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I. Basic Themes

1. Introduction

The aim of the science of continuum physics is to describe the mechani-
cal, thermodynamical, electromagnetic, and chemical behavior of matter in
bulk. This science consists of a rich collection of general mathematical the-
ories based upon a handful of fundamental principles, which are largely well
understood. These principles are supplemented with constitutive equations,
which describe the material properties of the physical bodies under study.
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The combination of fundamental principles and constitutive equations typi-
cally leads to quasilinear systems of partial differential equations or nonlocal
variants thereof, which are largely not well understood. In the past 50 years,
the governing equations of nonlinear continuum physics have been made to
look simple, so that their mathematical structure can be exposed. But they
are not simple: They offer severe mathematical challenges at the cutting
edge or beyond of modern analysis. This is wonderful, because we are not
paid to solve simple problems. Responding to the challenges presented by
the initial-boundary-value problems of nonlinear continuum physics should
profitably occupy scientists for years to come. But there are other math-
ematical objectives, besides treating initial-boundary-value problems, that
should be met in order to enhance the utility of the theories. The purpose
of this paper is to describe some of these objectives in the context of the
continuum mechanics of solids and then illustrate some small steps toward
meeting these objectives with the solution of some fairly elementary pretty
problems.

We first sketch the mathematical structure of the 3-dimensional the-
ory, and then describe the 1-dimensional theory from which we obtain our
concrete problems. For simplicity of exposition, we assume that any func-
tion that is exhibited is ipso facto continuous. We denote partial derivatives
with respect to scalar arguments by subscripts and denote some ordinary
derivatives by primes. Occasionally we denote time derivatives by super-
posed dots.

2. Continuum Mechanics

Geometry of deformation. We identify the material points of a body with
the positions x they occupy in some specific reference configuration. These
material points x lie in a region B. Let p(x , t) denote the position of ma-
terial point x at time t. Then the velocity and acceleration of x at time t
are pt(x , t) and ptt(x , t). The fundamental aim of continuum mechanics is
to formulate and analyze equations for p when the mechanical properties
of B and its environment are given.

The function p(·, t) should be one-to-one for all t, so that distinct ma-
terial points cannot simultaneously occupy the same position, and should
have a positive Jacobian:

detpx (x , t) > 0 (2.1)
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for (almost) all x and t, so that the local ratio of deformed to reference
volume never be reduced to 0, and so that the deformation never changes
its orientation. Here px is the (Fréchet) derivative of p(·, t). Its Cartesian
components form a matrix with entries ∂pi/∂xj . (For an incompressible
body, detpx (x , t) = 1, a nonlinear partial differential equation.) Why worry
about total compression and change of orientation? Because if they not
precluded by the constitutive functions, these phenomena can occur for
solutions, both analytical and numerical, especially near places and times
where the solutions have singularities (no matter how pretty the graphics
for the solutions are).

Stress and the Equations of Motion. Let x be a material point in body
B and let n be the unit normal to a planar region P consisting of x and
other material points in B. Then the force per unit reference area of P
exerted by the material of {y ∈ B : (y − x ) · n > 0} on the material of
{y ∈ B : (y−x ) ·n ≤ 0} at material point x at time t can be shown to have
the form T (x , t)n where T is a second-order tensor (linear transformation
from Euclidean 3-space into itself) called the first Piola-Kirchhoff stress
tensor. The requirement that the total force on any part of the body at
time t equal the time derivative of the linear momentum of that part of the
body (a version of Newton’s Law of Motion) leads to a local version of the
equation of motion for the body B:

∇ ·T ∗ + f = ρptt. (2.2)

Here the asterisk denotes the transpose, ρ(x ) is the given mass density at
x in the reference configuration, and f is the given force per unit refer-
ence volume exerted by external agencies. The ith Cartesian component
of ∇ ·T ∗ is

∑3
j=1 ∂Tij/∂xj . Equations like (2.2) in which the independent

variables x identify material points is said to have a material (= referential
= Lagrangian) formulation (due to Euler).

Constitutive equations. Now we introduce into these general laws what dis-
tinguishes different materials and what ensures that the number of equa-
tions equal the number of unknowns. We characterize the mechanical be-
havior of materials by giving a constitutive function that specifies how T
depends on the function p. Its substitution into the equation of motion
(2.2) converts it into an equation for p.

One of the conceptually simplest constitutive equations is that for an
elastic material, for which the stress at a given time depends only on the
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state of deformation at that time. It has the form

T (x , t) = px (x , t)S(C (x , t),x ), C := p∗
xpx (2.3)

where S is a symmetric tensor-valued function. The symmetry of S ensures
that the total torque on any part of the body equal the time derivative of
the angular momentum of that part of the body. The special way that
px enters this equation, both directly and in C , is a consequence of the
requirement that material properties be unaffected by rigid motions. (It is
the acceleration in the equation of motion that accounts for rigid motions.)
We shall demonstrate the importance of this invariance under rigid motions.

This constitutive equation makes no provision for internal mechanical
dissipation. One that does is the constitutive equation for a viscoelastic
material of strain-rate type:

T (x , t) = px (x , t)S(C (x , t),Ct(x , t),x ). (2.4)

More generally, the tensor S at (x , t) could depend upon the past history
of C at x (and could even depend on C (y −x , τ) for y in B and for τ ≤ t).
Such a dependence ensures invariance under rigid motions.

The material behavior in the form of the constitutive function for T
completely determines the mathematical structure of the equations. For
example, for an elastic material, the requirement that T be monotone on
lines in px space has the reasonable physical implication that certain com-
ponents of T must be increasing functions of corresponding components of
px. An elastic material having this property satisfies the Strong Ellipticity
Condition (one of the weakest ellipticity conditions), which ensures that the
equations of motion are hyperbolic in a way that allows the richest wave-like
behavior. The analysis of the equations of equilibrium and motion under
this condition [7, 16] is technically difficult, presenting many unresolved
questions. Many other mathematically useful constitutive restrictions are
unacceptable on physical grounds. It is natural to require the viscoelastic
material of (2.4) to account for mechanical dissipation, e.g., by requiring
T to be a monotone function of px t. This gives the equations of motion a
parabolic character. The analysis of such systems is just beginning.

For a given material, what is the constitutive function for T? For many
common fluids, including water and air, it is Newtonian, for which the equa-
tions of motion are the Navier-Stokes equations, the most successful model
in all of continuum mechanics. (These equations are typically given a spa-
tial (= Eulerian formulation, due to d’Alembert) in which the independent
spatial variable is a fixed position in space rather than a material point.)
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But for most other fluids, including such common non-Newtonian liquids
as paint, lubricating oil, and sour milk, there is no consensus as to what T
should be. The same situation prevails for metals undergoing large or fast
deformations.

Experimental results, not only for new materials, but even for such old
materials like metals, paint, and muscle, are usually fragmentary. Efforts
using statistical-mechanical ideas to construct constitutive models agreeing
with experiment have frequently failed to produce a consensus.

As we shall see, the equations for thin bodies, e.g., rods and shells,
have a mathematical structure similar to that of (2.2)–(2.4), but with fewer
independent spatial variables and more dependent variables.

Among the elementary introductions to the material of this section are [5, 29].

Among advanced presentations are [7, 16, 30, 44, 46].

3. The Role of Constitutive Equations in Analysis

The analysis of the resulting evolution partial differential equations for
physically reasonable constitutive functions is at its infancy, even for one
independent spatial variable. There are still deep open problems for steady-
state solutions. The invariance under rigid motions is a source of technical
difficulty emanating from geometry.

For example, in elasticity where T = T̂ (px,x ), mathematical analysis
would be much easier if

A :
∂T̂

∂px
: A > const|A|2 ∀A, (3.1)

but geometry and mechanics show that this condition is not reasonable. A
more natural condition is that this inequality hold only for all tensors of
rank 1. But the analysis of special cases of this condition, begun 30 years
ago by Ball [14], still has deep open problems.

The further weakening of this condition (by allowing potential wells)
has led to exciting new analyses in which there are problems in the calcu-
lus of variations lacking minimizers, for which infimizing sequences carry
detailed information about the microscopic behavior of crystalline solids
[24, 26, 38]. Here is a case where the continuum theory gives useful infor-
mation about the molecular (statistical-mechanical) theory.

The dynamical equations of nonlinear elasticity admit shocks. When
shocks occur, general integral formulations of the equations of motion fail to



140 S.S. Antman and J.-G. Liu Vol. 75 (2007)

deliver a unique way to continue a solution past the time of a shock. What
is needed is an admissibility condition that picks out a unique continuation
that can be judged as physically reasonable.

Various admissibility conditions have been propounded on the basis of
purely mathematical criteria to ensure uniqueness, on the basis of thermo-
dynamic arguments associated with the concept of entropy to ensure that
shocks have a suitable dissipative character, on the basis of limit arguments
in which the shock is realized as a discontinuity that arises in the asymp-
totic limit of a problem with dissipation as the dissipation goes to zero,
and on the basis of numerical procedures [23, 42]. While these methods
often agree for simple problems with one spatial dimension, in particular
for models of gas dynamics, they have not been reconciled for more com-
plicated problems, even with but one spatial dimension, despite a growing
body of penetrating research. In particular, as we shall see, many stan-
dard numerical methods for equations for solids (inspired by gas dynamics)
lack the appropriate invariance, and can give erroneous solutions (which
nevertheless have beautiful graphics).

