻 (𝑍)].

In Definition  6, 𝐻  acts as a symmetric approximation of proba-
bility measures with vanishing third-order moments of the observation 
function 𝐻 , while maintains consistent first two leading moments of 𝐻 . 
It is clear that given 𝐻̄, 𝐶𝐻 , the set 𝐻  is closed with respect to weak 
convergence of measures. From Proposition 2.1 of [60,61], we have for 
any 𝜌 and weakly convergent sequence {𝜈𝑛

} to 𝜈∗
lim inf 𝑑

(

𝜈 ∥ 𝜌
)

≥ 𝑑
(

𝜈 ∥ 𝜌
)

.

𝑛→∞ KL 𝑛 KL ∗
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It follows immediately that there exists 𝜈∗ ∈ 𝐻  that reaches the 
minimum. Therefore, we have the following lemma guaranteeing the 
existence of the minimizer in the proposed projection (43). 

Lemma 7.  Assume that there exists one 𝜈 ∈ 𝐻  such that the KL-divergence 
𝑑KL (𝜈 ∥ 𝜌) < ∞ for given 𝜌 ∈ ∞

(

R𝑑
)

. Then a minimizer exists in (43).
Lemma  7 makes sure that we can always find one minimizer given 

the same mean and covariance 𝐻̄ = Ẽ [𝐻 (𝑍)] , 𝐶𝐻 = Ẽ
[

𝐻 ′ (𝑍)𝐻 ′ (𝑍)⊺
]

.
This provides the density function satisfying the required symmetric 
statistics about 𝐻 (

𝑍𝑡
)

. Denote the push-forward operator for the new 
SDE (38) with the structure functions (41) as 𝜌̃𝑡+𝑠 = 𝑠𝑡

(

𝜌̃𝑡; 𝑌𝑡+𝑠
) for 

any 𝑠 ≥ 0. Under the above construction, we can finally propose the 
forward operator in analysis step (34) as 
𝑠
𝑡
(

𝜌̃𝑡
)

∶= 𝑠𝑡
(

𝐻 𝜌̃𝑡; 𝑌𝑡+𝑠
)

, (44)

where the projection 𝐻  in (43) is a linear operator acting on the 
random fields in space 𝑡 in (26). In a similar fashion as in the proof of 
Lemma  5, by applying the addition projection 𝐻 𝜌̃𝑡 in the expectations 
on the SDEs for 𝐻 (

𝑍̃𝑡
) and 𝐻 ′

𝑡
(

𝑍̃𝑡
)

𝐻 ′
𝑡
(

𝑍̃𝑡
)⊺ (see also (B.10) and (B.11) 

in Appendix  B), 𝑄𝐻𝑡 = 0 is automatically guaranteed in (42) w.r.t. 
the new projected density 𝐻 𝜌̃𝑡. In addition, the first two moments 
𝐻̄𝑡 and 𝐶𝐻𝑡  in (42) will stay the same w.r.t. 𝐻 𝜌̃𝑡. The continuous 
filtering process by letting 𝑠 → 0 will satisfy the Eqs. (42) with 𝑄𝐻𝑡 ≡ 0. 
Therefore, under the same initial condition and the uniqueness of the 
solution, the same solution will be reached in both (37) and (42). This 
leads to the main result of this section concerning the analysis step 
update in the approximating filter solution. 

Theorem 8.  Consider the analysis step update (44) of the statistical 
filtering model (38). Assume that 𝑎𝑡, 𝐾𝑡 in the statistical filtering SDE are 
designed to satisfy (41) and the probability set 𝐻  according to 𝐻 defined 
in (43) is not empty. Under the same statistical observations 𝑦𝑡, 𝑡 ∈ [0, 𝑇 ]
and the same initial conditions, the following identities hold for 𝑡 ∈ [0, 𝑇 ]

𝜌̂𝑡 = Ẽ
[

𝐻
(

𝑍̃𝑡
)]

, ̂𝑡∗ = Ẽ
[

𝐻 ′ (𝑍̃𝑡
)

𝐻 ′ (𝑍̃𝑡
)⊺] , (45)

where (𝜌̂𝑡, ̂𝑡
) is the solution of (37), and Ẽ is w.r.t. 𝜌̃𝑡 given by the solution 

of (39) with 𝐻 ′ = 𝐻 −𝜌̂𝑡.

Theorem  8 validates the use of the statistical filtering model density 
𝜌̃𝑡 by solving (36) to approximate the optimal filter 𝜌̂𝑡 from (32). 
Though restricted only on the first two moments of the observation 
function 𝐻 , the resulting consistent statistics during analysis step play 
a key role in accurate statistical forecast. Notice that based on the 
statistical model in (11), accurate prediction of the important leading 
statistics, 𝑢̄𝑡, 𝑅𝑡, is determined by key higher-order feedbacks in the 
related functional 𝜌𝑡 (more specifically, the terms 𝑚𝜌𝑡 and 𝑣𝜌𝑡
in (24)). According to Proposition  4, the optimal 𝜌̂𝑡 gives the least 
mean square estimate of the random variable 𝜌𝑡 given the statistical 
observations. Thus, consistent filtering approximation Ẽ𝐻 (

𝑍̃𝑡
) for 𝜌̂𝑡

as well as its error estimate guarantees accurate recovery of key model 
statistics.

For example, applying the explicit forms of the observation function 
(24), the quadratic observation operator 𝑚 in the mean equation gives

Ẽ𝐻𝑚 (

𝑍̃𝑡
)

= 𝑚𝜌̂𝑡 ⇔
∑

𝑝,𝑞
𝛾𝑘𝑝𝑞Ẽ

[

𝑍̃𝑝,𝑡𝑍̃𝑞,𝑡
]

=
∑

𝑝,𝑞
𝛾𝑘𝑝𝑞 ∫ 𝑧𝑝𝑧𝑞 𝜌̂𝑡 (𝑧) d𝑧,

which implies consistent statistical feedbacks in the mean Eq. (7a) from 
the statistical filtering model 𝜌̃𝑡 and the optimal filter solution 𝜌̂𝑡. This 
demonstrates that the new approximating filter maintains the accu-
racy in the statistical mean prediction 𝑢̄𝑡. In addition, the covariance 
operator characterizes the essential uncertainty in the optimal filter 𝜌̂𝑡
𝑚̂𝑡∗

𝑚 = E𝜇𝑡
[(

𝑚𝜌𝑡 −𝑚𝜌̂𝑡
) (

𝑚𝜌𝑡 −𝑚𝜌̂𝑡
)⊺] ,

which is also linked to the approximation by 𝐶𝐻𝑚
𝑡 = Ẽ

[(

𝐻𝑚
𝑡 − 𝐻̄𝑚

𝑡
)

(

𝐻𝑚
𝑡 − 𝐻̄𝑚

𝑡
)⊺] = 𝑚̂𝑡∗

𝑚, demonstrating a consistent error estimate in 
the statistical filtering model. Similar conclusion can be reached for the 
accurate prediction in the model covariance prediction for 𝑅𝑡 based on 
the cubic observation operator  .
𝑣
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Remark.  Still, the statistical consistency in the analysis step does not 
guarantee the consistency in the entire two-step updating procedure 
in (35). In particular, the forecast models of (32) and (36) satisfy the 
following forecast equations

𝜕𝑡𝜌̂𝑡 = ∗
𝑡 𝜌̂𝑡

𝜕𝑡𝜌̃𝑡 = ∗
𝑡 𝜌̃𝑡

⇒

𝜕𝑡
(

𝜌̂𝑡
)

=∗
𝑡 𝜌̂𝑡 = ∫

(

𝑡𝐻
)

(𝑧) 𝜌̂𝑡 (𝑧) d𝑧

𝜕𝑡
(

Ẽ𝐻
)

= Ẽ𝑡𝐻 = ∫
(

𝑡𝐻
)

(𝑧) 𝜌̃𝑡 (𝑧) d𝑧

where the generator 𝑡 is defined as in (20). The analysis step update 
only gives consistent first two moments of 𝐻 , while higher moments 
may be included in 𝑡𝐻 . The forecast model may require additional 
consistent condition between 𝜌̂𝑡 and 𝜌̃𝑡 as well as their covariances. 
More work is still needed for the complete analysis combining ap-
proximations in both the forecast and analysis step of the full filtering 
model.

4. Stability and convergence of the statistical filtering model

Following the new approximating filtering model, we discuss the 
long-time performance of the filtering problem for finding the optimal 
filter PDF 𝜌̂𝑡 of the statistical filtering system (21) based on statistical 
observations 𝑌𝑡 =

{

𝑦𝑠, 𝑠 ≤ 𝑡
}

. Section 3 shows that the statistical filter-
ing model (36) constitutes the approximating filter 𝜌̃𝑡 with consistent 
mean and covariance, 𝐻̄𝑡 and 𝐶𝐻𝑡 , during the analysis step update. 
Here, we show further that the full filter approximation of the observa-
tion function 𝐻̄𝑡 will approach the optimal filter 𝜌̂𝑡 at the long-time 
limit as 𝑡 → ∞. This guarantees the stable performance of the proposed 
new filtering strategy.

4.1. Closed statistical filtering equations based on the observation operator

We consider the optimal filter solution based on the conditional 
Gaussian processes (21). The finite-dimensional statistical states 𝜌̂𝑡 ∈
R𝑝 and ̂

𝑡 = ̂𝑡∗ ∈ R𝑝×𝑝 under the observation operator can be 
solved by the Kalman–Bucy equations (32) as 

d
(

𝜌̂𝑡
)

=
⟨

𝑡
(

𝑦𝑡
)

𝐻𝜌̂𝑡
⟩

d𝑡 + ̂
𝑡 𝛤

−2 {d𝑦𝑡 −
[

𝜌̂𝑡 + ℎ𝑡
(

𝑦𝑡
)]

d𝑡
}

,

d̂
𝑡 =

[⟨

𝑡
(

𝑦𝑡
)

𝐻
(

̂𝑡𝐻⊺)⟩ +
⟨(

̂𝑡𝐻
)

𝑡
(

𝑦𝑡
)

𝐻⊺⟩] d𝑡 − ̂
𝑡 𝛤

−2̂
𝑡 d𝑡.

(46)

Above, ⟨𝐹 ⟩ = ∫ 𝐹 (𝑧) d𝑧 denotes the componentwise integration of the 
matrix-valued functions 𝐹 . For simplicity, we use constant observation 
noise, 𝛤𝑡 ≡ 𝛤 . In the first equation for the mean, we rewrite the forecast 
step dynamics as

∗
𝑡
(

𝑦𝑡
)

𝜌̂𝑡 = ∫ 𝐻 (𝑧)∗
𝑡
(

𝑦𝑡
)

𝜌̂𝑡 (𝑧) d𝑧 =
⟨

𝑡
(

𝑦𝑡
)

𝐻𝜌̂𝑡
⟩

.

Similarly, we rewrite the covariance equation using the definition of ̂𝑡
in (30) under the conditional measure 𝜇𝑡 (⋅) = P

(

𝜌 ∈ ⋅ ∣ 𝑡
)

∗
𝑡 ̂𝑡

∗ = E∫ 𝐻 (𝑥)∗
𝑡
(

𝜌 − 𝜌̂𝑡
)

(𝑥) d𝑥∫
(

𝜌 − 𝜌̂𝑡
)

(𝑧)𝐻 (𝑧)⊺ d𝑧

=
⟨

𝑡𝐻
(

̂𝑡𝐻⊺)⟩ ,

̂𝑡𝑡∗ = E∫ 𝐻 (𝑧)
(

𝜌 − 𝜌̂𝑡
)

(𝑧) d𝑧∫
(

𝜌 − 𝜌̂𝑡
)

(𝑥)𝑡𝐻 (𝑥)⊺ d𝑥

=
⟨(

̂𝑡𝐻
)

𝑡𝐻⊺⟩ ,

where ̂𝑡𝐻 (𝑥) = E
[(

𝜌 − 𝜌̂𝑡
)

(𝑥) ∫
(

𝜌 − 𝜌̂𝑡
)

(𝑧)𝐻 (𝑧) d𝑧
]

∈ R𝑑 can be 
viewed as an unnormalized density that satisfies ∫ ̂𝑡𝐻 (𝑥) d𝑥 = 0.

Correspondingly, consider the approximating filtering model (36) 
with 𝛴𝑡 ≡ 0. Let 𝜌̃𝑡 be the PDF after the symmetric projection (43), 
that is, satisfying vanishing third-order moments Ẽ

[

𝐻 ′
𝑛𝐻

′
𝑝𝐻

′
𝑞

]

= 0 for 
all 𝑛, 𝑝, 𝑞. The first and second-order moments 𝐻̄𝑡 = Ẽ

[

𝐻
(

𝑍̃𝑡
)] and 

𝐶𝐻𝑡 = Ẽ
[

𝐻 ′
𝑡
(

𝑍̃𝑡
)

𝐻 ′
𝑡
(

𝑍̃𝑡
)⊺] according to the observation function 𝐻

satisfy the following equations (by combining the forecast step update 
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with generator 𝑡 and the analysis step dynamics (42)) 

d𝐻̄𝑡 =
⟨

𝑡
(

𝑦𝑡
)

𝐻𝜌̃𝑡
⟩

d𝑡 + 𝐶𝐻𝑡 𝛤
−2 {d𝑦𝑡 −

[

𝐻̄𝑡 + ℎ𝑡
(

𝑦𝑡
)]

d𝑡
}

,

d𝐶𝐻𝑡 =
[⟨

𝑡
(

𝑦𝑡
)

𝐻
(

𝜌̃𝑡𝐻
′⊺
𝑡
)⟩

+
⟨(

𝜌̃𝑡𝐻
′
𝑡
)

𝑡
(

𝑦𝑡
)

𝐻⊺⟩] d𝑡 − 𝐶𝐻𝑡 𝛤
−2𝐶𝐻𝑡 d𝑡,

(47)

where 𝐻 ′
𝑡 (𝑧) = 𝐻 (𝑧) − 𝐻̄𝑡.

First, we introduce the following assumptions for the approximating 
filter PDF 𝜌̃𝑡 approximating the optimal filter solution 𝜌̂𝑡 as random 
fields according to the same observation process 𝑌 =

{

𝑦𝑡, 𝑡 ≥ 0
}

: 

Assumption 9.  Assume that the optimal filter (32) and the approxi-
mating filtering model (36) have probability density functions 𝜌̂𝑡 and 
𝜌̃𝑡 respectively that satisfy the following conditions:

•  Unique equilibrium solutions (𝜌̂∞, ̂
∞
) and (𝜌̃∞, 𝐶𝐻∞

) exist to 
the systems (46) and (47) respectively.

•  There exist deterministic matrices 𝐿𝑚∞, 𝐿𝑣∞ ∈ R𝑝×𝑝, such that the 
generator 𝑡 (20) reaches the same statistical limit under 𝐻 w.r.t. both 
𝜌̂𝑡 and 𝜌̃𝑡, that is, 
⟨

𝑡
(

𝑦𝑡
)

𝐻𝜌̂𝑡
⟩

→ 𝐿𝑚∞𝜌̂∞,
⟨

𝑡
(

𝑦𝑡
)

𝐻
(

̂𝑡𝐻⊺)⟩ → 𝐿𝑣∞̂
∞ ,

⟨

𝑡
(

𝑦𝑡
)

𝐻𝜌̃𝑡
⟩

→ 𝐿𝑚∞𝜌̃∞,
⟨

𝑡
(

𝑦𝑡
)

𝐻
(

𝜌̃𝑡𝐻
′⊺
𝑡
)⟩

→ 𝐿𝑣∞𝐶
𝐻
∞ ,

(48)

a.s. as 𝑡 → ∞ conditional on the observation data 𝑌 .
•  Further, the real parts of eigenvalues of the limit matrices 𝐿𝑚∞ −

̂
∞𝛤

−2 and 𝐿𝑣∞ − ̂
∞𝛤

−2 are all negative.

