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Abstract
This work investigates the ambient potential identification problem in inverse
mean-field games (MFGs), where the goal is to recover the unknown poten-
tial from the value function at equilibrium. We propose a simple yet effective
iterative strategy, equilibrium correction iteration (ECI), that leverages the
structure of MFGs rather than relying on generic optimization formulations.
ECI uncovers hidden information from equilibrium measurements, offering
a new perspective on inverse MFGs. To improve computational efficiency,
two acceleration variants are introduced: best response iteration (BRI), which
uses inexact forward solvers, and hierarchical ECI (HECI), which incorporates
multilevel grids. While BRI performs efficiently in general settings, HECI
proves particularly effective in recovering low-frequency potentials. We also
highlight a connection between the potential identification problem in inverse
MFGs and inverse linear parabolic equations, suggesting promising directions
for future theoretical analysis. Finally, comprehensive numerical experiments
demonstrate how viscosity, terminal time, and interaction costs can influence
the well-posedness of the inverse problem.

Keywords: inverse linear parabolic equations, inverse mean-field games,
best response, hierarchical grid, fictitious play

1. Introduction

A mean-field game (MFG) [9, 10, 16] is a non-cooperative game involving a continuum of
indistinguishable players. The individual player seeks the best response to the population
state distribution, and meanwhile, the aggregate of individual best responses determines the
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population state distribution. Solving an MFG entails finding a Nash equilibrium for the sys-
tem, where no individual player can unilaterally improve their strategy. In other words, if the
population adopts the Nash equilibrium strategy, the best response for any individual player is
to also follow the Nash equilibrium strategy. In general, an MFG system is a coupled partial
differential equation (PDE) system consisting of a time-backward Hamilton–Jacobi-Bellman
(HJB) equation for the value function ϕ and a time-forward Fokker–Planck (FP) equation for
the distribution ρ as follows:

−∂tϕ(x, t)− ν∆ϕ(x, t)+ H̃(x,∇ϕ(x, t) ,ρ(·, t)) = 0, (x, t) ∈ Td× [0,T] ,

∂tρ(x, t)− ν∆ρ(x, t)−∇ ·
(
ρDpH̃(x,∇ϕ,ρ)

)
(x, t) = 0, (x, t) ∈ Td× [0,T] ,

ϕ(x,T) = fT (x,ρ(·,T)) , ρ(x,0) = ρ0 (x) , x ∈ Td.

(1)

Here H̃ is the Hamiltonian defined as the conjugate of a cost L̃(x,v,ρ),

H̃ : Ω×Rd×P
(
Td
)
→ R, H̃(x,p,ρ) := sup

v
−⟨p,v⟩− L̃(x,v,ρ) .

The dependence of L̃ on v reflects the dynamic cost, and the dependence on ρ reflects the
interaction cost with the population. A solution (ρ,ϕ) to (1) is called a mean-field Nash equi-
librium (MFNE). The forward problem is to solve for the Nash equilibrium (ρ,ϕ) given the
cost function L̃.

While MFG has been widely applied in various fields, in many scenarios, the cost function
is not directly observable, and only the Nash equilibrium can be measured. For instance, in the
stock market, the Nash equilibrium corresponds to the equilibrium price which is observable,
but the cost function represents the utility function of the traders which is not clearly known.

This motivates the study of the inverse problem, which aims to identify the cost function
L̃ based on measurements of the Nash equilibrium. In this paper, we focus on a separable
Hamiltonian of the form

H̃(x,p,ρ) = H(p)− q(x)− f(x,ρ) .

The inverse problem we address is to identify q from the measurement of the Nash equilibrium
ϕ(·,0). The separable Hamiltonian is induced from a separable cost function of the form

L̃(x,v,ρ) = L(v)+ q(x)+ f(x,ρ) ,

where L represents the dynamic cost, f is the interaction cost, and q is referred to as the ambi-
ent potential. The ambient potential q(x) quantifies the cost associated with an individual state
x and is determined by the environment, independent of the population. In much of the inverse
MFG literature, q is often referred to as the obstacle. However, this terminology can be mis-
leading, as we consider a general form of q, not necessarily a discontinuous or jump function.
A more appropriate term is potential, as used in many physical models. To avoid confusion
with the notion of potential in potential MFGs, we adopt the term ambient potential throughout
this paper and refer to our inverse problem as the ambient potential identification problem. We
may drop the adjective ‘ambient’ when there is no ambiguity.

At first glance, the problem may appear less challenging since the ambient potential is
independent of the population and remains invariant over time. However, the Nash equilib-
rium exhibits a highly nonlinear dependence on the ambient potential, and the well-posedness
of the ambient potential identification problem remains an open question. Although sev-
eral numerical methods have been proposed for ambient potential identification, most of
them reformulate the problem as a regularized optimization task and solve it using standard
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optimization algorithms. The underlying mechanism of the inverse problem remains poorly
understood.

Contributions We propose iterative algorithms for the ambient potential identification prob-
lem. These algorithms differ from traditional optimization-based methods and provide a new
perspective on inverse MFGs. Our numerical experiments show that the Nash equilibrium
measurement ϕ0 retains sufficient information to enable accurate reconstruction of the ambi-
ent potential, even when the viscosity ν is large. Our algorithms effectively leverage this
information, achieving high reconstruction accuracy with relative errors down to 10−9 in a
few iterations. We further emphasize the connection between ambient potential identifica-
tion in MFGs and the classical potential identification problem for linear parabolic equations.
The Equilibrium Correction Iteration (ECI) Algorithm is closely related to fixed-point itera-
tion methods developed for such inverse problems. This connection provides valuable insight
into the structure of our approach and suggests promising directions for establishing well-
posedness and convergence in future work.

Related Work The study of inverse problems in MFGs has gained increasing attention in
recent years.

The theoretical advancements in this area primarily follow two main directions and are
reviewed in [19]. One line of research extends the cost function to complex domains and
employs harmonic sequences to study well-posedness. This approach was initially proposed
in [20] for mean field games (MFGs) with measurement ϕ0, and was subsequently extended
to various other configurations in related works. A recent enhancement of this methodology is
presented in [18]. A common and central assumption in these studies is that the local running
cost satisfies for any x, t, q(x)+ f(x,ρ(x, t)) = 0 whenever ρ(x, t) = 0. However, this assump-
tion limits their applicability to the ambient potential identification problem. To resolve the
limitation, [21] proves the well-posedness of the problem when q is a constant, independent
of both the state x and time t. While insightful, this assumption is overly restrictive for prac-
tical applications. The second direction leverages Carleman estimates to study the stability
and uniqueness of inverse MFGs. Following the framework introduced in [14], a series of
works explore these properties in greater depth. The thesis [22] investigates recovering the
Lagrangian from measurements on the space boundary. In addition to the above directions,
[23] proves the well-posedness of the ambient potential identification problem with a different
measurement and from the perspective of numerical stability.

From the numerical perspective, most existing works formulate the MFG inverse problem
as an optimization problem and solve it using optimization algorithms. For instance, [4, 5] and
[23] address inverse MFGs using measurements of the equilibrium density and strategy (ρ,v).
The first two studies reformulate the inverse problem as a PDE-constrained optimization prob-
lem and solve it using primal-dual methods, while the latter focuses on potential MFGs, fram-
ing the inverse problem as a bilevel optimization problem and solving it with a gradient-based
bilevel solver. Other approaches include the Gaussian Process framework proposed in [8] and
accelerated in [24]. Additionally, [15] aims to identify the interaction coefficient by expressing
the unknown coefficient in terms of the Nash equilibrium and the observation, embedding it
into the forward problem, and then using optimization algorithms to minimize the system’s
residual. The only exception we are aware of is [26], which adopts the policy iteration forward
solver developed in [2], and proposes a policy iteration inverse solver that alternates between
solving an inverse linear parabolic equation and a forward FP equation. While the implement-
ation still relies on an optimization solver to solve the inverse linear parabolic equation, [26]
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provides a theoretical guarantee by proving linear convergence of the policy iteration inverse
solver for the ambient potential identification problem.

In addition to the works discussed above, the ambient potential identification problem is
closely related to the potential identification problem for linear parabolic equations. This
is because when the viscosity is positive and the Hamiltonian is quadratic, the MFG sys-
tem can be transformed into a system of semilinear parabolic equations via the Hopf–Cole
transformation [6, 7]. Notably, up to a Hopf–Cole transformation, our ECI algorithm has a
similar formulation to fixed-point iteration methods [11, 13, 27] developed for potential iden-
tification in linear parabolic equations.

Organization The rest of the paper is organized as follows. In section 2, we review the
fundamental concepts of MFGs and formulate the ambient potential identification problem.
Section 3 proposes the iterative algorithms for solving the inverse problem after reviewing
the forward solver fictitious play. Section 4 discusses the relationship between ambient poten-
tial identification in MFGs and inverse linear parabolic equations, and highlights how our
ECI algorithm relates to fixed-point methods used for such inverse problems. In section 5,
we describe the discretization and implementation details of the proposed methods. Section 6
presents numerical results to demonstrate the effectiveness of our algorithms. Finally, section 7
concludes this work and discusses future work.