Our lack of detailed information about constitutive equations for many
real materials (other than Newtonian fluids like air and water) need not
prevent us from mathematically analyzing problems for such materials. We
can exploit our agnostic lack of detailed information about constitutive
functions by using and developing powerful qualitative methods to treat
whole classes of materials at one time. One aim of such an analysis would
be to determine thresholds in material response separating materials having
qualitatively different behavior in certain environments. We shall give some
simple examples of this process.

4. Experimentation and Inverse Problems

There are fundamental scientific difficulties in determining constitutive re-
sponse experimentally: If we are presented with an unknown material that
is known to be of a certain class, say, viscoelastic of strain-rate type (2.4),
then, in principle, we could formulate a program of experiments to deter-
mine S in which px and px t are imposed and T is measured. But if we do
not know the class of constitutive equations within the manifold possibili-
ties, then it must be guessed, and an experimental program carried out for
each such guess.
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There are many areas in which we need far more compelling infor-
mation on constitutive response: large-strain thermoviscoplasticity, non-
Newtonian fluids, electro-magneto-mechanical interactions. In each of these
areas, memory effects play a central role, and in each of these areas math-
ematical analysis that confronts the underlying physics is in its infancy.

The needed mathematical tools are more powerful inverse methods
that allow one to determine properties of an equation from information
about its solutions. A very simple example of such an inverse methods will
be given in Section 8. (There is an extensive body of literature on a variety
of inverse problems, most related to linear differential equations, which give
rise to nonlinear inverse problems; See [32] and the works cited therein.)

5. Rationalization of Hierarchies of Theories

There are numerous theories of continuum physics that are related to each
other as certain parameters go to limiting values:

1. 3-D solid mechanics −→ 1-dimensional rod theories as thickness → 0.
2. 3-dimensional solid mechanics −→ 2-dimensional shell theories as

thickness → 0.
3. 3-dimensional solid mechanics −→ 1-dimensional rod theories or 2-

dimensional shell theories as degrees of freedom become small.
4. Rod theories −→ (real) string theory as bending stiffness → 0.
5. Shell theories −→ membrane theory as bending stiffness → 0.
6. 3-dimensional fluid mechanics −→ 2-dimensional lubrication theories

as thickness → 0.
7. 3-dimensional gas dynamics −→ 1-dimensional piston theories as thick-

ness → 0.
8. 3-dimensional electromagnetism −→ 1-dimensional wire theories as

thickness → 0.
9. The equations for compressible media −→ those for incompressible

media as a constitutive function giving the Jacobian as a function of
the stress and other kinematical variables approaches 1.

10. Dynamical equations −→ quasistatic equations as inertias → 0.
11. Dynamical equations −→ quasistatic equations as forcing rates → 0.
12. Smooth dynamical processes −→ processes admitting shocks as vis-

cosity or capillarity → 0.
13. Smooth spatial transitions −→ sharp transitions as capillarity or

strain-gradient effects → 0.
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14. Statistical physics −→ continuum physics as the number of particles
→ ∞.
There has been considerable progress in justifying these processes, and

yet there remain deep, interesting, and challenging problems in giving them
completely satisfying resolutions. (See [7] for a discussion of the justification
of theories for thin bodies.) Here we shall limit our attention to simple
examples of processes 10, 11, 12.

There are an immense number of specific applications that form a
useful and fascinating complement to the grand open problems of analysis
just discussed. Here is a sampling of very elementary versions.

II. Simple Problems

6. The Planar Motion of Rods

In this section we outline the derivation of the partial differential equations
for the planar motion of nonlinearly elastic and viscoelastic rods, which are
slender solid bodies. The equations we obtain have exactly the same form
as those for the plane-strain motion of a cylindrical shell (not necessarily
having a circular cross section), in which each section perpendicular to the
generators has the same behavior. We shall analyze these equations for a
variety of simple problems. These equations are far easier to treat than
those discussed in Part I chiefly because they have but one independent
spatial variable.

We study the planar motion of a flexible, extensible, shearable nonlin-
early elastic rod. The governing equations form the simplest system for a
nonlinearly elastic body in which rotation is manifested, in which Lagrange
multipliers do not appear (as they would if the rod were inextensible or
unshearable or both), and in which the mechanical variables are just resul-
tant forces and couples (in contrast to the equations in a hierarchy of more
sophisticated rod theories).

Let {i , j , k} be a fixed right-handed orthonormal basis for Euclidean
3-space. The configuration at time t of a flexible, extensible, shearable rod
constrained to move in the {i , j }-plane is specified by an absolutely con-
tinuous vector-valued function [0, l] � s �→ r(s, t) ∈ span {i , j } and by a
scalar-valued function [0, l] � s �→ θ(s, t). The curve r(·, t) may be inter-
preted as the image at time t of a material curve s �→ r◦(s) lying within
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a thin 2-dimensional body in its reference configuration, and the angle
π
2 + θ(s, t) may be interpreted as characterizing the orientation with re-
spect to i at time t of the material cross-section at the material point with
coordinate s in the reference configuration. We take s to be the arc-length
parameter of r◦. See Figure 1.

We introduce the orthonormal basis

a(θ) := cos θ i + sin θ j , b(θ) := − sin θ i + cos θ j . (6.1)

The vector b(θ(s, t)) gives the orientation of the cross section at s at time
t, so that we could equally well characterize the configuration at time t by
s �→ r(s, t), b(θ(s, t)), and we shall do so when convenient. We define the
strain variables (ν, η, µ) by

ν := rs · a(θ), η := rs · b(θ), µ := θs. (6.2)

If t �→ (r(·, t), b(θ(·, t))) is a given motion of the rod, then a motion
differing from it by a rigid motion has the form

t �→ (
c(t) + Q(t)r(·, t), Q(t)b(θ(·, t))) (6.3)

where c is a vector-valued function of t only and where Q is an orthogonal
transformation of span {i , j } to itself, depending only on t. The matrix

of Q with respect to the basis {i , j } has the form
[
cosψ − sinψ
sinψ cosψ

]

. It

is important to note that the strains for (6.3) are independent of the rigid
motion given by c and ψ. A necessary condition that deformations preserve
orientation is that ν be everywhere positive.

Let n(s, t) ≡ N(s, t)a(θ(s, t))+H(s, t)b(θ(s, t)) be the internal contact
force and M(s, t) be the internal contact couple (about k) exerted across
the material section at s. The component n · (rs/|rs|) is the tension and
the component H is the shear force. Then the classical equations of motion
for the rod subject to an external force f per unit reference length and no
external couple have the form

ρArtt = (Na +Hb)s + f , (6.4a)

ρJθtt = Ms + k · [rs × (Na +Hb)], (6.4b)

where ρA and ρJ are positive-valued functions of s [7]. (For a naturally
straight rod, ρA can be interpreted as the mass density per unit reference
length and ρJ can be interpreted as the mass moment of inertia of a cross
section per unit reference length. For curved rods the interpretations are
similar.)
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(a)

(b)

(c)

s

r ◦(s)

r(s, t)

r(s, t)

a(θ(s, t))

b(θ(s, t)) θ(s, t)

i

Figure 1. (a) A planar rod in its reference configuration.
The heavy curve is the base curve r◦, with arc-length pa-
rameter s. The short heavy line perpendicular to r◦ at s is
the cross section at s. (b) A typical configuration at time t
of the rod of (a). The material point r◦(s) goes to r(s, t).
The long heavy curve is the image at time t of r◦. The short
curve through r(s, t) is the image of the cross section. (c)
The rod theory used here models the configuration of (b)
by the curve r(·, t) and by the scalar field θ(·, t) or, equiv-
alently, the unit-vector field b(θ(·, t)), which characterizes
the orientation of the cross sections.

The material of the rod is said to be elastic if there are constitutive
functions (ν, η, µ, s) �→ NE(ν, η, µ, s), HE(ν, η, µ, s), ME(ν, η, µ, s) such that

N(s, t) = NE(ν(s, t), η(s, t), µ(s, t), s), etc. (6.5)
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The material of the rod is said to be viscoelastic of strain-rate type if
there are constitutive functions (ν, η, µ, ν̇, η̇, µ̇, s) �→ N̂(ν, η, µ, ν̇, η̇, µ̇, s),
Ĥ(ν, η, µ, ν̇, η̇, µ̇, s), M̂(ν, η, µ, ν̇, η̇, µ̇, s) such that

N(s, t) = N̂(ν(s, t), η(s, t), µ(s, t), νt(s, t), ηt(s, t), µt(s, t), s), etc. (6.6)

Note that the fourth and fifth arguments are time derivatives of compo-
nents of rs with respect to the moving basis {a(θ(s, t)), b(θ(s, t))} and not
the components of the time derivatives. Since N̂ , Ĥ, M̂ depend only on
the indicated arguments, the components of the internal contact force and
couple are unaffected by rigid motions.