The first condition in Assumption  9 guarantees that both filter equa-
tions will finally converge to finite steady-state statistical solutions. The 
second condition requires consistent first and second-order moments 
under 𝐻 w.r.t. the optimal and approximating model distributions, 
such as for the covariance as 𝑡 → ∞

∫ 𝑡
(

𝑦𝑡
)

𝐻 (𝑧) ̂𝑡𝐻 (𝑧)⊺ d𝑧→𝐿𝑣∞ ∫ 𝐻 (𝑧)
(

̂∞𝐻⊺) (𝑧) d𝑧,

∫ 𝑡
(

𝑦𝑡
)

𝐻 ′
𝑡 (𝑧)𝐻

′
𝑡 (𝑧)

⊺𝜌̃𝑡 (𝑧) d𝑧→𝐿𝑣∞ ∫ 𝐻 ′
∞ (𝑧)𝐻 ′

∞ (𝑧) ⊺𝜌̃∞ (𝑧) d𝑧.

In addition, we may further introduce the convergence rate, that is, 
there exist constants 𝜆̄ > 0 and 𝐾 > 0 such that a.s. 
|

|

|

⟨

𝑡
(

𝑦𝑡
)

𝐻𝜌̂𝑡
⟩

− 𝐿𝑚∞𝜌̂∞
|

|

|

≤ 𝐾𝑒−𝜆̄𝑡, ‖

‖

‖

⟨

𝑡
(

𝑦𝑡
)

𝐻
(

̂𝑡𝐻⊺)⟩ − 𝐿𝑣∞̂
∞
‖

‖

‖

≤ 𝐾𝑒−𝜆̄𝑡,
|

|

|

⟨

𝑡
(

𝑦𝑡
)

𝐻𝜌̃𝑡
⟩

− 𝐿𝑚∞𝜌̃∞
|

|

|

≤ 𝐾𝑒−𝜆̄𝑡, ‖

‖

‖

⟨

𝑡
(

𝑦𝑡
)

𝐻
(

𝜌̃𝑡𝐻
′⊺
𝑡
)⟩

− 𝐿𝑣∞𝐶
𝐻
∞
‖

‖

‖

≤ 𝐾𝑒−𝜆̄𝑡,

(49)

where ‖⋅‖ is the matrix norm. And the third condition requires that 
the filter solutions will be stabilized at the long-time limit. These 
assumptions are based on the observation that in practice a final 
equilibrium state will be reached and maintain stable dynamics. Next, 
we ask the limiting behaviors in the mean and covariance (𝐻̄𝑡, 𝐶𝐻𝑡

)

from the approximating model (47) compared with the optimal filter 
solution (𝜌̂𝑡, ̂

𝑡
) from (46).

4.2. Asymptotic stability of the equilibrium covariance matrix

With the assumption (48), we first have consistent equilibrium 
covariances as 𝑡 → ∞ in the two model solutions, that is,
𝐿𝑣∞̂

∞ + ̂
∞𝐿

𝑣⊺
∞ − ̂

∞𝛤
−2̂

∞ = 0,

𝐿𝑣∞𝐶
𝐻
∞ + 𝐶𝐻∞𝐿

𝑣⊺
∞ − 𝐶𝐻∞𝛤

−2𝐶𝐻∞ = 0.

Uniqueness of the solution directly implies that the final equilibrium 
covariances satisfy ̂

∞ = 𝐶𝐻∞  with no randomness. Further, we can 
find that the covariance 𝐶𝐻𝑡  in the approximating filter will approach 
the optimal equilibrium covariance ̂

∞ as described in the following 
lemma. 
10 
Lemma 10.  Suppose that Assumption  9 is satisfied, 𝐶𝐻𝑡  is the covari-
ance solution to the statistical filtering model (47) and ̂

∞ is the unique 
equilibrium solution to the optimal model (46). Then there is 
‖

‖

‖

𝐶𝐻𝑡 − ̂
∞
‖

‖

‖

→ 0, a.s. as 𝑡 → ∞. (50)

Further, the convergence rate will be exponential if (49) is also satisfied.

Proof.  Combining the covariance equation in (47) and the equilibrium 
equation of (46), we have

d
(

𝐶𝐻𝑡 − ̂
∞
)

=
[

𝐿𝑣∞ − 1
2
(

𝐶𝐻𝑡 + ̂
∞
)

𝛤−2
]

(

𝐶𝐻𝑡 − ̂
∞
)

d𝑡

+
(

𝐶𝐻𝑡 − ̂
∞
)

[

𝐿𝑣⊺∞ − 1
2
𝛤−2 (𝐶𝐻𝑡 + ̂

∞
)

]

d𝑡

+
[⟨

𝑡𝐻
(

𝜌̃𝑡𝐻
′
𝑡
⊺)⟩ − 𝐿𝑣∞𝐶

𝐻
𝑡
]

d𝑡

+
[⟨(

𝜌̃𝑡𝐻
′
𝑡
)

𝑡𝐻⊺⟩ − 𝐶𝐻𝑡 𝐿
𝑣⊺
∞
]

d𝑡.

For the last row of the above equation, using the uniqueness of the 
solution we have 𝐶𝐻𝑡 → 𝐶𝐻∞  as 𝑡 → ∞. Then denote

𝐹𝑡 =
⟨

𝑡𝐻
(

𝜌̃𝑡𝐻
′
𝑡
⊺)⟩ − 𝐿𝑣∞𝐶

𝐻
𝑡 .

We get ‖
‖

𝐹𝑡‖‖ → 0 as 𝑡 → ∞ by using
‖

‖

‖

⟨

𝑡𝐻
(

𝜌̃𝑡𝐻
′
𝑡
⊺)⟩ − 𝐿𝑣∞𝐶

𝐻
𝑡
‖

‖

‖

≤ ‖

‖

‖

⟨

𝑡𝐻
(

𝜌̃𝑡𝐻
′
𝑡
⊺)⟩ − 𝐿𝑣∞𝐶

𝐻
∞
‖

‖

‖

+ ‖

‖

‖

𝐿𝑣∞
(

𝐶𝐻∞ − 𝐶𝐻𝑡
)

‖

‖

‖

→ 0.

Next, by taking 𝜆𝑣 = min
{

Re𝜆 ∶ 𝜆 is the eighenvalue of − 𝐿𝑣∞ + ̂
∞𝛤

−2}, 
we have 𝜆𝑣 > 0 from Assumption  9. This implies
‖

‖

‖

‖

‖

𝑒∫
𝑡
𝑠

[

𝐿𝑣∞− 1
2
(

𝐶𝐻𝜏 +̂∞
)

𝛤−2
]

d𝜏‖
‖

‖

‖

‖

≤ 𝐾𝑒−𝜆𝑣(𝑡−𝑠). Together with 𝐹𝑡 vanishing as 
𝑡 → ∞, we have for any 𝑡 > 𝑇
‖

‖

‖

𝐶𝐻𝑡 − ̂
∞
‖

‖

‖

≤ 𝐾 ‖

‖

‖

𝐶𝐻𝑇 − ̂
∞
‖

‖

‖

𝑒−2𝜆𝑣(𝑡−𝑇 ) + 2𝐾 ∫

𝑡

𝑇
𝑒−2𝜆𝑣(𝑡−𝑠) ‖

‖

𝐹𝑠‖‖ d𝑠

≤ 𝐾1𝑒
−2𝜆𝑣𝑡 +𝐾2 sup

𝑠≥𝑇
‖

‖

𝐹𝑠‖‖ .

Therefore, by first letting 𝑡 → ∞ then letting 𝑇 → ∞, we reach a.s. 
‖

‖

‖

𝐶𝐻𝑡 − ̂
∞
‖

‖

‖

→ 0.
Further, if we assume exponential convergence rate 𝜆̄ in the co-

variances under the generator 𝑡 as in (49), we can have exponential 
convergence rate in both ̂𝑡 and 𝐶𝐻𝑡  as 𝑡 → ∞ a.s. 
‖

‖

‖

̂
𝑡 − ̂

∞
‖

‖

‖

≤ 𝐾𝐻𝑒
−min

{

𝜆𝑣 ,𝜆̄
}

𝑡, ‖‖
‖

𝐶𝐻𝑡 − ̂
∞
‖

‖

‖

≤ 𝐾𝐻𝑒
−min

{

𝜆𝑣 ,𝜆̄
}

𝑡. □ (51)

In addition, from the definition of the optimal filter solution (31), 
the covariance is defined as

trE
[

̂
𝑡
]

= Etr
[(

𝜌𝑡 −𝜌̂𝑡
) (

𝜌𝑡 −𝜌̂𝑡
)⊺]

= Etr
[(

𝜌𝑡 −𝜌̂𝑡
)⊺ (𝜌𝑡 −𝜌̂𝑡

)]

= E
[

|

|

𝜌𝑡 −𝜌̂𝑡||
2
]

.

Notice that 𝜌̂𝑡 and ̂
𝑡  are still 𝑡-measurable random field. Under 

Assumption  9 ̂
𝑡 → ̂

∞ a.s. conditional on the observations 𝑡, we 
have as 𝑡→ ∞

E
[

|

|

𝜌𝑡 −𝜌̂𝑡||
2
]

= trE
[

̂
𝑡
]

→ tr̂
∞ . (52)

This confirms that the total uncertainty at equilibrium in the optimal 
filter solution 𝜌̂𝑡 is estimated by the total variance tr̂

∞ .

4.3. Convergence of the statistical state under the observation operator

Next, we consider the convergence of the statistical observation 
function 𝐻̄𝑡 from the approximating filter to the optimal filter solution 
𝜌̂𝑡. We have the long-term stability in the statistical solution in the 
following theorem. 
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Theorem 11.  Suppose that Assumption  9 holds and the covariances go to 
the same deterministic limit
̂
𝑡 → ̂

∞ , 𝐶𝐻𝑡 → ̂
∞ ,

a.s. as 𝑡 → ∞. Then there is 
E
[

|

|

𝜌̂𝑡 − 𝐻̄𝑡
|

|

2
]

→ 0, (53)

as 𝑡 → ∞. Furthermore, assume exponential convergence rate in ̂
𝑡 , 𝐶

𝐻
𝑡

as in (51), and let 𝜆 = min
{

𝜆𝑚, 𝜆𝑣
} where 𝜆𝑚 and 𝜆𝑣 are the minimums 

of the real parts of the eigenvalues of −𝐿𝑚∞ + ̂
∞𝛤

−2 and −𝐿𝑣∞ + ̂
∞𝛤

−2

respectively. There is also exponential convergence as 

E
[

|

|

𝜌̂𝑡 − 𝐻̄𝑡
|

|

2
]

≤ 𝐾𝐻𝑒
−min

{

𝜆,𝜆̄
}

𝑡, (54)

with 𝐾𝐻  a constant only dependent on the observation function 𝐻 .

Proof.  By taking the difference of the mean equations in (46) and (47), 
we have
d
(

𝜌̂𝑡 − 𝐻̄𝑡
)

=
(

𝐿𝑚∞ − ̂
∞𝛤

−2) (𝜌̂𝑡 − 𝐻̄𝑡
)

d𝑡 +
(

̂
𝑡 − 𝐶𝐻

𝑡

)

𝛤 −2 [d𝑦𝑡 − ℎ𝑡
(

𝑦𝑡
)

d𝑡
]

+
[(

̂
∞ − ̂

𝑡

)

𝛤 −2𝜌̂𝑡 −
(

̂
∞ − 𝐶𝐻

𝑡

)

𝛤 −2𝐻̄𝑡
]

d𝑡

+
[⟨

𝑡
(

𝑦𝑡
)

𝐻𝜌̂𝑡
⟩

− 𝐿𝑚∞𝜌̂𝑡
]

d𝑡 +
[⟨

𝑡
(

𝑦𝑡
)

𝐻𝜌̃𝑡
⟩

− 𝐿𝑚∞𝐻̄𝑡
]

d𝑡.

By applying Itô’s formula to the above equation, there is

d
[

𝑒−𝑡
(

𝐿𝑚∞−̂∞𝛤
−2) (𝜌̂𝑡 − 𝐻̄𝑡

)

]

= 𝑒−𝑡
(

𝐿𝑚∞−̂∞𝛤
−2) {(̂

𝑡 − 𝐶𝐻𝑡
)

𝛤−2 [d𝑦𝑡 − ℎ𝑡
(

𝑦𝑡
)

d𝑡
]

+ 𝐺𝑡
(

𝑦𝑡
)

d𝑡
}

+ 𝑒−𝑡
(

𝐿𝑚∞−̂∞𝛤
−2) [(̂

∞ − ̂
𝑡
)

𝛤−2𝜌̂𝑡 −
(

̂
∞ − 𝐶𝐻𝑡

)

𝛤−2𝐻̄𝑡
]

d𝑡.

Above, we denote the residual term as
𝐺𝑡

(

𝑦𝑡
)

=
[⟨

𝑡
(

𝑦𝑡
)

𝐻𝜌̂𝑡
⟩

− 𝐿𝑚∞𝜌̂𝑡
]

+
[⟨

𝑡
(

𝑦𝑡
)

𝐻𝜌̃𝑡
⟩

− 𝐿𝑚∞𝐻̄𝑡
]

.

By similar estimates as in Lemma  10 according to the assumption (48), 
there is

|

|

𝐺𝑡|| ≤
|

|

|

⟨

𝑡
(

𝑦𝑡
)

𝐻𝜌̂𝑡
⟩

− 𝐿𝑚∞𝜌̂∞
|

|

|

+ |

|

|

𝐿𝑚∞
(

𝜌̂∞ −𝜌̂𝑡
)

|

|

|

+ |

|

|

⟨

𝑡
(

𝑦𝑡
)

𝐻𝜌̃𝑡
⟩

− 𝐿𝑚∞𝐻̄∞
|

|

|

+ |

|

|

𝐿𝑚∞
(

𝐻̄∞ − 𝐻̄𝑡
)

|

|

|

≤ 𝐾𝑒−𝜆̄𝑡 → 0,

a.s. as 𝑡 → ∞ using the uniqueness of the solutions 𝜌̂𝑡 → 𝜌̂∞ and 
𝐻̄𝑡 → 𝐻̄∞ (with exponential decay in the stronger convergence case 
(51)). Equivalently, the above SDE can be written as (ignoring initial 
condition by assuming 𝜌̂0 = 𝐻̄0)

𝜌̂𝑡 − 𝐻̄𝑡 = ∫

𝑡

0
𝑒(𝑡−𝑠)

(

𝐿𝑚∞−̂
∞𝛤

−2) {(̂
𝑠 − 𝐶𝐻

𝑠

)

𝛤 −2 [d𝑦𝑠 − ℎ𝑠
(

𝑦𝑠
)

d𝑠
]

+ 𝐺𝑠
(

𝑦𝑠
)

d𝑠
}

+ ∫

𝑡

0
𝑒(𝑡−𝑠)

(

𝐿𝑚∞−̂
∞𝛤

−2) [(̂
∞ − ̂

𝑠

)

𝛤 −2𝜌̂𝑠 −
(

̂
∞ − 𝐶𝐻

𝑠

)

𝛤 −2𝐻̄𝑠
]

d𝑠.

