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Abstract

Nonlinear hyperbolic systems with relaxations may encounter different scales
of relaxation time, which is a prototype multiscale phenomenon that arises in many
applications. In such a problem the relaxation time is of O(1) in part of the domain
and very small in the remaining domain in which the solution can be approximated
by the zero relaxation limit which can be solved numerically much more efficiently.
For the Jin–Xin relaxation system in such a two-scale setting, we establish its well-
posedness and singular limit as the (smaller) relaxation time goes to zero. The limit
is a multiscale coupling problem which couples the original Jin–Xin system on
the domain when the relaxation time is O(1) with its relaxation limit in the other
domain through interface conditions which can be derived by matched interface
layer analysis. As a result, we also establish the well-posedness and regularity (such
as boundedness in sup norm with bounded total variation and L1-contraction) of
the coupling problem, thus providing a rigorous mathematical foundation, in the
general nonlinear setting, to the multiscale domain decomposition method for this
two-scale problem originally proposed in Jin et al. in Math. Comp. 82, 749–779,
2013.

1. Introduction

Consider the hyperbolic relaxation system proposed by Jin and Xin [16]

{
∂t u

ε + ∂xv
ε = 0, (1.1a)

∂tv
ε + a2∂x uε = −λ(x, ε)(vε − f (uε)), (1.1b)
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for some small relaxation parameter ε. Here the relaxation rate λ depends on the
space variable x in the following way:

λ(x, ε) =
{

1, x < 0,
1
ε
, x > 0, 0 < ε � 1.

(1.2)

This is a prototype example of multiscale problems in which one encounters a dras-
tic change of time or spatial scales within one problem. One famous example is the
space shuttle reentry problem in which the space shuttle encounters transition from
rarefied gas (described by the Boltzmann equation) to dense gas (described by fluid
equations) [4,9,18]. Other examples are transport equations between differential
materials or media [1,8,10,13], and other multiscale problems [11]. While a com-
plete mathematical theory for the coupling between the (mesoscopic) Boltzmann
equation and the (macroscopic) fluid dynamics equations remains one of the major
challenges in PDEs and mathematical physics, a thorough mathematical analysis
of the problem in question sheds some light in this direction, and is of significant
interest in understanding some of the multiscale computational methods.

In the relaxation parameter λ(x, ε), uniform in x with λ(x, ε) = 1/ε for all
x ∈ R and under the well-known sub-characteristic condition:

| f ′(u)| < a, (1.3)

for all the u under consideration, it has been proved [3,7,17,19,23,24] that the
solution {(uε, vε)}ε>0 of (1.1) converges as ε goes to zero to a limit (u, v) with
v = f (u)where u is the entropy weak solution to the nonlinear scalar conservation
law

∂t u + ∂x f (u) = 0, t > 0. (1.4)

Since (1.4) is the macroscopic equation that does not depend on the small parameter
ε, it is computationally more efficient to solve this equation rather than the original
system (1.1) in the domain x > 0. However, one needs to couple this equation with
the original system (1.1) for x < 0 through some interface condition at x = 0 that
provides the transmission of data from one scale to the other, or from one domain
to the other.

In [15], such a domain coupling method was provided as the following:
When f ′(u) < 0 for all u in between u(t, 0−) and u(t, 0+),⎧⎨

⎩
∂t u + ∂x f (u) = 0, x > 0, t > 0, (1.5a)

v(t, x) = f (u(t, x)), (1.5b)

u(0, x) = u0(x), (1.5c)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t u + ∂xv = 0, x < 0, t > 0, (1.6a)

∂tv + a2∂x u = f (u)− v, (1.6b)

u(0, x) = u0(x), v(0, x) = v0(x), (1.6c)

v(t, 0−) = v(t, 0+) = f (u(t, 0+)); (1.6d)
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when f ′(u) > 0 for all u in between u(t, 0−) and u(t, 0+)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t u + ∂xv = 0, x < 0, t > 0, (1.7a)