2. Ambient potential identification in MFGs

This section first reviews different formulations of the best response, defines the MFNE as the
fixed point of the best response and formulates the forward problem. Then we formulate the
ambient potential identification problem in MFGs.

2.1. The best response and MFGs

Consider an MFG system defined spatially on the d-dimensional flat torus Td and temporally
on the interval [0,T],(T> 0). Let P(Td) be the set of probability distributions on Td. For
any t ∈ [0,T], ρ(·, t) ∈ P(Td) represents the state distribution at time t. We slightly abuse our
notation and use ρ to represent a probability distribution or its density function, depending on
the context.

For a given population state density flow ρ̃ ∈ C([0,T];P(Td)), a representative player
aims to solve an optimal control problem where the running cost and terminal cost depend on
the population

inf
v

E
[ˆ T

0
L̃(Xs,vs, ρ̃s)ds+ fT (XT, ρ̃T)dx

]
subject to X0 ∼ ρ0, dXs = v(Xs,s)ds+

√
2νdWs.

(2)

Here L̃ : Td×Rd×P(Td)→ R is the running cost assuming convex in v, and fT : Td×
P(Td)→ R is the terminal cost. ρ0 is a given initial distribution, ν > 0 andWt is the standard
Wiener process. The optimal control problem (2) is equivalent to

inf
ρ,v

ˆ T

0

ˆ
Td
ρs (x) L̃(x,vs, ρ̃s)dxds+

ˆ
Td
ρT (x) fT (x, ρ̃T)dx

subject to ρ(·,0) = ρ0, ∂tρ− ν∆ρ+∇· (ρv) = 0.

(3)
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Here ρt is the individual state distribution and ρ̃t is the population state distribution. The min-
imizer (ρ,v) are the best response to the population distribution ρ̃.

By Pontryagin’s maximum principle, the best response strategy is

v(x, t) =−DpH̃(x,∇ϕ(x, t) , ρ̃t) .

where ϕ is the value function and solves the HJB equation involving ρ̃,{
−∂tϕ(x, t)− ν∆ϕ(x, t)+ H̃(x,∇ϕ(x, t) , ρ̃(·, t)) = 0, (x, t) ∈ Td× [0,T] ,

ϕ(x,T) = fT (x, ρ̃(·,T)) , x ∈ Td.
(4)

The best response distribution ρ is induced by v and therefore solves the FP equation{
∂tρ(x, t)− ν∆ρ(x, t)−∇ ·

(
ρDpH̃(x,∇ϕ, ρ̃)(x, t)

)
= 0, (x, t) ∈ Td× [0,T] ,

ρ(x,0) = ρ0 (x) , x ∈ Td.
(5)

If all individual players follow the best response strategy, the population distribution becomes
the best response distribution ρ. By definition, Nash equilibrium is the fixed-point of the best
response, i.e. the population distribution ρ is the best response to itself. Therefore, it can be
formulated as the coupled PDE system (1). For the existence and uniqueness of the solution
to the MFG system, we refer to [1] and the references therein.

2.2. The ambient potential identification problem

In this paper, we restrict our focus to a separable cost

L̃(x,v,ρ) = L(v)+ q(x)+ f(x,ρ) .

L is the dynamic cost, f is referred to as the interaction cost because it represents the individual
cost depending on the population, while q is called the ambient potential, determined only by
the environment. Specifically, q(x) quantifies the cost incurred to an individual at state x. The
separable cost leads to the following MFG system

−∂tϕ(x, t)− ν∆ϕ(x, t)+H(∇ϕ) = q(x)+ f(x,ρ(·, t)) , (x, t) ∈ Td× [0,T] ,

∂tρ(x, t)− ν∆ρ(x, t)−∇ · (ρDpH(∇ϕ))(x, t) = 0, (x, t) ∈ Td× [0,T] ,

ϕ(x,T) = fT (x,ρ(·,T)) , ρ(x,0) = ρ0 (x) , x ∈ Td.

(6)

Assuming that the initial density ρ0, interaction cost f and terminal cost fT are known, we
summarize the forward problem and inverse problem as follows.

Problem 2.1 (MFGs with ambient potential). For given q, (ρ,ϕ;q) solves the forward prob-
lem if (ρ,ϕ) solves (6) with ambient potential q.

A constant shift in the ambient potential q affects the forward solution (ρ,ϕ) as follows:

Proposition 2.2. Let c ∈ R be a constant and ϕc(x, t) = ϕ(x, t)+ c(T− t), then (ρ,ϕ;q) solves
the forward problem if and only if (ρ,ϕc;q+ c) solves the forward problem.

Given the potential q and the interaction cost f, the system (6) can be solved to determine the
Nash equilibrium (ρ,ϕ). However, in many applications, the potential q cannot be measured
directly, even though some information about the Nash equilibrium may be observable. This
motivates the consideration of the inverse problem: identifying the potential q from measure-
ments related to the Nash equilibrium.

5



Inverse Problems 41 (2025) 125009 J Yu et al

Problem 2.3 (Ambient Potential Identification in MFGs). For given ϕ0 := ϕ(·,0),
(ρ̂, ϕ̂, q̂;ϕ0) solves the inverse problem if ϕ̂0 = ϕ0 and (ρ̂, ϕ̂; q̂) solves the forward problem.

Remark 2.4 [23] also investigates the ambient potential identification in MFGs, but their
approach is based on measuring the density and velocity field (ρt,vt) at any t ∈ [0,T]. While
ρt,vt are observable, requiring the information at all times t may be too strong of an assump-
tion. In contrast, our approach only requires the value function ϕ at t= 0, which has the same
dimension as the potential q.

Similar to proposition 2.2, it is straightforward to see how a constant shift in the potential
q affects the inverse problem.

Proposition 2.5. (ρ̂, ϕ̂, q̂;ϕ0) solves the inverse problem if and only if (ρ̂, ϕ̂c, q̂+ c;ϕ0 + cT)
solves the inverse problem, where c ∈ R is a constant and ϕ̂c(x, t) = ϕ̂(x, t)+ c(T− t).

3. Iterative algorithms for environment potential identification

This section introduces iterative algorithms for the Ambient Potential Identification Problem
(problem 2.3).

We begin by reviewing the fictitious play algorithm [3, 25], an efficient forward solver
for MFGs based on best response dynamics. In fictitious play, each iteration computes the
best response to the current population distribution and updates the population accordingly
to approach the Nash equilibrium. Building on this idea, we propose the ECI (algorithm 2).
In ECI, each iteration solves the forward MFG system for a given estimate of the ambient
potential and then updates this estimate by comparing the resulting Nash equilibrium with
the observed measurement. To further improve computational efficiency, we introduce two
variants: the best response iteration (BRI), which incorporates an inexact forward solver, and
the hierarchical ECI (HECI), which leverages a hierarchy of spatial grids.

3.1. Fictitious play through the lens of best response

Fictitious play [3, 25] is an efficient iterative algorithm for solving the forward MFG by
decoupling the FP and HJB equations. Each iteration of fictitious play consists of a best
response step and an averaging step:

Best response step:
(
ρ(n),v(n)

)
:= arg min

(ρ,v)∈C
L
(
ρ,v; ρ̃(n)

)
Averaging step: ρ̃(n+1) = (1− δn) ρ̃

(n) + δnρ
(n),

(7)

where C is the set of admissible controls

C = {(ρ,v) : ρ(·,0) = ρ0,∂tρ− ν∆ρ+∇· (ρv) = 0} ,

L is the objective of individual optimal control depending on population distribution

L(ρ,v; ρ̃) =
ˆ T

0

ˆ
Td
ρs (x)(L(vs (x))+ q(x)+ f(x, ρ̃s))dxds+

ˆ
Td
ρT (x) fT (x, ρ̃T)dx,

and δn is a weight for the averaging step. As discussed in section 2.1, solving for the best
response only requires solving the HJB and FP equations separately. Therefore, the fictitious
play algorithm decouples the system. We summarize it in algorithm 1.
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As highlighted in [25], the averaging step (10) and the choice of weight δn are crucial for
the convergence of fictitious play. The weight δn can be preselected as a fixed value δ ∈ (0,1),
set to 2

n+2 , or determined adaptively using backtracking line search.When the interaction cost f
and the terminal cost fT aremonotone, a sufficiently small weight δn guarantees that the updated
state ρ̃(n+1) moves closer to the Nash equilibrium. Within a certain range determined by the
problem structure and the current iterate ρ(n), smaller values of δn lead to more conservative
updates and slower convergence, while larger values result in greater improvements and faster
convergence. However, if δn is chosen too large, improvement toward the Nash equilibrium is
no longer guaranteed, and the algorithm may diverge. Under these monotonicity assumptions,
algorithm 1with δn = 2

n+2 achieves sublinear convergence, as δn decays asymptotically. On the
other hand, using a constant weight δn within a suitable range can lead to linear convergence,
and adaptive choices of δn are designed to maximize progress at each iteration. For further
details, we refer to [25].