Therefore, by first taking the square on both sides of the above identity 
and then taking the expectation, we get

E
[

|

|

𝜌̂𝑡 − 𝐻̄𝑡
|

|

2
]

≤ 5E
|

|

|

|

|

∫

𝑡

0
𝑒(𝑡−𝑠)

(

𝐿𝑚∞−̂∞𝛤
−2) (̂

𝑠 − 𝐶𝐻𝑠
)

𝛤−2d𝑦𝑠
|

|

|

|

|

2

+ 5E
|

|

|

|

|

∫

𝑡

0
𝑒(𝑡−𝑠)

(

𝐿𝑚∞−̂∞𝛤
−2)
𝐺𝑠

(

𝑦𝑠
)

d𝑠
|

|

|

|

|

2

+ 5E
|

|

|

|

|

∫

𝑡

0
𝑒(𝑡−𝑠)

(

𝐿𝑚∞−̂∞𝛤
−2) (̂

𝑠 − 𝐶𝐻𝑠
)

𝛤−2ℎ𝑠
(

𝑦𝑠
)

d𝑠
|

|

|

|

|

2

+ 5E
|

|

|

|

|

∫

𝑡

0
𝑒(𝑡−𝑠)

(

𝐿𝑚∞−̂∞𝛤
−2) (̂

∞ − ̂
𝑠
)

𝛤−2𝜌̂𝑠d𝑠
|

|

|

|

|

2

+ 5E
|

|

|

|

|

∫

𝑡

0
𝑒(𝑡−𝑠)

(

𝐿𝑚∞−̂∞𝛤
−2) (̂

∞ − 𝐶𝐻𝑠
)

𝛤−2𝐻̄𝑠d𝑠
|

|

|

|

|

2

.

The second line above follows the same argument as in Lemma  10 and 
using Cauchy–Schwarz inequality

E
|

|

|

𝑡
𝑒(𝑡−𝑠)

(

𝐿𝑚∞−̂∞𝛤
−2)
𝐺𝑠

(

𝑦𝑠
)

d𝑠
|

|

|

2

|

|

∫0 |

|

11 
≤∫

𝑡

0

‖

‖

‖

‖

𝑒
1
2 (𝑡−𝑠)

(

𝐿𝑚∞−̂∞𝛤
−2)‖

‖

‖

‖

2
d𝑠E∫

𝑡

0

|

|

|

|

𝑒
1
2 (𝑡−𝑠)

(

𝐿𝑚∞−̂∞𝛤
−2)

𝐺𝑠
(

𝑦𝑠
)|

|

|

|

2
d𝑠.

≤ 𝜆−1𝑚 E∫

𝑡

0
𝑒−𝜆𝑚(𝑡−𝑠) ||

|

𝐺𝑠
(

𝑦𝑠
)

|

|

|

2
d𝑠 ≤ 𝐾𝑒−𝜆1𝑡 → 0.

Similar results can be achieved for line three to five following the 
convergence (or exponential convergence) of the integrants. Finally, 
for the first line using the observation equation in (21), that is, d𝑦𝑡 =
[

𝜌𝑡 + ℎ𝑡
(

𝑦𝑡
)]

d𝑡 + 𝛤d𝐵𝑡, there is

E
|

|

|

|

|

∫

𝑡

0
𝑒(𝑡−𝑠)

(

𝐿𝑚∞−̂∞𝛤
−2) (̂

𝑠 − 𝐶𝐻𝑠
)

𝛤−2d𝑦𝑠
|

|

|

|

|

2

≤ E
|

|

|

|

|

∫

𝑡

0
𝑒(𝑡−𝑠)

(

𝐿𝑚∞−̂∞𝛤
−2) (̂

𝑠 − 𝐶𝐻𝑠
)

𝛤−2 [𝜌𝑡 + ℎ𝑡
(

𝑦𝑡
)]

d𝑠
|

|

|

|

|

2

+E∫

𝑡

0
𝑒2(𝑡−𝑠)

(

𝐿𝑚∞−̂∞𝛤
−2)

‖

‖

‖

̂
𝑠 − 𝐶𝐻𝑠

‖

‖

‖

2
d𝑠

≤ 𝐾1 ∫

𝑡

0
𝑒−𝜆𝑚(𝑡−𝑠)

(

E ‖

‖

‖

̂
𝑠 − ̂

∞
‖

‖

‖

2
+ E ‖

‖

‖

𝐶𝐻𝑠 − ̂
∞
‖

‖

‖

2
)

d𝑠

≤ 𝐾𝑒−𝜆1𝑡 → 0.

Above in the second to the last inequality, we use the uniform bound-
edness of E |

|

𝜌𝑡|| and E |

|

|

ℎ𝑡
(

𝑦𝑡
)

|

|

|

 as 𝑡 → ∞, and the last line uses the 
convergence (or exponential convergence) of the covariance (50) or 
(51). Combining all the above bounds, we finally get the convergence 
in (53) and (54). □

Together with the equilibrium estimate in (52) combining the result 
in Theorem  11, we can also get the same error estimate compared with 
the target field as 𝑡→ ∞

E
[

|

|

𝜌𝑡 − 𝐻̄𝑡
|

|

2
]

≤ E
[

|

|

𝜌𝑡 −𝜌̂𝑡||
2
]

+ E
[

|

|

𝜌̂𝑡 − 𝐻̄𝑡
|

|

2
]

→ tr̂
∞ .

Thus, we show that the statistical filtering model solution 𝐻̄𝑡 converges 
to the optimal filter solution with the same mean square error, and ex-
ponential convergence is reached if the forecast model has exponential 
convergence to the equilibrium.

As a final comment, we can further relax Assumption  9 as there 
exist deterministic uniformly continuous functions, 𝐿𝑚∞ (𝑦) and 𝐿𝑣∞ (𝑦), 
so that for any 𝑦𝑡 → 𝑦∞, there are 
⟨

𝑡
(

𝑦𝑡
)

𝐻𝜌̂𝑡
⟩

→ 𝐿𝑚∞
(

𝑦∞
)

𝜌̂∞,
⟨

𝑡𝐻
(

̂𝑡𝐻⊺)⟩ → 𝐿𝑣∞
(

𝑦∞
)

̂
∞ ,

⟨

𝑡
(

𝑦𝑡
)

𝐻𝜌̃𝑡
⟩

→ 𝐿𝑚∞
(

𝑦∞
)

𝜌̃∞,
⟨

𝑡𝐻
(

𝜌̃𝑡𝐻
′
𝑡
⊺)⟩ → 𝐿𝑣∞

(

𝑦∞
)

𝐶𝐻∞ ,
(55)

a.s. as 𝑡 → ∞. And the limiting matrices are uniformly bounded by 
negative-definite matrices 𝐴𝑚, 𝐴𝑣
𝐿𝑚∞ (𝑦) − ̂

∞𝛤
−2 ⪯ 𝐴𝑚 ≺ 0, 𝐿𝑣∞ (𝑦) − ̂

∞𝛤
−2 ⪯ 𝐴𝑣 ≺ 0. (56)

In addition, non-zero noise in (36) can be included satisfying 𝛴𝑡 → 0
as 𝑡 → ∞. Then, the same result applies for the convergence of the 
observation mean and covariance at the long-time limit as in Lemma 
10 and Theorem  11.

5. Ensemble approximation of the statistical filtering model

Finally, we discuss numerical implementations of ensemble methods 
for solving the statistical filtering model (36) with discrete observations 
and explicit filtering operators in analysis update.

5.1. Numerical algorithm for implementing the approximating filter

Assume that the observation data comes at discrete times 𝑡𝑛 = 𝑛𝛿
with a constant observation frequency 𝛿. We can linearly interpolate 
𝑦𝑛 =

(

𝑢̄𝑡𝑛 , 𝑅𝑡𝑛
)

∈ R𝑝 as 

d𝑦𝛿𝑡 =
𝑦𝑛+1 − 𝑦𝑛 =

𝛥𝑦𝑛+1 , (57)

d𝑡 𝑡𝑛+1 − 𝑡𝑛 𝛿



D. Qi and J.-G. Liu Physica D: Nonlinear Phenomena 484 (2025) 135013 
during time interval 𝑡 ∈ [

𝑡𝑛, 𝑡𝑛+1
]

. We propose an ensemble algorithm 
to approximate the filtering distribution 𝜌̃𝑡𝑛 ∼ 𝑍̃𝑡𝑛  conditional on the 
statistical observations 𝑌 𝛿𝑡 =

{

𝑦𝛿𝑠 , 𝑠 ≤ 𝑡
} based on the statistical filter 

Eq. (36). First, 𝑁 independent particles, 𝐙̃𝑡 =
{

𝑍̃(𝑖)
𝑡

}𝑁

𝑖=1
, are drawn to 

sample the initial distribution of the stochastic state. Then, the particles 
are evolved according to the following SDE with drift terms 𝑎𝑚𝑡 , 𝑎𝑣𝑡  and 
control gains 𝐾𝑚

𝑡 , 𝐾
𝑣
𝑡

d𝑍̃ (𝑖)
𝑡 = 𝐿

(

𝑢̄𝑁𝑡
)

𝑍̃ (𝑖)
𝑡 d𝑡 + 𝛤

(

𝑍̃ (𝑖)
𝑡 𝑍̃

(𝑖)⊺
𝑡 − 𝑅𝑁𝑡

)

d𝑡 + 𝛴𝑡d𝑊̃
(𝑖)
𝑡

+ 𝑎𝑚𝑡
(

𝑍̃ (𝑖)
𝑡

)

d𝑡 +𝐾𝑚
𝑡

(

𝑍̃ (𝑖)
𝑡

){

d𝑢̄𝛿𝑡 −
[

𝐻𝑚
(

𝑍̃ (𝑖)
𝑡

)

+ ℎ𝑚,𝑡
(

𝑢̄𝛿𝑡
)

]

d𝑡 − 𝛤𝑚,𝑡d𝐵̃
(𝑖)
𝑚,𝑡

}

+ 𝑎𝑣𝑡
(

𝑍̃ (𝑖)
𝑡

)

d𝑡 +𝐾𝑣
𝑡

(

𝑍̃ (𝑖)
𝑡

){

d𝑅𝛿𝑡 −
[

𝐻𝑣
(

𝑍̃ (𝑖)
𝑡

)

+ ℎ𝑣,𝑡
(

𝑢̄𝛿𝑡 , 𝑅
𝛿
𝑡

)

]

d𝑡 − 𝛤𝑣,𝑡d𝐵̃
(𝑖)
𝑣,𝑡

}

,

(58)

where the expressions for ℎ𝑚, ℎ𝑣 are defined in (23), 𝐻𝑚,𝐻𝑣 are defined 
in (24), and 𝐵̃(𝑖)

𝑚,𝑡, 𝐵̃
(𝑖)
𝑣,𝑡 are independent white noises. Above, in the first 

line of (58) for the forecast step of the filter, the first two moments 
(

𝑢̄𝑁𝑡 , 𝑅
𝑁
𝑡
) can be explicitly solved by the statistical equations according 

to the stochastic-statistical model (11)

d𝑢̄𝑁𝑡
d𝑡

=𝑀
(

𝑢̄𝑁𝑡
)

+ 𝐹𝑡 + E𝑁
[

𝐻𝑚 (

𝐙̃𝑡
)]

,

d𝑅𝑁𝑡
d𝑡

= 𝐿
(

𝑢̄𝑁𝑡
)

𝑅𝑁𝑡 + 𝑅𝑁𝑡 𝐿
(

𝑢̄𝑁𝑡
)⊺ + 𝛴𝑡𝛴

⊺
𝑡

+E𝑁
[

𝐻𝑣 (𝐙̃𝑡
)]

+ 𝜖−1
(

E𝑁
[

𝐙̃𝑡𝐙̃
⊺
𝑡
]

− 𝑅𝑁𝑡
)

.

(59)

The expectation is computed by the empirical average, E𝑁𝑓 (

𝐙̃
)

=
1
𝑁

∑𝑁
𝑖=1 𝑓

(

𝑍̃(𝑖)). In this way, the particle simulation of (58) can be 
carried out easily for each individual sample 𝑍̃(𝑖)

𝑡 , and the dependence 
on the distribution of the whole interacting particles is only intro-
duced through the empirical average in the statistical Eqs. (59). We 
summarize the ensemble filtering strategy in Algorithm 1.

Algorithm 1 Ensemble statistical filter with observations in mean and 
covariance
Model Setup: Get the interpolated sequence of statistical observations 

Eq.  (57) 𝑦𝛿𝑡 =
{

𝑢̄𝛿𝑡 , 𝑅
𝛿
𝑡
}

, 𝑡 ∈ [0, 𝑇 ]; determine time integration step 𝜏, 
and the initial state distribution 𝜌0.

Initial condition: Draw an ensemble of samples 
{

𝑍̃(𝑖)
0

}𝑁

𝑖=1
 from the 

initial distribution 𝜌0, and compute the initial mean and covariance 
{

𝑢̄𝑁0 , 𝑅
𝑁
0
} w.r.t. 𝜌0. 

1: for 𝑛 = 0 while 𝑛 < ⌊𝑇 ∕𝜏⌋, during the time interval 𝑡 ∈ [

𝑡𝑛, 𝑡𝑛+1
]

with 𝑡𝑛 = 𝑛𝜏 do
2:  Compute the gain functions 𝐾𝑚

𝑡𝑛
 and 𝐾𝑣

𝑡𝑛
 using Eq.  (62) and the 

associated drift functions 𝑎𝑚𝑡𝑛  and 𝑎
𝑣
𝑡𝑛
.

3:  Update the samples 
{

𝑍̃(𝑖)
𝑡𝑛+1

}𝑁

𝑖=1
 using Eq.  (58) with the statistical 

states 
{

𝑢̄𝑁𝑡𝑛 , 𝑅
𝑁
𝑡𝑛

}

 and observation data 𝑦𝛿𝑡 .
4:  Update the statistical mean and covariance 

{

𝑢̄𝑁𝑡𝑛+1 , 𝑅
𝑁
𝑡𝑛+1

}

 by 
integrating Eq.  (59) to the next time step using the empirical 
average of all samples.

5: end for

Remark.  Solving the Eqs. (58) may still demand high computa-
tional cost for resolving the multiple nonlinear coupling terms in high 
dimension 𝑑 ≫ 1. One potential approach to address the compu-
tational challenge is to adopt the efficient random batch approach 
[41,44] developed for the coupled models (11). A detailed investigation 
of efficient numerical methods will be performed in the follow-up 
research.
12 
5.2. Construction of explicit model operators in the analysis step

In the second and third lines of (58) for the analysis step update 
of filtering, we still need to propose explicit expressions for model 
parameters 𝑎𝑚𝑡 , 𝐾𝑚

𝑡  and 𝑎𝑣𝑡 , 𝐾𝑣
𝑡  according to the observations of the mean 

and covariance respectively. According to Theorem  8, the gain function 
𝐾𝑡 needs to be solved from Eq.  (41), that is,

−∇ ⋅
(

𝐾⊺
𝑡 𝜌̃𝑡

)

= 𝜌̃𝑡𝛤
−2
𝑡

(

𝐻 (𝑧) − 𝐻̄𝑡
)

.

Then the drift function 𝑎𝑡 can be directly computed from the solution 
of 𝐾𝑡 as

𝑎𝑡 = ∇ ⋅
(

𝐾𝑡𝛤
2
𝑡 𝐾

⊺
𝑡
)

−𝐾𝑡𝛤 2
𝑡 ∇ ⋅𝐾⊺

𝑡 .

In general, it is still difficult to find solutions of the above equations. 
By multiplying 𝐻 on both sides and integrating about 𝑧, the identity 
for 𝐾𝑡 implies a necessary condition 

Ẽ
[

𝐾⊺
𝑡 ∇𝐻

]

= 𝛤−2
𝑡 𝐶𝐻𝑡 , (60)

where 𝐶𝐻𝑡 = Ẽ
[(

𝐻
(

𝑍̃𝑡
)

− 𝐻̄𝑡
) (

𝐻
(

𝑍̃𝑡
)

− 𝐻̄𝑡
)⊺] is the covariance of 𝐻 . 