The material (6.5) is hyperelastic if there is a stored-energy function
(ν, η, µ) �→ W (ν, h, µ, s) such that

NE = Wν , HE = Wη, ME = Wµ. (6.7)

We assume that the matrix



Wνν Wνη Wνµ

Wην Wηη Wηµ

Wµν Wµη Wµµ



 is positive-definite. (6.8)

This condition ensures that the motion of hyperelastic rods is governed by
a hyperbolic system. In the description of materials that can undergo a
phase change, this positive-definiteness is weakened, at least on a compact
set of (ν, η, µ)-space [33].

For viscoelastic materials, it is convenient to define the equilibrium
response functions by

NE(ν, η, µ, s) := N̂(ν, η, µ, 0, 0, 0, s), etc., (6.9)

and to define the dissipative part of the constitutive functions by

ND(ν, η, µ, νt, ηt, µt, s) := N̂(ν, η, µ, νt, ηt, µt, s) −NE(ν, η, µ, s), etc.,
(6.10)

which vanish in equilibrium. It is natural to assume that the equilibrium
response functions are hyperelastic, in which case (6.6) has the form

N = Wν(ν, η, µ, s) +ND(ν, η, µ, νt, ηt, µt, s), etc. (6.11)

We assume that the matrix



ND

ν̇ ND
η̇ ND

µ̇

HD
ν̇ HD

η̇ HD
µ̇

MD
ν̇ MD

η̇ MD
µ̇



 is positive-definite. (6.12)
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This positive-definiteness ensures that the motion of viscoelastic rods is
governed by a parabolic-hyperbolic system and that the equations have a
dissipative character.

It can be shown [7, Sec. 8.7] that a 1-dimensional version of (2.1) has
the form

ν > V (µ, s) (6.13)

where V (·, s) is linear and nowhere negative for µ > 0 and for µ < 0, and
V (0, s) = 0. The limiting condition that ν = V (µ, s) corresponds to a
total compression. We require that infinite resultants are needed to effect
a total compression:

|N̂ | + |Ĥ | + |M̂ | → ∞ as ν − V (µ, s) ↘ 0. (6.14)

Condition (6.13) gives the domain of definition of the constitutive functions
N̂ , Ĥ, M̂ .

We assume that the rod has the natural symmetry property that it is
no harder to shear the rod in one sense than in its opposite sense:

N̂(ν, η, µ, ν̇, η̇, µ̇, s) = N̂(ν,−η, µ, ν̇,−η̇, µ̇, s),
−Ĥ(ν, η, µ, ν̇, η̇, µ̇, s) = Ĥ(ν,−η, µ, ν̇,−η̇, µ̇, s),
M̂(ν, η, µ, ν̇, η̇, µ̇, s) = M̂(ν,−η, µ, ν̇,−η̇, µ̇, s).

(6.15)

For a naturally straight rod, Ĥ and M̂ change sign while N̂ is unchanged
when (η, µ, η̇, µ̇) is replaced by (−η,−µ,−η̇,−µ̇) [7, Sec. 16.10].

Assuming that the initial-boundary-value problem for (6.4) has a suffi-
ciently regular solution, we take the dot product of (6.4a) with rt, multiply
(6.4b) by θt, integrate the sum of the resulting products over [0, l] × [0, t],
and use (6.11) to obtain the energy equation
∫ l

0
[12 (ρArt·rt+ρJθt

2)+W ] ds+
∫ t

0

∫ l

0
[NDνt+HDηt+MDµt−f ·rt] ds dτ =const.

(6.16)
Note that (6.12) implies that NDνt +HDηt +MDµt ≥ 0.

The variables introduced in this section correspond to those of Section
2: The configuration p of Section 2 corresponds to r , θ; the deformation
tensor C to (ν, η, µ); the stress tensor T to (N,H,M); the condition (2.1)
of orientation-preservation to (6.13); the equation of motion (2.2) to (6.4);
and the constitutive equation (2.4) to (6.6).

A detailed discussion of the equations of this section, their generalizations, and their

relation to the 3-dimensional theory is given in [7]. An existence and regularity theory,
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global in time, for the generalization of these equations to spatial motions is given by

[12].

7. Constitutive Thresholds: Radial Motion of a Ring

A uniform circular viscoelastic ring is subject to a spatially uniform hy-
drostatic pressure of intensity p(t) per unit of actual length. p is positive
if it is internal, i.e., if it acts outward. Since such a pressure acts normal
to r , the body force f = −pk × rs where we take s to increase in the
counterclockwise sense. We take the reference length l = 2π, assume that
the constitutive functions (6.6) are independent of s, and that the refer-
ence configuration for which ν = 1, η = 0, µ = 1 is natural, so that all the
constitutive functions vanish for these strains. Here we limit our attention
to purely radial motions:

θ(s, t) = s, r(s, t) = −r(t)b(s). (7.1)

(We are taking b(s) to point inward.) Thus ν(s, t) = r(t), η(s, t) = 0,
µ(s, t) = 1. Condition (6.15) then implies that (6.4b) with (6.6) is identi-
cally satisfied, and that (6.4a) reduces to

ρArtt + N̂(r(t), rt(t)) = p(t)r(t) (7.2)

where N̂(r, ṙ) := N̂(r, 0, 1, ṙ, 0, 0). (The uniformity of the ring means that
N̂ is independent of s.

We first treat the equilibrium problem, for which (7.2) reduces to

NE(r) := Wν(r, 0, 1) = pr. (7.3)

Condition (6.8) implies that NE
ν (ν) > 0, the requirement that the reference

configuration be natural implies that NE(1) = 0, and (6.14) implies that
NE(ν) → −∞ as ν ↘ 0. For a given p there are as many equilibrium states
as there are solutions r of this equation. See Figure 2. For p ≤ 0, (7.3) has
exactly one solution. For p positive the situation is much richer: If NE is
an asymptotically strictly superlinear function as its argument approaches
∞, i.e., if NE(r)/r → ∞ as r → ∞, then (7.3) always has at least one
solution and may have any algebraically odd number of solutions. If NE is
an asymptotically strictly sublinear function, i.e., ifNE(r)/r → 0 as r → ∞,
then (7.3) has at least two solutions for p and always has an algebraically
even number of solutions for p less than a critical value and no solutions for
p exceeding that value. If NE is neither asymptotically strictly superlinear
nor sublinear, in particular, if NE is asymptotically linear, i.e., if there is a
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number B ∈ (0,∞) such that NE(r)/r → B as r → ∞, then the solvability
requires a special analysis. For an asymptotically linear NE, there are no
solutions for sufficiently large p. The traditional assumption that N is linear
in r− 1 is thus atypical: There is either exactly one solution or no solution,
depending on the ratio of the elastic constant to p. A treatment of a large-
deformation problem with such a linear constitutive function can therefore
be very misleading. These observations indicate that the most important
qualitative properties of solutions depend on the asymptotic behavior of
NE.

Now let us study the dynamics of the ring under an internal pressure p
that is a constant function of time. We multiply (7.2)1 by rt and use (6.11)
to obtain a specialization of the energy equation (6.16):

1
2ρArt(t)

2 +W (r(t)) +
∫ t

0
ND (r(τ), rt(τ)) rt(τ) dτ − p

2r(t)
2

= 1
2ρArt(0)

2 +W (r(0)) − p
2r(0)

2 =: E(0).
(7.4)

We make the natural assumption that W ≥ 0. If p ≤ 0, i.e., if the
pressure is external, then the non-negativity of the integral in (7.4) implies
that r and rt are bounded for all time, and consequently the solution of
every initial-value problem for (7.2) exists for all time. Now suppose that
p > 0. If W is asymptotically strictly superquadratic as its argument goes
to ∞, then again (7.4) implies r and rt are bounded for all time and the
solution exists for all time. If, furthermore, W (r) → ∞ as r ↘ 0, then
r has a positive lower bound. Now suppose that W is not asymptotically
strictly superquadratic. Then (7.4) implies that there is a positive constant
C such that

rt(t)2 ≤ C + Cr(t)2, (7.5)

which immediately implies that r and rt are bounded on any bounded inter-
val of time and therefore exist as solutions of (7.2) for all time. If W is not
asymptotically strictly superquadratic, the solution could be unbounded as
t→ ∞. We now investigate this possibility for elastic rings.

The kinetic energy is K(t) := 1
2ρArt

2. We set

Φ = 1
2ρAr

2. (7.6)

We compute Φtt, replace the second derivative of r with its expressions from
(7.2), and then use the energy equation (7.4) to replace the pressure term
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Figure 2. Graphs A, B, C of three constitutive functions
NE and graphs, with dotted lines, of the straight lines
r �→ pr for three different positive p’s. Each intersection of a
graph of NE with a straight line with slope p corresponds to
a solution of (7.3), which in turn defines an equilibrium state
of the ring. The graph A is meant to describe an asymptot-
ically strictly superlinear function. (Of course, this graph
cannot exhibit this asymptotic behavior.) For such a func-
tion (7.3) has at least one solution for each (positive) p.
The graph C is meant to describe an asymptotically strictly
sublinear function. For such a function (7.3) has at least
two solutions for p less than a threshold value and no so-
lutions for p exceeding that value. The graph B is meant
to describe a function that has neither of the properties of
A and C. Such a graph might describe an asymptotically
linear function.

to obtain
Φtt = 2K − rWr + pr2 = 2K − rWr + 2[K +W − E(0)]

= 4K + 2W − rWr − 2E(0).
(7.7)

We choose p so large that E(0) < 0 and assume that 2W ≥ rWr, so that

Φtt ≥ 4K, (7.8)
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whence
ΦΦtt ≥ Φt

2. (7.9)
Therefore Ψ := lnΦ satisfies Ψtt ≥ 0, so that Ψ(t) ≥ Ψt(0)t+ Ψ(0), i.e.,

lnΦ(t) ≥ Φt(0)
Φ(0)

t+ lnΦ(0) ⇐⇒ Φ(t) ≥ Φ(0) exp
[
Φt(0)
Φ(0)

t

]

. (7.10)

Thus the solution grows exponentially fast if Φt(0) > 0. The asymptotically
linear behavior of NE again serves as a threshold separating qualitatively
different responses.