∂tv + a2∂x u = f (u)− v, (1.7b)

u(0, x) = u0(x), v(0, x) = v0(x), (1.7c)

v(t, 0−) = f (u(t, 0−)), (1.7d)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t u + ∂x f (u) = 0, x > 0, t > 0, (1.8a)

v(t, x) = f (u(t, x)), (1.8b)

u(0, x) = u0(x), (1.8c)

u(t, 0+) = u(t, 0−). (1.8d)

Based on the condition that the flux v is continuous across the interface, here
the interface condition is constructed through a matched interface layer analysis,
which depends on the sign of f ′(u) at the interface. Specifically, when f ′(u) < 0,
there will be an interface layer in u but not in v around x = 0+; then one should
solve the conservation law in the right domain first and then transfer the value
of v(t, 0) to the left, see (1.6d). On the other hand, when f ′(u) > 0, there is no
interface layer in u or v to the leading order, one just uses v(t, 0) = f (u(t, 0−)) as
the interface condition for the relaxation system in the left domain, and then uses
the value u(t, 0−) as the boundary condition for the right region (See 1.7d).

An important property of the domain coupling method is that the two domains
are now completely decoupled, and it can be solved numerically in one domain first
and then the second domain, using any high resolution shock capturing method.
The method can be easily extended to more complicated cases such as dynamic
interfaces. (See [15]).

For the linear case when f (u) = λu with |λ| < 1, the authors in [15] showed
that the solution of the original system (1.1) and (1.2) is strictly well-posed in the
sense that the L2 norm of solution is bounded by the L2 norm of the initial and
boundary data. Then they proved the asymptotic convergence of (1.1) and (1.2) to
the decoupled system (1.5)–(1.6) or (1.7)–(1.8) as ε → 0 and obtained the optimal
convergence rate.

This paper studies the case of nonlinear flux f (u). We first establish the well-
posedness of the or relaxation system (1.1) with a discontinuous relaxation rate
(1.2), and then prove asymptotic limit as ε → 0. To deal with possible strong
oscillations developed at the interface x = 0 in the limit ε → 0, for technical
reasons, we assume that the interface is not characteristic; that is, wave velocities
do not vanish: namely for some real constant C0 > 0, either

0 < C0 � f ′(u), for all u ∈ R, (1.9)

or

f ′(u) � −C0 < 0, for all u ∈ R. (1.10)

Under this assumption, no shock wave can stick to the interface. Without real
restriction, we will assume throughout the paper that the flux function f belongs
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to C1(R) with f (0) = 0. The initial data u0 is assumed to be compactly supported
with

u0(x) ∈ L∞(R) ∩ BV(R). (1.11)

Then, v0 is chosen well-prepared (the initial data are in the equilibrium state)

v0(x) = f (u0(x)), (1.12)

so that v0 ∈ L∞(R) ∩ BV(R), and is also compactly supported since f (0) = 0.
This condition is not mandatory on the left part of the domain, here we make this
assumption for simplicity. Introduce

N0 = max(‖ u0 ‖L∞(R), ‖ f (u0) ‖L∞(R)),

F(N0) = sup
|ξ |<N0

| f (ξ)|, B(N0) = 2N0 + F(2N0) (1.13)

M(N0) = sup
|ξ |�B(N0)

| f ′(ξ)|,

the sub-characteristic condition is specified as follows [19]

a > M(N0). (1.14)

Under these assumptions, we also obtain the well-posedness of the coupling
problem, as well as the regularity of its solution. The results are summarized by the
following theorem.

Theorem 1. Given initial data u0 satisfying (1.11) and v0 well-prepared according
to (1.12). Assume (1.9) or (1.10) and let T > 0 be any real number.

1. For any given ε > 0, there exists a unique global solution (uε, vε) to the original
two-scale problem (1.1) and (1.2).

