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ARTICLE INFO ABSTRACT

Communicated by Stefan Wiggins We present a new strategy for the statistical forecasts of multiscale nonlinear systems involving non-Gaussian

probability distributions with the help of observation data from leading-order moments. A stochastic-statistical

]gfgzs modeling framework is designed to enable systematic theoretical analysis and support efficient numerical
62M20 simulations. The nonlinear coupling structures of the explicit stochastic and statistical equations are exploited
93F11 to develop a new multiscale filtering system using statistical observation data, which is represented by
76F55 an infinite-dimensional Kalman-Bucy filter satisfying conditional Gaussian dynamics. To facilitate practical
35Q84 implementation, a finite-dimensional stochastic filtering model is proposed that approximates the intractable
60H15 infinite-dimensional filter solution. We prove that this approximating filter effectively captures key non-
Keywords: Gaussian features, demonstrating consistent statistics with the optimal filter first in its analysis step update,

then at the long-time limit guaranteeing stable convergence to the optimal filter. Finally, we build a practical
ensemble filter algorithm based on the stochastic filtering model. Robust performance of the modeling and
filtering strategies is demonstrated on prototype models, implying wider applications on challenging problems
in statistical prediction and uncertainty quantification of multiscale turbulent states.
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1. Introduction for accurate statistical forecast of turbulent states especially when non-
Gaussian features are present in the target probability distribution.
Conventional ensemble-based approaches often suffer inherent diffi-
culties in estimating the crucial higher-order moment statistics and
maintaining stable prediction with finite number of particles [11,31,

32]. Instead of using a single trajectory observation of the stochastic

Complex turbulent phenomena characterized by nonlinearly cou-
pled spatiotemporal scales and inherent internal instability are widely
observed in science and engineering systems [1-4]. A probabilistic for-
mulation is required to quantify uncertainties in the high-dimensional
turbulent states [5-7]. Traditional ensemble approaches using a par-
ticle system to approximate the probability evolution quickly become
computationally prohibitive since a sufficiently large sample size is
necessary to capture the extreme non-Gaussian outliers even for rel-
atively low-dimensional systems [8,9]. As a result, rigorous analysis

signal, observations of low-order statistics, such as the mean and covari-
ance of the large-scale states, can be obtained to improve the prediction
and uncertainty quantification of high-order statistical information in
filtering. For example, statistical data can be retrieved from coarse-

often becomes intractable and direct numerical simulations are likely
to be expensive and inaccurate [10,11].

Filtering strategies [12-15] have long been used for finding the
optimal probability estimate of a stochastic state based on partial and
noisy observation data. Filtering theories [16-19] and corresponding
numerical solutions [20-22] for general nonlinear systems have been
investigated through different approaches. In predicting nonlinear tur-
bulent signals, ensemble Kalman filters [23,24] as well as the related
particle methods [25-27] provide effective tools for state and param-
eter estimations. Despite wide applications [28-30], difficulties persist
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grained statistical observations from local average in a small spatial
neighborhood or temporal average during a short period of time given
ergodicity of the stochastic systems [33,34], as well as many low-
order strategies adopting observation operators from the equilibrium
measure [6,35,36]. Therefore, a promising research direction is to
propose new filtering models that have skill to recover crucial high-
order moments information in non-Gaussian probability distributions
using partial observation data from statistical observations from the
leading-order mean and covariance [37].
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Fig. 1. Diagram illustrating main ideas in constructing the filtering framework.

1.1. General problem setup

We start with a general mathematical formulation [7] modeling a
high-dimensional stochastic state u, € R? involving nonlinear multi-
scale interactions satisfying the following stochastic differential equa-
tion (SDE)

du, .

m = Au; + B (u,,u,) + F, + o, W, 1)
On the right hand side of the above equation, the linear operator,
A=L-D : RY > RY represents linear dispersion LT = —L and

dissipation D < 0 effects. The nonlinear effect in the dynamical system
is introduced via a bilinear quadratic operator, B : RY x R? — R¢. The
system is subject to external forcing effects that are decomposed into a
deterministic component, F;, and a stochastic component represented
by a Gaussian white noise W, € R* with coefficient o, € R%. The
model emphasizes the important role of quadratic interactions through
B (u,u). Importantly, the quadratic term is assumed to satisfy an energy
conservation law (see next in (3a)) so that the first two moments of u,
remains finite. The structure property in (1) is inherited from a finite-
dimensional truncation of the corresponding continuous equation, for
example, a spectral projection of the nonlinear advection in the fluid
models [38,39]. Many realistic systems with wide applications [40-42]
can be categorized in this general dynamical Eq. (1).

The evolution of the model state u, depends on the sensitivity to the
randomness in initial conditions and external stochastic effects, which
will be further amplified in time by the inherent internal instability
due to the nonlinear coupling term [6]. Then u, induces a probability
measure on (0, ) X RY. The time evolution of the probability density
function (PDF) p, is governed by the associated Fokker—Planck equation
(FPE) starting from an initial distribution p,_, = p,
op,

> =Lppp;, :=-V,- [(Au+ B(u,u)+F,)p,] + %Vu . [Vu . (U,GtTp,)] , (2)

where Lpp represents the Fokker-Planck operator, and V - (V- A) =

ki :jz"u’[. The existence and uniqueness of solution p, to the linear
FPE (2) is guaranteed by the uniformly elliptic operator Ly [43] and
we have that the second moments of the state u, remain bounded during
the time evolution from the finite initial distribution (see Lemma 1
in Section 2.1). However, it remains a challenging task for directly
solving the FPE (2) as a high-dimensional PDE. As an alternative
approach, ensemble forecast by tracking the Monte-Carlo solutions
estimates the essential statistics through empirical averages among a
group of samples drawn i.i.d. from the initial distribution u® (0) ~ p,
at the starting time r = 0. In practice, large errors will still be introduced
to the empirical estimations since only a finite sample approximation
is available in modeling the non-Gaussian probability distribution and
statistics in a high dimensional space.

It is expected that the prediction errors from the finite ensemble
estimation of the PDF of stochastic states can be effectively corrected
by filtering with the help of the available observation data. In designing
new filtering strategies, we propose to use statistical observations from
mean and covariance to improve the accuracy and stability in the fore-
casts of higher-order moments through finite ensemble approximations.
However, the general formulation (1) as well as the associated FPE
(2) becomes inconvenient to use since all the multiscale stochastic
processes are mixed together in the equation as well as all high-order
moments of the PDF. The main goal of this paper is thus to develop a

systematic modeling framework with strategies to accurately capture
the (potentially highly non-Gaussian) PDF p, assisted by statistical
measurements in the leading moments.

1.2. Overview of the paper

In this paper, we study nonlinear filtering of the general mul-
tiscale turbulent system (1). The new multiscale nonlinear filtering
model is constructed under the following step-by-step procedure, which
will finally lead a nonlinear ensemble filtering strategy to recover
non-Gaussian PDFs:

« First, we propose a coupled stochastic-statistical system (11)
demonstrating rigorous statistical consistency with the original
system (1): the stochastic dynamics will serve as the signal process
in filtering including high-order non-Gaussian features, while the
reinforced statistical equations provide the observation process;
Second, a statistical filtering problem is formulated based on the
coupled stochastic-statistical model: optimal filter Egs. (32) are
derived as the precise unbiased least square estimate for the non-
Gaussian stochastic state of (11), conditional on the mean and
covariance as a natural choice of the observed state;

Third, a statistical filtering model (36) is developed as an approx-
imation to the optimal filter solution in leading-order statistics: a
stochastic McKean-Vlasov equation is adapted from the optimal
filter for practical implementation.

The coupled stochastic-statistical model (11) by itself can serve as an
effective tool for statistical forecasts and uncertainty quantification [39,
41,44]. Further, combined with the observation data, the resulting
filtering McKean—Vlasov SDE (36) is linked to the probability distribu-
tion only through the moments, which can be computed directly from
the corresponding statistical equations. This enables efficient computa-
tional schemes (58) to effectively improve the accuracy and stability in
capturing high-order non-Gaussian features based on only observation
from the lower moments. The main steps in building effective models
for capturing probability distributions is illustrated in Fig. 1.

Still, developing complete and rigorous theories for approximate
filtering models involving dominant nonlinear terms remains an inher-
ently challenging task. In this paper, we seek to establish a comprehen-
sive theoretical formulation to help improve the understanding of the
complex phenomena arising from nonlinear dynamics, so that practical
numerical strategies and applications can follow based on this adaptive
general framework. In addition, we present initial results addressing the
forecast and analysis steps of filtering separately, demonstrating the po-
tential and validating the predictive capacities within the approximate
filtering models: (i) Proposition 3 shows that the highly tractable cou-
pled stochastic-statistical model (11) demonstrates consistent statistics
as the original system (1); (ii) the equation for optimal filter solution
(32) is given by exploiting the conditional Gaussian structure of the
forward equation, and the approximate filter model is found to recover
the same key statistics during the analysis step update in Theorem
8; (iii) the long-time convergence in statistics to the optimal filter is
demonstrated in Theorem 11 concerning the entire filtering procedure
using the statistical filtering model (36). Finally, the effectiveness of the
new filtering model is tested on the prototype triad and Lorenz models.
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The structure of the paper is organized as follows: In Section 2, we
first set up a statistically consistent formulation for the general multi-
scale system (1) that is suitable for the construction of the statistical
filtering models. The main ideas of finding the optimal filter solution
and constructing the approximating filter are shown in Section 3. Long-
time convergence and stability of the filtering model is then discussed
in Section 4. Combining each component of the ideas, the ensemble
filtering algorithm is developed in Section 5, followed by preliminary
numerical tests in Section 6. A summary of this paper is given in
Section 7. More discussions on the filtering formulation and detailed
proofs of the results are shown in the Appendices.

2. A statistically consistent modeling framework for multiscale
dynamics

We start with a new formulation for the system (1) using an explicit
macroscopic and microscopic decomposition of the multiscale state.
In particular, we show that the new formulation provides consistent
statistics with the original system including higher-order statistics. In
addition, the new formulation also enjoys a more tractable dynamical
structure to be adapted to the filtering methods.

2.1. The statistical and stochastic equations

In the first place, the well-posedness of the SDE (1) can be estab-
lished guaranteeing finite statistical moments of u, with respect to the
law p, from the PDF solution of (2) during the time evolution by the
following lemma.

Lemma 1. Assume that the linear coupling term in the system (1) is
negative definite and the quadratic term conserves energy such that

u-Au<0, wu-Buu) =0, (3a)

for all u € R?, and the forcing terms are uniformly bounded and satisfy
uniformly elliptic condition

|F|<C., o6 =cl, (3b)

with positive constants C > 0 and ¢ > 0. Then, given finite moments in the
initial condition [ (1 + ul**) py (u) du < oo for k = 1,2, ..., there will exist
a unique global probability density function p; € P (R?) n C (RY) to the
FPE (2) for time t > 0, and all moments of the distribution will maintain
bounded for all t > 0

/]Rd (l+|u|2k)p,(u)du<oo. (€))

The assumptions in (3a) can be implied by the conservation of
energy in the nonlinear coupling and the linear term only containing
dissipation effect. A statistical energy equation [45] is induced from
the conservation law that maintains the finite second moments in the
statistical solution. Conditions in (3b) guarantee that the operator is
coercive in the FPE. These assumptions are commonly satisfied in
many applications of fluid systems considering the physical energy
conservation and dissipation laws. Then, (4) implies the existence of
a unique probability solution with all finite moments. The proof of this
lemma can be found in Appendix B.

In order to identify the detailed multiscale interactions in the gen-
eral system (1), we decompose the random model state u, into a
statistical mean &, and stochastic fluctuations « in a finite-dimensional
representation under an orthonormal basis {ﬁk}:z1 with 9y - 0, = 8,

d d
— ’_ — A ~ . - A = oA -
up =i +u, = Z”k,t”k+z Zy 1Oy, with iy, = 0y -y, Zy, = 0y - (u, - u,) .
k=1 k=1

()

Above, the deterministic i#, € R? represents the statistical mean struc-
ture (for example, the zonal jets in geophysical turbulence or the
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coherent radial flow in fusion plasmas), and the stochastic modes
z, = |z,,....2,,]" € R? are random fluctuations projected on each
eigenmode 0,, whose randomness illustrates the uncertainty in each
single scale of «/. In particular, we will show that the dynamics of the
stochastic modes Z, contain nonlinear interactions among a large num-
ber of multiscale fluctuations, which demonstrate the characterizing
feature of strong energy cascades in turbulent systems [6,46,47].

2.1.1. Statistical equations for the macroscopic states
First, we define the leading-order mean and covariance according
to the state decomposition (5)

i, = lEp, [u] := ./Rd up, (u) du,

Ry, =E, (2,7, = /Rd O (u—a,) (u—a,) - 0,p, wdu, 1 <k,1<d,

(6)

It implies from Lemma 1 that the first two moments in (6) will maintain
finite values in time due to the finite total statistical energy conser-
vation, E = %<|ﬁ,|2 +trR,) < oo. Statistical states of mean &, and
covariance R, represent the macroscopic physical quantities that are
easiest to achieve from direct measurements. The mean and covariance
can be solved by the following statistical equations

di a
% =0 [AG+ B (0.8)] + Y, VinnBy, [ZniZos] + 0, F (72)
m,n=1
dRy, z _ _
a Z [Lkm (“t) Ryi; + Ry Ly (”r)] + O, s (7b)
m=1

d
+ Z ykmnEp, [Zm,th,tZl,t] +ylmnEP1 [Zm,th,tZk,t] .