Algorithm 1. Fictitious play.

Parameters ρ0, f, fT,ν,0< δk ⩽ 1
Initialization ρ̃(0)

for n= 0,1,2, · · · ,N− 1 do
Solve the HJB (8) for ϕ(n){

− ∂tϕ
(n) − ν∆ϕ(n) +H(∇ϕ(n)(x, t)) = q(x)+ f(ρ̃(n)(t)),

ϕ(n)(x,T) = fT(x, ρ̃
(n)(T)).

(8)

Solve the FP (9) for ρ(n){
∂tρ

(n) − ν∆ρ(n) −∇ · (ρ(n)DpH(x,∇ϕ(n))) = 0,

ρ(n)(x,0) = ρ0(x).
(9)

Execute density average to obtain ρ̃(n+1)

ρ̃(n+1) = (1− δn) ρ̃
(n) + δnρ

(n). (10)

end for
Output ρ̃(N),ϕ(N−1).

3.2. The ECI

Notice that from the HJB equation at t= 0,

q=−∂tϕ|t=0 − ν∆ϕ0 +H(∇ϕ0)− f(ρ0) , (11)

where ρ0 is known and ϕ0 is given as the measurement. If ∂tϕ|t=0 is also measurable, then from
the HJB equation, we can directly obtain q. While ∂tϕ|t=0 is unknown for the true potential q,
we can solve the forward problem (6) with some estimation of the environment potential, say
q̂, to obtain the solution ϕ̂ and then update the estimation by

q̂+ =−∂tϕ̂|t=0 − ν∆ϕ0 +H(∇ϕ0)− f(ρ0) . (12)

Here−∂tϕ̂|t=0 is from the estimation and−ν∆ϕ0 +H(∇ϕ0) are from the measurement. Since
ϕ̂ solves the forward problem (6) with q̂, this update is equivalent to

q̂+ = q̂+(−ν∆ϕ0 +H(∇ϕ0))−
(
−ν∆ϕ̂0 +H

(
∇ϕ̂0

))
. (13)
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Proposition 2.2 reveals that∇ϕ and∆ϕ do not reflect a constant change in the ambient poten-
tial. To incorporate the constant, we add an alignment term and update q̂ with

q̂+ = q̂+
1
T

ˆ
Td

(
ϕ0 − ϕ̂0

)
dx+(−ν∆ϕ0 +H(∇ϕ0))−

(
−ν∆ϕ̂0 +H

(
∇ϕ̂0

))
. (14)

We summarize the procedure in algorithm 2 and name it the ECI.

Algorithm 2. The equilibrium correction iteration (ECI).

Parameters ρ0, f, fT,ν,ϕ0

Initialization q(0)

for k= 0,1,2, · · · ,K− 1 do
update ρ(k),ϕ(k) by solving (6) with potential q(k)

− ∂tϕ
(k)(x, t)− ν∆ϕ(k)(x, t)+H(∇ϕ(k)) = q(k)(x)+ f(ρ(k)t ),

∂tρ
(k)(x, t)− ν∆ρ(k)(x, t)−∇ · (ρ(k)DpH(∇ϕ(k))) = 0,

ϕ(k)(x,T) = fT(x,ρ
(k)
T ), ρ(k)(·,0) = ρ0.

(15)

update q(k+1) with

q(k+1) = q(k) +

(
1
T

ˆ
Td
ϕ0(x)dx− ν∆ϕ0 +H(∇ϕ0)

)
−
(
1
T

ˆ
Td
ϕ
(k)
0 (x)dx− ν∆ϕ

(k)
0 +H(∇ϕ

(k)
0 )

) (16)

end for
Output q(K),ρ(K−1),ϕ(K−1).

The following proposition is straightforward.

Proposition 3.1. If (ρ̂, ϕ̂, q̂;ϕ0) solves the inverse problem and (ρ̂, ϕ̂) uniquely solves the for-
ward problem with q̂, then q̂ is a fixed point of algorithm 2.

At this moment, we do not have proof of the reverse proposition or the convergence of the
algorithm under reasonable assumptions. But we provide some reasoning here and support
them with numerical experiments in section 6.6. We define the correction of the estimation q̂
to ground truth q as

c(q, q̂) := (q− q̂)+
1
T

ˆ
Td

(
ϕ0 − ϕ̂0

)
dx+ ∂t

(
ϕ − ϕ̂

)∣∣
t=0

. (17)

Then the update (14) is equivalent to:

q̂+ = q̂+ c(q, q̂) . (18)

Notice that if the terms involving ϕ and ϕ̂ are absent in the correction, then the update is exact.
Therefore, we define the error of the correction as

e
(
ϕ, ϕ̂
)
:=

1
T

ˆ
Td

(
ϕ0 − ϕ̂0

)
dx+ ∂t

(
ϕ − ϕ̂

)∣∣
t=0

. (19)

The correction term c(q, q̂) and the error in correction e(ϕ, ϕ̂) provide useful diagnostics for
the behavior of a single ECI update. Note that the error in correction is exactly the error of the
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updated estimator q̂+:

q̂+ − q= e
(
ϕ, ϕ̂
)
. (20)

Thus, if ∥e(ϕ, ϕ̂)∥ is sufficiently small, the new estimator q̂+ is a sufficiently accurate estimator
of the true potential q. If ∥e(ϕ, ϕ̂)∥ is not negligible but satisfies

∥e
(
ϕ, ϕ̂
)
∥< ∥q− q̂∥, (21)

then the ECI update reduces the estimation error. If at some state x,

(q− q̂)
(
q− q̂+ e

(
ϕ, ϕ̂
))

⩾ 0, (22)

the correction term is aligned with the error and pushes the estimator in the correct direction.
These indicators are examined in the numerical experiments of section 6.6, which show that

the ECI algorithm effectively recovers the potential q, particularly when the interaction cost f
is monotone, the viscosity ν is large, and the terminal time T is small.

We admit that the ECI algorithm relies on∇ϕ0 and∆ϕ0, and is therefore sensitive to noise in
the observations ofϕ0. However, numerical experiments in section 6, alongwith the connection
to the inverse linear parabolic equation discussed in section 4, suggest that the information of
q is accurately encoded in ϕ0 through H(∇ϕ0) and ∆ϕ0, and that ECI effectively leverages
this information. Whether this information is significantly degraded by noise, and if not, how
to robustly extract it, remain important and promising directions for future research.

3.3. The BRI

Each iteration of the ECI method involves solving a forward MFG system (15), which is
computationally challenging due to the interdependence and forward-backward structure of
the HJB and FP equations. To address this, we integrate the forward fictitious play solver
(algorithm 1) into ECI (algorithm 2) and propose the BRI in algorithm 3. To be precise, for
the given ambient potential estimate, instead of solving for the exact Nash Equilibrium, we
only run the forward solver for a fixed number of iterations to obtain an approximate Nash
Equilibrium.

BRI is a double-loop algorithm: the inner loop output ϕ(k,N) approximates the forward prob-
lem solution ϕ(k) for the estimated potential q(k), while the outer loop updates the ambient
potential based on the approximate estimated measurement. ECI can be viewed as a special
case of BRI where N=∞. Numerical experiments in section 6.3 indicate that BRI remains
effective even with N= 1. This behavior is consistent with other double-loop algorithms, such
as the bilevel solver in [23]. The key mechanism is that the accuracy of both the inner and outer
loops improves as iterations progress. As a result, BRI significantly reduces the computational
cost of ECI while maintaining its effectiveness.

We emphasize that the inner loop is designed to approximate the solution of the forward
problem, and the performance of BRI depends on how accurately the inner loop approximates
this solution. For the BRI method with a fixed number of inner iterations N to serve as an
effective acceleration of ECI, it is crucial to initialize the inner loop with ρ̃(k,0) = ρ(k−1) and to
choose δk,n properly. Since ρ(k−1) approximates the Nash equilibrium associated with q(k−1),
and q(k) is updated from q(k−1), initializing the inner loop with ρ(k−1) and running a fixed num-
ber of fictitious play steps provides a better approximation of the Nash equilibrium correspond-
ing to q(k). In contrast, initializing ρ̃(k,0) with a fixed distribution ρ, regardless of the iteration,

9
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may prevent the inner loop from effectively reducing the forward residual. Consequently, BRI
may converge to an incorrect potential. Numerical experiments in section 6.4 demonstrate that
using ρ̃(k,0) = ρ(k−1) is necessary for BRI to converge to the correct potential. Similarly, the
choice of δk,n also affects BRI, as it influences both the convergence and convergence rate of
the forward solver, fictitious play. Therefore, it affects how accurately ρ̃(k,N) approximates the
Nash equilibrium, which in turn impacts the convergence of BRI. In our numerical experiments
in section 6.3, we show that when N= 1, using δk,n = 0.2 yields smaller improvements in the
forward residual and therefore slower convergence of BRI compared to δk,n = 0.5. However,
this does not imply that δk,n should be chosen arbitrarily large. As discussed in the conver-
gence analysis of [25], an excessively large δk,n may fail to reduce the forward residual and
thus hinder potential identification. Numerical results in section 6.4 further show that too large
a value of δk,n can lead to oscillations in BRI.