The equation of motion for radial motions of an elastic spherical shell
under a static pressure differs slightly but significantly from (7.2):

ρArtt +Wν(r) − 1
2pr

2 = 0 (7.11)

(cf. [7]). It has the energy integral
1
2ρArt

2 +W (r) − 1
6pr

3 = E(0) := 1
2ρArt(0)

2 +W (r(0)) − 1
6pr(0)

3. (7.12)

Note that E(0) can be negative when p is positive. A study of the equilib-
rium equation coming from (7.11) shows that if ν �→ Wν(ν) is asymptot-
ically strictly subquadratic as ν → ∞, i.e., if ν−2Wν(ν) → 0 as ν → ∞,
then for sufficiently large p, there are no equilibrium states. We now show
that under an analogous condition, there are initial conditions for which
the solution r of (7.11) blows up in finite time (whereas the solution of the
corresponding problem for rings exists for all time, although it can grow
exponentially fast).

Again we define Φ by (7.6). Then (7.11) and (7.12) imply that

Φtt = ρArt
2 + ρArrtt = ρArt

2 − r[Wν(r) + 1
2pr

2]

= ρArt
2 − rWν(r) + 3[12ρArt

2 +W (r)] − 3E(0)

= 5
2ρArt

2 + 3W (r) − rWν(r) − 3E(0).

(7.13)

Now let us assume that the material is weak in tension in the sense
that 3W (ν) ≥ νWν(ν) and that p is so large that E(0) ≤ 0. Then (7.13)
implies that

Φtt ≥ 5
2ρArt

2. (7.14)
We multiply this inequality by Φ to get

ΦΦtt − 5
4Φt

2 ≥ 0, (7.15)

so that Ψ := Φ−1/4 satisfies

Ψtt ≤ 0, Ψ(t) ≤ Ψ(0) + tΨt(0) ⇔ Φ(t) ≥ 1
[Ψ(0) + tΨt(0)]4

. (7.16)
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Now Ψ(0) > 0. If rt(0) > 0, then Ψt(0) < 0. Equation (7.16) then implies
that Φ and therefore r blow up in finite time.

For constant pressures, the behavior of (7.2) and (7.11) can be studied
in a phase portrait. The blowup result for the latter presumably could be
directly derived from (7.12) by obtaining from it an expression for the time
t expended on a trajectory from r(0) to r(t) as an integral from r(0) to r(t)
of a certain function, and then exhibiting conditions, like those we have just
discussed, ensuring that the improper integral from r(0) to ∞ converges.

The treatment culminating in (7.16) is based on Ball [15]; cf. Knops [34]. These

methods were used by Calderer [19, 20, 21] to treat the motion of incompressible spher-

ical elastic and viscoelastic shells. For the treatment of problems with time-dependent

pressures, see [10]. It is only fair to mention that to maintain a constant internal pressure

in any dynamical problem would require a sophisticated control.

Similar threshold effects hold when a ring rotates about its center, in
which case there is a conflict between the centrifugal force and the resis-
tance of the material. We look at such a problem below, where it is used to
illustrate the effect of invariance on numerical methods for hyperbolic sys-
tems. It is interesting to note that in a ring that is simultaneously spinning
and radially oscillating, the shear force H cannot be 0 [2]. For a treatment
of more complicated effects under the live loads due to a barotropic gas
and a heavy incompressible fluid, see [11]. Live loads are not necessary for
the appearance of threshold effects. E.g., if a wedge given in cylindrical
coordinates by r ≤ 1, 0 ≤ φ ≤ α, 0 ≤ z ≤ 1 is subjected to a force in the
z-direction acting on its edge r = 0 and to equilibrating forces on its faces,
then the displacement in the z-direction is bounded if the energy associated
with shear is asymptoticly superquadratic [7, Sec. 14.4].

8. An Inverse Problem

We consider the equilibrium of a naturally straight rod of length 1 subject
to a scaled terminal thrust λ (see Figure 3a, where the invisible unit vector
i , introduced in Figure 1, is here taken to be vertical, and the unit vector j
is taken to be horizontal). We assume that the end s = 0 is welded to a rigid
wall along the j -axis, so that r(0) = o and θ(0) = 0, and assume that the
end s = 1 is subject to the force n(1) = λi and to zero coupleM(1) = 0. We
assume that there is no body force. Thus (6.4a) implies that n(s) = −λi .
We further assume that the rod is inextensible and unshearable, so that
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λ

λ

s

θ(s)

M̂(θ′(0))

(a) (b)

Figure 3. (a) The buckling of an inextensible column un-
der force λ. (b) A bifurcation diagram for this buckling prob-
lem, showing the trivial branch and the first bifurcating
branch.

ν = 1, η = 0, r = a . In this case, n plays the role of a Lagrange multiplier.
We finally assume that the rod is uniform, so that the only constitutive
equation has the form M(s) = ME(θs(s)). In this case, θs is the curvature,
and the equilibrium version of (6.4) reduces to

[ME(θ′)]′ + λ sin θ = 0, θ(0) = 0 = ME(θ′(1)). (8.1)

In this section the prime denotes differentiation with respect to s. Condi-
tions (6.8) and (6.15) imply that ME is strictly increasing and odd. The
bifurcation diagram (Figure 3b) can be computed for each function ME.
If ME is a constant multiple of θ′, then on each bifurcating branch, λ is a
convex function of the amplitude ME(θ′(0)). When ME is a nonlinear func-
tion, however, this convexity may well be lost (see [39]). We are concerned
with the

Inverse Problem: Given the lowest nontrivial branch of the bifurcation di-
agram, find the function ME.
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To solve this problem we use the invertibility of ME to show that it
has an inverse µE, which has a potential V such that

m = ME(θ′) ⇔ θ′ = µE(m) =: Vm(m). (8.2)

We can then replace (8.1) with an equivalent Hamiltonian system:

θ′ = Vm(m), m′ = −λ sin θ. (8.3)

V (m(0)) =: τ serves a magnitude of solution (θ,m) alternative to m(0)
(which is the ordinate in Figure 3b).

Since this system is Hamiltonian, it possesses an energy integral:
V (m(s)) = λ[cos θ(s) − 1] + τ

= λ[±
√

1 − (m′(s)/λ)2 − 1] + τ
(8.4)

where we have used (8.3)2. Thus

m′(s)2 = [τ − V (m)][2λ − (τ − V (m))] (8.5)

whence

1 =
∫ 0

m(0)

ds

dm
dm =

∫ m(0)

0

dm
√

[τ − V (m)][2λ − (τ − V (m)]
. (8.6)

For m ≥ 0, the function V has an inverse Q so that V (m) = u is equivalent
to m = Q(u). We account for the infinite slope of Q at 0 by setting Q′(u) =:
F (u)/

√
u. Thus (8.7) is equivalent to

1 =
∫ τ

0

F (u) du
√
u[τ − u][2λ− τ + u]

. (8.7)

Now let λ be a prescribed function of τ . Then (8.7) for the unknown F
becomes a linear Volterra integral equation of the first kind with a singular
kernel, which is easily solved numerically. A reversal of the steps of this
development shows that F determines the constitutive function ME on an
interval corresponding the domain of λ as a function of τ . That ME is
increasing must be checked a posteriori.

For this immediate problem, one could contemplate a direct experimental measure-

ment of the bending couple M as a function of the curvature of a rod by bending the

shaft into an arc of a circle by equal and opposite bending couples applied at the ends.

But it is not easy to measure these couples. In Bell’s history [17] there is no indication of

experimental work of this sort. Of course, the same objection could ostensibly be raised

against an experimental program producing Figure 3b, which requires the measurement

of m(0). This objection can be dismissed, however, with the observation that the energy

integral (8.8) yields

τ ≡ V (m(0)) = λ[1 + cos θ(1)] (8.8)
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provided that V (0), without loss of generality, is taken to vanish. Since θ(1) can be easily

measured (e.g., optically), no direct measurement of m(0) is necessary.

Finally, there is another way to find ME without measuring it directly, and this

can be done for a single value of λ: The function θ is measured for this (sufficiently

large) λ. Then the function m is determined from (8.1)3 and (8.3)2 by the formula

m(s) = −λ
∫ 1

s
sin θ(ξ) dξ. The function θ′ is computed from θ, and the graph of the curve

s �→ (θ′(s), m(s)) in the (θ′, m)-plane determines M for the range of θ corresponding to

the given λ. The disadvantage of this procedure is that is requires monitoring θ(s) for

each s and either computing θ′(s) from it (which is not numerically convenient) or else

monitoring θ′(s) directly (which is feasible with lasers).