The above equations for the mean and covariance can be derived
by directly applying It6’s formula to the model states (see Appendix
B for the detailed derivation). We define the nonlinear coupling co-
efficients yy,,, = 0, - B(D,.0,), and the white noise coefficient as
z = [(0{0,)7,...,(030,)T]T with Q, = %,X7 € R, The operator
L (@) € R™? dependent on the statistical mean state @, is defined as

Ly () =0, - [AD, + B (u,0,) + B (0,u)]. )

Notice that the right hand side of (7b) involves the fluctuation modes
Z, defined from u, in (5), then the expectations on third moments are
taken w.r.t. the PDF p,. Therefore, the resulting statistical Egs. (7) are
not closed and need to be combined with the FPE (2) to achieve a
complete formulation for the leading-order mean and covariance in the
nonlinear system.

2.1.2. Stochastic equations for the microscopic processes

Second, we introduce the SDE describing the time evolution of the
multiscale stochastic processes Z, as the microscopic state consisting of
the many subscale fluctuations

dZ, =L (a) Zdt+ I (Z,Z} - R,) dt + Z,dW,. (©)

Above, L (i) is the same mean-fluctuation coupling operator defined
in (8) involving the statistical mean &,. The multiscale feature of
the system is also represented by the nonlinear coupling among the
different projected modes in (5). We define the quadratic coupling
operator I : R¥“ — R as a linear combination of the entries of the
input matrix R € R% describing the nonlinear coupling involving the
covariance R,

d
TRy =Y 0y B (08,) Ry (10)

m,n=1

The form of the stochastic dynamics (9) can be found by directly
subtracting the mean Eq. (7a) from the original equation for u, then
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projecting on the basis 9, based on the state decomposition (5). De-
tailed derivation for (9) and (7a) can be found in Appendix B and in [7].
Similar to the statistical equations (7), the dynamics on the right hand
side of (9) is linked to the macroscopic quantities #, and R,, which
in turn requires additional information of p, from the original model
state u,. This makes the stochastic equation also unclosed requiring
additional information from the PDF solution of (2). The derivations of
the above statistical and stochastic Egs. (9) and (7a) from the original
general formulation (1) can be found in the proof of Proposition 3.

2.2. A coupled stochastic-statistical model with explicit higher-order feed-
backs

Combining the ideas in the stochastic Eq. (9) and the statistical
equations (7), we propose a statistically consistent stochastic-statistical
model based on the following self-consistent coupling of the microscopic
stochastic processes Z, and the macroscopic statistics @, R,

dZ, =L (%) Z,dt+ I (Z,Z] - R,) dt + Z,dW,
da,

E=M(ﬁ,)+Qm (E[z,®Z])+F. 1n
dR
d_tt =L(&)R+RL(%) +0,(E[2,®Z®Z])+Zz2].

Above, the expectations are all w.r.t. the PDF p, of the stochastic
states Z,. In the first moment equation for #,, with a bit abuse of
notation, we denote @, = [d,....,4,,]' € R? with each component
i, =@ - O M = [M,,..,M;]" € R where M, (3,) = ¥,, 0 -
[AD,a,, + B (0,.0,) @,d,,| for | <k <dand F, = [0, - F,...,0, - F]" €
R?; in the second moment equation for R, € R%¢, the operator L (i,) €
R4*4 indicates mean-fluctuation interactions defined in (8); and in the
stochastic equation for Z,, I' : R¥? — R? is the quadratic coupling
operator defined in (10). The two higher-moment feedbacks for the
mean and covariance, Q,,, O, related to the second and third moments
of Z, respectively, are defined as

d
0. (E[Z,®Z])= Z Yipg [ZpJZq,r] ,

pg=1
d
Qv,kl (E [Zt ® Zt ® Zt]) = Z ykquE [Zp,th,tZl,r] + J/lquE [Zp,th,tZk,t] )
pg=1
12)
for 1 < k,I < d with coupling coefficients Yipg = Ok B(ﬁp,ﬁq).

Above, Q,, models the feedback in the mean equation due to the
second moments E [Z, ® Z,|, and Q,, is the symmetric feedback in
the covariance equation due to all the third moments E [Z, ® Z, ® Z,].
Notice that Q,,, O, can be both viewed as linear operators w.r.t. p,.

Different from the unclosed stochastic and statistical Egs. (9) and
(7a) inherently dependent on the intractable PDF p, of the origi-
nal model state u,, the new coupled stochastic-statistical model (11)
provides a clean self-consistent formulation for tractable theoretical
analysis and direct numerical implementations. A new PDF p, of the
stochastic process Z, is introduced to close the system. The statisti-
cal states i, R, are first treated as new individual processes subject
to higher-order moments w.r.t. p,. Then, the microscopic stochastic
equation for Z, models the high-dimensional multiscale process with
explicit dependence on the macroscopic states @, and R,.

In the rest part of this section, we built a precise link between the
new model (11) and the coupled Egs. (9) and (7a) from the original
system (1). First, the following lemma provides the self-consistency in
the leading moments of the stochastic modes Z, and statistical states
i, R, in (11).

Lemma 2. With consistent initial conditions E [Zo] = 0 and E [Z,Z]] =
Ry, the leading moments of the stochastic modes Z, of the coupled model
(11) satisfy

E[z]=0 E[zZ]]=R, 13)
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for all t > 0 where the expectation is taken w.r.t. the PDF p, of Z,, and R,
is the solution of the second-order moment equation in (11).

The identities (13) can be found through the direct application of
Itd’s formula and we put the proof in Appendix B. Lemma 2 demon-
strates that the mean zero coefficients Z, maintain the same covariance
with the statistical equation of R,, while it also contains more in-
formation of the higher-order statistics. Furthermore, we show that
the coupled stochastic-statistical model generates the same statistical
solution as the original system (1). The following proposition describes
the statistical consistency between the coupled model (11) and the
original system (1).

Proposition 3. Assume that p, is the PDF that solves the FPE (2) of the
system (1) for u,, and the solution {ﬁ,, R Z,} of the stochastic-statistical
model (11) has the PDF p, for Z, together with the deterministic solutions
for @, and R,. Then from the same initial conditions, the two models give
the same statistical solution, that is, for all t > 0

E, [u] =, E, [uu] =R, (14)

where u] = u, — E, [u,|. Furthermore, for any function ¢ € C; (R?) we
have

E, [(1 + |u§|2)<p(u;)] -E, [(1 + |ﬁ,|2)(p(ﬁ,)], as)

where i, = ZZ=1 Z, .0, s the fluctuation component in the coupled model
1.

Notice that the left hand sides of (14) and (15) consist of the
statistics requiring solving the PDF p, of the original system, while
the right hand sides are purely w.r.t. the PDF p, from the coupled
model. The proof of Proposition 3 can be found in Appendix B through
detailed computation of each moments of (1) compared with that of
(11). Together with Lemma 1, (15) shows that all higher-order statistics
with each high-order of moments are also preserved in finite amplitude
in the new model formulation (11), thus the new PDF solution p, can be
effectively used to represent the statistics in the original system under

D;-

Remark. 1. Proposition 3 confirms the direct link between the new
stochastic-statistical model (11) to the statistics in the original fully
coupled multiscale system. The consistency in the statistical solution
guarantees the existence of solution for the proposed new system given
the original system has a unique statistical solution that starts from
the same initial condition. Still, more care may be required for the
ergodic properties of the original SDE (1). In our case of high but fixed
dimensional stochastic problems, ergodicity holds as long as there is
a quadratic trap potential due to (3a), % (u, Du) > 0, at far field. The
existence of equilibrium invariant measures and ergodicity of SPDEs
become a more delicate problem. There have been a series of studies
demonstrating ergodic behaviors for the Lorenz equation [48], the 2D
Navier-Stokes equations with degenerate random forcing [33], and
the Rayleigh-Bénard convection with an additive noise [49] as typical
examples of the general stochastic model.

2. We can also propose a first-order coupled model involving only
the statistical mean equation coupled with the McKean-Vlasov SDE

dZ, =L () Zdt + T' (Z,Z] -E[Z,Z]]) dt + Z,dW;,
di,

16
a =M(12,)+ZE[ZP,,Zq,,]B(0P,ﬁq)+F,. 16
pq

dr

(16) can serve as an intermediate model for uncertainty quantification
and filtering schemes. However, the above first-order equations can
only rely on the stochastic model to compute the second moments and
the dynamics of the SDE for Z, will directly involve expectation w.r.t.
its law p,. Thus this model will often suffer larger numerical errors and
instability in practical applications using finite sample sizes [41].
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2.3. The stochastic closure equation as a multiscale interacting system

From the stochastic-statistical formulation (11), the SDE for Z, is
given by a stochastic McKean-Vlasov equation depending on its own
probability distribution p,. In particular, the resulting McKean-Vlasov
SDE can be viewed naturally as the mean-field limit of the ensemble
approximation of N individual trajectories

470 =L (@) Zdi+ 1 (2070 = RY )ar+ 5w, i=1,.. N,

a7n
N . . . s as
where {W, } are independent white noise processes, and the initial
i=]
UN
samples {Z(()’)} are drawn from the same initial distribution p, of
i=1 )
Z,. Notice that the ensemble members Zt(') as interacting particles are
not evolving independently with each other, but are coupled through
feedbacks of the leading-order statistics #¥ and RN according to the

statistical equations

da N N

T=M(ur )+0, (BN [2,®2,])+F,

dRV (18)
—- =L(@) RY +RYLT (i) +0, (B [2,0Z, ©12))

+ 23+ (BN [2,2]] - RY).
The statistical equations (18) involving high-order moments computed
directly by the law of the stochastic state Z, from the ensemble estimate
in (17) can be viewed as the closed model, and no additional information
is needed for the PDF p, of the original system. The expectations are
computed through the empirical average of the interacting particles

AN
Z, = {Zt(‘)} from the ensemble simulation
1

i=

N
BV [0 (2,)] = 5 Lo (2"). (19
i=1

In general, large errors will be introduced by computing the statistics
using (18) from a finite ensemble approximation of the stochastic pro-
cess (17). In the second moment equation for R, one major difficulty
found in many realistic situations for accurate prediction [7,47] is
the inherent instability represented by the positive eigenvalues in the
coefficient L (a"). This will induce positive growth rate in the unstable
modes, while this unbounded growth can be only balanced by the
third-moment feedback in Q,. An additional relaxation term with a
parameter € > 0 is thus introduced. This term will not modify the origi-
nal statistical dynamics given the consistent second-order moment from
Proposition 3, and is playing a crucial role as a ‘reinforcement’ term in
maintaining stable performance by introducing an ‘effective damping’
effect with the negative sign in RtN (see [44] for examples in numerical
tests) especially with high instability induced by the strong mean-
fluctuation coupling from L (& ) while the finite sample approximation
becomes not sufficient to balance the strong linear instability.

The coupled ensemble approximation Eqs. (17) and (18) have ad-
vantages in practical applications. Unlike the general McKean-Vlasov
SDEs [50], (17) avoids the direct inclusion of the PDF of Z,, which is
very difficult to approximate accurately from finite particles. Instead,
the mean and covariance equations are used to link the contributions
from higher moments, enabling the effective computational algorithm
shown in Section 5. Effective computational algorithms with consistent
statistics then can be proposed (such as using the efficient random
batch methods [41,44]) for the straightforward ensemble model ap-
proximation. Besides in practical computation, the relaxation term
in RY provides additional restoring forcing as a correction term to
numerical errors with finite sample approximation to reinforce stable
dynamics and consistent statistics especially in the case where internal
instability is involved.

In particular, it is well-known [51] that the empirical measure
converges weakly to the true distribution, p,, as well as the leading-
order statistics in (17), a¥ — @, R,N - R,, as N - oo under relatively
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weak assumptions. The dynamical equation for the continuous density
function p, of Z, is given by the corresponding equation

d
% = (@ R) py i= =V, - [L (&) 20, (2) + T (227 = R,) p, (2)]

+ %VZA V.- (Z.Z]p ()], (20

where L] is the adjoint of the generator £, that is also dependent on
the law of Z, shown in the statistics of the mean &, and covariance
R,. In general, the probability density p, will demonstrate non-Gaussian
features due to the nonlinear stochastic coupling effects. On the other
hand, quantification of non-Gaussian statistics in Z, relies on the ac-
curate estimation of the leading-order mean and covariance, which
can be assisted from the observation data. These desirable structure
inspires the construction of effective filtering methods next in Section 3
to include leading-order statistical observations to improve forecast of
highly non-Gaussian statistics.

3. Filtering models using observations in mean and covariance

In this section, we propose a new strategy of predicting the probabil-
ity distribution in the coupled stochastic-statistical model (11) involv-
ing highly non-Gaussian statistics. An optimal filter for the ensemble
estimate of p, from the coupled equations (17) and (18) is developed
by combining the stochastic forecast model describing unobserved mi-
croscopic states and leading-order statistics introduced as macroscopic
observations. We start with a precise description of the optimal filter
equations satisfying a functional conditional Gaussian process, then a
new statistical filtering model is proposed approximating the optimal
filtering solution showing equivalent statistics.