Algorithm 3. The best response iteration (BRI).

Parameters ρ0, f, fT,ν,ϕ0

Initialization q(0),ρ(−1)

for k= 0,1,2, · · · ,K− 1 do
Assign ρ̃(k,0) = ρ(k−1)

for n= 0,1,2, · · · ,N− 1 do
Solve the HJB for ϕ(k,n){

− ∂tϕ
(k,n)(x, t)− ν∆ϕ(k,n)(x, t)+H(∇ϕ(k,n)(x, t)) = q(k)(x)+ f(ρ̃(k,n)t ),

ϕ(k,n)(x,T) = fT(x, ρ̃
(k,n)
T )

(23)

Solve the FP for ρ(k,n){
∂tρ

(k,n)(x, t)− ν∆ρ(k,n)(x, t)−∇ · (ρ(k,n)DpH(∇ϕ(k,n))) = 0,

ρ(k,n)(·,0) = ρ0.
(24)

Update ρ̃(k,n+1) by

ρ̃(k,n+1) = (1− δk,n)ρ̃
(k,n) + δk,nρ

(k,n) (25)

end for
Assign ρ(k) = ρ̃(k,N),ϕ(k) = ϕ(k,N−1)

update q(k+1) with

q(k+1) = q(k) +

(
1
T

ˆ
Td
ϕ0(x)dx− ν∆ϕ0 +H(∇ϕ0)

)
−
(
1
T

ˆ
Td
ϕ
(k)
0 (x)dx− ν∆ϕ

(k)
0 +H(∇ϕ

(k)
0 )

) (26)

end for
Output q(K),ρ(K−1),ϕ(K−1).

3.4. HECI

Another approach to reduce the computational cost of ECI is to use a hierarchical grid as in
[25]. The idea is to solve the forward problem on a coarse grid and then interpolate the solution
to a finer grid. The solution on the coarse grid serves as a good initial guess for the fine grid.
We summarize the HECI in algorithm 4.

10
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As discussed in section 5, we use a Lax–Friedrichs discretization which introduces a numer-
ical viscosity that is proportional to the mesh step. Therefore, starting from the coarse grid can
also stabilize the algorithm when the physical viscosity is small. Numerical experiments in
section 6.5 show that HECI is especially effective in capturing the low-frequency components
of the ambient potential.

Algorithm 4. The hierarchical equilibrium correction iteration (HECI).

Parameters ρ0, f, fT,ν,ϕ0

Initialization q(0),ρ(0) on coarse grid G0

Compute the observation-induced term on the desired fine grid GL(
1
T

ˆ
Td
ϕ0(x)dx− ν∆ϕ0 +H(∇ϕ0)

)
GL

for l= 1, · · · ,L do
Restrict the observation-induced term to the current grid Gl
Compute q(l,0) by interpolating q(l−1) to the current grid Gl
Run ECI (algorithm 2) on the current grid Gl with initialization q(l,0) and obtain output q(l,K) and
ρ(l,K−1),ϕ(l,K−1)

Denote the output of ECI on the current grid as q(l) := q(l,K)

end for
Output q(L),ρ(L,K−1),ϕ(L,K−1).

4. Connection to inverse linear parabolic equations

This section explores the connection between our ambient potential identification problem and
classical inverse problems for linear parabolic equations. We highlight how the structure of our
ECI algorithm parallels fixed-point methods developed for such inverse problems. This per-
spective offers valuable insight into the underlying mechanism of our approach and suggests
directions for future theoretical analysis, including well-posedness and convergence.

When ν > 0 and H(p) = 1
2 |p|

2, the MFG system (6) can be transformed into a semilinear
parabolic system using the Hopf–Cole transformation [6, 7].

Proposition 4.1 (Hopf–Cole transformation for MFGs [6, 7]). If (ρ,ϕ) solves the MFG sys-
tem (6) with quadratic Hamiltonian H(p) = 1

2 |p|
2 and ν > 0, then

(w,u) =

(
exp

(
− ϕ

2ν

)
,ρexp

(
ϕ

2ν

))

solves the following system:



−∂tw− ν∆w+
1
2ν

(q+ f(wu))w= 0, (x, t) ∈ Td× [0,T] ,

∂tu− ν∆u+
1
2ν

(q+ f(wu))u= 0, (x, t) ∈ Td× [0,T] ,

w(x,T) = exp

(
−
fT (x,(wu)T)

2ν

)
, u(x,0) =

ρ0 (x)
w(x,0)

, x ∈ Td.

(27)

11
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Proof. The boundary conditions are easy to verify. The equation for w is straightforward by
noticing

∂tw=− w
2ν

∂tϕ, ∇w=− w
2ν

∇ϕ, ∆w=
w
2ν2

(
−ν∆ϕ +

1
2
|∇ϕ|2

)
.

Since wu= ρ, from the FP equation, we have

∂t (wu)− ν∆(wu)+ 2ν∇· (u∇w) = 0.

Therefore,

∂tu− ν∆u− u
w
(−∂tw− ν∆w) = 0

and gives the equation for u.

The Hopf–Cole transformation recasts the ambient potential identification problem as fol-
lows: given u0, f, fT, and the measurement w0, recover q and (w, u).

If fT is independent of ρ but f is present, we obtain initial and terminal data for w, which
solves a semilinear parabolic equation. In this case, the standard theory and strategies for
inverse linear parabolic equations does not directly apply because of the time-dependent term
f (wu). And the uniqueness, existence, and stability for the inverse problem 2.3 remain open
questions.

If both fT and f are independent of ρ (i.e. f is absent), the system decouples. Although this
setting is restrictive and omits the main challenges of MFGs, it provides a useful starting point
for understanding the ECI algorithm. In this case, the ambient potential identification problem
reduces to recovering q from measurements w0 and wT, where w solves

−∂tw− ν∆w+
1
2ν
qw= 0. (28)

This problem has been extensively studied; see, for example, [11] for results on existence,
[12] for uniqueness and Chapter 9 of the [13] for further related topics. A constructive exist-
ence proof for (w, q) is given in [11, 13], based on the monotonicity of the following iterative
scheme:

q(k+1) =
2ν
w0

(
∂tw

(k)
∣∣
t=0

+ ν∆w0

)
, (29)

where w(k) solves (28) with w(x,T) = wT(x) and potential q(k). The idea is to use ∂tw(k)|t=0,
computed from the current estimate q(k), as an approximation to the true (unknown) ∂tw|t=0,
and update q accordingly. Using the equation for w(k), this update can also be written as

q(k+1) =
w(k)
0

w0
q(k) +

2ν2

w0
∆
(
w0 −w(k)

0

)
, (30)

where w(k)
0 denotes w(k) at t= 0. Applying the change of variables w= exp

(
− ϕ

2ν

)
, the update

can be rewritten in terms of the HJB measurement ϕ0 as

12
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q(k+1) = r(k)0 q(k) +

(
−ν∆ϕ0 +

1
2
|∇ϕ0|2

)
− r(k)0

(
−ν∆ϕ

(k)
0 +

1
2
|∇ϕ

(k)
0 |2

)
, (31)

where r(k)0 = exp

(
−ϕ

(k)
0 −ϕ0

2ν

)
.

Comparing (31) with our ECI update (13), we see they are structurally similar, except for
the multiplicative factor r(k)0 in the linear parabolic case. While the monotonicity argument in
[13] can be adapted to analyze the ECI update, the required conditions are quite restrictive
and may not hold in general nonlinear MFG settings. Establishing convergence of ECI under
broader and more practical assumptions remains an interesting direction for future research.

5. Discretization and implementation

We present the details of implementation in this section. The settings are very close to those
in [25], except that the boundary conditions here are periodic.

Let nt,nx be positive integers and ∆t= T
nt
, tn = n∆t,n= 0, · · · ,nt, ∆x= 1

nx
,xi = i∆x, i =

0, · · · ,nx. Denote G as the collection of all grid points (xi, tn), i = 0, · · · ,nx,n= 0, · · · ,nt. For
any function u defined onΩ× [0,T], we denote the approximation of u onG as uG where (uG)i,n
approximates u(xi, tn) and omit G in the subscript when the context provides no ambiguity. In
this paper, we consider the periodic boundary condition. To tackle this in the discretization,
we set u0 = unx , u−1 = unx−1 and unx+1 = u1. This results in the following finite difference
operators on the grid G. Firstly, the elementary one-sided finite difference operators are defined
as (

D+
x u
)
i,n

=
ui+1,n− ui,n

∆x
,
(
D−
x u
)
i,n

=
ui,n− ui−1,n

∆x
, i = 0, · · · ,nx.