Some of the discussion of this section is based on [9].

A virtue of the procedure leading to (8.7) is that it has applications be-
yond that of determining the constitutive function ME: To design switches,
it might be convenient to make a system snap from one configuration to
another at wiggles in the bifurcation diagram Figure 3b. We need only pre-
scribe λ as a function of τ and find ME. But how can one find a material
of the prescribed form? One answer is to use a magnetostrictive material,
typically an alloy of rare earths, whose mechanical properties are very sen-
sitive to the ambient magnetic field. Such materials are smart, which simply
means that there is a strong coupling between different kinds of physical
processes, allowing opportunities for control. A procedure for doing this us-
ing a magnetoelastic feedback is given in [3]. We illustrate such a feedback
in the next section.

9. Control of Shocks in the Longitudinal Motion of a
Magnetostrictive Rod

We examine the purely longitudinal motion of a naturally straight rod,
which we suppose is infinitely long. Then r(s, t) = x(s, t)i , θ(s, t) = 0,
ν(s, t) = xs(s, t), η(s, t) = 0, µ(s, t) = 0. We strengthen the symmetry
condition (6.15) so that H = 0 = M for such motions. Let h(s, t) denote
the scalar (longitudinal) magnetic field acting at (s, t). We take it to be a
control (which can be applied to the rod by surrounding segments of it with
solenoids). We assume that the constitutive equation for N has the form
N(s, t) = Ñ(xs(s, t), h(s, t), s). Such functions have been found experimen-
tally for various magnetoelastic materials [48]. Then the specialization of
(6.4a) for free longitudinal motion has the form

xtt = Ñ(xs, h(s, t), s)s. (9.1)
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If Ñ(·, h, s) is a strictly increasing nonlinear function for fixed function h,
then for fixed h, (9.1) is a quasilinear hyperbolic equation, whose solutions
typically exhibit shocks. But if there is a positive-valued function a and a
constant b such that in (ν, h, z)-space the plane z = a(s)ν + b intersects
the surface z = Ñ(ν, h, s) for each fixed s, then the solution(s) h̃(ν, s) of
a(s)ν + b = Ñ(ν, h, s) are feedbacks that linearize (9.1):

xtt = [a(s)xs]s. (9.2)

This equation has no shocks, and if a is constant, this equation faithfully
transmits signals. Because the rod is thin, it is feasible to localize the mag-
netic field. This control has the special virtue that it acts on the principal
part of the differential operator, and accordingly has a great effect. For rods
having a general motion in a plane, one can contrive a triple of magnetic
controls that affect the response to flexure, elongation, and shear. Here
the constitutive functions N̂ , Ĥ, M̂ of (6.6) depend also on a triple h of
such controls. In [4], it is shown how such controls can prevent shocks, and
change the dissipation, isotropy, and homogeneity of rods in space.

10. Quasistatic Motions under a Slowly Applied Load

Plasticity theory was designed not to study plastics, which are typically
viscoelastic, but to study metals. It is meant to account for such effects as
permanent plastic deformation, which is readily observed in a paper clip.
It must therefore be described by a material with memory. Many studies of
bifurcation and stability for plastic bodies assume that the body deforms
quasistatically, i.e., so slowly that inertial terms in the equations of motion
can be neglected. In this case, time is just a parameter in a steady-state
equation.

Buckling problems for elastic bodies can be described mathematically
by bifurcation diagrams, like that of Figure 3b, which show the number of
equilibrium solutions for each value of the load parameter. The stability
and even the dynamic behavior of solutions are often inferred from such
a diagram by assuming that the load is applied quasistatically. E.g., in
Figure 3b, it is presumed that when the load λ is slowly raised past a
local maximum on a bifurcating branch, the structure undergoes a sudden
dynamic “snap-through” buckling (the antithesis of a quasistatic motion),
rapidly coming to rest at another equilibrium state with the same load
λ. The justification of quasistatic behavior for a material with or without
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memory would require advances in the exciting area of dynamical-systems
methods for partial differential equations. Here we look at the simplest
possible ordinary differential equation model for quasistatic Euler buckling.

We consider the motion of a simple pendulum of scaled length 1 in
the plane. Let θ(t) be the angle the pendulum makes with a fixed direction
j , called the vertical. We assume that motion away from the vertical is
opposed by a torsional spring applying a (scaled) restoring torque −θ to
the pendulum when it makes angle θ with j . We assume that the motion
is also opposed by a frictional torque −2νθ̇ with ν a constant ≥ 0 when
the pendulum moves with angular speed θ̇. Finally, we assume that the
bob of the pendulum is subjected to a force −(γ+ εt)j of slowly increasing
magnitude where γ and ε are positive constants with ε small. The motion
of θ is then governed by the initial-value problem

θ̈ + 2νθ̇ + θ = (γ + εt) sin θ, θ(0) = α, θ̇(0) = β. (10.1)

This initial-value problem has a globally defined unique solution. (If ε = 0,
this equation has a beautiful family of phase portraits parametrized by γ.)

We want to determine how solutions behave as ε↘ 0. To answer this
question we have to determine how solutions behave as t → ∞ (for which
purpose the smallness of ε is of no use). Physical intuition suggests that
as t → ∞, typically a solution θ approaches a value in the set {(2n +
1)π}, n an integer. The difficulty in demonstrating this conclusion is to
control (γ + εt) sin θ(t) as γ + εt → ∞ while sin θ(t) → 0. For this purpose,
Lyapunov-type theorems are of limited utility. Difficult bounds relying on
the positivity of ν are needed to show that most solutions are ultimately
confined to a large region of attraction about θ = (2n + 1)π. Then we can
set

θ = (2n + 1)π − ψ, ψ = e−νtu,

t̂(τ) = ε−1/3τ − ε−1(1 − ν2 + γ), v(τ) = u(t̂(τ))
(10.2)

to get

vττ + τv = ε−2/3(2n + 1)πeνt̂(τ)

+ (τ + ε−2/3(ν2 − 1))e−2νt̂(τ)v3m(e−νt̂(τ)v)
(10.3)

where ψ− sinψ = ψ3m(ψ). The homogeneous equation vττ + τv = 0 is the
(backwards) Airy equation, with independent solutions Ai(−τ) and Bi(−τ).
We use Lagrange’s method of variation of parameters to convert the initial-
value problem (10.1) to an integral equation with a kernel determined by
these Airy functions. The derivation of further bounds from the integral
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equation employs the properties that

Ai(−τ) ∼ π−1/2τ−1/4 sin(2
3τ

3/2 + π
4 ),

Bi(−τ) ∼ π−1/2τ−1/4 cos(2
3τ

3/2 + π
4 ),

−Ai′(−τ) ∼ π−1/2τ1/4 cos(2
3τ

3/2 + π
4 ),

Bi′(−τ) ∼ π−1/2τ1/4 sin(2
3τ

3/2 + π
4 )

(10.4)

as τ → ∞ (cf. [40]). The full bounds support an application of the Contrac-
tion Mapping Principle to show that if ν > 0, then for almost every solution
θ there is an integer n such that θ(t) → (2n+ 1)π and θ̇(t) → 0 as t→ ∞.
For ν > 0 and for ε sufficiently small, these results support a modification
of Hoppensteadt’s [31] theory ensuring that a rigorous asymptotics justifies
the quasistatic motion.

For ν = 0, let w be the solution fo the linearization of (10.3) about
v = 0 (obtained by dropping the last term of (10.3)). The properties (10.4)
of the Airy functions show that w(τ) → 0 as τ → ∞ while wτ oscillates
unboundedly. This result suggests tha v enjoys the same properties. But this
is false: It can be shown that the nonlinear part of (10.3) prevents v from
converging to 0, so that the linearization of (10.3) about v = 0 is irrelevant
for the actual dynamics. v and ψ oscillate about 0 without approaching it,
while vτ and ψt oscillate unboundedly about 0 ! These results are based on
[8].

A version of this problem for the dynamical behavior of a naturally
straight rod under a slowly increasing terminal thrust consists of the partial
differential equations (6.4), (6.6) subject to arbitrary initial conditions and
to the boundary conditions

r(0, t) = o, θ(0, t) = 0, n(1, t) = −(γ + εt)i , M(1, t) = 0.
(10.5)

11. Quasistatic Motions: Springs with Small Mass

In elementary mechanics, we study the motion of a mass point on a mass-
less spring. The spring has no inertia, it merely transmits force. Suppose,
instead, that the spring is a viscoelastic rod of scaled length 1 with small
mass density (ρA)(s) = εσ(s) constrained to execute longitudinal motions.
What happens as its mass density goes to 0? The specialization of (6.4a)
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for free longitudinal motion again has the form

εσxtt = ∂sN̂(xs, xst, s), 0 < s < 1. (11.1)

The requirements that the end s = 0 of the spring be fixed at the origin
and and that the end s = 1 carry a particle of mass m gives the boundary
conditions

x(0, t) = 0, (11.2)

mxtt(1, t) = −N̂(xs(1, t), xst(1, t), 1). (11.3)

The second condition is just the equation of motion of the particle. These
equations are subject to general initial conditions.