3.1. Filtering probability distributions using statistical observations

We first formulate the filtering problem for predicting probability
distributions based on observations from the leading-order statistics.
From the stochastic-statistical Egs. (11), we can reformulate the gen-
eral multiscale system (1) for u, as a composition of the macroscopic
state from the first two moments i,, R, and the microscopic stochastic
processes Z,. In practice, statistical observations are often available
through measurements of the macroscopic states. The macroscopic
mean state could be achieved from taking the local average in coarse-
grained grids and variances estimated by the local fluctuations from the
mean state. Another situation includes uncertainty quantification for
low-order model predictions. Especially, there has been a large group
of data-driven models [52,53] that can be used to produce low-order
statistical data while lacking the skill to predict high-order moments.
Other reduced-order approaches such as the statistical response the-
ory [47] can also be adopted to exact the low-order statistics in certain
problems using the available equilibrium distribution. Therefore, it
is natural to incorporate the statistical observation data to improve
the estimation of the unobserved microscopic processes, especially to
recover the unobserved higher-order statistics (such as the deviation
from the normal distribution indicating the occurrence of high impact
extreme events).

We start with the target process of the original model state u, with
the associated PDF p, € P (R?) belonging to the space of continuous
probability density functions on RY with all finite moments (from
Lemma 1). Using the statistical consistency in Proposition 3, we can
track the dynamical evolution of the equivalent PDF solution p, with
the coupled stochastic-statistical Eqs. (11). Furthermore, in practical
numerical implementations, the signal process in the forecast model is
generated by the ensemble simulation with particles in (17) satisfying
the law Z,(i) ~ pN. The observation process is generated by the
higher-order statistical moments computed from the finite ensemble
approximation (18) denoted as y¥ = (", R") € R?. This leads to the

following infinite-dimensional filtering system with statistical observations

do" =7 (") o', Pito ~ Ho» (21a)
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dyN =[MpY +h, (y¥)] dt + L,dB,,  yN =y, (21b)

where  is a probability measure of the 7 (R?)-valued random field.
Above, L, is the infinitesimal generator of the corresponding SDE for
Z,(i) given by the explicit form in (20); the general observation process
yN satisfies the dynamical equation subject to a linear observation
operator H : P (RY) — RP (with the explicit forms shown next in
(24)) acting on the continuous PDF ptN , as well as the deterministic
function h, : R? — RP. The additional noise term I,dB, is introduced
to account for the errors from finite ensemble approximation (further
explanation will be given next in the explicit model (23)). Notice
here ptN becomes a random field due to the randomness in the finite
ensemble approximation for the dynamics of yN as well as its initial
uncertainty. Given the observation process yé\’ ,s <t ptN satisfies a
conditional linear dynamics. Thus we can solve the solution for pV €
P (RY) satisfying a conditional Gaussian probability measure. Next, we
give a detailed formulation for the observation data y, as in (23) based
on the first two moments.

Remark. In practice, it is common that only partial observation data in
the mean and covariance are available for the filtering update. In this
case, the forecast Eq. (21a) can be further decomposed into the part
only dependent on the observation process, and the residual process
containing all the unobserved states (possibly also using proper closure
models). This introduces an imperfect model approximation that allows
models errors and maintains the conditional Gaussian dynamics [54].

3.1.1. Statistical observations from leading-order moments

Let p, be the (unknown) PDF of the state 4, in (1), that is, the deter-
ministic solution of the FPE (2). Then, we can assume that observations
are drawn from the mean and covariance of the state u, as

i, =E, [u- 0], Ry, =E, [(0x-u) (u]-0p)], (22)

projected to the observed large-scale modes 9,k < d’ in (5). We refer
it as the full observation case with d’ = d, and partial observation
case with d’ < d. For simplicity, we may always consider the full
observation case d’ = d (that is, y, = (#, R,) € R? with p = d + d?) in
this paper without confusion. According to Proposition 3, the statistical
equations for i, R, in (11) provide statistical solutions consistent with
the law p, of the state u,. Thus, the dynamical equations for &,, R, can
be introduced according to the coupled model (11).

On the other hand, model errors always exist in the numerical
schemes due to the finite ensemble approximation in the practical
implementation model (17) and (18). The detailed equations for the
observation process (21b) can be rewritten according to the finite
particle estimate (18) as the following SDEs for & € R and RN € R

da™ =[H,p" +h,, (@) dt +I,dB,,,

(23)
dRY =[H,p] +h,, (@, RY)|di + I,dB,,.

where h,,, (@) = M (@) + F, and h,, (@, R) = L (@) R+ RL (@) + Z,Z,T are
deterministic functions, while the linear observation operators, H,,, H,,
are defined by the high-order statistical feedback functions (12)

d
Howo= [ HE @@t HY = 3 vty
pg=1

y @4

Hypp = /]Rd H}(z)p(2)dz, H} = Z (VkququZ/ + VipgZpZaZk) -
p.g=1

Importantly, additional correction terms, modeled by independent
white noises, B,,, and B,,, are added to the statistical equations ac-
counting for errors from the finite ensemble approximations. In fact, the
empirical averages in the mean and covariance equations (18) can be
both decomposed into the expectation w.r.t. the continuous p" and the
additional noises are used to represent the fluctuating errors from the
finite N sample estimation, that is, EN H (Z)dt ~ EH (Z)dt+I'dB. The
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left hand side of the identity contains randomness from the empirical
average (19), while the right hand side uses the white noise to model
the uncertainty according to the central limit theorem. Therefore, the
observation data in (22) can be viewed as a special realization of the
observation processes with noises (23).

We assume that pV € P (R?) is the probability density with finite
moments in all orders, thus we have M,,,p" < oo and H,;p" < o
for all modes k,/. Then (23) fits into the general observation equa-
tion (21b) by setting y¥ = (aV,RN) € R? with p = d +d*> in a
column vector, and letting H = (M, H,)", h, = (A, h,,)", and
I, = diag (T, I,). With this explicit setup of the signal and observation
processes for filtering, we will consider the optimal filtering solution
for the probability density p, of Z, based on the statistical observation
data Y, = { (@, R,),s < t} we abuse the notation a bit by neglecting the
superscript N in the following sections for the theoretical development.

3.2. Optimal filter with conditional Gaussian structure

Let (€2, F,P) be the complete probability space, and denote P, (R?)
as the space of probability density functions with bounded second
moments. We first define the 7, (R?)-valued stochastic process p, (de-
noting w € £ as the random event and will be dropped in the following
notation) as

0t RIXQ = RY, (z,0) = p, (z;0), with p, (-;0) € P, (Rd) , (25)

which is thereafter referred to as a random field. In contrast to the
standard filtering problem concerning the nonlinear SDE of the random
model states Z,, for derivation purpose of the exact optimal equations,
we lift the problem into filtering the random field p, based on the ob-
servation information y,, s <t as in (21). A stochastic model (36) on R4
will follow for practical implementations next in Section 3.4. Let G, =
o{w: y,s<t} be the c-algebra generated by the observations. We
define the space V) as the collection of G,-measurable square-integrable
random fields

V, 1= 12 (Q.G.B: P, (RY) n L? (RY)). (26)

satisfying | ||v(~;a))||i2(Rd) dP (w) < o0 and v (;;0) € P, (R?) n L? (RY)
for v € V,. In this infinite-dimensional filtering problem, we aim to find
the optimal approximation of p, in the space V,. The optimal filtering
solution p, is then introduced as the least-square estimate with the
minimum variance as

by = ar:ger]rjlrinIE [||p, - v||iz(R{,)] =Py, [p], 27)

where the optimal solution p, can be viewed as the unbiased projection
of p, onto the space V,. (27) indicates that j, gives the estimation closest
to the true distribution p, in the mean square sense in agreement with
the observations G,.

Accordingly, we define the optimal filter distribution u, : P, (R?) x
Q — [0, 1] as the regular conditional measure of the stochastic process
p, given G,. That is, for any Borel set A € B (P, (RY)), y, is given by
the conditional probability of p, given G, such that
H(A;) :=P(p,€A|G), P-as. (28)

Notice that y, (A;) € G, is still a stochastic process. For any func-
tional F € C (P, (R?)) and t > 0, we can introduce the conditional
expectation w.r.t. the measure g, given G, as

E[F(p) 1G] := F (p) uy (dp).
P(Rd)

Therefore, the optimal filter solution (27) is the following random field

ﬁx =E [px | gy] (29)
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given by the conditional expectation of p, w.r.t. y,. Furthermore, for
any linear operator M : L* (RY) - R?, we have Mp, = E [Mp, | G,].
And the second moment of Mp, is given by

E [(Mp, — Mp,) (Mp, — Mp,)" | G| = ME M,

where €, (®) : L? (R%;R?) - L2 (R%;R?) with € = C, is the self-adjoint
covariance operator for any f € L? (RY;R?), such that

le:E[(p—ﬁ,)/Rd (p=5) @ f(2dz| G| 30)

Notice again é, f(z;-) is also a random field conditional on G,. For
clarification of notations, we will call 3, and ¢, the optimal filter
solution and its covariance, and y, the optimal filter distribution in the
rest part of the paper.

We can characterize the optimal filter solution j, as the best esti-
mate in each order of moments. The following result describes the accu-
racy of the filter approximations in any finite-dimensional projections
with the proof in Appendix B.

Proposition 4. Let p, be the random field from the system (21) and
p, =E [p, | G] the optimal filter solution given the observations G,. For any
linear operator M : P, (R?) — R? defined by Mp = [ M (z) p(dz) and
M € C (R RP), Mp, = E[Mp, | G| gives the best unbiased estimate of
Mp, in the sense of minimum mean square error, that is,

E[|Mp, - Mp | = minE[|Mp, - M|, with B [Mp] = E[mp,].

(31)

By taking the operator M as the expectation on M (Z,) = |Z,|"
with any integer m, Mp, and Mp, give the mth order moments of Z,
under the random field p, in (25) and the optimal filter approximation
p, respectively. A direct implication from (31) shows that we have
the unbiased statistics in all finite-dimensional moments E [Mp,]| =
E [Mp,| with the minimum error E [|Mp, - Mﬁ,|2] from the infinite-
dimensional optimal filter solution.

Importantly, the model equations (21) satisfy the desirable con-
ditional Gaussian process [55], that is, given the observations of
Y, = {y,= (i, R,),s <t} and Gaussian initial distribution for p,
the random field p, follows a Gaussian distribution at each time ¢.
Let p, be the signal state satisfying linear dynamics (21a), and y, the
observed statistical process subject to linear observation operators in
(21b). The optimal filter distribution y, (28) conditional on Y, then
becomes an infinite-dimensional Gaussian distribution, u, = N (5,,C,),
where the mean p, and covariance é, give the solution to (29) and (30)
respectively. Therefore, the equations for the mean and covariance are
given by the generalized version of Kalman-Bucy (KB) filter [56] for
the infinite-dimensional conditional Gaussian process

dp, = L7 (@,. R,) p,dt + CHET > {di, — [H,,p, + hy,, (i1,)] dt}
+ CHIT2{dR, — [H,p, + hy, (@, R)| dt},
d, = [} (@, R,) €, + C,.L, (a,, R,)| dt = C, (KA T,2H,, + H:T,2H,) C,dt.
(32)

The existence and uniqueness of solution to the equations of the con-
ditional Gaussian processes (32) are shown in Chapter 12 of [55] for
finite-dimensional systems. The results are then generalized to infinite-
dimensional Hilbert space [57,58] (see a summary of the results in
Appendix A). The system (32) gives a closed set of coupled SPDEs
(due to the randomness in i,, R,) enabling more detailed analysis and
development of practical methods for computing the optimal solution.

Remark. A similar filtering problem using statistical observations is
introduced and analyzed as the ensemble Fokker-Planck filter by [37].
Inspired by the idea, we propose the filtering equations (32) for the
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more general nonlinearly coupled conditional processes. Very different
from the linear setup in [37], we propose a new nonlinear filter-
ing model that incorporates the general stochastic-statistical modeling
framework (11) that is suitable for effective statistical forecasts of
non-Gaussian statistics.

3.3. A surrogate filtering model for approximating the optimal filter solution

The resulting optimal filtering problem from (21) requires solving
the infinite-dimensional system (32) concerning the function j, and the
operator C,. It becomes intractable in finding such infinite-dimensional
solutions from direct methods. In developing practical strategies to
realize the optimal filter solution, it is more useful to find a surrogate
model for the stochastic process Z,, based on which effective ensemble-
based approaches can be built. Therefore, we aim to construct an
approximating filter from designing a new dynamical equation for Z,,
whose PDF j, constrained in the probability space P, (R?) with all
finite moments to effectively represent that of the optimal filter solution
Py

3.3.1. Filtering updating cycle in a split two-step procedure

For a clear characterization of the filtering process, we follow the
general procedure in [27] to first describe the filtering process by
concatenated iterations of transporting maps on the corresponding
probability distribution. We propose a new stochastic process Z,, whose
law 5, € V, is a P, (R?)-valued random field dependent on the same
statistical observation Y, as in the optimal filter satisfying (32). Thus,
the filtering updating cycle during the time interval [f,7+ 7] can be
characterized by the transport of the probability density 5, of Z, in a
split two-step procedure.

First, the forecast step can be viewed as the push-forward operator
acting on the probability density at time instant 7 with time step = > 0

47 %
B b, = Frp =k B0 (33)

where 7/ represents the forecast updating operator with forward time
step z, and £, (y,) is the same generator as in (20). Second, the analysis
step updates the prior distribution 5~ to the posterior distribution 5+ by
incorporating the observation data up to Y,,, = {y,,s <1+ r}, that is

e = Pioe = A (Prei Yige) s (34

where A7 represents the analysis updating operator. Therefore, the full
filtering cycle from ¢ to ¢ + r can be summarized as the composition of
the two maps

Prac = A{ (Ffrﬁl; YH—r) : (35)

Notice that 7/ is a linear operator on j,, while A7 could contain nonlin-
ear actions due to the normalization of the probability distribution. The
continuous equation for 9,5, = lim,_, % (By4r — 7;) is then achieved by
letting the discrete time step = — 0. Next, we first propose the general
new filtering model for Z, ~ 5, as a combination of the above two-step
procedure, then detailed analysis can be done according to the design
of the forecast and analysis step operators 7 and .4; accordingly.