Therefore, we can first design proper gain functions 𝐾𝑡 by solving (60) 
according to the specific structures of 𝐻𝑚 ∶ R𝑑 → R𝑑 and 𝐻𝑣 ∶ R𝑑 →
R𝑑2  required in our problem in (24)
𝐻𝑚
𝑘 (𝑧) =

∑

𝑚,𝑛
𝛾𝑘𝑚𝑛𝑧𝑚𝑧𝑛 = 𝑧⊺𝐴𝑘𝑧,

𝐻𝑣
𝑘𝑙 (𝑧) =

∑

𝑚,𝑛
𝛾𝑘𝑚𝑛𝑧𝑚𝑧𝑛𝑧𝑙 + 𝛾𝑙𝑚𝑛𝑧𝑚𝑧𝑛𝑧𝑘 =

(

𝑧⊺𝐴𝑘𝑧
)

𝑧𝑙 + 𝑧𝑘
(

𝑧⊺𝐴𝑙𝑧
)

,
(61)

for all 1 ≤ 𝑘, 𝑙 ≤ 𝑑 where we rewrite the quadratic and cubic functions 
using the symmetric coefficient matrix, 𝐴⊺

𝑘 = 𝐴𝑘 ∈ R𝑑×𝑑 , satisfying 
the assumed structural symmetry in the coupling coefficient 𝛾𝑘𝑚𝑛. The 
resulting gain functions are then constructed with the following specific 
expressions. 

Proposition 12.  The matrix-valued gain functions 𝐾𝑚
𝑡 = 𝐾̃𝑚𝛤−2

𝑚,𝑡  and 
𝐾𝑣
𝑡 = 𝐾̃𝑣𝛤−2

𝑣,𝑡  with 𝐾̃𝑚 (𝑧) ∈ R𝑑×𝑑 and 𝐾̃𝑣 (𝑧) ∈ R𝑑×𝑑2  in the following 
expressions 

𝐾̃𝑚
𝑗,𝑘 (𝑧) =

1
2
𝑧𝑗

[

𝐻𝑚
𝑘 (𝑧) − 𝐻̄𝑚

𝑘
]

,

𝐾̃𝑣
𝑗,𝑘𝑙 (𝑧) =

1
3
𝑧𝑗

[

𝐻𝑣
𝑘𝑙 (𝑧) − 𝐻̄

𝑣
𝑘𝑙
]

.
(62)

for 1 ≤ 𝑘, 𝑙 ≤ 𝑑 and 1 ≤ 𝑗 ≤ 𝑑 satisfy Eq.  (60) according to the 
structures of the functions 𝐻𝑚 and 𝐻𝑣 in the forms (61) respectively, and 
𝐻̄𝑚 = Ẽ

[

𝐻𝑚 (

𝑍̃
)] and 𝐻̄𝑣 = Ẽ

[

𝐻𝑣 (𝑍̃
)]

.

The proof of Proposition  12 is put in Appendix  B. The average 
terms, 𝐻̄𝑚, 𝐻̄𝑣, are already computed in the statistical Eqs. (59) thus 
no additional computational cost is needed. On the other hand, it is 
noticed that (62) can only give a necessary condition for the gain 
operators and may not guarantee the original identity for 𝐾𝑡 in general. 
However, in the proof of Theorem  8, it shows that (60) is the main 
relation needed to derive the consistent analysis statistics on the mean 
of 𝐻 (

𝑍̃𝑡
)

. Therefore, (62) provides a desirable candidate for practical 
implementations of the algorithm concerning the consistency in the 
leading moments.

6. Numerical tests on prototype models

In this section, we test the performance of the proposed filtering 
algorithm on simple but nevertheless instructive prototype models. 
Though relatively low-dimensional, these models can demonstrate a 
wide variety of different statistical regimes, making desirable first 
experiments for confirming the skill of new filtering strategies.
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Fig. 2. Filtering performance in the near-Gaussian region of the triad model with the sample size 𝑁1 = 100.
6.1. Numerical setup of the triad model

The triad model [7,36] is given by a three-dimensional ODE system 
about 𝐮 =

(

𝑢1, 𝑢2, 𝑢3
)⊺ with a quadratic nonlinear coupling term 

d𝑢1
d𝑡

= 𝐿2𝑢3 − 𝐿3𝑢2 − 𝑑1𝑢1 + 𝐵1𝑢2𝑢3 + 𝜎1𝑊̇1,

d𝑢2
d𝑡

= 𝐿3𝑢1 − 𝐿1𝑢3 − 𝑑2𝑢2 + 𝐵2𝑢3𝑢1 + 𝜎2𝑊̇2,

d𝑢3
d𝑡

= 𝐿1𝑢2 − 𝐿2𝑢1 − 𝑑3𝑢3 + 𝐵3𝑢1𝑢2 + 𝜎3𝑊̇3.

(63)

The above system (63) fits into the general formulation (1) and the non-
linear coupling term is energy preserving if 𝐵1 +𝐵2 +𝐵3 = 0. The triad 
system constitutes an elementary building block for more general tur-
bulent systems as a three-mode Galerkin projection of high-dimensional 
dynamics with energy conserving nonlinear interactions [6].

Though simple in appearance, the triad system (63) has repre-
sentative statistical features including energy cascade between modes 
and internal instabilities that can be created by choosing the model 
parameters. In particularly, we can generate distinct statistical features 
from Gaussian to highly non-Gaussian PDFs in two typical dynamical 
regimes:

• Region I: equipartition of energy. Gaussian equilibrium distribution, 
𝑝eq ∼ exp

(

− 1
2𝜎

−2
eq 𝐮 ⋅ 𝐮

)

, will be reached under this set-up by 
setting the equipartition of energy in model parameters, 𝜎21

2𝑑1
=

𝜎22
2𝑑2

=
𝜎23
2𝑑3

= 𝜎2eq.

• Region II: cascade of energy. In this case, energy is injected in the 
strongly forced first mode 𝑢1 while the other two strongly damped 
modes 𝑢2, 𝑢3 are less energetic, inducing energy cascades through 
nonlinear coupling.

Region I is the simplest but nevertheless representative with near-
Gaussian statistics. The higher-order moment effects are relatively 
small in the final equilibrium state, while the nonlinear dynamics still 
produces dominantly non-Gaussian statistics as the system evolves from 
initial state. Region II contains important third-order interactions, and 
large errors will be introduced if the unobserved cross-covariances are 
ignored without care. The model parameters of the two test regions are 
listed in Table  1.
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Table 1
Model parameters of the triad model in two test regions.
 Region (

𝐿1 , 𝐿2 , 𝐿3
) (

𝑑1 , 𝑑2 , 𝑑3
) (

𝐵1 , 𝐵2 , 𝐵3
) (

𝜎1 , 𝜎2 , 𝜎3
)  

 I (3,−2,−1) (0.02, 0.01, 0.01) (1,−0.5,−0.5) 2.5 ×
(

√

2𝑑1 ,
√

2𝑑2 ,
√

2𝑑3
)

 
 II (0, 0, 0) (0.1, 0.2, 0.2) (1,−0.5,−0.5)

(
√

10, 0.1, 0.1
)

 

The true statistical features of the triad system in the above dynam-
ical regimes are resolved through direct Monte-Carlo simulations. We 
run an ensemble of 𝑁 = 5 × 104 particles, which shall be enough for 
capturing the essential non-Gaussian statistics in a three-dimensional 
phase space. A fourth-order Runge–Kutta scheme with time step 𝛥𝑡 =
1×10−3 is used to integrate the system in time, and the stochastic forcing 
is simulated through the standard Euler–Maruyama scheme. The initial 
ensemble is chosen from a standard Gaussian random sampling.

6.2. Filtering performance in different statistical regions of the triad model

In the statistical forecast problem, we aim to capture the probability 
evolution of the model state (𝑢1, 𝑢2, 𝑢3

) using a small ensemble size 
𝑁1 = 100. The statistical filtering scheme can be directly applied to 
the triad model according to the numerical formulation (58) and (59). 
Observation data is drawn from the leading moments of the mean 
(

𝑢̄1, 𝑢̄2, 𝑢̄3
) and variance (𝑟1, 𝑟2, 𝑟3

)

. Notice that due to the nonlinear 
coupling structure in the triad model (63), the accurate prediction 
of the mean and covariance in (18) relies on the estimation of the 
cross-covariance and third-moments which are all not included in the 
observation data.

6.2.1. Filtering with near-Gaussian statistics
First, we consider the filter performance in Region I with near-

Gaussian statistics. Scatter plots of joint two-dimensional distributions 
from direct MC simulations with a large ensemble are shown in the 
first row of Fig.  2 with different colors indicating the density of the 
samples. The joint distributions of states show the near-Gaussian PDFs. 
Nevertheless, large errors will be gradually developed by running the 
statistical equations with a very small sample size due to the insufficient 
estimation of the expectations in (59) which will be amplified in time. 
This will lead to the gradual increase of errors in the prediction of 
mean, variance, and cross-covariance as shown in the second panel 
of Fig.  2. In contrast, stability and accuracy are maintained using the 
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Fig. 3. Filtering performance in the non-Gaussian region of the triad model with the sample size 𝑁1 = 100.
filter scheme during the entire evolution of the solutions. Especially, 
the unobserved cross-covariances between the modes play an important 
role in the accurate prediction of the mean and covariance. The diver-
gence of the direct method without filter is induced by the accumulated 
errors in the cross-covariances, while the filter effectively stabilizes the 
unobserved statistics and guarantees accurate prediction.

6.2.2. Filtering with non-Gaussian statistics
Next, in Region II with nonlinear energy cascade, non-Gaussian dis-

tributions with extreme events can be observed in the PDFs especially 
with a star-shaped joint-distribution as illustrated in the upper panel of 
Fig.  3. This demonstrates strong nonlinear effects between the modes 
and a more challenging case for accurate statistical forecasts. Note that 
the high non-Gaussianity in 𝑢2, 𝑢3 can affect the final structure in the 
dominant mode 𝑢1 despite its closer to Gaussian marginal distribution. 
This illustrates important contributions of third-order moments in this 
case for accurate predictions. Due to this strong reliance on the accurate 
estimation of higher moments, the small ensemble prediction without 
the filter will quickly degenerate from the initial time as observed 
in the lower panel of Fig.  3. The growth of large errors is more 
obvious in the crucial cross-covariances that govern the dynamics of 
the mean equation. Again, the filter scheme maintains robust accurate 
prediction against the large errors induced by the small ensemble 
estimates of crucial higher-order moments. The accurate prediction 
and long-time stability shown in the tests involving strong nonlinearity 
and non-Gaussian statistics demonstrate high skill of the statistical fil-
ter enabling efficient long-time probabilistic forecasts of non-Gaussian 
statistics.

6.3. Filtering performance in the Lorenz 96 model

As a further test on higher dimensional systems, we apply the 
filtering algorithm on the Lorenz 96 (L-96) model [62] as another 
prototype model to examine data assimilation schemes 
d𝑢𝑗
d𝑡

= −𝑢𝑗 +
(

𝑢𝑗+1 − 𝑢𝑗−2
)

𝑢𝑗−1 + 𝐹 , 𝑗 = 1,… , 𝐽 , (64)

with periodic boundary condition 𝑢𝐽+1 = 𝑢1 and constant uniform 
forcing 𝐹 . Various representative statistical features can be found in the 
L-96 solution [63]. Notice that by taking the dimension of the system 
𝐽 = 3, the L-96 Eq. (64) shares similar dynamical structures as the triad 
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system (63) with homogeneous linear terms and energy-conserving 
quadratic nonlinear coupling.

In the numerical tests here, we adopt the constant forcing 𝐹 = 6
that demonstrates strong non-Gaussian statistics in the state solution 
𝑢𝑗 , and a higher dimension 𝐽 = 10 to test the filter performance. 
The true statistical solution of the L-96 model (64) is resolved using 
a sufficiently large ensemble size 𝑁 = 5 × 104. The model state starts 
with an initial distribution with independent Gaussian distribution with 
small variances, while the internal instability will rapidly amplify the 
uncertainty among the modes. By applying the filtering method on the 
L-96 model containing a large number of internal unstable modes, we 
aim to capture the key model statistics in a high dimension 𝐽 = 10
using a small number of samples 𝑁1 = 100. The prediction results for 
the mean and variances captured by the particles are plotted in Fig. 
4. Similar to the triad model results, the direct numerical prediction 
using a small ensemble size fails to capture the statistics showing 
large fluctuation errors and diverging solution. On the other hand, the 
predictions of mean and variances in the filtering model stay accurate 
during the entire evolution time against the strong inherent instability 
in the Lorenz system.

7. Summarizing discussions

We developed a systematic statistical filtering strategy that enables 
effective ensemble approximation of non-Gaussian probability distribu-
tions of multiscale turbulent states using observations in the leading-
order moments. The filtering model is based on a closed stochastic-
statistical formulation established for modeling general turbulent dy-
namical systems involving nonlinear coupling. Statistical observations 
in the first two moments are used to improve the accuracy in cap-
turing crucial non-Gaussian statistics in filtering updates. In practi-
cal implementation of the framework, white noise corrections are 
introduced to represent model errors from the finite ensemble ap-
proximation and incomplete observation data such as only statistics 
in large scales is allowed. There are several potential approaches to 
obtain the statistical observations depending on the problems to be 
applied, including: (i) taking local spatial averages to get large-scale 
statistics; (ii) using time averages in a short time window in the 
trajectories; (iii) coarse-grained simulations from multiple imperfect 
low-order approximation models; and (iv) approaches using linear 
response theory and reduced-order methods to extract leading-order 
statistics from equilibrium measures. The non-Gaussian features then 
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Fig. 4. Filtering performance in the 10-dimensional L-96 model with the sample size 𝑁1 = 100. 
can be characterized by a McKean–Vlasov SDE taking into account 
both the stochastic forecast equation and corrections according to the 
observed first two moments. Importantly, the SDE model for the finite-
dimensional stochastic state does not require the explicit computation 
of the infinite-dimensional probability distribution, but just relies on 
the feedbacks from the leading moments that can be computed from the 
associated statistical equations. This leads to straightforward numerical 
algorithms using ensemble approximations. The new filtering model of-
fers a flexible approach to recover essential statistics, making it applica-
ble to a wide range of problems in uncertainty quantification and data
assimilation.

Limitations of the statistical filtering model and future research directions. 
Still, many interesting problems remain open in both rigorous mathe-
matical analysis of the approximate filtering model and the practical 
computational strategies for realistic applications. In this paper, we 
are only able to show the statistical consistency of the approximate 
filter in the first two moments and using full observation function 
under restricted assumptions. Further explorations exploiting specific 
model structures such as the conservation properties will be used to 
provide a thorough understanding of the approximation skill of the 
filter predictions. In the immediate applications of this research, the 
performance of the new filtering strategy need to be tested on typical 
nonlinear systems with close realistic relevance. We plan to perform 
systematic numerical experiments on a series of turbulent systems, 
starting from prototype models to realistic applications in really high-
dimensional systems. Using the simple prototype models [54], we are 
able to carry out a systematic numerical investigation of the filtering 
scheme for different non-Gaussian features generated by the nonlinear 
dynamics. On the other hand, to deal with the computational challenge 
in high-dimensional systems, the current filtering scheme needs to be 
combined with additional model reduction strategies such as the ran-
dom batch approximations [41,44] that have been shown a promising 
way to compute high dimensional problems. Furthermore, we would 
like to point out that even though the results in this paper are mostly 
focusing on continuous observations, the statistical filtering scheme 
described in Algorithm 1 can be adapted for discrete observation data 
𝑦𝑡 and can only include the moments in the leading modes. This is 
particularly suitable for many practical situations where only large-
scale observations in discrete times are available. We plan to perform 
detailed numerical performance comparison based on different types of 
observations in the follow-up research [54].
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Appendix A. General backgrounds about filtering

We summarize useful results needed in the main text of the paper 
mostly following the Refs. [55,58,64].