Then we define the central difference operator (Dc
xu)i,n as the average of the one-sided finite

difference, and [Dxu]i,n as the collection of the one-sided finite differences at (xi, tn)

(Dc
xu)i,n =

1
2

(
D+
x u
)
i,n

+
1
2

(
D−
x u
)
i,n
, (Dxu)i,n =

((
D+
x u
)
i,n
,
(
D−
x u
)
i,n

)
,

and the discrete Laplace operator as

(∆xu)i,n =
(D+

x u)i,n− (D−
x u)i,n

∆x
, i = 0, · · · ,nx

We call u= (ui,n)
i=nx,n=nt
i=0,n=0 a function on G and (v) = (v+,v−) a velocity field on G where

v+,v− are functions on G. For any functions u1,u2 and vector fields (v1) = (v+1 ,v
−
1 ),(v2) =

(v+2 ,v
−
2 ) on G, we define the inner product on the grid G as

⟨u1,u2⟩G := ∆t∆x
nx∑
i=0

nt∑
n=0

(u1)i,n (u2)i,n , ⟨(v1) ,(v2)⟩G :=
1
2

(〈
v+1 ,v

+
2

〉
G +

〈
v−1 ,v

−
2

〉
G

)
Thewaywe introduce the ghost point values makes the discrete Laplacian operator self-adjoint
under the above inner product. To preserve the adjoint relation between gradient and negative
divergence, for a given velocity field v on G, we define its divergence to be −D∗

x [v] where D
∗
x

is the adjoint operator of Dx,

(D∗
x (v))i,n :=−1

2

(
D−
x

(
v+
)
+D+

x

(
v−
))

i,n
, i = 0, · · · ,nx,
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and then

⟨u,D∗
x (v)⟩G = ⟨(Dx (u)) ,(v)⟩G .

We adopt the Lax–Friedrichs Hamiltonian, defined as:

HLF
(
x,p+,p−

)
= H

(
x,

(
p+ + p−

2

))
− νn

p+ − p−

2
,

where νn ⩾ 0 is the numerical viscosity coefficient.
The interaction cost f(x,ρ) and the terminal cost fT(x,ρ) at xi are approximated by fG(xi,ρG)

and fT,G(xi,ρG), respectively. For any function ρG defined on the grid G, we define its corres-
ponding piecewise constant function on Ω as ρ̄G , where:

ρ̄G (x) = ρi, xi−
∆x
2

⩽ x< xi+
∆x
2

.

To ensure consistency, we assume there exists a constant C independent of∆x and ρ such that
for any xi and ρG :

|fG (xi,ρG)− f(xi, ρ̄G) |< C∆x, |fT,G (xi,ρG)− fT (xi, ρ̄G) |< C∆x.

Below are examples of cost functions and their consistent discretizations:

1. If f(x,ρ) = f0(ρ(x)) is defined locally by a function f0 : R→ R, we can approximate it as
fG(xi,ρG) = f0(ρi).

2. If f(x,ρ) =
´
Ω
K(x,y)ρ(y)dy is a nonlocal cost defined by a kernel function K, it can be

approximated as fG(xi,ρG) =
∑nx

j=0K(xi,xj)ρj∆x.

Using the above notation, we solve the discrete HJB equation as follows. First, we set the
terminal condition:

ϕi,nt = fT (xi,ρ·,nt) , i = 0,1, · · · ,nx. (32)

Then, for ϕ·,n, where n= nt− 1,nt− 2, · · · ,0, we solve backward in time using Newton’s iter-
ation to address the nonlinear system:

−ϕi,n+1 −ϕi,n
∆t

− ν (∆xϕ)i,n+HLF
(
xi,(Dxϕ)i,n

)
− f(xi,ρ·,n+1) = 0, i = 0,1, · · · ,nx. (33)

For the FP equation, we ensure the adjoint relationship between the HJB and FP equations
by employing the following discretization:

ρi,n+1 − ρi,n
∆t

− ν (∆xρ)i,n+1 +(D∗
x (ρ·,n+1v·,n))i = 0, i = 0,1, · · · ,nx. (34)

Here, the velocity field is given by:

v+i,n =−∇p+H
LF
(
xi,(Dxϕ)i,n

)
, v−i,n =−∇p−H

LF
(
xi,(Dxϕ)i,n

)
.

This corresponds to the Lax–Friedrichs scheme for the FP equation:

ρi,n+1 − ρi,n
∆t

−
(
ν+

νn
2
∆x
)
(∆xρ)i,n+1 +(D∗

x (ρ·,n+1v·,n))i = 0,

where v±i,n =−∇pH(xi,(Dc
xϕ)i,n). Notably, this scheme preserves discrete mass conservation.

14



Inverse Problems 41 (2025) 125009 J Yu et al

6. Numerical results

This section presents numerical results to verify the effectiveness of the proposed algorithms
and the conjecture. All of our numerical experiments are implemented in MATLAB on a PC
with an Apple M3 Pro chip and 18 GB of memory.

We denote the density function of a univariate Gaussian distribution as

ρG (x;µ,σ) :=
1√
2πσ

exp

(
− (x−µ)

2

2σ2

)
.

Let the inner product and norm on the discrete space grid G be

⟨u,v⟩G := ∆x
∑
i

uivi, ∥u∥G :=
√
⟨u,u⟩G .

When there is no ambiguity, we omit the subscript G in the notation.
We generate the observation data by solving the forward problem (6) with a given potential

q with fictitious play or hierarchical fictitious play [25]. We use the measurement relative

error ∥ϕ(k)
0 −ϕ0∥
∥ϕ0∥ to assess the convergence of the algorithm and report the ambient potential

relative error ∥q(k)−q∥
∥q∥ to evaluate the accuracy of the solution.When comparing with the policy

iteration method in [26], we label it as PIT and the observation data for PIT are generated using
the forward solver based on policy iteration [2].

6.1. Effectiveness of ECI

We first demonstrate that the measurement ϕ0 retains sufficient information to accurately
reconstruct the ambient potential, even in the presence of significant viscosity. The ECI
algorithm effectively leverages this information, allowing a rapid and highly accurate recovery
of the true potential.

We consider the MFG on the spatial domain [0,1]d with periodic boundary conditions and
T = 1. The true ambient potential in 1D, shown in figure 1(top left), is defined as:

q(x) =(1x<0.4 + 1x>0.7)
(
sin(20π x) e−10(x−0.5)2

)
+ 10.4<x<0.7

(
−ex
)
+ 1x>0.7 (0.2sin(100π x))

− 10.3<x<0.35 + 10.6<x<0.65,

which contains both multiscale and discontinuous features. For the 1D problem, we choose
∆x= 5× 10−4,∆t= 2× 10−3. The true potential in 2D, shown in figure 2(top left), is con-
structed from a combination of 16 handwritten digits from the MNIST dataset. Specifically,
we select 16 samples from the MNIST dataset [17], each represented as a 28× 28 grayscale
image of a digit. These images are arranged in a 4× 4 grid, and we pad each boundary with
one pixel of value 0 to enforce periodic boundary conditions. In the temporal domain, we set
the time step to ∆t= 2× 10−2. For the spatial discretization, we choose ∆x=∆y= 1

114 to
match the final image resolution of 114× 114. The Hamiltonian is H(p) = 1

2 |p|
2. The initial

distribution is an isotropic Gaussian centered at 0.5 (in 1D) or (0.5, 0.5) (in 2D) with vari-
ance 0.01 in each direction. The interaction cost is f(x,ρ) = K ∗ ρ2 with K being a Gaussian
kernel. For the 1D example, K(x,y) = ρG(x− y;0,0.1), and for the 2D example, the kernel is
anisotropic K(x,y) = ρG(x1 − y1;0,0.1)ρG(x2 − y2;0,0.2). The terminal cost is fT(x) = 0. The
viscosity is set to ν= 0.2 for the 1D example and ν= 0.1 for the 2D example.
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Figure 1. ECI efficacy with 1D example (section 6.1). The measurement-induced term
M(ϕ0) :=

1
T

´
Td ϕ0(x)dx− ν∆ϕ0 +H(∇ϕ0) retains substantial information about the

true potential q. The ECI algorithm utilizingM(ϕ0) rapidly recovers the main structure
of the true potential.

For the inverse solver, the initial estimate q(0)(x) is chosen randomly from a uniform dis-
tribution U(a,b), where a=minx q(x) and b=maxx q(x). In each ECI iteration, the forward
problem is solved to an accuracy of 10−8. The inverse solver terminates when themeasurement
relative error falls below 10−9 for the 1D example and 10−6 for the 2D example.

Figures 1 and 2 display the true potential q, the measurement-induced term in ECI

M(ϕ0) :=
1
T

ˆ
Td
ϕ0 (x)dx− ν∆ϕ0 +H(∇ϕ0) , (35)

the ECI result after one iteration q(1), the final ECI reconstruction q(K), and the convergence
plot of ECI.