3.3.2. Construction of the statistically equivalent approximating filter
For simplicity of notations, we still use the general statistical obser-
vation processes (23) for y, = (i, R,) taking the compact formulation

dy, = [Hp, + h, (y,)] dt + I,dB,,

where the general observation operator (24), Hp, = [ H(z)p,(z)dz,
is defined with the general observation function H € C (R%;R?)
acting on the density function p,. Following the general construction
in [17,19], we seek the approximating filtering model adopting the
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following McKean-Vlasov representation with functionals a,, K,
dZ, =L (4) Zdt+ T (Z,Z] - R)) dt + Z,dW,
+a, (Z,;ﬁ,) dr + K, ( ~,;ﬁ,) {dy, - [H (Z,) +h, (y,)] dr — F,dl;,} s
(36)

where W,, B, are white noise processes independent of W,, B,. We use
the name ‘statistical filtering’ to refer the above new approximating
filtering model emphasizing our main goal of filtering statistical mo-
ments different from the common filtering case. The first row of the
above equation models the forecast step of the filtering process, while
the second row is the analysis step. The forecast step accepts the same
dynamical model of (21a) dependent on the mean and covariance
(@, R,). On the other hand, the analysis step serves as an additional
correction as an control over statistical observations y,. New functionals
known as the drift ¢, : R? x P, (RY) - R? and the gain operator
K, : RIx P, (RY) — R are introduced, resulting in an approxi-
mating filtering model about the process Z,. Most importantly, as will
be shown next in Theorem 8 under proper condition, ¢, and K, are
only implicitly dependent on the PDF j, through its leading moments,
without the need to compute the (potentially highly non-Gaussian)
density function 5, explicitly.

In a more clear identification of the filtering updates involving
several levels of approximations, we take the split-step strategy to
analyze the coupled forecast step and analysis step of the filtering
equation (36) separately. In particular, the forecast step in the first
row of (36) is given by the exactly same form as the stochastic-
statistical equations (11) developed in Section 2. Thus in practice, the
updating step with the forecast operator can be implemented adopting
the efficient uncertainty prediction methods such as [41,44]. Then, the
remaining task is to propose proper analysis step update in the second
line of (36) concerning consistent statistics with the optimal solution 3,
in (32).

3.4. Statistical consistency in analysis step update of the approximating
filter

Now, we focus on updating posterior PDF j, in (34) of the proposed
approximating filter (36) based on the statistical observation y, satisfy-
ing (23). Concentrating on the analysis step, the resulting optimal filter
Egs. (32) for the mean and covariance (j,,C,) become

dp, = CAtH*F,_z {dy, - [Hﬁt +h (Yt)] dt} >

AR 37)
dé, = — EH* I HC dr.

Correspondingly, the approximating statistical filtering model for Z,
satisfies the second line of the SDE (36) as

dZ, =a,(Z,)dt+ K, (Z,) {dy, = [H (Z,) + b, (y;)] dt = I,dB,} . (38)

Following the similar idea in the McKean-Vlasov representation of the
filtering equation [19,59], we expect the PDF j, of Z, to satisfy the
following Kushner-Stratonovich-type equation (with requirements on
a,, K, given next in (41))

% =[H (@ -Hp| 177 ‘% —Hp, = hy ()| by (39
Again, the goal here is to approximate the optimal filter mean p, in
(37) by j, generated by the surrogate SDE model (38) in the sense of
consistent statistics.

Unfortunately, the approximation (39) and the optimal filtering
Eq. (37) will in general have different continuous solutions for 5, and
p, due to their distinctive dynamics. In order to compare key statistics
of the two distributions, we apply the linear operator H to the optimal
Egs. (37) as a finite-dimensional projection on leading moments based
on observations. The resulting optimal mean and covariance equations
become finite dimensional as

d (Hﬁ,) = (HérH*) Fx_2 {dy, - [Hﬁr +h (Yr)] dl} g

R X R 40
d(HCH*) =— (HCH*) I7* (HCH?) dt. “o
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Above, remind that the observation operator X : L2 (RY) - R? and
its adjoint H* : R? — L2 (RY) are defined based on the observation
function H € C* (R?;R?) as

Hp:/H(z)p(z)dz, [H*u] (z) =u- H(2),

and the covariance operator C, : L2 (R?) - L2 (RY) is defined in (30).
Therefore, (40) gives the equations for the finite-dimensional quantities
Hp, € R? and HC,H* € RP*P as the first two moments of H w.r.t. j,.
The idea then is to design the analysis step operator A7 according to
the approximating filter process Z, in (38), so that consistency in the
first and second-order moments (40) can be achieved.

Denote the expectation, E[] = E[|G] = Ej; [1, w.rt.p, in
(39) conditional on the observation G,. We define A, = EH (Z,) =
[ H @) p,(2)dz and ¢ = E[H,(Z,) - H] [H, (Z,) - A,]" as the first
and second-order moments of H w.r.t. j,. Assume that the drift a, and
gain K, in the SDE approximation (38) satisfy the following identities

a,=V-(KI*K])-KIV-K!, -V-(K!p)=pI7"(H@-EH),

(41)

where the divergence on a matrix is defined columnwise as (V - A); =
oy 0,4 We first have the following result concerning the evolution
equations of A, and C/! given the realization Y; = {y,.s <1}.

Lemma 5. Given that I', > 0 in (21) and the identities in (41) are satisfied,
the evolution equations for the mean and covariance of the observation
function H (Z,) associated with the SDE (38) are given by

dA, =17 {dy, - [H, + b, ()] di}

_ (42)
dc/t =o' 17 {dy, = [A, + h, (v,)] dr} — 2 Cllar,

where QF : RP — RPX is defined as
of =E[(H/H) ® H[T],
containing third moments of H = H (Z,) - H,.

We put the detailed derivation of (42) in Appendix B. Notice that
(42) goes back to the Kalman-Bucy filter if we set linear observation
H (Z,) = Z, satisfying a normal distribution as in [37]. However, here
we are considering the more general nonlinear dynamics and quadratic
and cubic observation functions from (24).

Comparing (40) and (42) implies that the same statistical solution
can be reached in (H,,C}') and (Hp,, HC,H*) if we have Q¥ = 0. In
order to achieve this, we further introduce the projection operator on
the space of probability distributions using the Kullback-Leibler (KL)
divergence as an unbiased metric.

Definition 6. Define the operator S, making symmetric projection on
the probability density p € P,, (R?) with finite moments

Syp=argmindy (v p), (43)
vEVy

where dy is the KL-divergence between two probability measures. The
minimization is among the probability measures in the following set

Vy (H.CM)
={veP,(RY):E,H=H,E, [H'H"|=C", andE, [H/H/H|| =0},
forall 1 <l,mn<dand H (Z)= H(Z)-E,[H (Z)].

In Definition 6, Sy acts as a symmetric approximation of proba-
bility measures with vanishing third-order moments of the observation
function H, while maintains consistent first two leading moments of H.
It is clear that given H,CH, the set V}; is closed with respect to weak

convergence of measures. From Proposition 2.1 of [60,61], we have for
any p and weakly convergent sequence {v, } to v,

liminf di;, (va Il p) 2 dp (v Il ) -
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It follows immediately that there exists v, € Vj that reaches the
minimum. Therefore, we have the following lemma guaranteeing the
existence of the minimizer in the proposed projection (43).

Lemma 7. Assume that there exists one v € Vy; such that the KL-divergence
dgi (v || p) < oo for given p € P, (R?). Then a minimizer exists in (43).

Lemma 7 makes sure that we can always find one minimizer given

the same mean and covariance A = E[H (2)],CH =E [H' (Z) H' (Z)T].

This provides the density function satisfying the required symmetric
statistics about H (Z,). Denote the push-forward operator for the new
SDE (38) with the structure functions (41) as 5,,, = Q; (ﬁ,;Y, +S) for
any s > 0. Under the above construction, we can finally propose the
forward operator in analysis step (34) as

A (7)) = Q) (Subi i) - (44)

where the projection S in (43) is a linear operator acting on the
random fields in space V, in (26). In a similar fashion as in the proof of
Lemma 5, by applying the addition projection Sy 5, in the expectations
on the SDEs for H (Z,) and H/ (Z,) H] (Z~,)T (see also (B.10) and (B.11)
in Appendix B), OQf = 0 is automatically guaranteed in (42) w.r.t.
the new projected density Sy p,. In addition, the first two moments
H, and CH¥ in (42) will stay the same w.r.t. Syj,. The continuous
filtering process by letting s — 0 will satisfy the Egs. (42) with Q = 0.
Therefore, under the same initial condition and the uniqueness of the
solution, the same solution will be reached in both (37) and (42). This
leads to the main result of this section concerning the analysis step
update in the approximating filter solution.

Theorem 8. Consider the analysis step update (44) of the statistical
filtering model (38). Assume that a,, K, in the statistical filtering SDE are
designed to satisfy (41) and the probability set Vy; according to H defined
in (43) is not empty. Under the same statistical observations y,,t € [0,T]
and the same initial conditions, the following identities hold for t € [0,T]

My, =B [H(2)]. e =B [ (z) 1 (2)]. (45)

where (p,,C,) is the solution of (37), and E is w.r.t. 5, given by the solution
of (39) with H' = H — Hp,.

Theorem 8 validates the use of the statistical filtering model density
7, by solving (36) to approximate the optimal filter p, from (32).
Though restricted only on the first two moments of the observation
function H, the resulting consistent statistics during analysis step play
a key role in accurate statistical forecast. Notice that based on the
statistical model in (11), accurate prediction of the important leading
statistics, i,, R,, is determined by key higher-order feedbacks in the
related functional Hp, (more specifically, the terms H,,p, and H,p,
in (24)). According to Proposition 4, the optimal Hp, gives the least
mean square estimate of the random variable Hp, given the statistical
observations. Thus, consistent filtering approximation EH (Z,) for Hp,
as well as its error estimate guarantees accurate recovery of key model
statistics.

For example, applying the explicit forms of the observation function
(24), the quadratic observation operator ¥,, in the mean equation gives

EH" (Z,) =H,p, & Z Vipa B 20 244) = 2 Vkpg / 2p240: (2)dz,
pa b

which implies consistent statistical feedbacks in the mean Eq. (7a) from
the statistical filtering model 5, and the optimal filter solution j,. This
demonstrates that the new approximating filter maintains the accu-
racy in the statistical mean prediction #,. In addition, the covariance
operator characterizes the essential uncertainty in the optimal filter j,

HmérH; =K, [(Hm/’r ~ Hyby) (Mpr = Hmﬁt)T] »

which is also linked to the approximation by C/I" = E [(H" - A™)
(H" - FI{")T] = Hmé,H;, demonstrating a consistent error estimate in
the statistical filtering model. Similar conclusion can be reached for the
accurate prediction in the model covariance prediction for R, based on
the cubic observation operator H,,.
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Remark. Still, the statistical consistency in the analysis step does not
guarantee the consistency in the entire two-step updating procedure
in (35). In particular, the forecast models of (32) and (36) satisfy the
following forecast equations

0,p, = £:<ﬁ’ o, (Hﬁt) = H[’;kﬁt = / (‘CIH) (2) §; (2)dz

U =Lib (]EH)=1"M,H=/(a,H)(z),s,(z)dz

where the generator £, is defined as in (20). The analysis step update
only gives consistent first two moments of H, while higher moments
may be included in £,H. The forecast model may require additional
consistent condition between p, and j, as well as their covariances.
More work is still needed for the complete analysis combining ap-
proximations in both the forecast and analysis step of the full filtering
model.

4. Stability and convergence of the statistical filtering model

Following the new approximating filtering model, we discuss the
long-time performance of the filtering problem for finding the optimal
filter PDF j, of the statistical filtering system (21) based on statistical
observations Y, = {y,,s < t}. Section 3 shows that the statistical filter-
ing model (36) constitutes the approximating filter 5, with consistent
mean and covariance, H, and C//, during the analysis step update.
Here, we show further that the full filter approximation of the observa-
tion function H, will approach the optimal filter }p, at the long-time
limit as t — co. This guarantees the stable performance of the proposed
new filtering strategy.

4.1. Closed statistical filtering equations based on the observation operator

We consider the optimal filter solution based on the conditional
Gaussian processes (21). The finite-dimensional statistical states Hp, €
R? and ¢ = HC,H* € R” under the observation operator can be
solved by the Kalman-Bucy equations (32) as

d(Hp,) ={L, (y,) Hp,)ydt+C' =2 {dy, — [Mp, +h, (y,)] dt},
dCArH =[(c,(w) H (ézHT)> + <(é,H) L, (y,) HT)|dr - CArHF_ZCAer"
(46)

Above, (F) = [ F(z)dz denotes the componentwise integration of the
matrix-valued functions F. For simplicity, we use constant observation
noise, I, = I'. In the first equation for the mean, we rewrite the forecast
step dynamics as

HEE (v,) b =/H(z> Cr (y) b (2)dz = (L, (y,) Hp,).