The reduced problem is obtained by setting ε = 0, in which case (11.1)
yields

N̂(xs, xst, s) = N̂(xs(1, t), xst(1, t), 1). (11.4)

Note that the right-hand side of this equation is given by (11.3). Is this
reduced problem governed by the standard ordinary differential equation?
I.e., can we “cancel” the s-derivatives in (11.3)? What is the asymptotic
status of the reduced problem?

If N̂ is independent of its second argument, i.e., if the material is elas-
tic, then (11.4) is an algebraic equation for xs(s, t) in terms of xs(1, t). If the
derivative of N̂ with respect to its first argument is positive, in accord with
(6.8), and if N̂ satisfies the growth conditions described in Section 6, then
xs(s, t) can be uniquely found in terms of xs(1, t). An integration subject to
(11.3) shows that x(s, t) and, in particular, x(1, t) can be expressed in terms
of xs(1, t). The inversion of this last representation yields an expression for
xs(1, t) in terms of x(1, t), which when substituted into (11.3) produces a
standard ordinary differential equation. This representation, however, has
no asymptotic justification, for which dissipation is needed.

If the derivative of N̂ with respect to its second argument has a positive
lower bound (so that the material is viscoelastic), then (11.4) is a family of
equations, similar to ordinary differential equations, parametrized by s for
xs(s, t) as a function of t. These are not ordinary differential equations be-
cause they depend on xs(1, t), xst(1, t). Nevertheless, by suitably combining
(11.3) and (11.4), we can obtain bona fide ordinary differential equations for
t �→ xs(·, t), xs(1, t). A combination of the Contraction-Mapping Principle
and suitable estimates (reflecting slightly sharpened versions of our consti-
tutive restrictions, needed to ensure that the spring does not suffer a total
compression) ensures that this system of ordinary differential equations has
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a globally defined unique solution. To determine whether this solution is
the solution of the standard second-order ordinary differential equation, we
suppose that there is a function g such that xs(1, t) = g(x(1, t)), which
would convert (11.3) into the requisite form. The exploration of this as-
sumption leads to a contradiction showing that there is no viscoelastic
spring for which the reduced problem is governed by a standard second-
order ordinary differential equation for all initial conditions. (It is governed
by an equation with memory. Only for special initial conditions for special
rods is the reduced problem governed by a standard ordinary differential
equation.) Thus there are errors in the elementary treatment of massless
springs, which are not too serious as we shall shortly point out. For details
of this analysis see [1] and for a correction of a proposition there see [7,
Sec. 3.11].

For viscoelastic springs, the solution of the reduced problem is the
leading term of a regular asymptotic expansion, which is accompanied by
an initial-layer expansion. The whole expansion in ε is rigorous, having ap-
propriate error bounds. The difficulty in demonstrating this lies in showing
that the terms of the initial-layer expansion are exponentially decaying in
the stretched time variable. The leading term of this expansion is a quasi-
linear parabolic equation for which such exponential bounds are required
for the solution and many of its derivatives. These bounds are obtained
by exploiting the Maximum Principle along the lines developed by S. N.
Bernstein. The details are given in [49].

If the spring is uniform, then a standard second-order ordinary differ-
ential equation provides an attractor for the solution of the reduced problem
[47]. This means that the discrepancy between the actual solution of the
reduced problem, satisfying an equation with memory, and the attracting
ordinary differential equation is transient. What happens for a non-uniform
rod is not known.

A related problem is that of the longitudinal motion of a particle at-
tached to two light springs whose ends remote from the particle are fixed. In
this case, the equation of motion for the particle, corresponding to (11.3)
becomes an internal transmission condition. The analysis of the reduced
problem and the demonstration that it has an attractor given by a stan-
dard second-order ordinary differential equation for uniform springs is much
trickier than that for the problem with a single spring. The techniques are
given in [13] for the related problem for the motion of a piston in a closed
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cylinder in which the springs are replaced by a viscous gas confined to the
cylinder.

12. Dissipativity and Shock Structure

1-dimensional gas dynamics. Let us recall the spatial (= Eulerian) formu-
lation of the equations governing the 1-dimensional longitudinal motion of
a compressible, barotropic, viscous gas (in a cylinder) [22]. Let �(y, t) and
v(y, t) denote the actual density per unit actual length and the velocity of
the material point occupying position y at time t. Then the conservation
of mass and the balance of linear momentum yield

�t = −(�v)y , (12.1)

�(vt + vvy) = −p(�)y + [κ(�)vy ]y ≡ −�P (�)y + [κ(�)vy ]y (12.2)

where p(�) and κ(�) are the pressure and viscosity corresponding to the
density � and where P (�) :=

∫ �
1 σ

−1p′(σ) dσ. It is convenient to introduce
the momentum m := �v, which converts (12.1), (12.2) to

�t = −my, (12.3)

mt = −(�−1m2)y − p(�)y + [κ(�)(�−1m)y]y. (12.4)

We assume that p(�) strictly decreases from ∞ to 0 as � increases from 0 to
∞, and we take κ to be a positive constant. In this case, vyy is a 1-dimen-
sional Laplacian, which gives (12.2) a parabolic character. When κ = 0,
system (12.1), (12.2) or system (12.3), (12.4) forms hyperbolic conservation
laws, which have been intensively studied.

All numerical schemes for hyperbolic conservation laws include some
sort of numerical regularization [28, 35, 43]. Some schemes, like the Lax-
Friedrichs and upwind schemes, when applied to (12.1), (12.2) or to (12.3),
(12.4) with κ = 0 may be regarded as difference schemes for these hyper-
bolic systems modified by the addition of a variety of viscosity terms to
both right-hand sides. A simple such modification of (12.1), (12.2) might
have the form

�t = −(�v)y + α�yy, (12.5)

vt = −[12v
2 + P (�)]y + βvyy (12.6)

where, e.g., α and β are positive constants. This modification has a viscos-
ity term βvyy differing slightly from that of (12.2) and adds viscosity αρyy
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to (12.1). Slemrod [45] observed that this modification (12.5) of the equa-
tion for the conservation of mass is equivalent to having the constitutive
equations account for capillarity effects as well as viscosity and compres-
sion. Numerical schemes of this sort seem very effective for treating shocks
in gases, not only for (12.1), (12.2), but also for far more elaborate mod-
els. Here we show that the straightforward application of such schemes to
certain problems of solid mechanics can lead to serious errors. For this pur-
pose, it is illuminating to convert system (12.1), (12.2) to their material
(= Lagrangian) form:

Let s identify a material cross section in a gas contained in a cylindri-
cal tube and let x(s, t) be its position at time t. Then its velocity and
acceleration are xt and xtt. In consonance with (6.13) we require that
xs(s, t) > 0 for all s, t, and define the inverse of x(·, t) to be ŝ(·, t), so that
y = x(s, t) ⇐⇒ s = ŝ(y, t), and y = x(ŝ(y, t), t). Thus v(y, t) = xt(ŝ(y, t), t)
and �(y, t) = (ρA)(ŝ(y, t)) where (ρA)(s) is the mass per unit reference
length of the gas in the reference configuration. The requirement that mass
be conserved is that

∫ s

a
(ρA)(σ) dσ =

∫ x(s,t)

x(a,t)
�(y, t) dy =

∫ s

a
�(x(σ, t), t)xs(σ, t) dσ (12.7)

for all a, s, so that

�(x(s, t), t)xs(s, t) = (ρA)(s). (12.8)

The time derivative of this equation is equivalent to (12.1) because vy(y, t) =
xst(ŝ(y, t), t)ŝy(y, t) = xst(ŝ(y, t), t)/xs(ŝ(y, t), t). The use of (12.7) shows
that (12.2) is equivalent to

ρAxtt = −p(ρA/xs) + κ[xst/xs]s. (12.9)

We recognize this equation as having a form just like that for the longi-
tudinal motion of rods (cf. (10.1)1). Note that in the transition from the
spatial formulation to the material formulation, the Laplacian form of the
dissipative term, with coefficient κ, has changed. We can write (12.9) as a
system of two first-order equations by setting u = xs, w = xt:

ut = ws, ρAwt = −p(ρA/u) + κ[ws/u]s. (12.10)

If we were to modify the version of this system with zero viscosity (i.e., with
κ = 0) in the same mathematical manner by which we obtained (12.5),
(12.6) from (12.1), (12.2) with κ = 0, then we would obtain

ut = ws + γuss, ρAwt = −p(ρA/u) + δwss (12.11)
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where γ and δ are positive numbers, which is not equivalent to (12.5), (12.6),
and which lacks the structure of (12.10). We refer to the α, β, γ, δ of (12.5),
(12.6), (12.11) as artificial viscosities. We shall show that the analogous in-
troduction of artificial viscosity into the vectorial equations of motion (6.4),
(6.5) for elastic rods produces equations with material responses that are
not invariant under rigid motions. The consequence is that the discrepancy
between the equations of motion (6.4), (6.6) for viscoelastic rods and such a
modification of (6.4), (6.5) with artificial viscosity is far more serious than
the discrepancy between (12.10) and (12.11). We shall show that the use of
the modifications of (6.4), (6.5) with artificial viscosity may lead to serious
numerical errors, and we then show how to correct them.