From the true potential q and measurement-induced term M(ϕ0), we observe that even
with a relatively large viscosity, the measurement still contains significant information about
the fine detail of the potential. The implementation of PIT from [26] relies on an optimization
solver. As shown in figure 1(top left), it struggles to capture the high-frequency oscillations and
discontinuities present in the true potential. ECI utilizes the information ofM(ϕ0) and therefore
rapidly captures the main structure of the true potential after just one iteration and converges
to a highly accurate solution within 30 iterations. Quantitatively, the 1D example converges
in 23 iterations with a measurement relative error of 5.30× 10−10 and an ambient potential
relative error of 2.88× 10−9. The 2D example converges in 14 iterations with a measurement
relative error of 9.18× 10−7 and an ambient potential relative error of 1.18× 10−5.
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Figure 2. ECI efficacy with 2D example (section 6.1). The measurement-induced term
M(ϕ0) :=

1
T

´
Td ϕ0(x)dx− ν∆ϕ0 +H(∇ϕ0) retains substantial information about the

true potential q. The ECI algorithm utilizingM(ϕ0) rapidly recovers the main structure
of the true potential.

6.2. Scalability of ECI

This section investigates the scalability of the ECI algorithm and compares its performance
with the policy iteration (PIT) method proposed and implemented in [26]. The test setting
follows the same configuration as section 5.1 in [26]. We consider the MFG spatially on [0,1]
with periodic boundary conditions and T = 1. In the discretization, we fix ∆t= 0.01 (nt =
100) and varies∆x. The viscosity is ν= 0.3, and the Hamiltonian is H(p) = 1

2 |p|
2. The initial

distribution is Gaussian, ρ0(x) = ρG(x;0.5, 1
4
√
5
), the interaction cost is f(x,ρ) = ρ(x)2, and the

terminal cost is independent of the distribution, fT(x) =−ρ0(x). The true ambient potential is
set as:

q(x) = 0.1(sin(2π x− sin(4π x))+ exp(cos(2π x))) .

For the inverse solver, the initial guess is q(0)(x) = 0.15. For ECI, in each iteration, we run the
forward solver to an accuracy of 10−6. The inverse solver terminates when the measurement
relative error is less than 10−9.

Figure 3 presents the computational time versus spatial discretization (left, with nx =
25,50,100,150,200), and the relative errors of q(K) (center) and ϕ(K)

0 (right) plotted against the
grid step size∆x =

1
nx
. Our ECI method demonstrates high computational efficiency, requiring

approximately 2 s for nx = 200, whereas PIT takes about 6 s for the same resolution.Moreover,
ECI achieves significantly lower relative errors: for the potential q, ourmethodmaintains errors
around 10−7 across all grids, compared to approximately 10−2 by PIT; for the measurement
ϕ0, ECI achieves errors around 10−8, while PIT reaches only 10−4. In addition, our method
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Figure 3. Scalability with respect to grid (section 6.2). The computational time is
approximately linear in nx, and the relative error improves as nx increases.

benefits from grid refinement: the relative error in recovering the potential q decreases as the
grid is refined, which is not observed for the policy iteration approach. This highlights a key
advantage of ECI over methods that rely on optimization solvers, where optimization error can
dominate and limit the overall accuracy, regardless of the discretization.

While the computational cost and accuracy of our ECI method scale well with respect to
grid size, we acknowledge that it is sensitive to noise compared to the optimization-based
implementation of policy iteration [26]. Developing robust adaptations of ECI to handle noisy
measurements remains an important direction for future research.

6.3. Comparison of ECI and BRI

This section compares the performance of ECI and BRI and examines how the choice of the
weight δk,n and the number of inner-loop n affect the convergence of BRI. Numerical results
demonstrate that in these double-loop algorithms, the accuracy of both the inner-loop for-
ward solution and outer-loop solution improves with the outer-loop iterations, even when the
inner-loop best-response iteration is limited to a fixed number. Consequently, BRI is more
computationally efficient than ECI.

The test setting is the same as section 6.2, except that this section uses a finer discretiz-
ation with ∆x= 10−3 and ∆t= 2× 10−3. For the inverse solver, the initial guess and the
ECI settings remain the same as in section 6.2. For BRI, we run the forward solver with
N= 1, δk,n = 0.2; N= 1, δk,n = 0.5; and N= 5, δk,n = 0.5, labeling the outputs as BRI1(0.2),
BRI1(0.5), and BRI5, respectively. The inverse solver terminates when the relative error of the
measurement falls below 10−9.

As shown in figures 4, ECI, BRI1(0.2), BRI1(0.5), and BRI5 all recover the true ambient
potential with a pointwise absolute error of less than 10−6. In figure 5, the top row plot the
relative error of the potential q(k) (left) and the measurement ϕ(k)

0 (center) versus the number
of outer loops, as well as forward solver residue (right), i.e. the residue of (ρ(k),ϕ(k)) to the
MFG system with q(k). The right panel shows that even for BRI1 and BRI5, where the inner
loop only runs for a fixed number of iterations, the forward solver residue decreases as the
outer loop progresses. As a result, the convergence rates of BRI5 and ECI with respect to the
number of outer loops are nearly identical. The right panel also shows that when δk,n is small,
the forward residue decays more slowly. As a result, BRI1(0.2) converges more slowly than
BRI1(0.5) in the left and center panels. The bottom row of figure 5 incorporates the cost of the
inner loop iterations and plots the relative error of the potential q(k) (left) and the measurement
ϕ
(k)
0 (center) versus the number of HJB/FP solves. Each marker for ECI corresponds to an
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Figure 4. Comparison of ECI and BRI (section 6.3). The plots show the errors of
recovered potential q(K) − q for BRI1(0.2) (top left), BRI1(0.5) (top right), BRI5(0.5)
(bottom left), and ECI (bottom right). Starting from the same initial guess q(0) = 0, all
methods recover the true potential pointwise with a relative error less than 10−6.

Figure 5. Comparison of ECI and BRI (section 6.3). The top row shows the relative
error of the potential q(k) (left) and of the measurement ϕ(k)

0 (center) and the residue of
the forward solver (right) versus the number of outer loops. The bottom row incorporates
the cost of the inner loop iterations and plots the relative error of the potential q(k) (left)
and the measurement ϕ(k)

0 (center) versus the number of HJB/FP solves. Each marker
of ECI corresponds to an outer loop iteration. BRI1 and BRI5 achieve a similar relative
error as ECI in a comparable number of outer loops but with fewer calls to the HJB and
FP solvers.

outer loop. Initially, it takes several iterations for the forward solver to converge, but later, the
forward solver converges in a single iteration. However, when the guess of the potential q(k)

is not very accurate at the beginning, more inner loop iterations do not significantly improve
the accuracy of the potential. As a result, BRI1 and BRI5 achieve the same accuracy as ECI
with fewer calls to the HJB and FP solvers, making them more efficient.
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Figure 6. Remarks onBRI (section 6.4). The top row shows the true potential q (left) and
the errors q(K) − q for BRI(0.5), BRI(1) and RST(0.5) (right). The bottom row shows
the relative error of the potential q(k) (left) and of the measurement ϕ(k)

0 (center) and
the residue of the forward solver (right) versus the number of outer loops. BRI(1) and
RST(0.5) are unable to improve forward solver accuracy and therefore fail to recover
the true obstacle.

6.4. Remarks on BRI

This section demonstrates that it is necessary to initialize the inner loop of BRI with the pre-
vious distribution ρ̃(k,0) = ρ(k−1) and to choose the weight δk,n properly.

We choose the space domain to be [0,2] with periodic boundary condition, T= 1,ν = 0.1
and the Hamiltonian to be H(p) = 1

2 |p|
2. The initial distribution is Gaussian with mean 1 and

variance 0.04. The interaction cost is f(x,ρ) = ρ(x) and the terminal cost is absent fT(x,ρ) = 0.
The true potential q(x) = exp(sin(2π x)).

For all tests, we initialize the algorithms with q(0) = 0. We run BRI (algorithm 3) with
N= 1 and δk,n = 0.5, and label the result as BRI(0.5). We also run BRI with N= 1 and δk,n =
1, labeled as BRI(1). As discussed in section 3.3, the initialization of the inner loop is also
important. In BRI, we set ρ̃(k,0) = ρ(k−1). In this numerical experiment, we additionally test
using ρ̃(k,0) = ρ(0), where ρ(0)t = ρ0 is a static flow. All other settings remain the same as in
BRI, and we choose δk,n = 0.5. We refer to this variant as RST(0.5).