Similarly, we rewrite the covariance equation using the definition of C,
in (30) under the conditional measure y, () =P (pe-|G,)

HLICH = IE/ H®L (p-p,) (x)dx/ (p—5,)(2)H (2)Tdz
=(LH (CHT)),
HCLH* =E / H(z)(p—p,) (2)dz / (p=p) (¥) £, H () dx
=((GH)LHT),
where G,H (x) = E[(p—5,) ) [ (p-5)(2)H(2)dz] € R? can be
viewed as an unnormalized density that satisfies [ C,H (x)dx = 0.
Correspondingly, consider the approximating filtering model (36)
with ¥, = 0. Let 5, be the PDF after the symmetric projection (43),
that is, satisfying vanishing third-order moments E [H WH, Hé] =0 for
all n,p,q. The first and second-order moments H, = E[H (Z,)] and
¢l = E[H (2,)H! (Z,)"] according to the observation function H
satisfy the following equations (by combining the forecast step update
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with generator £, and the analysis step dynamics (42))

dH, = (L, (v;) Hp,) di + C/'T7 {dy, - [H, + h, (v,)] dr}
dc/t =[(c, (v) H (p,H")) + {(7.H]) £, () H)] dt = /' T [Mar,
“47)

where H] (z) = H (z) — H,.

First, we introduce the following assumptions for the approximating
filter PDF j, approximating the optimal filter solution j, as random
fields according to the same observation process Y = {y,,t > 0}:

Assumption 9. Assume that the optimal filter (32) and the approxi-
mating filtering model (36) have probability density functions p, and
7, respectively that satisfy the following conditions:

+ Unique equilibrium solutions (M4, C!) and (H,,. CH) exist to
the systems (46) and (47) respectively.

* There exist deterministic matrices L, L € RP?, such that the
generator £, (20) reaches the same statistical limit under H w.r.t. both
p, and p,, that is,

<£r (Yr) Hﬁr) = LG Hpe,. <£r (v) H (érHT)> - Lioég’
(£, (vi) Hp) = LiHp, (£, (v;) H (5,H")) » LL,CH,
a.s. as t - oo conditional on the observation data Y.

* Further, the real parts of eigenvalues of the limit matrices L7 —
CHr=2 and LY — ¢ 12 are all negative.

(48)

The first condition in Assumption 9 guarantees that both filter equa-
tions will finally converge to finite steady-state statistical solutions. The
second condition requires consistent first and second-order moments
under H w.r.t. the optimal and approximating model distributions,
such as for the covariance as 1 — oo

/E, (y,)H(z)CA,H(z)szaLgo/H(z) (CoHT) (2)dz,

/ﬁ, (y) H (2) H] (2) 75, (2)dz —>L’.j°/Héo (2)H! (2)Tp, (2)dz.

In addition, we may further introduce the convergence rate, that is,
there exist constants 12 > 0 and K > 0 such that a.s.

(0 (0) Hp ) = LiHb| < K, (2, (v) H (EHT)) - L2CL| < ke,
e, () Ha) = LMD | < K |2, (n) 1 (p]) - L.CL | < Ke T,
(49)

where ||-|| is the matrix norm. And the third condition requires that
the filter solutions will be stabilized at the long-time limit. These
assumptions are based on the observation that in practice a final
equilibrium state will be reached and maintain stable dynamics. Next,
we ask the limiting behaviors in the mean and covariance (H,,C}")
from the approximating model (47) compared with the optimal filter
solution (Hp,,C) from (46).

4.2. Asymptotic stability of the equilibrium covariance matrix

With the assumption (48), we first have consistent equilibrium
covariances as t — oo in the two model solutions, that is,

AH | AH ol _ AH p=24H _

LU CH 4 C1por — ¢ p=2¢M = o,

) ~H H Hp-2-~H _
LeCH ycHrt —clir=2cl =o.
Uniqueness of the solution directly implies that the final equilibrium
covariances satisfy CZ: = CH with no randomness. Further, we can
find that the covariance C in the approximating filter will approach

the optimal equilibrium covariance CZ;’ as described in the following
lemma.
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Lemma 10. Suppose that Assumption 9 is satisfied, CH is the covari-
ance solution to the statistical filtering model (47) and CZ: is the unique

equilibrium solution to the optimal model (46). Then there is
”CtH - CAZH — 0, as. as t— oo. (50)

Further, the convergence rate will be exponential if (49) is also satisfied.

Proof. Combining the covariance equation in (47) and the equilibrium
equation of (46), we have

A 1 A _ R
d(c/ - €)= [Ls, - 5 (¢ + ) 2 (¢ -ty ar
(el =) [ - 22+ e ar
+ [(LH (5,H]T)) = LG dt
+ [((5,H]) £, HTY = CH L] dr.

For the last row of the above equation, using the uniqueness of the
solution we have C¥ — CH as t > co. Then denote

Fo=(LH (5,H]T)) = LG/
We get ||F|| = 0 as 1 - oo by using
”(ErH (ﬁ,H;T)> - LzoctHH

s H<£rH (AcH[T)) - L;ocg“ + ‘

L (cl - CIH)“ - 0.

Next, by taking 4, =min {ReA : Ais the eighenvalue of — LY + égf_z},
we have 4, > 0 from Assumption 9. This implies
Sire-4(ctcztyr=2las

e < Ke %09, Together with F, vanishing as

t — oo, we have for any t > T

e - e < & et - e o [ s
T

< Ke?m + Ky sup || Fy|-
s>T

Therefore, by first letting 1 — oo then letting T — oo, we reach a.s.
H _ fH
e - ex] - o ,
Further, if we assume exponential convergence rate A in the co-
variances under the generator £, as in (49), we can have exponential
convergence rate in both ¢, and C} ast - o a.s.

”CAtH - H < Kyemn{an i HCxH _ CZ)‘ <Kyl O (1)

In addition, from the definition of the optimal filter solution (31),
the covariance is defined as
trE (€] = Etr [(Hp, — Hp,) (Hp, — Hp,)"]
=Etr [(Mp, - Hp,)" (Hp, — Hp,)]
=& [1p, - 15 [|.
Notice that Hj, and CAt” are still G,-measurable random field. Under

Assumption 9 ¢* — (' as. conditional on the observations G,, we
have as t - oo

B |70, - 15" = wE [¢]1] = wcll. (52)
This confirms that the total uncertainty at equilibrium in the optimal
filter solution H, is estimated by the total variance trC.

4.3. Convergence of the statistical state under the observation operator

Next, we consider the convergence of the statistical observation
function H, from the approximating filter to the optimal filter solution
Hp,. We have the long-term stability in the statistical solution in the
following theorem.
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Theorem 11. Suppose that Assumption 9 holds and the covariances go to
the same deterministic limit
N el NG
a.s. as t — oo. Then there is
E[|Ha - i, - o, (53)

as t — co. Furthermore, assume exponential convergence rate in C'',CH
as in (51), and let 4 = min {4, A,} where 4, and 4, are the minimums
of the real parts of the eigenvalues of —L" + C'' =2 and —LY, + C} 12
respectively. There is also exponential convergence as

B |75, - B[] < Kpgemmntadl, (54)
with Ky a constant only dependent on the observation function H.
Proof. By taking the difference of the mean equations in (46) and (47),
we have
d(Hp,— 1,) = (L™ = C'17?) (Hp, — H,)dt + (CM* =) 17 [dy, — h, (v,) df]
+ [(C1 =) r2Hp, - (C = M) r2 A, ] dt
+ [{£, (y,) Hp,) — LT Hp, | dt + [{£, (y,) Hp,) — L™ H,] dt.
By applying It6’s formula to the above equation, there is

a[e =) (25, — 1) |
= o (L) (M — CHY 2 [dy, — by (v,) di] + G, (v,) dr}
o H(H=CUI) (= EMY r=234p, — (€M — €M) T2 11, dr.
Above, we denote the residual term as
G, (vi) = [(L: (v) Hp,) — LgHp| + [(£, (v) Hp,) — LLA,] .

By similar estimates as in Lemma 10 according to the assumption (48),
there is

6 = (e (o) #5) = L3 b + |13, (Mo =T3)|
U (e ) HAY - LA+ |1 (A - )|

a.s. as t > oo using the uniqueness of the solutions Hp, — Hp,, and
H, — H,, (with exponential decay in the stronger convergence case
(51)). Equivalently, the above SDE can be written as (ignoring initial
condition by assuming Hp, = H)

! A A
Hp, - H, = / l=INLL=CIT) L(EM — cHY 12 [dy, = hy () ds] + G, (v,) ds}
0
! A 2 A A A —
+ / lNEL=CET) [(EM = E) r2Hp, — (€M = €T 2 A, ds.
0

Therefore, by first taking the square on both sides of the above identity
and then taking the expectation, we get

! A —
/ ot=9)(L0~CIr=2)
0

! A !
0

2
(¢

E[|Hp - A,F <58 " _cH) r2dy,

2
+ 5E

t X 2
+ SE /0 MIEL=CET) (M — M) 1 72h, (y,) ds

2
! A —] A A
+ 5E /0 UL =CET™2) (E1 _ ¢T) P21 ds

2
+ SE

! A — A -
/0 Q=)L —~CHTr2) (CZ _ CSH) r2H,ds

The second line above follows the same argument as in Lemma 10 and
using Cauchy-Schwarz inequality
2

! A —

0
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2 '
dsE /
0

G, (v5)

2

1 AH =2 1 AH p-2
o2 =I(LE-CLr?) o2 =9(LG-CLT )Gs (YS) ds.

t
S./
0

t
<A'E / e =)
0

Similar results can be achieved for line three to five following the
convergence (or exponential convergence) of the integrants. Finally,
for the first line using the observation equation in (21), that is, dy, =
[Hp, + h; (y,)] df + T'dB,, there is

2
ds < Ke M 5 0.

2

E /’ L9 (L0—CILr=2) (CAAH _ C{I) I2dy,
0
t . 2
<E / l=I(L5=Cr™?) (C" —cHY T2 [Hp, + by (v,)] ds
0

t
+E / Q=5 (LI -CHT2)
0

t
<K, / e m(t=9) <IE
0

< Ke M 0.

et || as

jer - ex| + e - ex| ) as

Above in the second to the last inequality, we use the uniform bound-
edness of E |Hp,| and E ‘h, (y,)| as t - oo, and the last line uses the
convergence (or exponential convergence) of the covariance (50) or
(51). Combining all the above bounds, we finally get the convergence
in (53) and (54). O

Together with the equilibrium estimate in (52) combining the result
in Theorem 11, we can also get the same error estimate compared with
the target field as t - oo

E||p - A P] <E [[#5, - 1p, | + E |15, - 1, = wClt

Thus, we show that the statistical filtering model solution H, converges
to the optimal filter solution with the same mean square error, and ex-
ponential convergence is reached if the forecast model has exponential
convergence to the equilibrium.

As a final comment, we can further relax Assumption 9 as there
exist deterministic uniformly continuous functions, L” (y) and LY (y),
so that for any y, — y,, there are

(L0 (%) Hp) = L2 (veo) Hisor (L, H (CHT)) = LY, (y5) €.
(L0 (n) Hp) = L2 (veo) Hisor (L, H (5 H[T)) — L, (v00) CL.
a.s. as t —» oo. And the limiting matrices are uniformly bounded by
negative-definite matrices 4,,, A,

(55)

AH -2 AH -2
L" () -CHr2<a4,<0, L' (»-C"r?<a,<o. (56)

In addition, non-zero noise in (36) can be included satisfying X, — 0
as t — oo. Then, the same result applies for the convergence of the
observation mean and covariance at the long-time limit as in Lemma
10 and Theorem 11.

5. Ensemble approximation of the statistical filtering model

Finally, we discuss numerical implementations of ensemble methods
for solving the statistical filtering model (36) with discrete observations
and explicit filtering operators in analysis update.

5.1. Numerical algorithm for implementing the approximating filter

Assume that the observation data comes at discrete times 7, = né
with a constant observation frequency §. We can linearly interpolate
Vo = (’Ztn’Rf,.) € R? as

S
di _ Ykl = In
dr t

A
_ Vn+1 i 57)
—t, 8

n+l
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during time interval ¢ € [t,.7,,,]. We propose an ensemble algorithm
to approximate the filtering distribution 5, ~ Z,n conditional on the
statistical observations Y‘S = {y5 s < t} based on the statistical filter

Z(') ~, are drawn to
sample the initial distribution of the stochastic state. T‘hen the particles
are evolved according to the following SDE with drift terms 4}, a; and
control gains K", K/’

Eq. (36). First, N independent particles, Z,

= L(@) Z di+ 1 (202 = RY ) di + £,aW,"
v ar (20)ar+ Ky (70) {az - [ (20) + 1, (uﬁ)] dr -

+at”<Z~;i)>dt+K,”< m){dR‘s [H”(Zf”)

r, dB® }

m,t m,t
8 0]
(@, R?) ]dz Fl,,t,dBv’J},

(58)

where the expressions for 4, h, are defined in (23), H™, H" are defined
in (24), and Bfr’l)l, (’) are independent white noises. Above, in the first
line of (58) for the forecast step of the filter, the first two moments
(N, RN) can be explicitly solved by the statistical equations according

to the stochastic-statistical model (11)

da N N erm (5
5 =M (@) + F+EN [H"(Z,)],
dRN NN ; (59
T_L( NMYRN +RNL (aV)" + =, 3]
+EN [HY (Z,)] + ¢! (Y [Z,Z]] - RY).

The expectation is computed by the empirical average, EN f (Z) =
% Z,’i L f(Z9). In this way, the particle simqlation of (58) can be
carried out easily for each individual sample Z~,('), and the dependence
on the distribution of the whole interacting particles is only intro-
duced through the empirical average in the statistical Egs. (59). We

summarize the ensemble filtering strategy in Algorithm 1.

Algorithm 1 Ensemble statistical filter with observations in mean and

covariance

Model Setup: Get the interpolated sequence of statistical observations
Eq. (57) y? = {a?, R?} .t € [0, T]; determine time integration step r,
and the initial state distribution p.