Modifications of the hyperbolic equations for an elastic rod. Let us write
the equations (6.4), (6.5) for an elastic rod as a first-order system. For
simplicity of exposition we assume that ρA and ρJ are constant, that the
constitutive functions NE, etc., do not depend explicitly on s, and that
f = o. We introduce new variables:

v := rt, ω := θt. (12.12)

Then the compatibility equations, expressing the equality of mixed partial
derivatives of θ and r , are

θt = ω, µt = ωs, (12.13a)

[νa(θ) + ηb(θ)]t = vs. (12.13b)

Now we can write (6.4)–(6.7) as

ρAvt = (NEa +HEb)s, (12.13c)

ρJωt = ∂sM
E + νHE − ηNE, (12.13d)

where the arguments of NE,HE,ME are ν, η, µ. System (12.13) corresponds
to seven scalar equations for the seven scalar unknowns ν, η, θ, µ, ω and any
two components of v . (Once these are found, we can find r by integration.)
Depending on how the components of this system are chosen (with respect
to {i , j } or {a , b} or {rs/|rs|, k × rs/|rs|}), these scalar equations have
different forms, each of which can be put into the abstract form

f(u)t = g(u)s + h(u). (12.14)

(Note that (12.1), (12.2) and (12.3), (12.4) each have this form.) A class
of modifications of this system by the introduction of a simple version of
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artificial viscosity has the form

f(u)t = g(u)s + h(u) + D · f(u)ss (12.15)

where D is a small constant positive-definite diagonal matrix. (Difference
equations for (12.15) correspond to a Lax-Friedrichs scheme.)

We construct a vectorial version of the system (12.15) for (12.13):

θt = ω + α1θss,

µt = ωs + α1µss,

(νa + ηb)t = vs + α2(νa + ηb)ss,

ρAvt = (NEa +HEb)s + α3vss,

ρJωt = ME
s + νHE − ηNE + α4ωss,

(12.16)

where the α’s are small positive parameters.
It would be closer to the spirit of the Lax-Friedrichs and upwind

schemes if the α-terms were introduced into a corresponding system of
scalar equations. A portent of some of the difficulties we must overcome is
that such modifications of equivalent systems of scalar equations are not
equivalent!

The scalar system corresponding to (12.13) that seems most elegant is
that in which v = ua +vb and all the equations of (12.13) are decomposed
into their a and b components. In this case, θ does not appear in the
componential versions of (12.13b)–(12.13d), so that (12.13a)1 is uncoupled
from the rest of the equations (just as is r). We accordingly ignore it. The
modification in the form of (12.15) of this componential version is

νt = us − µv + ωη + α1νss,

ηt = vs + µu− ων + α2ηss,

µt = ωs + α3µss,

ρAut = NE
s − µHE + ρAωv + α4ρAuss,

ρAvt = HE
s + µNE − ρAωu+ α5ρAvss,

ρJωt = ME
s + νHE − ηNE + α6ρJωss

(12.17)

where the α’s are small positive parameters.

The steadily rotating ring. Now let us specialize the equations of Section 6
to those for a circular elastic ring of natural radius 1. Since HE(ν, 0, µ) = 0
by (6.15), it follows that system (12.13), its vectorial modification (12.16),
the hyperbolic system (obtained from (12.17) by setting the α’s equal to 0),
and the full system (12.17) each admit the steady solution corresponding
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to the ring rotating with constant angular velocity ω0 with constant radius
ν0:

ν = ν0, η = 0, u = ν0ω0, v = 0, µ = 1, ω = ω0 (12.18)

provided that
ρAω2

0ν0 = NE(ν0, 0, 1) (12.19)

(which is an equation just like (7.3)).
Now we decompose v with respect to the basis {i , j } by setting

v = U i + V j , (12.20)

obtaining the modified equations
νt = ηω + Us cos θ + Vs sin θ + γ3νss,

ηt = −νω − Us sin θ + Vs cos θ + γ4ηss,

θt = ω + γ1θss,

µt = ωs + γ1µss,

ρAUt = NE
s cos θ −HE

s sin θ − µ(NE sin θ +HE cos θ) + γ5ρAUss,

ρAVt = NE
s sin θ +HE

s cos θ + µ(NE cos θ −HE sin θ) + γ6ρAVss,

ρJωt = ME
s + νĤE − ηNE + γ2ρJωss.

(12.21)

Let us check whether (12.21) admits the same trivial solution, here
with θ0(s, t) = s + ω0t. Then (12.21)1−4,7 yield corresponding trivial so-
lutions U0 = ν0ω0 cos θ0, V0 = ν0ω0 sin θ0 (to within a rigid motion). The
remaining two equations yield

ν0ω
2
0ρA sin θ0 = N0 sin θ0 + γ5ρAν0ω0 cos θ0,

ν0ω
2
0ρA cos θ0 = N0 cos θ0 − γ6ρAν0ω0 sin θ0.

(12.22)

These equations are inconsistent unless γ5ω0 cos2 θ0 = γ6ω0 sin2 θ0. Thus
this modification does not admit the trivial solution (12.18) (unless ω0 = 0)!

Invariant constitutive equations. It can be shown that the most general
constitutive equations for our rod theory that are invariant under rigid
motions are those in which N,H,M depend possibly nonlocally in space
and time on the strains ν, η, µ [7, Chap. 8]. In particular, these resultants
can depend on ν, η, µ and some of their derivatives with respect to s, t,
but they cannot depend on vs, e.g. We now show that our modifications
correspond to constitutive equations that are not invariant, show that their
use in numerical treatments can lead to severe errors, and then show how
to construct invariant modifications.
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Let us write the right-hand side of (12.16)4 as (NEa+HEb+α3vs)s and
interpret the term in parentheses as an expression of the form N+a +H+b
where N+ and H+ are modified constitutive functions. Since vs lacks the
form Pa +Qb where P and Q depend (nonlocally) on ν, η, µ, in particular,
since vs =rts = (νa +ηb)t, which involves the prohibited θt, it follows that
these modified functions are not invariant.

It is clear how to modify (12.16)4,5 to produce simple dissipative ver-
sions that are invariant under rigid motions:

ρAvt = [(NE + β3νt)a + (HE + β4ηt)b]s,

ρJωt = (ME + α4ωs)s + (HE + β4ηt)ν − (NE + β3νt)η
(12.23)

where the β’s are positive numbers.
We shall tacitly show that the compatibility equation (12.16)3 is not

invariant under rigid motions, in the process of adjusting it to make it so.
Since the addition of dissipative mechanisms to the compatibility equations
(12.13a), (12.13b) plays a critical role in numerical (and many analytic)
methods, we cannot avoid this problem by considering difference equations
for the system (12.13a), (12.13b), (12.23). An invariant modification corre-
sponding to the Lax-Friedrichs scheme is one in which there is a dissipation
term in each equation and the system is equivalent to (6.4) with invariant
constitutive equations for N,H,M .

Let us first show how to reconstitute a version of (6.4b) from (12.16)2

and (12.23)2. (Equation (12.16)1 is essentially equivalent to (12.16)2.) For
this reconstituted (6.4b), the issue of invariance does not intervene. Since
(12.16)2 expresses the equality of a t-derivative and an s-derivative on a
simply-connected domain of (s, t)-space, there is a potential (which must
be our variable) θ such that

θs = µ, θt = ω + α1µs = ω + α1θss. (12.24)

We replace the ω’s in (12.23)2 with that given by (12.24)2 to obtain

ρJθtt =[M̂ + (ρJα1 + α4)θst − α1α4θsss]s + (HE + β4ηt)ν − (NE + β3νt)η,
(12.25)

which clearly has the requisite invariance. The terms with θsst describe
viscosity, and, the θssss describes strain-gradient effects. (The role of this
derivative is reminiscent of its role in the simplest linear equation for the
flexure of a rod: wtt + γwssss = 0.)

We now turn to the treatment of (12.16)3 and (12.23)1, which is far
trickier because their vectorial character causes the full force of rotational
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effects to intervene. We modify (12.13b) thus:

[νa(θ) + ηb(θ)]t = vs + α2[νa(θ) + ηb(θ)]ss + α2gs, (12.26)

where g is a function at our disposal. This equation implies that there is a
vector-valued function r such that

rs = νa(θ) + ηb(θ), rt = v + α2[νa(θ) + ηb(θ)]s + α2g . (12.27)

We replace v in (12.23)1 with its expressions coming from (12.27)2 to obtain

ρArtt = ρAα2[νa(θ)+ηb(θ)]st +ρAα2gt +[(NE +β3νt)a +(HE +β4ηt)b)]s.
(12.28)

For this equation to have the requisite invariance, the first two terms on
the right-hand side must have the form (Pa + Qb)s where P and Q de-
pend (possibly nonlocally) only on ν, η, µ; e.g., by depending on these ar-
guments and their derivatives. Now the first term on the right-hand side
does not have this form because its coefficients of a and b depend on θt.
We accordingly choose g to make the sum of the first two terms equal
ρAα2[νta(θ) + ηtb(θ)]s, which gives (12.28) the requisite form

ρArtt = {[NE + (2ρAα2 + β3)νt]a + [HE + (2ρAα2 + β4)ηt]b}s, (12.29)

by taking

g(s, t) = g(s, 0) −
∫ t

0
[θt(νb − ηa)]s dτ. (12.30)

In this case, (12.26) contains an integral, which does not look pretty, but
the time derivative of it reduces to

[νa(θ) + ηb(θ)]tt = vst + α2[νta(θ) + ηtb(θ)]ss. (12.31)

Thus this dissipative version of (12.13b) has a parabolic-hyperbolic charac-
ter, instead of the purely parabolic character of the corresponding equations
in (12.16). In particular, the principal parts of the a and b components of
(12.31) are νtt − νsst and ηtt − ηsst.