A.1. Filtering equations for general stochastic systems

Let (𝛺, ,P) be the complete probability space. The signal process
𝑢𝑡 ∈ R𝑑 and the observation process 𝑦𝑡 ∈ R𝑝 are defined on the 
probability space satisfying the following SDEs 
d𝑢𝑡 = 𝐹

(

𝑢𝑡
)

d𝑡 + 𝛴d𝑊𝑡, 𝑢𝑡=0 = 𝑢0, (A.1a)

d𝑦𝑡 = 𝐻
(

𝑢𝑡
)

d𝑡 + d𝐵𝑡, 𝑦𝑡=0 = 𝑦0, (A.1b)

where 𝐹 ∶ R𝑑 → R𝑑 and 𝐻 ∶ R𝑑 → R𝑝 are bounded and globally 
Lipschitz continuous functions, and 𝑊𝑡 ∈ R𝑠, 𝐵𝑡 ∈ R𝑝 are independent 
standard Wiener processes with matrix coefficient 𝛴 ∈ R𝑑×𝑠. The aim 
of the general filtering problem is to determine the conditional prob-
ability distribution 𝜇𝑡 of the signal process, 𝑢𝑡, given the accumulated 
observation process, 𝑌𝑡 =

{

𝑦𝑠, 𝑠 ≤ 𝑡
}

.
Define the observation filtration 𝑡 = 𝜎

{

𝑦𝑠, 𝑠 ≤ 𝑡
}

. The random 
conditional distribution 𝜇𝑡 ∶ R𝑑 × 𝛺 → [0, 1] is defined as the  (

R𝑑
)

-
valued stochastic process which is measurable w.r.t. 𝑡, so that for any 
function 𝜑 ∈ 𝐶2

𝑏
(

R𝑑
) a.s.

E
[

𝜑
(

𝑢𝑡
)

∣ 𝑡
]

= 𝜇𝑡 (𝜑) ∶= ∫R𝑑
𝜑 (𝑢)𝜇𝑡 (d𝑢) .

In particular, the optimal filter solution, 𝑢̂𝑡 = E
[

𝑢𝑡 ∣ 𝑡
]

, can be de-
fined based on 𝜇𝑡. It shows that 𝑢̂𝑡 is the minimizer E

[

|

|

𝑢̂𝑡 − 𝑢𝑡||
2
]

=

min𝑣 E
[

|

|

𝑣 − 𝑢𝑡||
2
]

 among all 𝑣 ∈ 𝐿2 (𝛺,𝑡,P
) in the set of 𝑡-measurable 

square-integrable random variables for any fixed 𝑡. The filtering equa-
tion for the conditional probability distribution 𝜇𝑡 is verified to satisfy 
the Kushner–Stratonovich equation 
d𝜇𝑡 (𝜑) = 𝜇𝑡 (𝜑) d𝑡 + 𝜎

(

𝐻,𝜑;𝜇𝑡
)

d𝜈𝑡. (A.2)

On the right hand side of the above equation, the first term is the drift 
due to the infinitesimal generator  = 𝐹 ⋅∇+ 1

2𝛴𝛴
⊺ ∶ ∇∇ of the signal 

process (A.1a); the second term represents the correction from the ob-
servation process (A.1b). The innovation process, d𝜈𝑡 = d𝑦𝑡−𝜇𝑡 (𝐻) d𝑡 ∈
R𝑝, is a 𝑡-Brownian motion under the probability measure P, and 
𝜎
(

𝐻,𝜑;𝜇𝑡
)

= 𝜇𝑡 (𝜑𝐻⊺) − 𝜇𝑡 (𝜑)𝜇𝑡 (𝐻⊺) ∈ R1×𝑝 gives the coefficient with 
finite quadratic variation, where 𝜇𝑡 (𝐻) is the componentwise measure 
of the vector-valued function 𝐻 . In addition, the filtering Eq. (A.2) is 
shown to have a unique solution under proper conditions (Theorem 
3.30 and 4.19 in [64] and Theorem 7.7 in [12]) that is also stable 
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(Theorem 2.7 in [65]). Therefore, this guarantees that the solution of 
the Kushner–Stratonovich Eq. (A.2) uniquely characterizes the filter 
distribution 𝜇𝑡 as a 

(

R𝑑
)

-valued stochastic process.
Next, assume that the conditional probability 𝜇𝑡 possesses a square 

integrable density, 𝜇𝑡 (d𝑥) = 𝜌𝑡 (𝑥) d𝑥, with respect to the Lebesgue 
measure. It can be shown under proper conditions (Corollary 7.18 
in [20,64]), the conditional probability solution 𝜇𝑡 of (A.1) has a 
probability density 𝜌𝑡 ∈ 𝑊 2

𝑘
(

R𝑑
)

. According to (A.2) for the conditional 
probability, 𝜌𝑡 can be found to be the unique solution to the following 
SPDE 
𝜕𝑡𝜌𝑡 = ∗𝜌𝑡d𝑡 + 𝜌𝑡

(

𝐻 − 𝐻̄𝑡
)⊺ (d𝑦𝑡 − 𝐻̄𝑡d𝑡

)

, 𝜌𝑡=0 = 𝜌0, (A.3)

where 𝐻̄𝑡 = ∫R𝑑 𝐻 (𝑥) 𝜌𝑡 (𝑥) d𝑥 and 𝜌0 ∈ 𝐿2 (R𝑑
) is the absolute continu-

ous density of 𝜇0. The randomness of the above SPDE only comes from 
the innovation process d𝜈𝑡 = d𝑦𝑡−𝜇𝑡 (𝐻) d𝑡 as a finite-dimensional white 
noise in time.

At last, if the functions on the right hand sides of (A.1) satisfy the 
Ornstein–Uhlenbeck processes with matrix coefficients, that is, 𝐹 (𝑢) =
𝐹𝑢 + 𝑓𝑡 and 𝐻 (𝑢) = 𝐻𝑢 + ℎ𝑡. With Gaussian initial condition, 𝑢0 ∼


(

𝑢̂0, 𝐶0
)

, the conditional distribution 𝜇𝑡 = 
(

𝑢̂𝑡, 𝐶𝑡
) given 𝑡 in (A.2) 

becomes a multivariate normal distribution, where 𝑢̂𝑡 = E
[

𝑢𝑡 ∣ 𝑡
] and 

𝐶𝑡 = E
[(

𝑢𝑡 − 𝑢̂𝑡
) (

𝑢𝑡 − 𝑢̂𝑡
)⊺ ∣ 𝑡

]

. The filtering equations for 𝑢̂𝑡 ∈ R𝑑 and 
𝐶𝑡 ∈ R𝑑×𝑑 are given by the Kalman–Bucy filter [56] 
d𝑢̂𝑡 =

(

𝐹 𝑢̂𝑡 + 𝑓𝑡
)

d𝑡 +𝐾𝑡
[

d𝑦𝑡 −
(

𝐻𝑢̂𝑡 + ℎ𝑡
)

d𝑡
]

, (A.4a)

𝐶̇𝑡 = 𝐹𝐶𝑡 + 𝐶𝑡𝐹 ⊺ −𝐾𝑡𝐾
⊺
𝑡 + 𝛴𝛴

⊺. (A.4b)

with the Kalman gain matrix 𝐾𝑡 = 𝐶𝑡𝐻⊺. Above, (A.4a) is an SDE 
coupled with the deterministic Riccati equation (A.4b).

A.2. Infinite dimensional filtering in Hilbert space

It is shown that the linear Kalman–Bucy filter can be generalized 
to linear stochastic equations on a Hilbert space [57,58]. Let 𝐻 be a 
Hilbert space. Denote 𝐿2 (𝛺,,P;𝐻) as the collection of all 𝐻-valued 
-measurable square-integrable random variables. The expectation of 
𝑢 ∈ 𝐿2 (𝛺,,P;𝐻) is denoted by 

E [𝑢] = ∫𝛺
𝑢 (𝜔) dP (𝜔) . (A.5)

The inner product for states 𝑢, 𝑣 ∈ 𝐿2 (𝛺,,P;𝐻) can be defined 
as ⟨𝑢, 𝑣⟩2 = E

[

⟨𝑢, 𝑣⟩𝐻
]

= ∫𝛺 ⟨𝑢 (𝜔) , 𝑣 (𝜔)⟩𝐻 dP (𝜔). With the above 
notations, the covariance operator  can be introduced as an element 
in the linear transformations  (𝐻 ;𝐻). 

Definition 13.  Let 𝑢, 𝑣 ∈ 𝐿2 (𝛺,,P;𝐻) be two 𝐻-valued random 
variables. Then the covariance of 𝑢 and 𝑣 is given by 
 (𝑢, 𝑣) = E [𝑢 ⊗ 𝑣] − E [𝑢]⊗ E [𝑣] , (A.6)

where 𝑢 (𝜔)⊗ 𝑣 (𝜔) ∈  (𝐻 ;𝐻) is a linear transformation of 𝐻 into 𝐻
defined for any 𝑓 ∈ 𝐻 as
(𝑢 ⊗ 𝑣) 𝑓 = 𝑢 ⟨𝑣, 𝑓 ⟩𝐻 .

It is easy to check that the adjoint  (𝑢, 𝑣)∗ =  (𝑣, 𝑢) and  (𝑢, 𝑢)∗ =
 (𝑢, 𝑢) is self-adjoint since
⟨𝑓, (𝑢 ⊗ 𝑣) 𝑔⟩𝐻 = ⟨𝑢, 𝑓 ⟩𝐻 ⟨𝑣, 𝑔⟩𝐻

Notice that if 𝐻 = R𝑑 is finite-dimensional, for any 𝑥, 𝑦 ∈ 𝐿2 (𝛺,,P;
R𝑑

)

, 𝑥 ⊗ 𝑦 = 𝑥𝑦⊺ ∈ R𝑑×𝑑 , then the covariance  (𝑥, 𝑦) ∈ R𝑑×𝑑 becomes 
the 𝑑 × 𝑑 matrix
 (𝑥, 𝑦) = E

[

𝑥𝑦⊺
]

− E [𝑥]E [𝑦]⊺ = E
[

(𝑥 − E [𝑥]) (𝑦 − E [𝑦])⊺
]

.

Then, we call the 𝑢𝑡 (𝜔) from [0, 𝑇 ] ×𝛺 to 𝐻 an 𝐻-valued stochastic 
process. An infinite-dimensional 𝐻-valued Wiener process 𝑊𝑡 can be 
defined accordingly and the Itô integral can be generalized to infinite-
dimensional Hilbert space accordingly (see Chapter 2 of [5] with 
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precise validations). Therefore, the signal process 𝑢𝑡 of filtering can be 
given by the following 𝐻-valued SDE 
d𝑢𝑡 = 𝑡𝑢𝑡d𝑡 +𝑡d𝑊𝑡, 𝑢𝑡=0 = 𝑢0, (A.7)

where 𝑡 ∈ 𝐿∞ ([0, 𝑇 ] ; (𝐻 ;𝐻)) is a regulated mapping of [0, 𝑇 ] into 
 (𝐻 ;𝐻) (which is further generalized to unbounded operators in [66]), 
𝑡 ∈ 𝐿2 ([0, 𝑇 ] ; (𝐻 ;𝐻)), and 𝑊𝑡 is the 𝐻-valued Wiener process. It 
can be shown (Theorem 2.13 in [5] and Theorem 5.1 in [58]) that (A.7) 
has unique solution in 𝐿2 (𝛺,,P;𝐻) with initial value E

[

|

|

𝑢0||
2
𝐻

]

< ∞. 
The observation stochastic process 𝑦𝑡 ∈ R𝑝 can be generated by the
SDE 
d𝑦𝑡 = 𝑡𝑢𝑡d𝑡 + d𝐵𝑡, 𝑦𝑡=0 = 𝑦0, (A.8)

where 𝑡 is a linear mapping of [0, 𝑇 ] into  (𝐻 ;R𝑝), and 𝐵𝑡 is the 
Wiener process in R𝑝 independent of 𝑊𝑡. The infinite-dimensional 
filtering problem can be then described as: given 𝑦𝑠, 𝑠 ≤ 𝑡, determine 
the optimal estimate 𝑢̂𝑡 of 𝑢𝑡 that minimizes 

E
[

|

|

𝑢𝑡 − 𝑣||
2
𝐻

]

, 𝑣 ∈ 𝐿2 (𝛺,𝑡,P;𝐻
)

, (A.9)

where 𝑡 = 𝜎
{

𝑦𝑠, 𝑠 ≤ 𝑡
} is generated by the observations up to time 𝑡.

Finally, in parallel to the Kalman–Bucy filter (A.4) in finite-
dimensional space, similar result can be extended to the above infinite-
dimensional filtering problem (A.7) and (A.8). Below, we summarize 
the main results in Theorem 7.10, 7.14 of [58]. 

Theorem 14.  The optimal filter solution 𝑢̂𝑡 of (A.9) exists and is unique, 
which satisfies the following infinite-dimensional SDE 
d𝑢̂𝑡 = 𝑡𝑢̂𝑡d𝑡 +𝑡

(

d𝑦𝑡 −𝑡𝑢̂𝑡d𝑡
)

, 𝑢̂𝑡=0 = 𝑢0, (A.10)

where 𝑡 = 𝑡∗
𝑡 ∈  (R𝑝;𝐻) with ∗

𝑡  the adjoint of 𝑡. And the 
covariance operator 𝑡 = E

[(

𝑢𝑡 − 𝑢̂𝑡
)

⊗
(

𝑢𝑡 − 𝑢̂𝑡
)] satisfies the following 

Riccati equation 
̇𝑡 = 𝑡𝑡 + 𝑡∗

𝑡 −𝑡∗
𝑡 +𝑡∗

𝑡 , 𝑡=0 = 
(

𝑢0, 𝑢0
)

. (A.11)

A.3. Kalman–Bucy filter with conditional Gaussian processes

The linear Kalman–Bucy filter can be generalized to nonlinear filter-
ing accepting the conditional Gaussian processes [55]. The conditional 
Gaussian process (𝑣𝑡, 𝑦𝑡

)

, 0 ≤ 𝑡 ≤ 𝑇  is given by the solution of the 
following coupled equations 
d𝑣𝑡 =

[

𝐹𝑡
(

𝑦𝑡
)

𝑣𝑡 + 𝑓𝑡
(

𝑦𝑡
)]

d𝑡 + 𝛴𝑡d𝑊𝑡, 𝑣𝑡=0 = 𝑣0, (A.12a)

d𝑦𝑡 =
[

𝐻𝑡
(

𝑦𝑡
)

𝑣𝑡 + ℎ𝑡
(

𝑦𝑡
)]

d𝑡 + 𝛤𝑡d𝐵𝑡, 𝑦𝑡=0 = 𝑦0, (A.12b)

where 𝑊𝑡, 𝐵𝑡 are mutually independent standard Gaussian white noise 
processes, and the initial states (𝑣0, 𝑦0

) are random variables inde-
pendent of 𝑊𝑡, 𝐵𝑡. In general, 𝑣𝑡 ∈ R𝑑 represents the signal process 
and 𝑦𝑡 ∈ R𝑝 represents the observation process. The functions 𝑓𝑡, 𝐹𝑡
and ℎ𝑡,𝐻𝑡 are globally Lipschitz continuous and uniformly bounded 
on the observed state 𝑦𝑡 over the time interval 0 ≤ 𝑡 ≤ 𝑇 . Assume 
that the sequence (𝑣𝑡, 𝑦𝑡

) is obtained from a realization 𝜔 and the 
initial condition, {𝑣0, 𝑦0

}

. We can then define the observation sequence 
𝑌𝑡 =

{

𝑦𝑠 (𝜔) , 𝑠 ≤ 𝑡
} as well as the unobserved signal 𝑣𝑡 = 𝑣𝑡 (𝜔). The 

above system (A.12) is called the conditional Gaussian process since 
the conditional distribution 𝜇𝑡 = P

(

𝑣𝑡 ∈ ⋅ ∣ 𝑌𝑡
) given 𝑌𝑡 becomes a 

Gaussian distribution a.s. if 𝜇0 = P
(

𝑣0 ∈ ⋅ ∣ 𝑦0
) is Gaussian (Theorem 

12.6 of [55]).
Next, let 𝑡 = 𝜎

{

𝑦𝑠, 𝑠 ≤ 𝑡
}

, and define the mean 𝑣̂𝑡 = E
[

𝑣𝑡 ∣ 𝑡
]

and covariance matrix 𝐶̂𝑡 = E
[(

𝑣𝑡 − 𝑣̂𝑡
) (

𝑣𝑡 − 𝑣̂𝑡
)⊺ ∣ 𝑡

] w.r.t. the con-
ditional Gaussian distribution 𝜇𝑡 = 

(

𝑣̂𝑡, 𝐶̂𝑡
)

. Then, it shows that the 
explicit dynamical equations for (𝑣̂𝑡, 𝐶̂𝑡

) can be derived based on the 
conditional Gaussian process (A.12). As a result, filtering equations 
from the linear Kalman–Bucy filter (A.4) can be directly applied to 
the conditional linear system regardless of its essentially nonlinear 
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dynamics. The equations of the conditional Gaussian processes and 
the uniqueness of the solutions are proved under suitable conditions 
for the model coefficients in Chapter 12 of [55]. We summarize the 
results according to Theorem 12.7 of [55] for the nonlinear conditional 
Gaussian filter. 