Initial condition: Draw an ensemble of samples {Z (')}_ from the

initial distribution p,, and compute the initial mean and covariance
{u0 ,Rév} W.I.t. pg.

1: for n = 0 while n < |T/z], during the time interval t € [t,.1,,,]
with ¢, = nt do

2: Compute the gain functions K,’:’ and K,”" using Eq. (62) and the
associated drift functions a;’,’l and a[”n.

states {

N
3: Update the samples {Z r(l)ﬂ } | using Eq. (58) with the statistical
n i=
RN } and observation data y°.

4: Update the statistical mean and covariance {ﬁN ,RY

by
X R P }
integrating Eq. (59) to the next time step using the empirical

average of all samples.
5: end for

Remark. Solving the Egs. (58) may still demand high computa-
tional cost for resolving the multiple nonlinear coupling terms in high
dimension d > 1. One potential approach to address the compu-
tational challenge is to adopt the efficient random batch approach
[41,44] developed for the coupled models (11). A detailed investigation
of efficient numerical methods will be performed in the follow-up
research.
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5.2. Construction of explicit model operators in the analysis step

In the second and third lines of (58) for the analysis step update
of filtering, we still need to propose explicit expressions for model
parameters a}", K;" and a}, K;” according to the observations of the mean
and covariance respectively. According to Theorem 8, the gain function
K, needs to be solved from Eq. (41), that is,

-V (K'p)=pI7*(H(2)- H).

Then the drift function g, can be directly computed from the solution
of K, as

a,=V-(KI*K])-KI*V-K

In general, it is still difficult to find solutions of the above equations.
By multiplying H on both sides and integrating about z, the identity
for K, implies a necessary condition

E[K/VH| =7*cH,
where C' =E [(H (2,) - H,) (H (Z,) — H,)"] is the covariance of H.
Therefore, we can first design proper gain functions K, by solving (60)

(60)

according to the specific structures of H™ : R? - RY and H" : RY —
R?" required in our problem in (24)
len (z) = Z YkmnZmZn = ZTAkZ’

- (61)

H,‘:I (z) = Z YimnZmZnZl + YimnZmZnZk = (zTAkz) z)+ 2, (zTA,z) N
m,n

for all 1 < k,I < d where we rewrite the quadratic and cubic functions

using the symmetric coefficient matrix, A} = 4, € R, satisfying

the assumed structural symmetry in the coupling coefficient y,,,,. The

resulting gain functions are then constructed with the following specific

expressions.

Proposition 12. The matrix-valued gain functions K" = K™I r;} and
K? = R°I;2 with K" (z) € R and K°(z) € RI*% in the following
expressions

g m 1 m rym
KP (@)= 3z [H (2) - H]'],
~ | B (62)
Kjv,kl (z) = 3% [ngz (z) - H/Z] :
for 1 < k,0 < dand 1 < j < d satisfy Eq. (60) according to the
structures of the functions H™ and H"Y in the forms (61) respectively, and
A" =E[H"(Z)] and A® =K [H" (Z)].

The proof of Proposition 12 is put in Appendix B. The average
terms, H™, HY, are already computed in the statistical Egs. (59) thus
no additional computational cost is needed. On the other hand, it is
noticed that (62) can only give a necessary condition for the gain
operators and may not guarantee the original identity for K, in general.
However, in the proof of Theorem 8, it shows that (60) is the main
relation needed to derive the consistent analysis statistics on the mean
of H (Z,). Therefore, (62) provides a desirable candidate for practical
implementations of the algorithm concerning the consistency in the
leading moments.

6. Numerical tests on prototype models

In this section, we test the performance of the proposed filtering
algorithm on simple but nevertheless instructive prototype models.
Though relatively low-dimensional, these models can demonstrate a
wide variety of different statistical regimes, making desirable first
experiments for confirming the skill of new filtering strategies.
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Fig. 2. Filtering performance in the near-Gaussian region of the triad model with the sample size N, = 100.

6.1. Numerical setup of the triad model

The triad model [7,36] is given by a three-dimensional ODE system
about u = (u;, uy, u3)T with a quadratic nonlinear coupling term

du .

d_tl = Louy — L3uy — dyuy + Byuyuz + oy Wy,

du .

d_tz = L3uy — Lyuz — dyuy + Byuzuy + o, W5, (63)
duy .

rre Liuy — Lyuy — dyus + Byuquy + o3 Wj.

The above system (63) fits into the general formulation (1) and the non-
linear coupling term is energy preserving if B, + B, + B; = 0. The triad
system constitutes an elementary building block for more general tur-
bulent systems as a three-mode Galerkin projection of high-dimensional
dynamics with energy conserving nonlinear interactions [6].

Though simple in appearance, the triad system (63) has repre-
sentative statistical features including energy cascade between modes
and internal instabilities that can be created by choosing the model
parameters. In particularly, we can generate distinct statistical features
from Gaussian to highly non-Gaussian PDFs in two typical dynamical
regimes:

* Region I: equipartition of energy. Gaussian equilibrium distribution,
Deq ~ ©€XP _%%_qz“'“ , will be reached under this set-up by
2

setting the equipartition of energy in model parameters, ;7‘ =
1
2 2

[ep [ep
2 = 5y = O

* Region II: cascade of energy. In this case, energy is injected in the
strongly forced first mode u; while the other two strongly damped
modes u,,u; are less energetic, inducing energy cascades through

nonlinear coupling.

Region I is the simplest but nevertheless representative with near-
Gaussian statistics. The higher-order moment effects are relatively
small in the final equilibrium state, while the nonlinear dynamics still
produces dominantly non-Gaussian statistics as the system evolves from
initial state. Region II contains important third-order interactions, and
large errors will be introduced if the unobserved cross-covariances are
ignored without care. The model parameters of the two test regions are
listed in Table 1.
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Table 1

Model parameters of the triad model in two test regions.
Region (L, Ly, Ls) (dy.dy,d5) (By. By, By) (01,0,03)
I (G.,=2,—1)  (0.02,0.01,001) (1,-0.5,-0.5) 25Xx (ﬁ, V24, \TdS)
i (0,0,0) (0.1,02,0.2) (1,-0.5,~0.5) (m,o.l,m)

The true statistical features of the triad system in the above dynam-
ical regimes are resolved through direct Monte-Carlo simulations. We
run an ensemble of N = 5 x 10* particles, which shall be enough for
capturing the essential non-Gaussian statistics in a three-dimensional
phase space. A fourth-order Runge-Kutta scheme with time step Ar =
1x1073 is used to integrate the system in time, and the stochastic forcing
is simulated through the standard Euler-Maruyama scheme. The initial
ensemble is chosen from a standard Gaussian random sampling.

6.2. Filtering performance in different statistical regions of the triad model

In the statistical forecast problem, we aim to capture the probability
evolution of the model state (uj,u,,u;) using a small ensemble size
N, = 100. The statistical filtering scheme can be directly applied to
the triad model according to the numerical formulation (58) and (59).
Observation data is drawn from the leading moments of the mean
(@, @, ;) and variance (r|,r,,r;). Notice that due to the nonlinear
coupling structure in the triad model (63), the accurate prediction
of the mean and covariance in (18) relies on the estimation of the
cross-covariance and third-moments which are all not included in the
observation data.

6.2.1. Filtering with near-Gaussian statistics

First, we consider the filter performance in Region I with near-
Gaussian statistics. Scatter plots of joint two-dimensional distributions
from direct MC simulations with a large ensemble are shown in the
first row of Fig. 2 with different colors indicating the density of the
samples. The joint distributions of states show the near-Gaussian PDFs.
Nevertheless, large errors will be gradually developed by running the
statistical equations with a very small sample size due to the insufficient
estimation of the expectations in (59) which will be amplified in time.
This will lead to the gradual increase of errors in the prediction of
mean, variance, and cross-covariance as shown in the second panel
of Fig. 2. In contrast, stability and accuracy are maintained using the
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Fig. 3. Filtering performance in the non-Gaussian region of the triad model with the sample size N| = 100.

filter scheme during the entire evolution of the solutions. Especially,
the unobserved cross-covariances between the modes play an important
role in the accurate prediction of the mean and covariance. The diver-
gence of the direct method without filter is induced by the accumulated
errors in the cross-covariances, while the filter effectively stabilizes the
unobserved statistics and guarantees accurate prediction.

6.2.2. Filtering with non-Gaussian statistics

Next, in Region II with nonlinear energy cascade, non-Gaussian dis-
tributions with extreme events can be observed in the PDFs especially
with a star-shaped joint-distribution as illustrated in the upper panel of
Fig. 3. This demonstrates strong nonlinear effects between the modes
and a more challenging case for accurate statistical forecasts. Note that
the high non-Gaussianity in u,,u; can affect the final structure in the
dominant mode u,; despite its closer to Gaussian marginal distribution.
This illustrates important contributions of third-order moments in this
case for accurate predictions. Due to this strong reliance on the accurate
estimation of higher moments, the small ensemble prediction without
the filter will quickly degenerate from the initial time as observed
in the lower panel of Fig. 3. The growth of large errors is more
obvious in the crucial cross-covariances that govern the dynamics of
the mean equation. Again, the filter scheme maintains robust accurate
prediction against the large errors induced by the small ensemble
estimates of crucial higher-order moments. The accurate prediction
and long-time stability shown in the tests involving strong nonlinearity
and non-Gaussian statistics demonstrate high skill of the statistical fil-
ter enabling efficient long-time probabilistic forecasts of non-Gaussian
statistics.

6.3. Filtering performance in the Lorenz 96 model

As a further test on higher dimensional systems, we apply the
filtering algorithm on the Lorenz 96 (L-96) model [62] as another
prototype model to examine data assimilation schemes
du;

dt

with periodic boundary condition u;,; = u; and constant uniform
forcing F. Various representative statistical features can be found in the
L-96 solution [63]. Notice that by taking the dimension of the system
J =3, the L-96 Eq. (64) shares similar dynamical structures as the triad

:—uj+(uj+l—uj_2)uj_1+F,j:l,...,J, 64)
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system (63) with homogeneous linear terms and energy-conserving
quadratic nonlinear coupling.

In the numerical tests here, we adopt the constant forcing F = 6
that demonstrates strong non-Gaussian statistics in the state solution
u;, and a higher dimension J = 10 to test the filter performance.
The true statistical solution of the L-96 model (64) is resolved using
a sufficiently large ensemble size N = 5 x 10*. The model state starts
with an initial distribution with independent Gaussian distribution with
small variances, while the internal instability will rapidly amplify the
uncertainty among the modes. By applying the filtering method on the
L-96 model containing a large number of internal unstable modes, we
aim to capture the key model statistics in a high dimension J = 10
using a small number of samples N, = 100. The prediction results for
the mean and variances captured by the particles are plotted in Fig.
4. Similar to the triad model results, the direct numerical prediction
using a small ensemble size fails to capture the statistics showing
large fluctuation errors and diverging solution. On the other hand, the
predictions of mean and variances in the filtering model stay accurate
during the entire evolution time against the strong inherent instability
in the Lorenz system.

7. Summarizing discussions

We developed a systematic statistical filtering strategy that enables
effective ensemble approximation of non-Gaussian probability distribu-
tions of multiscale turbulent states using observations in the leading-
order moments. The filtering model is based on a closed stochastic-
statistical formulation established for modeling general turbulent dy-
namical systems involving nonlinear coupling. Statistical observations
in the first two moments are used to improve the accuracy in cap-
turing crucial non-Gaussian statistics in filtering updates. In practi-
cal implementation of the framework, white noise corrections are
introduced to represent model errors from the finite ensemble ap-
proximation and incomplete observation data such as only statistics
in large scales is allowed. There are several potential approaches to
obtain the statistical observations depending on the problems to be
applied, including: (i) taking local spatial averages to get large-scale
statistics; (ii) using time averages in a short time window in the
trajectories; (iii) coarse-grained simulations from multiple imperfect
low-order approximation models; and (iv) approaches using linear
response theory and reduced-order methods to extract leading-order
statistics from equilibrium measures. The non-Gaussian features then
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Fig. 4. Filtering performance in the 10-dimensional L-96 model with the sample size N, = 100.

can be characterized by a McKean-Vlasov SDE taking into account
both the stochastic forecast equation and corrections according to the
observed first two moments. Importantly, the SDE model for the finite-
dimensional stochastic state does not require the explicit computation
of the infinite-dimensional probability distribution, but just relies on
the feedbacks from the leading moments that can be computed from the
associated statistical equations. This leads to straightforward numerical
algorithms using ensemble approximations. The new filtering model of-
fers a flexible approach to recover essential statistics, making it applica-
ble to a wide range of problems in uncertainty quantification and data
assimilation.

Limitations of the statistical filtering model and future research directions.
Still, many interesting problems remain open in both rigorous mathe-
matical analysis of the approximate filtering model and the practical
computational strategies for realistic applications. In this paper, we
are only able to show the statistical consistency of the approximate
filter in the first two moments and using full observation function
under restricted assumptions. Further explorations exploiting specific
model structures such as the conservation properties will be used to
provide a thorough understanding of the approximation skill of the
filter predictions. In the immediate applications of this research, the
performance of the new filtering strategy need to be tested on typical
nonlinear systems with close realistic relevance. We plan to perform
systematic numerical experiments on a series of turbulent systems,
starting from prototype models to realistic applications in really high-
dimensional systems. Using the simple prototype models [54], we are
able to carry out a systematic numerical investigation of the filtering
scheme for different non-Gaussian features generated by the nonlinear
dynamics. On the other hand, to deal with the computational challenge
in high-dimensional systems, the current filtering scheme needs to be
combined with additional model reduction strategies such as the ran-
dom batch approximations [41,44] that have been shown a promising
way to compute high dimensional problems. Furthermore, we would
like to point out that even though the results in this paper are mostly
focusing on continuous observations, the statistical filtering scheme
described in Algorithm 1 can be adapted for discrete observation data
y; and can only include the moments in the leading modes. This is
particularly suitable for many practical situations where only large-
scale observations in discrete times are available. We plan to perform
detailed numerical performance comparison based on different types of
observations in the follow-up research [54].
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Appendix A. General backgrounds about filtering

We summarize useful results needed in the main text of the paper
mostly following the Refs. [55,58,64].