Note that (12.29) has a character quite different from that of (12.25)
because (12.29) lacks the high space derivatives present in (12.25). The
explanation for this is simple: In going from (12.16)5 to (12.23)2, we retained
the term α4ωss because its presence did not interfere with the treatment
of invariance. On the other hand, we dropped α3vss in going from (12.16)4

to (12.23)1 because it was likely to cause some trouble. By retaining this
term, we could give (12.29) high space derivatives. We omit the details,
which would emphasize that the invariant versions that we obtain are not
unique.
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Numerical treatment of the rapidly rotating elastic ring. We have found
that if a uniform circular elastic ring is sufficiently strong in resisting ex-
tension, then it admits free steady rotations about its center in which the
deformed constant radius responds to the centrifugal force. We now treat
this problem numerically as an initial-value problem for system (12.21) in
which the initial position and velocity fields are exactly those for the steady
rotation. We want to see what happens when this problem is treated by
standard methods that are not invariant.

We take the natural radius of the ring to be 1, and take s ∈ [0, 2π]
to be the arc-length parameter of r in the reference configuration. All our
variables save θ are taken to have period 2π in s, while θ(s + 2π, t) =
θ(s, t) + 2π. We take initial conditions to be those for the steadily rotating
ring of radius 2, so that (12.18) and (12.20) hold with ν0 = 2. We take the
stored-energy function to have the form

Gh−1W

= 1
4ν

2 + 1
4ν

4 + 1
4ν

−2 + 1
2ν

2η2 − ν + 1
2η

2 + 1
4η

4 + 10
3 h

2ν

+ h2µ[13µ
2 + 1

3µ− 4
3ν

3 + 1
2ν

2µ− 4
3νη

2 − 1
3ν + 1

4µν
−4 − 1

3ν
−3 + 1

6η
2µ]

(12.32)
(cf. (6.7)) where G represents the shear modulus (here taken to equal 4

10
of the elastic modulus) and 2h represents the thickness of the ring. This
energy, inspired by 2-dimensional considerations, penalizes the vanishing
of ν but does not penalize a violation of (6.13). We scale time so that the
shear wave speed is 1/

√
2.

To promote the possible appearance of instabilities we use a slightly
non-uniform mesh with 200 grid points. We now numerically solve our
initial-value problem for the unmodified version first with a standard Lax-
Friedrichs scheme, then with a van Leer MUSCL scheme [36], and finally
with a difference scheme corresponding to invariant system (12.23),
(12.24)2, (12.31).

In Figure 4 we plot ν, η, µ at a fixed material point as a function of t
for each of the two numerical solutions. We see that these variables for the
standard Lax-Friedrichs scheme stay close to those of the exact solution,
whereas ν and µ for the MUSCL scheme suffer sharp jumps before seeming
to approach their values for the reference configuration. It is likely that the
variation in µ is so large as to be inconsistent with (6.13), a difficulty that
could be avoided by using more refined constitutive functions. In this and
the next two figures, η is very close to the exact solution η = 0, suggesting
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Figure 4. Time evolutions of ν, η, µ at a fixed material
point as computed by the Lax-Friedrichs scheme and the
MUSCL scheme. The graphs with the large variation cor-
respond to the latter. The exact solutions, given by the in-
variant Lax-Friedrichs scheme, are not shown. Note that the
scales of each figure are vastly different.
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that shear effects are negligible for this problem. (Such effects would be sub-
stantial for a motion combining this rotation with spinning [2].) The rapid
and small oscillations of η in Figure 4 are no doubt due to roundoff error.
In Figures 5 and 6 we show numerical solutions for the functions ν, η, µ at
the fixed time t = 5. Here these functions computed by the standard Lax-
Friedrichs scheme are relatively smooth. The bending strain differs most
from the exact solution. The functions computed by the MUSCL scheme
are more jagged and differ markedly from the exact solution. Indeed, they
exhibit singular behavior near the middle of the range of s. We find similar
behavior for the velocities.

What is the source of the discrepancies? The invariant dissipation pe-
nalizes relative motions of the ring, but not rigid motions. The dissipation
for the standard Lax-Friedrichs scheme includes a mechanically curious vis-
cous mechanism akin to air resistance, which would tend to slow down the
rotation. Our results indicate that the MUSCL scheme, which adaptively
supplies nonlinear viscosity, has a similar mechanism. Such mechanisms
change our very special initial conditions at time 0 to typical initial con-
ditions at a later time, and typical conditions for hyperbolic conservation
laws typically give rise to shocks.

Why does the standard Lax-Friedrichs scheme not exhibit shock-like
behavior, and accordingly appear to be more effective than the MUSCL
scheme, which does exhibit such behavior? Since the numerical values for
the invariant Lax-Friedrichs scheme are indistinguishable from the exact
solution for the time interval treated, we cannot judge the results for the
standard Lax-Friedrichs scheme to be good. In our numerical experiments,
we found that enlarging the nonuniformity of the mesh, reducing the dissi-
pation, changing the thickness h, extending the time interval, and changing
the constitutive functions could each enlarge the discrepancy between the
solution computed by the standard Lax-Friedrichs scheme and the exact
solution, with the computed solutions exhibiting some shock-like behav-
ior and ultimately approaching the natural reference state. The MUSCL
scheme, on the other hand, apparently because of its sophisticated dissipa-
tive mechanism, is designed to capture shocks in a way superior to that of
the Lax-Friedrichs scheme. Our computations suggest that the dissipative
mechanism of the MUSCL scheme is not invariant, that its lack of invari-
ance quickly moves the solution away from the initial conditions for the
exact solution, and that the scheme with its small dissipation effectively
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Figure 5. The forms of ν, η, µ at a fixed time t = 5 as com-
puted by a standard Lax-Friedrichs scheme and an invariant
Lax-Friedrichs scheme. The graphs of the latter, which are
the exact solutions, are the straight lines. Note that the
scales of each of these graphs are very different.

captures the resulting shocks. (It would be valuable to modify the MUSCL
scheme to make it invariant for problems of solid mechanics.)
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Figure 6. The forms of ν, η, µ at a fixed time t = 5 as com-
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There is an extensive literature on artificial viscosity; see [35, 43] and the references

cited therein. Shokin [43] treats questions of invariance under change of coordinates,

which are not the questions we have treated above. For a treatment of invariant forms of

artificial viscosity for rods moving in space, see [6]. Details on the computations leading

to Figures 4–6 are available upon request.

In the process of constructing invariant modifications corresponding to the Lax-

Friedrichs scheme, we may introduce strain-gradient terms into the equations of motion.
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These have the character of modifications of the dispersive Lax-Wendroff and Beam-

Warming schemes. Our methods of constructing invariant regularizations leads to attrac-

tive new kinds of constitutive equations. Their study might throw light on open questions

of shock structure, for which deep analyses have been required to study the asymptotics

of systems like (12.5), (12.6) as α, β → 0 [18, 27].

13. Conclusion

The central issue in all of nonlinear continuum mechanics is the choice
of physically and mathematically natural classes of constitutive equations.
The situation for elastic materials is becoming clear, not in the sense that
there is a single universal set of appropriate conditions as Truesdell once
wished (cf. [46]), but that there is a range of alternative conditions, whose
interrelationships and physical significance are reasonably well understood
[7, 16]. In contrast, the situation for constitutive restrictions on dissipative
mechanisms like viscosity and regularizing mechanisms like strain-gradient
effects and capillarity is very far from being well understood. Even for os-
tensibly simple constitutive equations like (2.4), viscous and elastic effects
are inextricably linked due to the presence of the argument Ct, which in-
volves products of px and px t. Besides the strong viscosity we have studied
above, there are many other viscous mechanisms involving memory effects.
Which of these manifold mechanisms are physically appropriate for specific
materials is still a largely open problem. Though there are attractive treat-
ments of specific problems, the analysis of nonlinear problems with memory
is still in its infancy [41].

In most of the dynamical problems treated above we employed a strong
viscous mechanism corresponding to a uniform version of (6.12). This con-
dition, together with a strengthening of it to cause the viscosity to become
infinite at a total compression, ensures that initial-boundary-value prob-
lems for the viscoelastic rods of Section 6 do not permit shocks and have
globally defined regular solutions [12]. The role of viscosity was not con-
spicuous in Section 7 because we were examining just ordinary differential
equations. For the interesting problem of the loss of stability of these “triv-
ial solutions” to non-radial solutions, the strong viscosity would again play
a central role, as it does in various ad hoc models of parametric instability,
e.g., that of [25, 37]. Viscosity, of course, does not enter in the equilibrium
problem treated in Section 8. But as we mentioned in the first paragraph
of Section 10, the presence of strong dissipative mechanisms is needed to
make sense of the traditional doctrine of snapping, which was commented
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on in the last paragraph of Section 8. The treatment of Section 9 could
be enriched by a discussion of how magneto-elastic controls could control
viscosity [4]. The central theme of Sections 10–12 was the pervasive role of
viscosity in the analysis.
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