Theorem 15.  The conditional distribution 𝜇𝑡 of the stochastic processes 
𝑣𝑡 given 𝑌𝑡 from (A.12) is Gaussian,  (

𝑣̂𝑡, 𝐶̂𝑡
)

. Then, with 𝛤𝑡𝛤 ⊺
𝑡 ≻ 0 and 

the initial mean and covariance 𝑣̂0, 𝐶̂0, the solutions for the mean 𝑣̂𝑡 and 
covariance matrix 𝐶̂𝑡 are uniquely given by the following closed equations 
d𝑣̂𝑡 =

[

𝐹𝑡
(

𝑦𝑡
)

𝑣̂𝑡 + 𝑓𝑡
(

𝑦𝑡
)]

d𝑡

+ 𝐾𝑡
(

𝑦𝑡
) (

𝛤𝑡𝛤
⊺
𝑡
)−1 {d𝑦𝑡 −

[

𝐻𝑡
(

𝑦𝑡
)

𝑣̂𝑡 + ℎ𝑡
(

𝑦𝑡
)]

d𝑡
}

, (A.13a)
d𝐶̂𝑡 =

[

𝐹𝑡
(

𝑦𝑡
)

𝐶̂𝑡 + 𝐶̂𝑡𝐹𝑡
(

𝑦𝑡
)⊺ + 𝛴𝑡𝛴

⊺
𝑡
]

d𝑡

− 𝐾𝑡
(

𝑦𝑡
) (

𝛤𝑡𝛤
⊺
𝑡
)−1 𝐾⊺

𝑡
(

𝑦𝑡
)

d𝑡, (A.13b)

where 𝐾𝑡
(

𝑦𝑡
)

= 𝐶̂𝑡
(

𝑦𝑡
)

𝐻𝑡
(

𝑦𝑡
)⊺. The matrix 𝐶̂𝑡 will remain positive-definite 

for all 0 ≤ 𝑡 ≤ 𝑇  if 𝐶̂0 ≻ 0.

Appendix B. Detailed proofs of theorems in the main text

Proof of Lemma  1. Denote the energy 𝐸𝑡 = ∫ |𝑢|2 𝑝𝑡 (𝑢) d𝑢. Multiplying 
the factor |𝑢|2 on both sides of the FPE (2) and integrating in space 
𝑢 ∈ R𝑑 yield that
d𝐸𝑡
d𝑡

= ∫ 2𝑢 ⋅
[

𝛬𝑢 + 𝐵 (𝑢, 𝑢) + 𝐹𝑡
]

𝑝𝑡d𝑢 + tr
(

𝜎𝑡𝜎
⊺
𝑡
)

≤ −2𝜆0𝐸𝑡 + 𝑢̄𝑡 ⋅ 𝐹𝑡 + tr
(

𝜎𝑡𝜎
⊺
𝑡
)

≤ −𝜆0𝐸𝑡 +
|

|

𝐹𝑡||
2

𝜆0
+ tr

(

𝜎𝑡𝜎
⊺
𝑡
)

.

Above, the second line follows from the conservation relation (3a) in 
the quadratic coupling, 𝑢 ⋅𝐵 (𝑢, 𝑢) = 0 and −𝜆0 is the largest eigenvalue 
of the negative-definite coefficient. The third line uses the estimate 
𝑢̄𝑡 ⋅𝐹𝑡 ≤ 𝜆0𝑢̄2𝑡 +

|

|

𝐹𝑡||
2

𝜆0
≤ 𝜆0𝐸𝑡 +

|

|

𝐹𝑡||
2

𝜆0
. Then using the uniform boundedness 

of the forcing coefficients, we have the finite solution 𝐸𝑡 as the direct 
conclusion from Grönwall’s inequality starting from finite initial state 
𝐸0 <∞. This proves that 𝑝𝑡 has finite second moments during the time 
evolution, that is, 𝑝𝑡 ∈ 2

(

R𝑑
)

. Next, the regularity of the solution for 
𝑡 > 0 follows from the coercive operator from the dissipation coefficient 
(3b) following the standard proof as in [43].

Finally, for the finiteness of higher order moments, consider the 
high-order energy 𝐸2𝑘

𝑡 = ∫ |𝑢|2𝑘 𝑝𝑡 (𝑢) d𝑢. By multiplying |𝑢|2𝑘−2 𝑢 on 
both sides of Eq.  (1) and using the finite moments in the lower or-
der, the boundedness of each higher order moments will be reached 
following the same line of arguments. □

Proof of Lemma  2. First, applying Itô’s formula for 𝑍𝑡 with any test 
function 𝜑 ∈ 𝐶2

𝑏
(

R𝑑
) gives 

d𝜑
(

𝑍𝑡
)

= 
(

𝑢̄𝑡, 𝑅𝑡
)

𝜑
(

𝑍𝑡
)

d𝑡 + ∇𝜑
(

𝑍𝑡
)⊺ 𝛴𝑡d𝑊𝑡

= ∇𝜑
(

𝑍𝑡
)⊺ [𝐿

(

𝑢̄𝑡
)

𝑍𝑡 + 𝛤
(

𝑍𝑡𝑍
⊺
𝑡 − 𝑅𝑡

)]

d𝑡 (B.1)

+ 1
2
𝛴𝑡𝛴

⊺
𝑡 ∶ ∇∇𝜑

(

𝑍𝑡
)

d𝑡 + ∇𝜑
(

𝑍𝑡
)⊺ 𝛴𝑡d𝑊𝑡, (B.2)

where  is the generator of 𝑍𝑡. Given any statistical solution 
(

𝑢̄𝑡, 𝑅𝑡
)

and taking expectation using 𝜑 (𝑍) = 𝑍 for |𝑍| ≤ 𝐶, the equation for 
the first moment of 𝑍𝜏 with 𝜏 = 𝑡 ∧ 𝜎 and 𝜎 = inf{𝑡 ∶ |𝑍𝑡| ≥ 𝐶} can be 
found as 
d
d𝑡
E
[

𝑍𝜏
]

=
[

𝐿
(

𝑢̄𝜏
)

E
[

𝑍𝜏
]

+ 𝛤
(

E
[

𝑍𝜏𝑍
⊺
𝜏
]

− 𝑅𝜏
)]

. (B.3)

Then notice that 𝜎 ↑ ∞ and the first two moments are finite, we get the 
equation for 𝑍𝑡. Next by taking 𝜑 (𝑍) = 𝑍𝑘𝑍𝑙 for |𝑍| ≤ 𝐶, in a similarly 
way we have
d
(

𝑍𝑘.𝑡𝑍𝑙,𝑡
)

=
∑

[

𝐿𝑘𝑚
(

𝑢̄𝑡
)

𝑍𝑚.𝑡𝑍𝑙,𝑡 +𝑍𝑘.𝑡𝑍𝑚,𝑡𝐿𝑙𝑚
(

𝑢̄𝑡
)]

d𝑡 + 𝛴𝑘𝑚,𝑡𝛴𝑙𝑚,𝑡d𝑡

𝑚

17 
+
∑

𝑚,𝑛
𝛾𝑚𝑛𝑘

(

𝑍𝑚,𝑡𝑍𝑛,𝑡𝑍𝑙,𝑡 − 𝑅𝑚𝑛,𝑡𝑍𝑙,𝑡
)

d𝑡

+ 𝛾𝑚𝑛𝑙
(

𝑍𝑚,𝑡𝑍𝑛,𝑡𝑍𝑘,𝑡 − 𝑅𝑚𝑛,𝑡𝑍𝑘,𝑡
)

d𝑡

+
∑

𝑚
𝛴𝑘𝑚,𝑡𝑍𝑙,𝑡d𝑊𝑚,𝑡 + 𝛴𝑙𝑚,𝑡𝑍𝑘,𝑡d𝑊𝑚,𝑡.

This implies the second moment equation of 𝑍𝑡 as
d
d𝑡
E
[

𝑍𝑡𝑍
⊺
𝑡
]

=
∑

𝑚

[

𝐿𝑘𝑚
(

𝑢̄𝑡
)

E
[

𝑍𝑚.𝑡𝑍𝑙,𝑡
]

+ E
[

𝑍𝑘.𝑡𝑍𝑚,𝑡
]

𝐿𝑙𝑚
(

𝑢̄𝑡
)]

d𝑡 + 𝛴𝑡𝛴
⊺
𝑡

(B.4)
+
∑

𝑚,𝑛
𝛾𝑚𝑛𝑘

(

E
[

𝑍𝑚,𝑡𝑍𝑛,𝑡𝑍𝑙,𝑡
]

− 𝑅𝑚𝑛,𝑡E
[

𝑍𝑙,𝑡
])

d𝑡

+ 𝛾𝑚𝑛𝑙
(

E
[

𝑍𝑚,𝑡𝑍𝑛,𝑡𝑍𝑘,𝑡
]

− 𝑅𝑚𝑛,𝑡E
[

𝑍𝑘,𝑡
])

d𝑡.

Assuming E [

𝑍𝑡
]

= 0 and E [

𝑍𝑡𝑍
⊺
𝑡
]

= 𝑅𝑡 for any time instant 𝑡, first 
we see that the right hand side of (B.3) will always stay zero. Then, 
with the same statistics in the third moments of 𝑍𝑡, the right hand side 
of (B.4) becomes equal to the right hand of the statistical equation of 
𝑅𝑡 in (11) with (12). Uniqueness of solution in the statistical equations 
given the same initial values implies that the leading two moments of 
𝑍𝑡 satisfy E

[

𝑍𝑡
]

= 0 and E [

𝑍𝑡𝑍
⊺
𝑡
]

= 𝑅𝑡 for all 𝑡 > 0. □

Proof of Proposition  3. First, consider E𝜑 (

𝑢𝑡
) with test function 𝜑 ∈

𝐶2
𝑏
(

R𝑑
) w.r.t. the PDF 𝑝𝑡 for the state of the original system (1). Itô’s 

lemma shows that
dE𝜑

(

𝑢𝑡
)

d𝑡
= E

[(

𝛬𝑢𝑡 + 𝐵
(

𝑢𝑡, 𝑢𝑡
)

+ 𝐹𝑡
)

⋅ ∇𝜑
(

𝑢𝑡
)]

+ 1
2
E
[

𝜎𝑡𝜎
⊺
𝑡 ∶ ∇∇𝜑

(

𝑢𝑡
)]

,

where 𝐴 ∶ ∇∇𝜑 =
∑

𝑚𝑛 𝑎𝑚𝑛𝜕𝑢𝑚𝜕𝑢𝑛𝜑. In addition, the above equation can 
be generalized to all 𝜑 ∈ 𝐶2 (R𝑑

) by applying Dynkin’s formula for 
a strong Markov process. In fact, consider the test function 𝜑 defined 
within |𝑢| ≤ 𝐶 and introduce the stopping time 𝜏 = 𝑡∧𝜎 with 𝜎 = inf{𝑡 ∶
|𝑢𝑡| ≥ 𝐶}. We have the equation for 𝑢𝜏 by Dynkin’s formula. Since all 
the moments of 𝑢𝑡 remain bounded from Lemma  1, we get the same 
equation for 𝜑 (

𝑢𝑡
) by letting 𝐶 ↑ ∞ and 𝜎 ↑ ∞.

Using the decomposition 𝑢′ = 𝑢−E𝑢 =
∑

𝑘 𝑢
′
𝑘,𝑡𝑣̂𝑘 with 𝑢′𝑘 = 𝑣̂𝑘 ⋅ 𝑢′, we 

have first for 𝜑 = 𝑢
dE𝑢𝑡
d𝑡

= E
[

𝛬𝑢𝑡 + 𝐵
(

𝑢𝑡, 𝑢𝑡
)

+ 𝐹𝑡
]

= 𝛬E𝑢𝑡 + 𝐵
(

E𝑢𝑡,E𝑢𝑡
)

+
∑

𝑘,𝑙
E
[

𝑢′𝑘,𝑡𝑢
′
𝑙,𝑡

]

𝐵
(

𝑣̂𝑘, 𝑣̂𝑙
)

+ 𝐹𝑡. (B.5)

Above, we use the bilinearity of the operator 𝐵 and E𝑢′ = 0, such that
E𝐵 (𝑢, 𝑢) = E𝐵

(

E𝑢 + 𝑢′,E𝑢 + 𝑢′
)

= E
[

𝐵 (E𝑢,E𝑢) + 𝐵
(

E𝑢, 𝑢′
)

+ 𝐵
(

𝑢′,E𝑢
)

+ 𝐵
(

𝑢′, 𝑢′
)]

= 𝐵 (E𝑢,E𝑢) + E
∑

𝑘,𝑙
𝐵
(

𝑢′𝑘,𝑡𝑣̂𝑘, 𝑢
′
𝑙,𝑡𝑣̂𝑙

)

= 𝐵 (E𝑢,E𝑢) +
∑

𝑘,𝑙
E
[

𝑢′𝑘,𝑡𝑢
′
𝑙,𝑡

]

𝐵
(

𝑣̂𝑘, 𝑣̂𝑙
)

.