As shown in figure 6(top center and bottom left), both BRI(1) and RST(0.5) fail to recover
the true potential. For BRI(1), the choice of δk,n = 1 is too aggressive. As a result, the forward
residual does not decay (bottom right), and both the estimated potential and the measurement
exhibit oscillatory behavior (bottom left and bottom center). Similar oscillations have been
observed in the forward solver fictitious play when using δk,n = 1, as reported in [25]. In the
case of RST(0.5), although δk,n = 0.5 is a moderate choice, the failure arises from the ini-
tialization of the inner loop. Instead of using the previous approximation ρ(k−1), RST(0.5)
initializes with a fixed static flow ρ(0), independent of the current iteration. As a result, a fixed
number of fictitious play iterations only approximates an intermediate stage of the learning
dynamics, rather than the Nash equilibrium. Consequently, the outer-loop update matches the
intermediate value function with the observed measurement, which leads to a decrease in the
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Figure 7. Acceleration with hierarchical grid (section 6.5). Relative error of q versus
the time elapsed of ECI and HECI for q(x) = ex sin(2π x) (left) and q(x) = ex sin(8π x)
(right). The markers for HECI correspond to the convergence on different levels of
the hierarchical grid. HECI greatly accelerates the convergence for low-frequency
potentials.

measurement error (bottom center). However, since the approximation does not correspond to
a Nash equilibrium, the method fails to recover the true potential (bottom left).

6.5. Acceleration with hierarchical grid

This section demonstrates that the hierarchical grid approach can accelerate the detection of
the low-frequency component of the ambient potential.

We consider the two different potentials q, one with a low-frequency component and the
other with a high-frequency component:

Panel 1: q(x) = ex sin(2π x).

Panel 2: q(x) = ex sin(8π x).

We choose the space domain to be [−1,1]with periodic boundary condition, T= 1,ν = 0.1,
and the Hamiltonian to beH(p) = 1

2 |p|
2. The initial distribution is uniform, the interaction cost

is f(x,ρ) = ρ(x) and the terminal cost is absent fT(x,ρ) = 0.
We initialize the algorithm with q(0)(x) = 0 and run the ECI algorithm on a uniform grid

with nx = 210 and nt = 29. We also run the HECI algorithm on a hierarchical grid with L= 4
levels, where the coarse grid G0 has nx,0 = 27 and nt,0 = 26, and each subsequent grid Gl is
obtained by refining the previous grid by a factor of 2 in both space and time. Figure 7 shows
the relative error of the estimated ambient potential versus the time elapsed for ECI and HECI
for the tests. The markers for HECI correspond to the convergence on different levels of the
hierarchical grid.

Quantitatively, for the low-frequency potential, ECI requires 77 outer iterations and 276
HJB/FP solves to converge, whereas for the high-frequency potential, it converges in just 32
outer iterations and 91 HJB/FP solves. We observe that for the low-frequency potential, HECI
achieves a 10−1 accuracy on the coarse grid in less than 10 s, while ECI requires more than
60 seconds to reach the same accuracy on the fine grid. As a result, HECI greatly accelerates
the convergence for low-frequency potentials. And for the high-frequency potential, ECI takes
very few iterations to reach a high accuracy on the fine grid, and HECI does not provide a
significant acceleration.

In summary, ECI rapidly captures the high-frequency components of the potential, while
HECI provides significant acceleration in recovering the low-frequency components.
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Table 1. Tests with monotone interaction cost f(x,ρ) = ρ(x).

ν T cvg. it. rel. err. of ϕ0 rel. err. of q

Test 1 0.1 1 21 9.35× 10−10 3.90× 10−8

Test 2 0.5 1 17 8.20× 10−10 5.80× 10−8

Test 3 0.1 5 66 6.30× 10−10 4.22× 10−4

Table 2. Tests with nonmonotone interaction cost f(x,ρ) =−ρ(x).

ν T cvg. it. rel. err of ϕ0 rel. err. of q

Test 4 0.1 1 N/A 1.09 19.02
Test 5 1 1 13 8.86× 10−10 2.41× 10−6

6.6. Numerical evidences of convergence mechanism

In the end, we conduct numerical experiments to gain a preliminary understanding of the
inverse problem and the convergence of the algorithm.

We choose the spatial domain to be [−1,1] with periodic boundary conditions, and the
Hamiltonian is H(p) = 1

2 |p|
2. The initial distribution is ρ0(x) = ρG(x;0,0.2), and the terminal

cost is absent, i.e. fT(x,ρ) = 0. The ground truth ambient potential is set as

q(x) = 0.1
(
exp
(
sin
(
2π x3

))
+(x+ 1)(x− 1)(x− 0.5)− 2

)
,

and the algorithm is initialized with q(0)(x) = 0.
In the forward problem, both the viscosity and the monotonicity of the interaction and

terminal costs play significant roles in well-posedness and algorithmic convergence. For
a Hamiltonian that is strictly convex in p, monotone interaction and terminal costs guar-
antee uniqueness of the solution to the forward system. Moreover, fictitious play is prov-
ably convergent for monotone costs and is observed to converge more rapidly as viscosity
increases. Additionally, due to the connection between the MFG system and semilinear para-
bolic equations, the terminal time T may also influence the problem. In parabolic equations,
both viscosity and time contribute to diffusion, so the product νT is a key parameter determ-
ining the state at time T.

To numerically investigate the inverse problem and the algorithm, we vary the viscosity ν
and terminal time T, as detailed in table 1 for a monotone interaction cost f(x,ρ) = ρ(x) and
in table 2 for a non-monotone interaction cost f(x,ρ) =−ρ(x).

For each setting, we conduct two types of tests. First, we run the inverse solver using the
measurement ϕ0 and initialization q(0) to compare convergence rates under different parameter
choices and report them in tables 1 and 2. Second, we run the forward solver with both the true
potential q and the initial guess q(0) to obtain the corresponding measurements ϕ0 and ϕ

(0)
0 .

Recall equations (17)–(19): this setup allows us to compute the correction c(q,q(0)), the error
in correction e(ϕ,ϕ(0)), and the product of error and correction (PEC), which are important
indicators of algorithm performance. More precisely, the error in correction e(ϕ,ϕ(k)) defined
in (19) is also the error of the updated estimate q(k+1). Thus, the ECI update exactly recovers
the ground truth when e(ϕ,ϕ(k)) is zero pointwise. If |e(ϕ,ϕ(0))|< |q(0) − q| pointwise, the
error decreases at each state. The product of error and correction, PEC= (q− q(0))c(q,q(0)),
is positive when the correction is in the correct direction. The plots are in figures 8 and 9.
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Figure 8. Convergence study with monotone interaction cost f(x,ρ) = ρ(x) (section 6.6,
table 1). Test 1 is the base case with ν= 0.1 and T = 1. Test 2 with ν= 0.5 and T = 1
explores the effect of viscosity, and Test 3 with ν= 0.1 and T = 5 explores the effect of
terminal time.

Figure 9. Convergence study with non-monotone interaction cost f(x,ρ) =−ρ(x)
(section 6.6, table 2). Test 4 with ν= 0.1 diverges and test 5 with ν= 1 converges in 13
iterations with a measurement relative error of 8.86× 10−10.

For the monotone interaction cost, the algorithm is effective in all three tests and suggests
that large viscosity ν is beneficial for convergence while larger terminal time T may lead to
ill-posedness of the inverse problem. Figure 8(bottom left) shows that the error in correction is
small across all three tests, particularly when the viscosity ν is large. This indicates that the first
ECI update is highly effective. The bottom center and right panels further demonstrate that, for
most states x, the ECI update moves in the correct direction and yields pointwise improvement,
though some overshooting may occur. The effectiveness of the algorithm is also evident in the
convergence results in table 1, where themeasurement relative error forϕ0 consistently reaches
around 10−9. However, both table 1 and figure 10(top center and right panels) reveal that for
Test 3 (T = 5), the relative error in the recovered potential plateaus at a larger value compared
to Tests 1 and 2. This suggests that the inverse problem becomes ill-posed when the terminal
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Figure 10. Convergence study (section 6.6). Ground truth ρ for table 1, Test 1–3 (top
row, left to right) and table 2, Test 4–5 (bottom row, left to right). For Test 4 (bottom
left, non-monotone cost), the population density remains highly localized. This limits
the information content of the measurement, making the inverse problem intrinsically
challenging in this regime.

time T is large, since different potentials may produce nearly indistinguishable measurements
ϕ0.

The inverse problem with a non-monotone interaction cost is more challenging; however,
increasing the viscosity ν can improve stability and convergence. Table 2 shows that the
algorithm fails to converge in Test 4 (ν= 0.1), while for larger viscosity (Test 5, ν= 1), it con-
verges rapidly, achieving a measurement error of 10−9. However, the potential error (10−5) is
still higher than what is observed for monotone costs (10−7). Figure 9(right panel) indicates
that the correction is generally in the correct direction for most states, but the algorithm tends
to overshoot in many locations when the viscosity is small (center panel), leading to divergence
in Test 4.

Heuristically, the failure of the algorithm in Test 4 (non-monotone cost) appears to stem
from the intrinsic ill-posedness of the inverse problem in this regime. Figure 10 shows the
ground truth ρ for the tests in tables 1 and 2. In Test 4 (bottom left, non-monotone cost), the
population density ρ remains highly localized, with a peak near x= 0 and negligible values
away. This contrasts with the other tests, where the density is more broadly distributed across
the spatial domain. This implies that the population does not sufficiently explore the entire
domain, limiting the information content of the measurement ϕ0 and making the inverse prob-
lem intrinsically difficult in this setting.