A.1. Filtering equations for general stochastic systems

Let (2, F,P) be the complete probability space. The signal process
u, € RY and the observation process y, € RP are defined on the

probability space satisfying the following SDEs
du, = F (u,) dt + ZdW,, (A.1a)

(A.1b)

=0 = U,

dy,=H (“I) dr+dB;, V=0 = Yo-

where F : RY - RY and H : R? — RP are bounded and globally
Lipschitz continuous functions, and W, € R*, B, € R? are independent
standard Wiener processes with matrix coefficient = € R?*. The aim
of the general filtering problem is to determine the conditional prob-
ability distribution 4, of the signal process, u,, given the accumulated
observation process, ¥; = {y,.s <1}.

Define the observation filtration G, o {y;.s <t}. The random
conditional distribution g, : R? x 2 — [0, 1] is defined as the P (R¢)-
valued stochastic process which is measurable w.r.t. G, so that for any
function ¢ € C? (R?) a.s.

E[(p (ut) |gt] = Ky ((ﬂ) = /]R'i W(u)ﬂx(du)-

In particular, the optimal filter solution, 4, = E [u, | Q,], can be de-

fined based on y,. It shows that #, is the minimizer E [|ﬁ, —u,|2] =

min, E ||v - u,|2] among all v € L? (£, ¢,,P) in the set of G,-measurable
square-integrable random variables for any fixed 7. The filtering equa-
tion for the conditional probability distribution g, is verified to satisfy
the Kushner-Stratonovich equation

duy (@) = 4, (L@)dt + o (H, @3 ;) dv,. (A.2)

On the right hand side of the above equation, the first term is the drift
due to the infinitesimal generator £ = F -V + %Z 2T : VV of the signal
process (A.1a); the second term represents the correction from the ob-
servation process (A.1b). The innovation process, dv, = dy, —p, (H)dr €
RP?, is a G,-Brownian motion under the probability measure P, and
o (H, ;1) = u, (HT) — i, (@) u, (HT) € R gives the coefficient with
finite quadratic variation, where y, (H) is the componentwise measure
of the vector-valued function H. In addition, the filtering Eq. (A.2) is
shown to have a unique solution under proper conditions (Theorem
3.30 and 4.19 in [64] and Theorem 7.7 in [12]) that is also stable
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(Theorem 2.7 in [65]). Therefore, this guarantees that the solution of
the Kushner-Stratonovich Eq. (A.2) uniquely characterizes the filter
distribution , as a P (R¢)-valued stochastic process.

Next, assume that the conditional probability u, possesses a square
integrable density, u,(dx) = p,(x)dx, with respect to the Lebesgue
measure. It can be shown under proper conditions (Corollary 7.18
in [20,64]), the conditional probability solution p, of (A.1) has a
probability density p, € W2 (R?). According to (A.2) for the conditional
probability, p, can be found to be the unique solution to the following
SPDE

00, = L7pdt + p, (H — H,) (dy, — Hydt), p,_g = po, (A3)

where H, = [pq H (x) p, (x)dx and p, € L2 (R?) is the absolute continu-
ous density of u,. The randomness of the above SPDE only comes from
the innovation process dv, = dy, — u, (H) d as a finite-dimensional white
noise in time.

At last, if the functions on the right hand sides of (A.1) satisfy the
Ornstein—Uhlenbeck processes with matrix coefficients, that is, F (u) =
Fu + f, and H (u) = Hu + h,. With Gaussian initial condition, u, ~
N (i, Cy), the conditional distribution u, = N (#,,C,) given G, in (A.2)
becomes a multivariate normal distribution, where &, = E [, | G| and

C, =E|(u,—2,) (u,— 8,)" | G,]. The filtering equations for 4, € R and
C, € R™ are given by the Kalman-Bucy filter [56]

da, = (Fa, + f;) dt + K, [dy, — (Ha, + b,) 1] , (A.4a)
C, =FC +CF - KK +ZX2T. (A.4b)

with the Kalman gain matrix K, = C,HT. Above, (A.4a) is an SDE
coupled with the deterministic Riccati equation (A.4b).

A.2. Infinite dimensional filtering in Hilbert space

It is shown that the linear Kalman-Bucy filter can be generalized
to linear stochastic equations on a Hilbert space [57,58]. Let H be a
Hilbert space. Denote L2 (£2,G,P; H) as the collection of all H-valued
G-measurable square-integrable random variables. The expectation of
u€ L*(Q,C,P; H) is denoted by
Elu] = / u(w)dP(w). (A.5)

Q

The inner product for states u,v € L?(Q,C,P;H) can be defined
as (u,v)y = E[wo)y] = [,u(@),v(®)ydP (). With the above
notations, the covariance operator C can be introduced as an element
in the linear transformations £ (H; H).

Definition 13. Let u,v € L?*(2,C,P;H) be two H-valued random
variables. Then the covariance of u and v is given by

Cu,v)=Eu®uv]-Eu]QE[v], (A.6)

where u(w) ® v(w) € L(H; H) is a linear transformation of H into H
defined for any f € H as

@®v) f=ulv, fy-

It is easy to check that the adjoint C (u, v)* = C (v,u) and C (u, u)*
C (u, u) is self-adjoint since
(frw®v) gy = [)g(v,.8)y

Notice that if H = R is finite-dimensional, for any x,y € L?*(2,C,P;
RY), x ® y = xyT € R?™¥, then the covariance C (x,y) € R? becomes
the d x d matrix

Cx,y)=E[xyT|-EXIED]" =E[x-E[xD»-E[y)T].

Then, we call the u, (w) from [0,T]1x 2 to H an H-valued stochastic
process. An infinite-dimensional H-valued Wiener process W, can be
defined accordingly and the It6 integral can be generalized to infinite-
dimensional Hilbert space accordingly (see Chapter 2 of [5] with
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precise validations). Therefore, the signal process u, of filtering can be
given by the following H-valued SDE

du, = Au,dt + Q,dW,, (A7)

=0 = U,

where A, € L ([0,T]; L (H; H)) is a regulated mapping of [0, 7] into
L (H; H) (which is further generalized to unbounded operators in [66]),
Q, € L2([0,T]; L (H; H)), and W, is the H-valued Wiener process. It
can be shown (Theorem 2.13 in [5] and Theorem 5.1 in [58]) that (A.7)
has unique solution in L? (€2, G, P; H) with initial value E |u0|i1 < oo.
The observation stochastic process y, € R? can be generated by the
SDE

dy, = Hu,dt +dB,, y,—op = Yo, (A.8)

where H, is a linear mapping of [0,7] into £ (H;RP), and B, is the
Wiener process in R? independent of W,. The infinite-dimensional
filtering problem can be then described as: given y,,s < t, determine
the optimal estimate 4, of u, that minimizes

E[|u,—U|ZH] , vel? (.Q,Q,,IP’;H), (A.9)
where G, = ¢ {y,.s <1} is generated by the observations up to time 7.

Finally, in parallel to the Kalman-Bucy filter (A.4) in finite-
dimensional space, similar result can be extended to the above infinite-
dimensional filtering problem (A.7) and (A.8). Below, we summarize
the main results in Theorem 7.10, 7.14 of [58].

Theorem 14. The optimal filter solution o, of (A.9) exists and is unique,
which satisfies the following infinite-dimensional SDE

dat, = A,d,di + K, (dy, — H,a,dt),  d_g = ug, (A.10)

where K, = CH; € L(R?;H) with H} the adjoint of M, And the
covariance operator C, = E [(u, — ;) ® (u, — ;)] satisfies the following
Riccati equation

C=AC+CA —KK+0Q,QF, Crop=C (up.up) . (A.11)

A.3. Kalman-Bucy filter with conditional Gaussian processes

The linear Kalman-Bucy filter can be generalized to nonlinear filter-
ing accepting the conditional Gaussian processes [55]. The conditional
Gaussian process (v,,y,),0 < t < T is given by the solution of the
following coupled equations

do, = [F, (v) v, + f; (v)] dr + Z,dw,
dy’ = [Hf (yf) v+ hr (yt)] dr + F,dBt,

(A.12a)
(A.12b)

U= = Up,
Yi=0 = Yo-

where W,, B, are mutually independent standard Gaussian white noise
processes, and the initial states (vg,y,) are random variables inde-
pendent of W,, B,. In general, v, € RY represents the signal process
and y, € R? represents the observation process. The functions f;, F,
and h,, H, are globally Lipschitz continuous and uniformly bounded
on the observed state y, over the time interval 0 < 7 < T. Assume
that the sequence (uv,,y,) is obtained from a realization w and the
initial condition, {vy, y,}. We can then define the observation sequence
Y, = {y,(w),s <t} as well as the unobserved signal v, = v, (®). The
above system (A.12) is called the conditional Gaussian process since
the conditional distribution x4, = P (v, €-1Y;) given Y, becomes a
Gaussian distribution a.s. if yy = P (v € - | y) is Gaussian (Theorem
12.6 of [55]).

Next, let G, = o {y,,s <t}, and define the mean 5, = E[v, | G]
and covariance matrix C, = E [(v;=0,) (v, - ﬁ,)T | G, w.r.t. the con-
ditional Gaussian distribution s, = N (8,,C,). Then, it shows that the
explicit dynamical equations for (9,,C,) can be derived based on the
conditional Gaussian process (A.12). As a result, filtering equations
from the linear Kalman-Bucy filter (A.4) can be directly applied to
the conditional linear system regardless of its essentially nonlinear
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dynamics. The equations of the conditional Gaussian processes and
the uniqueness of the solutions are proved under suitable conditions
for the model coefficients in Chapter 12 of [55]. We summarize the
results according to Theorem 12.7 of [55] for the nonlinear conditional
Gaussian filter.

Theorem 15. The conditional distribution yu, of the stochastic processes
v, given Y, from (A.12) is Gaussian, N (&,,C,). Then, with I,I} > 0 and
the initial mean and covariance o, C,, the solutions for the mean o, and
covariance matrix C, are uniquely given by the following closed equations

0, = [F (%) 0+ 1, (yf)] dr

K, (3) (LI])™ {dy, = [H, (%) 8, +h, ()] dr}, (A.13a)
[F (1) G +CF (3) + 2, 5] dt
v) (L) K] (v,) dr, (A.13b)

K, ()
where K, (y,) = C, (y;) H, (y,)". The matrix C, will remain positive-definite
<1<T

forall0<t lfC0>0

Appendix B. Detailed proofs of theorems in the main text

Proof of Lemma 1. Denote the energy E, = f |u|? p; (u) du. Multiplying
the factor |u|?> on both sides of the FPE (2) and integrating in space
u € R? yield that

dE, :
T 2u- [Au+ B(u,u)+ F] pdu+tr (s,0])

< =2oE, +i, - F,+1tr (c;0])

|5 [’
< —ME + = +tr(c,0]).
Ao
Above, the second line follows from the conservation relation (3a) in
the quadratic coupling, u- B (u,u) = 0 and —4 is the largest eigenvalue

of the negative- deflnite coefficient. The third line uses the estimate
i, F, < Agit? + NF“ < ME + |F’} . Then using the uniform boundedness
of the forcmg coeff1c1ents, we ‘have the finite solution E, as the direct
conclusion from Gronwall’s inequality starting from finite initial state
E, < oo. This proves that p, has finite second moments during the time
evolution, that is, p, € P, (R?). Next, the regularity of the solution for
t > 0 follows from the coercive operator from the dissipation coefficient
(3b) following the standard proof as in [43].

Finally, for the finiteness of higher order moments, consider the
high-order energy E* = [ |u|* p, (u)du. By multiplying |u|****u on
both sides of Eq. (1) and using the finite moments in the lower or-
der, the boundedness of each higher order moments will be reached
following the same line of arguments. []

Proof of Lemma 2. First, applying It6’s formula for Z, with any test
function ¢ € C? (R?) gives

do(Z,) = £ (4. R) ¢ (Z,) dt + Vo (Z,)" Z,aW,
=Vo(z)"|L(4)2Z+T (22! -R,)|dt (B.1)
+ %z,zj D VVe (Z,)dt+ Ve (Z,) Z,dW,, (B.2)

where £ is the generator of Z,. Given any statistical solution (i, R,)
and taking expectation using ¢ (Z) = Z for |Z| < C, the equation for
the first moment of Z, with r =7 A ¢ and ¢ = inf{r : |Z,| > C} can be
found as

d _
—E[Z]=[L(a)E[Z]+T
Then notice that ¢ 1 oo and the first two moments are finite, we get the
equation for Z,. Next by taking ¢ (Z) = Z, Z, for | Z| < C, in a similarly
way we have

(E[z.Z]]-R,)]. (B.3)

d (ZkAtZI,t) = 2 [Lkm ('Zr) ZmJZlJ + ZkJZm,tle (‘21)] dr+ ka,tzlm,tdt
m
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+ z Ymnk (Zm,th,tZI,r - Rmn,tZI,t) dr

m.n
+ Ymnl (thZntZkr - Rmn tZkt) dr
+ 2 Zimi Z14 AWy + 2y i Zy AW,

This implies the second moment equation of Z, as

d _ _
—E[zZ]] = Z [Liw () E[Zpi Z1s| + E[Zy 1 Zps] Li (8,)] dt + Z, 2]

m

(B.4)
[Zm,ZZn,IZ/,t] - Rmn t]E [Zl,t]) dr

+ z Ymnk (IE
mn

+ Yonni (E [Zm,IZn,tZk,r] - Rmn,t]:E [Zk,t]) dr.