Similarly, by taking 𝜑 =
(

𝑣̂𝑘 ⋅ 𝑢′𝑡
) (

𝑢′𝑡 ⋅ 𝑣̂𝑙
)

= 𝑢′⊺𝑡 𝐴𝑘𝑙𝑢
′
𝑡 with 𝐴𝑘𝑙 = 𝑣̂𝑙 𝑣̂

⊺
𝑘, we 

find
d
d𝑡
E
[

𝑢′𝑘,𝑡𝑢
′
𝑙,𝑡

]

=E
[(

𝛬𝑢𝑡 + 𝐵
(

𝑢𝑡, 𝑢𝑡
)

+ 𝐹𝑡
)

⋅
(

𝐴𝑘𝑙 + 𝐴
⊺
𝑘𝑙

)

𝑢′𝑡
]

+ 1
2
𝜎𝑡𝜎

⊺
𝑡 ∶

(

𝐴𝑘𝑙 + 𝐴
⊺
𝑘𝑙

)

= E
[(

𝑢′𝑡 ⋅ 𝑣̂𝑙
) (

𝑣̂⊺𝑘𝛬𝑢
′
𝑡

)

+
(

𝑢′⊺𝑡 𝛬
⊺𝑣̂𝑙

) (

𝑣̂𝑘 ⋅ 𝑢
′
𝑡

)]

+E
[

𝑣̂𝑙 ⋅ 𝐵
(

E𝑢, 𝑢′
)

𝑢′𝑘,𝑡 + 𝑣̂𝑘 ⋅ 𝐵
(

E𝑢, 𝑢′
)

𝑢′𝑙,𝑡
]

+E
[

𝑣̂𝑙 ⋅ 𝐵
(

𝑢′,E𝑢
)

𝑢′𝑘,𝑡 + 𝑣̂𝑘 ⋅ 𝐵
(

𝑢′,E𝑢
)

𝑢′𝑙,𝑡
]

+E
[

𝐵
(

𝑢′𝑡 , 𝑢
′
𝑡

)

⋅
(

𝑣̂𝑙𝑢
′
𝑘,𝑡 + 𝑣̂𝑘𝑢

′
𝑙,𝑡

)]

+
(

𝜎𝑡 ⋅ 𝑣̂𝑘
) (

𝑣̂𝑙 ⋅ 𝜎𝑡
)

=
∑

𝑚

(

𝑣̂⊺𝑘𝛬𝑣̂𝑚
)

E
[

𝑢′𝑚,𝑡𝑢
′
𝑙,𝑡

]

+ E
[

𝑢′𝑘,𝑡𝑢
′
𝑚,𝑡

]

(

𝑣̂⊺𝑙𝛬
⊺𝑣̂𝑚

)

+
(

𝜎𝑡 ⋅ 𝑣̂𝑘
) (

𝑣̂𝑙 ⋅ 𝜎𝑡
)

(B.6)

+
∑

𝑚

[

𝑣̂⊺𝑘𝐵
(

E𝑢, 𝑣̂𝑚
)

E
[

𝑢′𝑚,𝑡𝑢
′
𝑙,𝑡

]

+ E
[

𝑢′𝑘,𝑡𝑢
′
𝑚,𝑡

]

𝑣̂⊺𝑙𝐵
(

E𝑢, 𝑣̂𝑚
)

]

+
∑

[

𝑣̂⊺𝑘𝐵
(

𝑣̂𝑚,E𝑢
)

E
[

𝑢′𝑚,𝑡𝑢
′
𝑙,𝑡

]

+ E
[

𝑢′𝑘,𝑡𝑢
′
𝑚,𝑡

]

𝑣̂⊺𝑙𝐵
(

𝑣̂𝑚,E𝑢
)

]

𝑚
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+
∑

𝑚,𝑛

[

𝑣̂⊺𝑘𝐵
(

𝑣̂𝑚, 𝑣̂𝑛
)

E
[

𝑢′𝑙,𝑡𝑢
′
𝑚,𝑡𝑢

′
𝑛,𝑡

]

+ 𝑣̂⊺𝑙𝐵
(

𝑣̂𝑚, 𝑣̂𝑛
)

E
[

𝑢′𝑘,𝑡𝑢
′
𝑚,𝑡𝑢

′
𝑛,𝑡

]]

.

Above in the second equality, we use the projection on the two modes 
(

𝐴𝑘𝑙 + 𝐴
⊺
𝑘𝑙
)

𝑢′𝑡 =
(

𝑣̂𝑙 𝑣̂
⊺
𝑘 + 𝑣̂𝑘𝑣̂

⊺
𝑙
)

𝑢′𝑡 = 𝑣̂𝑙𝑢′𝑘,𝑡 + 𝑣̂𝑘𝑢′𝑘,𝑡, and the bilinearity 
of the quadratic operator 𝐵; and in the third equality, we use the de-
composition of fluctuation modes, 𝑢′𝑡 =

∑

𝑘 𝑢
′
𝑘,𝑡𝑣̂𝑘. We find the coupling 

operator 𝐿𝑘𝑚 =
(

𝑣̂⊺𝑘𝛬𝑣̂𝑚
)

+ 𝑣̂⊺𝑘𝐵
(

𝑣̂𝑚,E𝑢
)

+ 𝑣̂⊺𝑘𝐵
(

𝑣̂𝑚,E𝑢
)

, the third-order 
coupling coefficients 𝛾𝑚𝑛𝑘 = 𝑣̂⊺𝑘𝐵

(

𝑣̂𝑚, 𝑣̂𝑛
)

, as well as the noise term 
(

𝜎𝑡 ⋅ 𝑣̂𝑘
) (

𝑣̂𝑙 ⋅ 𝜎𝑡
)

.
In addition, by subtracting the mean Eq. (B.5) from the original 

system (1), we find the SDE for the stochastic state
d𝑢′𝑡
d𝑡

= d
d𝑡

(

𝑢𝑡 − E𝑢𝑡
)

=𝛬𝑢𝑡 + 𝐵
(

𝑢𝑡, 𝑢𝑡
)

+ 𝜎𝑡𝑊̇𝑡

− 𝛬E𝑢𝑡 − 𝐵 (E𝑢,E𝑢) −
∑

𝑚,𝑛
E
[

𝑢′𝑚,𝑡𝑢
′
𝑛,𝑡

]

𝐵
(

𝑣̂𝑚, 𝑣̂𝑛
)

=
∑

𝑚
𝑢′𝑚,𝑡

[

𝛬𝑣̂𝑚 + 𝐵
(

E𝑢, 𝑣̂𝑚
)

+ 𝐵
(

𝑣̂𝑚,E𝑢
)]

+
∑

𝑚,𝑛

[

𝑢′𝑚,𝑡𝑢
′
𝑛,𝑡 − E

[

𝑢′𝑚,𝑡𝑢
′
𝑛,𝑡

]]

𝐵
(

𝑣̂𝑚, 𝑣̂𝑛
)

+ 𝜎𝑡𝑊̇𝑡.

Again in the second equality, we use the spectral decomposition of the 
fluctuation state 𝑢′𝑘,𝑡 = 𝑢′𝑡 ⋅ 𝑣̂𝑘. By projecting the state 𝑢′𝑡 on the basis 𝑣̂𝑘, 
we have 
d𝑢′𝑘,𝑡
d𝑡

=
∑

𝑘
𝐿𝑘𝑚

(

E𝑢𝑡
)

𝑢′𝑚,𝑡+
∑

𝑚,𝑛
𝛾𝑚𝑛𝑘

[

𝑢′𝑚,𝑡𝑢
′
𝑛,𝑡 − E

[

𝑢′𝑚,𝑡𝑢
′
𝑛,𝑡

]]

+ 𝑣̂⊺𝑘𝜎𝑡𝑊̇𝑡, (B.7)

with the same parameters 𝐿𝑘𝑚 and 𝛾𝑚𝑛𝑘 defined before. The generator 
𝑢𝑡  of 𝑢′𝑡 can be written as

𝑢𝑡
(

𝑝𝑡
)

=

[

∑

𝑘
𝐿𝑘𝑚

(

E𝑢𝑡
)

𝑢′𝑚,𝑡 +
∑

𝑚,𝑛
𝛾𝑚𝑛𝑘

(

𝑢′𝑚,𝑡𝑢
′
𝑛,𝑡 − E

[

𝑢′𝑚,𝑡𝑢
′
𝑛,𝑡

])

]

⋅ ∇𝑢′

+ 1
2
𝛴𝑡𝛴

⊺
𝑡 ∶ ∇𝑢′∇𝑢′ ,

where 𝑢𝑡  is dependent on 𝑝𝑡 in computing the expectations.
Next, we consider the closure model (11) without the relaxation 

term 
d𝑢̄𝑡
d𝑡

= 𝛬𝑢̄𝑡 + 𝐵
(

𝑢̄𝑡, 𝑢̄𝑡
)

+𝑄𝑚
(

E
[

𝑍𝑡 ⊗𝑍𝑡
])

+ 𝐹𝑡,

d𝑅𝑡
d𝑡

= 𝐿
(

𝑢̄𝑡
)

𝑅𝑡 + 𝑅𝑡𝐿
(

𝑢̄𝑡
)

+𝑄𝑣
(

E
[

𝑍𝑡 ⊗𝑍𝑡 ⊗𝑍𝑡
])

+ 𝛴𝑡𝛴
⊺
𝑡 ,

d
d𝑡
E
[

𝜑
(

𝑍𝑡
)]

= E
[

𝑡
(

𝑢̄𝑡, 𝑅𝑡
)

𝜑
(

𝑍𝑡
)]

.

(B.8)

where 𝑡 is the generator from (20) defined from the McKean–Vlasov 
SDE of 𝑍𝑡
𝑡

(

𝑢̄𝑡, 𝑅𝑡
)

=
[

𝐿
(

𝑢̄𝑡
)

𝑍𝑡 + 𝛤
(

𝑍𝑡𝑍
⊺
𝑡 − 𝑅𝑡

)]

⋅ ∇𝑧 +
1
2
𝛴𝑡𝛴

⊺
𝑡 ∶ ∇𝑧∇𝑧.

The closure terms 𝑄𝑚 and 𝑄𝑣 in (12) have exactly the same structure 
as that in the original system derived in (B.5) and (B.6). In addition, by 
comparing the above SDEs (9) and (B.7), it is realized that their gener-
ators, 𝑢𝑡

(

𝑝𝑡
) and 𝑡

(

𝑢̄𝑡, 𝑅𝑡
)

, share the same dynamical structure with 
the dependence on the first two moments w.r.t. 𝑝𝑡 and the statistical 
solutions 𝑢̄𝑡, 𝑅𝑡 in (B.8). Therefore, at any time instant 𝑡 if we assume 
consistent statistics
E𝑝𝑡

[

𝑢𝑡
]

= 𝑢̄𝑡, E𝑝𝑡
[(

𝑢′𝑡 ⋅ 𝑣̂𝑘
) (

𝑢′𝑡 ⋅ 𝑣̂𝑙
)]

= 𝑅𝑘𝑙,𝑡,

as well as

E𝑝𝑡
[

𝜑
(

𝑢′𝑡
)]

= E

[

𝜑

( 𝑑
∑

𝑘=1
𝑍𝑘,𝑡𝑣̂𝑘

)]

,

the right hand sides of the original model (B.5), (B.6), and (B.7) become 
the same as that of the closure model (B.8). Starting from the same 
initial condition with uniqueness of the solution, it directly implies that 
the statistical solutions of the two systems (1) and (B.8) will remain the 
same during the entire time evolution. Finally, adding the additional 
coefficient 

(

1 + |𝑢 |2
)

 in front of the test function 𝜑 will follow by 

| 𝑡|

18 
repeating the same argument given that the second moments w.r.t. 𝑝𝑡
are finite. □

Proof of Proposition  4.  Given any 𝑡-measurable square-integrable 
stochastic process 𝜈, we have from direct computation

E
[

|

|

𝜌𝑡 −𝜈|
|

2
]

− E
[

|

|

𝜌𝑡 −𝜌̂𝑡||
2
]

= E
[(

𝜌̂𝑡 −𝜈
)

⋅
(

2𝜌𝑡 −𝜈 −𝜌̂𝑡
)]

= E
{

E
[(

𝜌̂𝑡 −𝜈
)

⋅
(

2𝜌𝑡 −𝜈 −𝜌̂𝑡
)

∣ 𝑡
]}

= E
{(

𝜌̂𝑡 −𝜈
)

⋅
[

E
[

2𝜌𝑡 ∣ 𝑡
]

−
(

𝜈 +𝜌̂𝑡
)]}

= E
[

|

|

𝜌̂𝑡 −𝜈|
|

2
]

≥ 0.

Above, the third equality uses the fact 𝜌̂𝑡 −𝜈 = E
[

𝜌𝑡 ∣ 𝑡
]

−𝜈
is 𝑡-measurable. Thus, we get 𝜌̂𝑡 minimizes the mean square error. 
The consistency under the expectation in 𝜌̂𝑡 and 𝜌𝑡 can be directly 
implied by definition. □

Proof of Lemma  5. We rewrite the filter model (38) for 𝑍̃𝑡 by sub-
stituting the explicit equation for the observation process, d𝑦𝑡 =

[

𝜌𝑡
+ℎ𝑡

(

𝑦𝑡
)]

d𝑡 + 𝛤𝑡d𝐵𝑡, in (23)

d𝑍̃𝑡 = 𝑎𝑡
(

𝑍̃𝑡
)

d𝑡 +𝐾𝑡
(

𝑍̃𝑡
) {[

𝜌𝑡 −𝐻
(

𝑍̃𝑡
)]

d𝑡 + 𝛤𝑡d𝐵𝑡 − 𝛤𝑡d𝐵̃𝑡
}

.

By applying Itô’s formula on the above SDE, we have for 𝜑 ∈ 𝐶2
𝑏
(

R𝑑
)

d𝜑
(

𝑍̃𝑡
)

= ∇𝜑 ⋅
[(

𝑎𝑡 −𝐾𝑡
(

𝐻
(

𝑍̃𝑡
)

+ ℎ𝑡
(

𝑦𝑡
)))]

d𝑡

− ∇𝜑 ⋅𝐾𝑡𝛤𝑡d𝐵̃𝑡 + ∇𝜑 ⋅𝐾𝑡d𝑦𝑡 +𝐾𝑡𝛤 2
𝑡 𝐾

⊺
𝑡 ∶ ∇∇𝜑d𝑡, (B.9)

where we define 𝐴 ∶ ∇∇𝜑 =
∑𝑑
𝑖,𝑗=1 𝐴𝑖𝑗𝜕𝑧𝑖𝑧𝑗𝜑 and take the conven-

tion (∇𝑓 )𝑖𝑗 = 𝜕𝑧𝑖𝑓𝑗 for the gradient of vector-valued functions 𝑓 ∈
𝐶1 (R𝑑 ;R𝑝

)

. Notice that above the coefficient in the last term is 1 
considering the additional contributions from the independent white 
noise process 𝛤𝑡d𝐵𝑡 = d𝑦𝑡 −

[

𝜌𝑡 + ℎ𝑡
(

𝑦𝑡
)]

d𝑡 in the observation process 
besides the original d𝐵̃𝑡, that is,
1
2
∇∇𝜑 ∶ d

⟨

𝐾𝛤𝐵̃,𝐾𝛤 𝐵̃
⟩

𝑡 +
1
2
∇∇𝜑 ∶ d ⟨𝐾𝛤𝐵,𝐾𝛤𝐵⟩𝑡 = ∇∇𝜑 ∶ 𝐾𝑡𝛤

2
𝑡 𝐾

⊺
𝑡 d𝑡,

where we denote ⟨𝑀,𝑁⟩𝑡 as the Meyer’s process of two martingales 𝑀𝑡
and 𝑁𝑡.

First, by taking 𝜑 (𝑧) = 𝐻 (𝑧) and taking expectation Ẽ w.r.t. 𝜌̃𝑡
conditional on 𝑌𝑡 =

{

𝑦𝑠, 𝑠 ≤ 𝑡
}

∈ 𝑡, we have

dẼ𝐻
(

𝑍̃𝑡
)

= Ẽ
[

∇𝐻
(

𝑍̃𝑡
)⊺ 𝑎𝑡

]

d𝑡 − Ẽ
[

∇𝐻
(

𝑍̃𝑡
)⊺ 𝐾𝑡

(

𝐻̄𝑡 +𝐻 ′
𝑡 + ℎ𝑡

(

𝑦𝑡
))]

d𝑡

+Ẽ
[

∇𝐻
(

𝑍̃𝑡
)⊺ 𝐾𝑡

]

d𝑦𝑡 + Ẽ
[

𝐾𝑡𝛤
2
𝑡 𝐾

⊺
𝑡 ∶ ∇∇𝐻

(

𝑍̃𝑡
)]

d𝑡

= Ẽ
[

∇𝐻
(

𝑍̃𝑡
)⊺ 𝑎𝑡

]

d𝑡 + Ẽ
[

𝐾𝑡𝛤
2
𝑡 𝐾

⊺
𝑡 ∶ ∇∇𝐻

(

𝑍̃𝑡
)]

d𝑡

−Ẽ
[

∇𝐻
(

𝑍̃𝑡
)⊺ 𝐾𝑡𝐻

′
𝑡

]

d𝑡 + Ẽ
[

∇𝐻
(

𝑍̃𝑡
)⊺ 𝐾𝑡

] {

d𝑦𝑡 −
[

𝐻̄𝑡 + ℎ𝑡
(

𝑦𝑡
)]

d𝑡
}

.