7. Conclusion and future work

In this paper, we propose simple and constructive algorithms for recovering the ambient poten-
tial in MFGs from measurements of the value function at the Nash equilibrium and demon-
strate their effectiveness through a range of numerical examples. While our results highlight
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the practical potential of these methods, establishing the well-posedness of the inverse problem
and proving the convergence of the algorithms remain important directions for future research.
Numerical experiments and the connection between our inverse MFG problem and classical
inverse problems for linear parabolic equations provide valuable insights and suggest prom-
ising avenues for further theoretical investigation. However, how to adapt ECI to recover the
potential from noisy observations remains an open problem.

Data availability statement

All data that support the findings of this study are included within the article (and any supple-
mentary files).

Acknowledgment

We sincerely thank Prof. Kui Ren and Prof. Shanyin Tong for generously sharing the code
associated with [26]. J Y was partially supported by NSF DMS-2237842 and the Simons
Foundation (Grant ID: MPS-MODL-00814643). J G L was partially supported by NSF DMS-
2106988.

Author contributions

Jiajia Yu 0000-0002-8764-8429
Conceptualization (equal), Formal analysis (equal), Investigation (equal),
Methodology (equal), Software (lead), Validation (lead), Visualization (lead), Writing –
original draft (lead), Writing – review & editing (lead)

Jian-Guo Liu 0000-0002-9911-4045
Conceptualization (equal), Formal analysis (equal), Investigation (equal),
Methodology (equal), Writing – review & editing (supporting)

Hongkai Zhao
Methodology (equal), Supervision (equal), Writing – review & editing (equal)

References

[1] Achdou Y, Cardaliaguet P, Delarue F, Porretta A and Santambrogio F 2021 Mean Field Games,
Lecture Notes in Mathematics 1st edn (Springer)

[2] Cacace S, Camilli F and Goffi A 2021 A policy iteration method for mean field games ESAIM:
Control Optim. Calc. Variations 27 85

[3] Cardaliaguet P and Hadikhanloo S 2017 Learning in mean field games: the fictitious play ESAIM:
Control Optim. Calc. Variations 23 569–91

[4] Chow Y T, Fung S W, Liu S, Nurbekyan L and Osher S 2022 A numerical algorithm for inverse
problem from partial boundary measurement arising from mean field game problem Inverse
Problems 39 014001

[5] Ding L, Li W, Osher S and Yin W 2022 A mean field game inverse problem J. Sci. Comput. 92 7
[6] Guéant O 2012 Mean field games equations with quadratic Hamiltonian: a specific approachMath.

Models Methods Appl. Sci. 22 1250022
[7] Guéant O, Lasry J-M and Lions P-L 2011 Mean Field Games and Applications (Paris-Princeton

Lectures on Mathematical Finance vol 2010) (Springer) pp 205–66
[8] Guo J, Mou C, Yang X and Zhou C 2024 Decoding mean field games from population and envir-

onment observations by Gaussian processes J. Comput. Phys. 508 112978

25

https://orcid.org/0000-0002-8764-8429
https://orcid.org/0000-0002-8764-8429
https://orcid.org/0000-0002-9911-4045
https://orcid.org/0000-0002-9911-4045
https://doi.org/10.1051/cocv/2021081
https://doi.org/10.1051/cocv/2021081
https://doi.org/10.1051/cocv/2016004
https://doi.org/10.1051/cocv/2016004
https://doi.org/10.1088/1361-6420/aca5b0
https://doi.org/10.1088/1361-6420/aca5b0
https://doi.org/10.1007/s10915-022-01825-8
https://doi.org/10.1007/s10915-022-01825-8
https://doi.org/10.1142/S0218202512500224
https://doi.org/10.1142/S0218202512500224
https://doi.org/10.1016/j.jcp.2024.112978
https://doi.org/10.1016/j.jcp.2024.112978


Inverse Problems 41 (2025) 125009 J Yu et al

[9] Huang M, Caines P E and Malhamé R P 2007 Large-population cost-coupled lqg problems with
nonuniform agents: individual-mass behavior and decentralized ε-nash equilibria IEEE Trans.
Autom. Control 52 1560–71

[10] Huang M et al 2006 Large population stochastic dynamic games: closed-loop Mckean-Vlasov sys-
tems and the nash certainty equivalence principle Commun. Inf. Syst. 6 221–52

[11] Isakov V 1991 Inverse parabolic problems with the final overdetermination Commun. Pure Appl.
Math. 44 185–209

[12] Isakov V 1993 On uniqueness in inverse problems for semilinear parabolic equations Arch. Ration.
Mech. Anal. 124 1–12

[13] Isakov V 2017 Inverse Problems for Partial Differential Equations (Applied Mathematical
Sciences) 3rd edn (Springer)

[14] KlibanovMV and Averboukh Y 2024 Lipschitz stability estimate and uniqueness in the retrospect-
ive analysis for the mean field games system via two Carleman estimates SIAM J. Math. Anal.
56 616–36

[15] Klibanov M V, Li J and Yang Z 2023 Convexification for a coefficient inverse problem of mean
field games (arXiv:2310.08878)

[16] Lasry J-M and Lions P-L 2007 Mean field games Japan. J. Math. 2 229–60
[17] LeCun Y, Bottou L, Bengio Y and Haffner P 1998 Gradient-based learning applied to document

recognition Proc. IEEE 86 2278–324
[18] Liu H, Lo C W and Zhang S 2025 Decoding a mean field game by the Cauchy data around its

unknown stationary states J. London Math. Soc. 111 e70173
[19] Liu H, Lo C W and Zhang S 2025 Inverse problems for mean field games (arXiv:2503.14914)
[20] Liu H, Mou C and Zhang S 2023 Inverse problems for mean field games Inverse Problems

39 085003
[21] Ren K, Soedjak N, Wang K and Zhai H 2024 Reconstructing a state-independent cost function in

a mean-field game model Inverse Problems 40 105010
[22] Liu W 2023 Inverse problems in mean field games PhD Thesis (UCLA)
[23] Yu J, Xiao Q, Chen T and Lai R 2024 A bilevel optimization method for inverse mean-field games

Inverse Problems 40 105016
[24] Yang X and Zhang J 2025 Gaussian process policy iteration with additive Schwarz acceleration for

forward and inverse HJB and mean field game problems (arXiv:2505.00909)
[25] Yu J, Cheng X, Liu J G and Zhao H 2024 Convergence analysis and acceleration of fictitious play

for general mean-field games via the best response (arXiv:2411.07989)
[26] Ren K, Soedjak N and Tong S 2024 A policy iteration method for inverse mean field games

(arXiv:2409.06184)
[27] Zhang Z, Zhang Z and Zhou Z 2022 Identification of potential in diffusion equations from terminal

observation: analysis and discrete approximation SIAM J. Numer. Anal. 60 2834–65

26

https://doi.org/10.1109/TAC.2007.904450
https://doi.org/10.1109/TAC.2007.904450
https://doi.org/10.4310/CIS.2006.v6.n3.a5
https://doi.org/10.4310/CIS.2006.v6.n3.a5
https://doi.org/10.1002/cpa.3160440203
https://doi.org/10.1002/cpa.3160440203
https://doi.org/10.1007/BF00392201
https://doi.org/10.1007/BF00392201
https://doi.org/10.1137/23M1554801
https://doi.org/10.1137/23M1554801
https://arxiv.org/abs/2310.08878
https://doi.org/10.1007/s11537-007-0657-8
https://doi.org/10.1007/s11537-007-0657-8
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1112/jlms.70173
https://doi.org/10.1112/jlms.70173
https://arxiv.org/abs/2503.14914
https://doi.org/10.1088/1361-6420/acdd90
https://doi.org/10.1088/1361-6420/acdd90
https://doi.org/10.1088/1361-6420/ad7497
https://doi.org/10.1088/1361-6420/ad7497
https://doi.org/10.1088/1361-6420/ad75b0
https://doi.org/10.1088/1361-6420/ad75b0
https://arxiv.org/abs/2505.00909
https://arxiv.org/abs/2411.07989
https://arxiv.org/abs/2409.06184
https://doi.org/10.1137/21M1446708
https://doi.org/10.1137/21M1446708

	Equilibrium correction iteration for a class of mean-field game inverse problems
	1. Introduction
	2. Ambient potential identification in MFGs
	2.1. The best response and MFGs
	2.2. The ambient potential identification problem

	3. Iterative algorithms for environment potential identification
	3.1. Fictitious play through the lens of best response
	3.2. The ECI
	3.3. The BRI
	3.4. HECI

	4. Connection to inverse linear parabolic equations
	5. Discretization and implementation
	6. Numerical results
	6.1. Effectiveness of ECI
	6.2. Scalability of ECI
	6.3. Comparison of ECI and BRI
	6.4. Remarks on BRI
	6.5. Acceleration with hierarchical grid
	6.6. Numerical evidences of convergence mechanism

	7. Conclusion and future work
	References