Assuming E [Z,] =0and E [Z,ZtT] = R, for any time instant ¢, first
we see that the right hand side of (B.3) will always stay zero. Then,
with the same statistics in the third moments of Z,, the right hand side
of (B.4) becomes equal to the right hand of the statistical equation of
R, in (11) with (12). Uniqueness of solution in the statistical equations
given the same initial values implies that the leading two moments of
Z, satisfy E[Z,| =0 and E [Z,Z]]| =R, for all 1 > 0. []

Proof of Proposition 3. First, consider E¢ (u,) with test function ¢ €
CZ (R?) w.r.t. the PDF p, for the state of the original system (1). Itd’s
lemma shows that
dEg (u,
o) VW ()]
where A : VVo =% a,,9, 9, ¢. In addition, the above equation can
be generalized to all ¢ € C?(R?) by applying Dynkin’s formula for
a strong Markov process. In fact, consider the test function ¢ defined
within |u| < C and introduce the stopping time 7 = tAc with ¢ = inf{¢ :
lu,| > C}. We have the equation for u, by Dynkin’s formula. Since all
the moments of u, remain bounded from Lemma 1, we get the same
equation for ¢ (u,) by letting C 1 co and o 1 co.

Using the decomposition v’ = u—Eu = ¥, u; 0, with uj =0, -u', we
have first for p = u
dEu,
Tdr

=E [(Au, + B (u,,u,) + F) Vo (u,)] + ]E [0',(7

=K [Au, +B (u,,u,) + F,]

= AEu, + B (Eu, Eu,) + 3 E [u;vtub] B (04.0)) + F,. (B.5)
k.l

Above, we use the bilinearity of the operator B and Eu’ = 0, such that
EB (u,u) =EB (]Eu +u' ,Eu+ u')
=E [B (Eu,Eu) + B (Eu,u') + B

= B(Bu,Eu)+E Z B (u, 00,5,

(u',Eu) + B (¢, u')]

= B (Eu, ]Eu)+z [u ult] B(ﬁk,ﬁ,).

Similarly, by taking ¢ =
find

(0 ) (u) - 0) = u:TAk,u; with 4, = ﬁ,ﬁl, we

d 1
dIE [u,\,u“] =E [(Au, + B (u.u,) + F,) - (A + A,Td) u] + 0
+ (M:T/Uﬁ,) (ﬁk -u’)]

(Eu, u') ";u +0,-B

ol 1 (Ay+A})
=E[(u - 8,) (6;Au))
+E [ﬁ, ‘B

+E [0, B (. Eu) uj, +0, -



D. Qi and J.-G. Liu

+Z[

m,n

6,)E [u

Above in the second equality, we use the projection on the two modes
(A + Ay u; = (0,0) +0,0]) u] = O, + D), and the bilinearity
of the quadratic operator B; and in the thlrd equality, we use the de-
composition of fluctuation modes, uj = ¥, ) ,0,. We find the coupling
operator Ly, = (0} Ab,) + 0} B (d,,.Eu) + 0} B (D,,, Eu), the third-order
coupling coefficients y,,,, = 0} B(0,,0,), as well as the noise term
(O't . ﬁk) (ﬁl ~o‘,).

In addition, by subtracting the mean Eq. (B.5) from the original
system (1), we find the SDE for the stochastic state

(s
|:M, Yumtunt] + UIB (Um’ kfumtunt:H :

m»

du! d )
d_tt =3 (u, —IEu,) =Au, + B (u,,u,) +o, W,

— ABu, — B (Eu, Eu) - Z]E [i,20,] B (0-2,)
=2

Again in the second equahty, we use the spectral decomposition of the
fluctuation state ”;c,r =u] - 0. By projecting the state «, on the basis 9,
we have

du!
k.t
a ZL"’" (]Eu’)u:n,t"'zymnk [ Uit nr E[ Uit nt]]+v oW, (B.7)
k m,n

ot [ Al +B(Euu) B (0,,, Eu)]

+(7,VV,

with the same parameters L, and y,,,, defined before. The generator
LY of u can be written as

Z Ly (Bu,) ), + Z Yimnk (”;n,r“::,t -E [u:"fu:”] )] Y
k m,n

+ %2,2} FVu Vi,
where £ is dependent on p, in computing the expectations.
Next, we consider the closure model (11) without the relaxation
term

da
% = Ad, + B (@,5,) + 0, (E[Z,® Z]) + F,,
dR
d—t’ =L(a,)R+RL(%)+0,(E[Z,® Z ® Z]) + %,Z], (B.8)
d _
drIE[ o (Z)] =E[L, (@.R,) ¢ (Z,)].

where £, is the generator from (20) defined from the McKean-Vlasov

SDE of Z,
_ 1 .
£, (a,R,) = SV, + 52,2; :
The closure terms Q,, and Q, in (12) have exactly the same structure
as that in the original system derived in (B.5) and (B.6). In addition, by
comparing the above SDEs (9) and (B.7), it is realized that their gener-
ators, £ (p,) and £, (&, R,), share the same dynamical structure with
the dependence on the first two moments w.r.t. p, and the statistical
solutions &,, R, in (B.8). Therefore, at any time instant ¢ if we assume
consistent statistics

]Epr [(M:

(g

the right hand sides of the original model (B.5), (B.6), and (B.7) become
the same as that of the closure model (B.8). Starting from the same
initial condition with uniqueness of the solution, it directly implies that
the statistical solutions of the two systems (1) and (B.8) will remain the
same during the entire time evolution. Finally, adding the additional
coefficient (1 + |u,|2) in front of the test function ¢ will follow by

[L(#)Z+T(Z2Z - R,)] V.V..

E,, [w] =, ;)] = Ry

as well as

E,, [o ()]
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repeating the same argument given that the second moments w.r.t. p,
are finite. [J

Proof of Proposition 4. Given any G,-measurable square-integrable
stochastic process v, we have from direct computation

E[|Mp, = M| - E [|Mp, - M5,

E [(Mp, — Mv) - (2Mp, — Mv = Mp,)]
=E{E[(Mp, - Mv) - (2Mp, — Mv—M}p,) | G|}
=E{(Mp, = Mv) - [E 2Mp, | G] = (Mv + Mp,)] }
=E [|Mp, My| ] >0

Above, the third equality uses the fact Mp, — Mv =E [Mp, | G] -

is G,-measurable. Thus, we get Mj, minimizes the mean square error.
The consistency under the expectation in Mp, and Mp, can be directly
implied by definition. [J

Proof of Lemma 5. We rewrite the filter model (38) for Z, by sub-
stituting the explicit equation for the observation process, dy, = [Hp,
+h, ()] dt + T,dB,, in (23)

dZ,=a,(Z,)dt+ K, (Z,) {[Hp, - H (Z,)| dt + I,dB, - T,dB, } .

By applying It6’s formula on the above SDE, we have for ¢ € C[f (RY)
do (Z,) = Vo [(a,~ K, (H (Z,) +h, (3)))] dt
- VoK, [,dB, + Vo - K dy, + K, I*K]

where we define A : VVgp = Z?,j:l Aij0zz, @ and take the conven-
tion (Vf);; = [y for the gradient of vector-valued functions f €
C! (R%;R?). Notice that above the coefficient in the last term is 1
considering the additional contributions from the independent white
noise process I;dB, = dy, — [Hp, + h; (y,)] dt in the observation process
besides the original dB,, that is,

: VVedt, (B.9)

1 . S
FVWVe: d(KI'B,KI'B), + 7YV 1 d(KI'B,KI'B), = VVg : K, I?K]dt,
where we denote (M, N, as the Meyer’s process of two martingales M,
and N,.

First, by taking @(z) = H (z) and taking expectation E w.r.t. j,
conditional on Y; = {y,,s <1} € G,, we have

dEH (2,) =E[VH (Z,)"a|dt -E|VH (Z,)' K, (H,+ H] +h,(y,))] dt
+E[VH (Z,)"K,|dy, +E [K,[}K] : VVH (Z,)] dt
=E|VH (Z,)"q|dt+E K [?K] : VVH (Z,)] dt
-E|VH (2,) KH]|dt+ E|VH (Z,) K] {dy, - [H, +h, (y,)] dt}.

(B.10)

In the first line above, we split H (Z,) = H, + H]. Notice that the
observation process y, € G, can be brought out of the expectation
E[1=E[ | G,]. Using the first identity in (41) for a,, there is
E[VH (Z,)"a] :/VH(z)T [V (K I?K]) - K, IT?V - K| 5, (z)dz
:/VH(z)T [V (5K IK]) - KKV,
- KI?V-Klp]dz
——/VVH(z): (K, I*K]) ,dz
- /VH(Z)T K, I[?V - (p,K])dz
=-E[(K,I?K]) : VVH (Z,)]

- /VH(Z)T K, IV - (5,K]) dz.
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Then using the second identity in (41) for K, and denoting H] = H-H,,

the last term above gets simplified to
- / VH'K, IV - (5,K])dz = / VH/'K,5,H/dz=E [VH]'K,H]].

With the above identities, first line of (B.10) becomes zero. Further with
the second identity in (41) for K, there is

E(K/Vy)=I?E((H (Z,)-EH)w (Z)'].

for any regular function y with Ey = 0. By taking y = H — H,, there is

E[VH(Z) K] =E[(H (Z)- 1) (H(Z)- 1) 17 =cT7

This gives the equation for H, = EH (Z,).
Next, we take ¢ (z) = H, (z) H,; (z). For the convenience of compu-
tation, we separate the mean state H, as

@ () =[H,,+ H, (2)| [H, + H] (2)]
:Hli,t (Z) Hll,t (z) + I:IkJHI/ (Z) + Hllc (Z) I:Il,t + I:Ik,tl:ll,r

The last term above is independent of z, thus will vanish after applying
Itd’s formula (B.9). We have for the first term on the right hand side

- ~ ~ - T _
AE (1], (Z,) H],(Z,)] = BV (H[,H],) [(a, = K, (F, + H] + b, (5,)))] de
2 [V (7, ) K| dy+ B{K KT 2 v (# )| ar
=BV (H[H]) o) di+E [K,T2K] vV (1], H], )|
(B.11)
o , , T _
+ B[V (HLH],) K] {dy - [+ 0 ()] ar)
o T
- E[v(nH,) KH]|.
Using the identifies (41) for a, and K, again we can find
B[v(#y ) o] =-B[K 2K vV (8]H],)]
T ~
- [ v () K2V (K] 0z
=B [K2K] vV (H], ], )|
~ T
+ B[V (#p,m),) KH]|.
have dE [H,’”H,/t] =

Therefore, we

~ T _
E [V (H,LIHI’I) K,] {dy, - [H; + h, (y,)] dt}. Further, using the identity
for K,, the coefficient becomes third moments of H/

&[v(nm,) k| = / v (Hy,H],) Kipdz

=~ [ (i) 9 (KD 2

= / (#i,m],) (072 (H ) - 11,)] " dz

=E [H,Q’,H,’JH’T] =2
Similarly, by repeating the same procedure for H, e H I’ (z), we have
OF [, 1] (7)) = B[V (1], ) K] {dv, = [+ (3)] ar}

E [Hl,,tzlT] 172 [dy, = (A, +hy) di] Hy,.

And similar result can be achieved for E [H, (Z,) A,,|.

Finally, applying It&’s formula for H,H'  where
dA, = CHT 2 (Hp, - H,)dt + CHT'dB, as we have derived, there is,
d(HH]) = (df,) A + H, (dA]) +d(c" 7' B,cY ™' B),

=CcHr 2 |dy, - (H, +h,)di]) A]
+ H, [dy] - (A, +h,) dr] [72CH
+cir2cta
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Notice again that the white noise process, CHI"!dB,, gives the last
term in the first equality above. Putting all the above equations to-
gether, we get the equation for dC¥ = dE [H (Z,) H (Z,)"] -d (H,H])
where C{I”t =E [HI’”HI’t] O

Proof of Proposition 12. According to (60) with K = KI'~2, we need
to show

-V (K'p)H'=pH'H" = E[K'VH|=E[H' (H+H')"| =c",
according to the specific expressions H = H™ and H = H". First, we

can compute

6,i€;

V_H[" =24z, V_H; =2z,A,z+ (274,2) 5.,

Above in HY for simplicity, we only compute half of the symmetric
function and ¢; is the unit vector with value 1 in the jth entry.
From direct computations for H" and using H}" = zT A, z, we have

en OHT
ZKj,k 0z,

J

- % [(zAz) — A Zzﬂ (A2),
(A0~ ) (2) =

Similarly for H", we can compute

v

1 _
3 az) 2 - A Yz (22, (4,2), + (74,2) 6,
J
2 _
= 51 Akz) 2 = AR (274,2) 2,
+

1 _
3 [(z74xz) 2 — Ay z, (27 4,2)

(zf
= [(zTAkz) z — l-_l,fl] (zTApz) z, = HZI’H:(].

This finishes the proof. []

Data availability

Data will be made available on request.
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