(B.10)

In the first line above, we split 𝐻 (

𝑍̃𝑡
)

= 𝐻̄𝑡 + 𝐻 ′
𝑡 . Notice that the 

observation process 𝑦𝑡 ∈ 𝑡 can be brought out of the expectation 
Ẽ [⋅] = E

[

⋅ ∣ 𝑡
]

. Using the first identity in (41) for 𝑎𝑡, there is

Ẽ
[

∇𝐻
(

𝑍̃𝑡
)⊺ 𝑎𝑡

]

=∫ ∇𝐻 (𝑧)⊺
[

∇ ⋅
(

𝐾𝑡𝛤
2
𝑡 𝐾

⊺
𝑡
)

−𝐾𝑡𝛤 2
𝑡 ∇ ⋅𝐾⊺

𝑡
]

𝜌̃𝑡 (𝑧) d𝑧

=∫ ∇𝐻 (𝑧)⊺
[

∇ ⋅
(

𝜌̃𝑡𝐾𝑡𝛤
2
𝑡 𝐾

⊺
𝑡
)

−𝐾𝑡𝛤 2
𝑡 𝐾

⊺
𝑡 ∇𝜌̃𝑡

− 𝐾𝑡𝛤
2
𝑡 ∇ ⋅𝐾⊺

𝑡 𝜌̃𝑡
]

d𝑧

= − ∫ ∇∇𝐻 (𝑧) ∶
(

𝐾𝑡𝛤
2
𝑡 𝐾

⊺
𝑡
)

𝜌̃𝑡d𝑧

− ∫ ∇𝐻 (𝑧)⊺ 𝐾𝑡𝛤 2
𝑡 ∇ ⋅

(

𝜌̃𝑡𝐾
⊺
𝑡
)

d𝑧

= − Ẽ
[(

𝐾𝑡𝛤
2
𝑡 𝐾

⊺
𝑡
)

∶ ∇∇𝐻
(

𝑍̃𝑡
)]

− ∫ ∇𝐻 (𝑧)⊺ 𝐾𝑡𝛤 2
𝑡 ∇ ⋅

(

𝜌̃𝑡𝐾
⊺
𝑡
)

d𝑧.
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Then using the second identity in (41) for 𝐾𝑡 and denoting 𝐻 ′
𝑡 = 𝐻−𝐻̄𝑡, 

the last term above gets simplified to

−∫ ∇𝐻⊺𝐾𝑡𝛤
2
𝑡 ∇ ⋅

(

𝜌̃𝑡𝐾
⊺
𝑡
)

d𝑧 = ∫ ∇𝐻 ′⊺
𝑡 𝐾𝑡𝜌̃𝑡𝐻

′
𝑡 d𝑧 = Ẽ

[

∇𝐻 ′⊺
𝑡 𝐾𝑡𝐻

′
𝑡
]

.

With the above identities, first line of (B.10) becomes zero. Further with 
the second identity in (41) for 𝐾𝑡, there is
Ẽ
(

𝐾⊺
𝑡 ∇𝜓

)

= 𝛤−2
𝑡 Ẽ

[(

𝐻
(

𝑍̃𝑡
)

− E𝐻
)

𝜓
(

𝑍̃𝑡
)⊺] ,

for any regular function 𝜓 with E𝜓 = 0. By taking 𝜓 = 𝐻 − 𝐻̄𝑡, there is
Ẽ
[

∇𝐻
(

𝑍̃𝑡
)⊺ 𝐾𝑡

]

= Ẽ
[(

𝐻
(

𝑍̃𝑡
)

− 𝐻̄𝑡
) (

𝐻
(

𝑍̃𝑡
)

− 𝐻̄𝑡
)⊺]𝛤−2

𝑡 = 𝐶𝐻𝑡 𝛤
−2
𝑡 .

This gives the equation for 𝐻̄𝑡 = Ẽ𝐻
(

𝑍̃𝑡
)

.
Next, we take 𝜑 (𝑧) = 𝐻𝑘 (𝑧)𝐻𝑙 (𝑧). For the convenience of compu-

tation, we separate the mean state 𝐻̄𝑡 as
𝜑 (𝑧) =

[

𝐻̄𝑘,𝑡 +𝐻 ′
𝑘 (𝑧)

] [

𝐻̄𝑙,𝑡 +𝐻 ′
𝑙 (𝑧)

]

=𝐻 ′
𝑘,𝑡 (𝑧)𝐻

′
𝑙,𝑡 (𝑧) + 𝐻̄𝑘,𝑡𝐻

′
𝑙 (𝑧) +𝐻

′
𝑘 (𝑧) 𝐻̄𝑙,𝑡 + 𝐻̄𝑘,𝑡𝐻̄𝑙,𝑡.

The last term above is independent of 𝑧, thus will vanish after applying 
Itô’s formula (B.9). We have for the first term on the right hand side
dẼ

[

𝐻 ′
𝑘,𝑡

(

𝑍̃𝑡
)

𝐻 ′
𝑙,𝑡

(

𝑍̃𝑡
)

]

= Ẽ∇
(

𝐻 ′
𝑘,𝑡𝐻

′
𝑙,𝑡

)⊺
[(

𝑎𝑡 −𝐾𝑡
(

𝐻̄𝑡 +𝐻 ′
𝑡 + ℎ𝑡

(

𝑦𝑡
)))]

d𝑡

+Ẽ
[

∇
(

𝐻 ′
𝑘,𝑡𝐻

′
𝑙,𝑡

)⊺
𝐾𝑡

]

d𝑦𝑡 + Ẽ
[

𝐾𝑡𝛤
2
𝑡 𝐾

⊺
𝑡 ∶ ∇∇

(

𝐻 ′
𝑘,𝑡𝐻

′
𝑙,𝑡

)]

d𝑡

= Ẽ
[

∇
(

𝐻 ′
𝑘𝐻

′
𝑙

)⊺ 𝑎𝑡
]

d𝑡 + Ẽ
[

𝐾𝑡𝛤
2
𝑡 𝐾

⊺
𝑡 ∶ ∇∇

(

𝐻 ′
𝑘,𝑡𝐻

′
𝑙,𝑡

)]

d𝑡

(B.11)

+ Ẽ
[

∇
(

𝐻 ′
𝑘,𝑡𝐻

′
𝑙,𝑡

)⊺
𝐾𝑡

]

{

d𝑦𝑡 −
[

𝐻̄𝑡 + ℎ𝑡
(

𝑦𝑡
)]

d𝑡
}

− Ẽ
[

∇
(

𝐻 ′
𝑘,𝑡𝐻

′
𝑙,𝑡

)⊺
𝐾𝑡𝐻

′
𝑡

]

.

Using the identifies (41) for 𝑎𝑡 and 𝐾𝑡, again we can find

Ẽ
[

∇
(

𝐻 ′
𝑘,𝑡𝐻

′
𝑙,𝑡

)⊺
𝑎𝑡
]

= − Ẽ
[

𝐾𝑡𝛤
2
𝑡 𝐾

⊺
𝑡 ∶ ∇∇

(

𝐻 ′
𝑘,𝑡𝐻

′
𝑙,𝑡

)]

− ∫ ∇
(

𝐻 ′
𝑘,𝑡𝐻

′
𝑙,𝑡

)⊺
𝐾𝑡𝛤

2
𝑡 ∇ ⋅

(

𝜌̃𝑡𝐾
⊺
𝑡
)

d𝑧

= − Ẽ
[

𝐾𝑡𝛤
2
𝑡 𝐾

⊺
𝑡 ∶ ∇∇

(

𝐻 ′
𝑘,𝑡𝐻

′
𝑙,𝑡

)]

+ Ẽ
[

∇
(

𝐻 ′
𝑘,𝑡𝐻

′
𝑙,𝑡

)⊺
𝐾𝑡𝐻

′
𝑡

]

.

Therefore, we have dẼ
[

𝐻 ′
𝑘,𝑡𝐻

′
𝑙,𝑡

]

=

Ẽ
[

∇
(

𝐻 ′
𝑘,𝑡𝐻

′
𝑙,𝑡

)⊺
𝐾𝑡

]

{

d𝑦𝑡 −
[

𝐻̄𝑡 + ℎ𝑡
(

𝑦𝑡
)]

d𝑡
}

. Further, using the identity 
for 𝐾𝑡, the coefficient becomes third moments of 𝐻 ′

𝑡

Ẽ
[

∇
(

𝐻 ′
𝑘,𝑡𝐻

′
𝑙,𝑡

)⊺
𝐾𝑡

]

= ∫ ∇
(

𝐻 ′
𝑘,𝑡𝐻

′
𝑙,𝑡

)⊺
𝐾𝑡𝜌̃𝑡d𝑧

= −∫

(

𝐻 ′
𝑘,𝑡𝐻

′
𝑙,𝑡

)

[

∇ ⋅
(

𝜌̃𝑡𝐾
⊺
𝑡
)]⊺ d𝑧

= ∫

(

𝐻 ′
𝑘,𝑡𝐻

′
𝑙,𝑡

)

[

𝜌̃𝑡𝛤
−2
𝑡

(

𝐻 (𝑧) − 𝐻̄𝑡
)]⊺ d𝑧

= Ẽ
[

𝐻 ′
𝑘,𝑡𝐻

′
𝑙,𝑡𝐻

′⊺
]

𝛤−2
𝑡 .

Similarly, by repeating the same procedure for 𝐻̄𝑘,𝑡𝐻 ′
𝑙 (𝑧), we have

dẼ
[

𝐻̄𝑘,𝑡𝐻
′
𝑙
(

𝑍̃𝑡
)]

= Ẽ
[

∇
(

𝐻̄𝑘,𝑡𝐻
′
𝑙,𝑡

)⊺
𝐾𝑡

]

{

d𝑦𝑡 −
[

𝐻̄𝑡 + ℎ𝑡
(

𝑦𝑡
)]

d𝑡
}

= Ẽ
[

𝐻 ′
𝑙,𝑡𝐻

′⊺
𝑡

]

𝛤−2
𝑡

[

d𝑦𝑡 −
(

𝐻̄𝑡 + ℎ𝑡
)

d𝑡
]

𝐻̄𝑘,𝑡.

And similar result can be achieved for Ẽ [

𝐻 ′
𝑘
(

𝑍̃𝑡
)

𝐻̄𝑙,𝑡
]

.
Finally, applying Itô’s formula for 𝐻̄𝑡𝐻̄

⊺
𝑡  where

d𝐻̄𝑡 = 𝐶𝐻𝑡 𝛤
−2
𝑡

(

𝜌𝑡 − 𝐻̄𝑡
)

d𝑡 + 𝐶𝐻𝑡 𝛤
−1
𝑡 d𝐵𝑡 as we have derived, there is,

d
(

𝐻̄𝑡𝐻̄
⊺
𝑡
)

=
(

d𝐻̄𝑡
)

𝐻̄⊺
𝑡 + 𝐻̄𝑡

(

d𝐻̄⊺
𝑡
)

+ d
⟨

𝐶𝐻𝛤−1𝐵,𝐶𝐻𝛤−1𝐵
⟩

𝑡

= 𝐶𝐻𝑡 𝛤
−2
𝑡

[

d𝑦𝑡 −
(

𝐻̄𝑡 + ℎ𝑡
)

d𝑡
]

𝐻̄⊺
𝑡

+ 𝐻̄𝑡
[

d𝑦⊺𝑡 −
(

𝐻̄𝑡 + ℎ𝑡
)⊺ d𝑡

]

𝛤−2
𝑡 𝐶𝐻𝑡

+ 𝐶𝐻𝑡 𝛤
−2
𝑡 𝐶𝐻𝑡 d𝑡.
19 
Notice again that the white noise process, 𝐶𝐻𝑡 𝛤−1
𝑡 d𝐵𝑡, gives the last 

term in the first equality above. Putting all the above equations to-
gether, we get the equation for d𝐶𝐻𝑡 = dẼ

[

𝐻
(

𝑍̃𝑡
)

𝐻
(

𝑍̃𝑡
)⊺]−d

(

𝐻̄𝑡𝐻̄
⊺
𝑡
)

where 𝐶𝐻𝑘𝑙,𝑡 = Ẽ
[

𝐻 ′
𝑘,𝑡𝐻

′
𝑙,𝑡

]

. □

Proof of Proposition  12. According to (60) with 𝐾 = 𝐾̃𝛤−2, we need 
to show
−∇ ⋅

(

𝐾̃⊺𝜌̃
)

𝐻⊺ = 𝜌̃𝐻 ′𝐻⊺ ⇒ Ẽ
[

𝐾̃⊺∇𝐻
]

= Ẽ
[

𝐻 ′ (𝐻̄ +𝐻 ′)⊺] = 𝐶𝐻 ,

according to the specific expressions 𝐻 = 𝐻𝑚 and 𝐻 = 𝐻𝑣. First, we 
can compute
∇𝑧𝐻𝑚

𝑙 = 2𝐴𝑙𝑧, ∇𝑧𝐻𝑣
𝑝𝑞 = 2𝑧𝑞𝐴𝑝𝑧 +

(

𝑧⊺𝐴𝑝𝑧
)

𝛿𝑞𝑗𝑒𝑗 .

Above in 𝐻𝑣 for simplicity, we only compute half of the symmetric 
function and 𝑒𝑗 is the unit vector with value 1 in the 𝑗th entry.

From direct computations for 𝐻𝑚 and using 𝐻𝑚
𝑘 = 𝑧⊺𝐴𝑘𝑧, we have

∑

𝑗
𝐾̃𝑚
𝑗,𝑘

𝜕𝐻𝑚
𝑙

𝜕𝑧𝑗
= 1

2
[(

𝑧⊺𝐴𝑘𝑧
)

− 𝐻̄𝑚
𝑘
]
∑

𝑗
𝑧𝑗2

(

𝐴𝑙𝑧
)

𝑗

=
[(

𝑧⊺𝐴𝑘𝑧
)

− 𝐻̄𝑚
𝑘
] (

𝑧⊺𝐴𝑙𝑧
)

= 𝐻𝑚′
𝑘 𝐻

𝑚
𝑙 .

Similarly for 𝐻𝑣, we can compute
∑

𝑗
𝐾̃𝑣
𝑗,𝑘𝑙

𝜕𝐻𝑣
𝑝𝑞

𝜕𝑧𝑗
= 1

3
[(

𝑧⊺𝐴𝑘𝑧
)

𝑧𝑙 − 𝐻̄𝑣
𝑘𝑙
]
∑

𝑗
𝑧𝑗

[

2𝑧𝑞
(

𝐴𝑝𝑧
)

𝑗 +
(

𝑧⊺𝐴𝑝𝑧
)

𝛿𝑞𝑗
]

= 2
3
[(

𝑧⊺𝐴𝑘𝑧
)

𝑧𝑙 − 𝐻̄𝑣
𝑘𝑙
] (

𝑧⊺𝐴𝑝𝑧
)

𝑧𝑞

+ 1
3
[(

𝑧⊺𝐴𝑘𝑧
)

𝑧𝑙 − 𝐻̄𝑣
𝑘𝑙
]

𝑧𝑞
(

𝑧⊺𝐴𝑝𝑧
)

=
[(

𝑧⊺𝐴𝑘𝑧
)

𝑧𝑙 − 𝐻̄𝑣
𝑘𝑙
] (

𝑧⊺𝐴𝑝𝑧
)

𝑧𝑞 = 𝐻𝑣′
𝑘𝑙𝐻

𝑣
𝑝𝑞 .

This finishes the proof. □

Data availability

Data will be made available on request.
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