2. There exists a unique solution (u, v) in L1 ∩ L∞ ∩ BV ((0, T ) × Rx )
2 of the

coupling problem (1.16)–(1.17). Moreover, two such solutions (u1, v1) and
(u2, v2) verify for almost all t in (0, T ) the L1-contraction property:

1

2a
‖ r1+(t, ·)− r2+(t, ·) ‖L1(R−

x )

+ 1

2a
‖ r1−(t, ·)− r2−(t, ·) ‖L1(R−

x )
+ ‖ u1(t, ·)− u2(t, ·) ‖L1(R+

x )

�‖ u1
0 − u2

0 ‖L1(Rx )
, (1.15)

where r i± = (aui ± vi )(t, x), i = 1, 2.
3. As ε → 0, the family of two-scale solutions {(uε, vε)}ε>0 converges in the

L1((0, T ) × Rx )
2 topology to the unique solution (u, v) of the initial value

problem (1.16)–(1.17) with initial data (u0, f (u0)).
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Let us briefly report on the technical difficulties and the tools we have developed
to overcome them. As expected, the multiscale nature of the PDEs (1.1)–(1.2) is re-
sponsible for the difficulties: the relaxation rate λ(., ε) in (1.2) is non-homogeneous
in the space variable x and furthermore discontinuous. These two original features
actually make it challenging to derive a uniform BV estimate for the sequences
{uε}ε>0 and {vε}ε>0. First, the lack of smoothness in the space variable of the
coefficients of the PDEs (1.1) obviously makes the standard approach based on
a direct differentiation of the equations with respect to x (see [24] for instance)
impossible. In the case of a constant relaxation rate, such a procedure allows us to
readily infer L1 estimates of the space derivatives of the unknowns uε and vε from
the quasi-monotone property of the differentiated equations. Another classical ap-
proach directly makes use of the L1-contraction principle underlying the Jin–Xin
model with a single relaxation scale ε [17,20]. This approach heavily relies on the
invariance of those PDEs with respect to shifts in the space variable; shifting any
given solution (u, v) in x gives birth to a new solution while shifting correspond-
ingly the initial data (u0, v0). Uniform BV estimates for uε and vε are then easily
inferred. However in the present setting, the non-homogeneity of the relaxation
rate λ in x clearly prevents the multiscale equations from the reported invariance
property.

To bypass these obstacles, we propose to take advantage of the fact that the
coefficients in these equations are independent of the time variable. The leading idea
is to derive L1 estimates for the time derivatives of the unknowns in order to infer
corresponding estimates for the space derivatives from the governing PDEs. Let us
immediately stress that the resulting estimate fails to be uniform in ε regarding the
sequence {uε}ε>0. Nevertheless, we will be a position to get the strong convergence
of this sequence in a relevant topology using the property that the interface x = 0
is not characteristic thanks to either assumption (1.9) or (1.10).

To implement this program, a first suitable regularization of the coefficients
and data for the multiscale system (1.1)–(1.2) yields a Cauchy problem for which
the standard theory (see Protter and Weinberger [22]) ensures the existence and
uniqueness of smooth solutions uε,δ and uε,δ for any given regularizing parameter
δ > 0 while by essence, the scale ε > 0 is kept fixed. Differentiating the regularized
equations in the time variable gives rise to a system for governing the time deriv-
atives of uε,δ and uε,δ which is quasi-monotone under a natural sub-characteristic
condition. Such a property allows us to derive uniform L1 estimates for the time
derivatives under consideration since the well-prepared initial data prevents us from
any boundary layer at t = 0. The governing equations in the original PDEs (1.1)
then provides natural L1 estimates of the space derivatives of the unknown. Let-
ting the regularizing parameter δ go to zero, we establish that uniform L1 in time
continuity holds for both uε and vε. We further obtain a uniform BV estimate for
the sequence {vε}ε>0. But a corresponding uniform BV estimate for {uε}ε>0 stays
unknown. Nevertheless, we prove that the entropy dissipation rate coming with
the multiscale relaxation procedure allows us to recover the strong convergence of
{uε}ε>0 to a limit u in L1([0, T ]×R), for any given T > 0, from the strong conver-
gence of the sequence {vε}ε>0 in this topology. Here, the property that the interface
x = 0 is not characteristic in view of either (1.9) or (1.10) plays a central role. Again
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thanks to the entropy dissipation estimate and the non-characteristic property, the
limit u is proved to be bounded in the BV semi-norm. Both limits u and v are
identified in each half-plane R+

t ×R−
x and R+

t ×R+
x . The structure of the interface

relaxation layer at x = 0 is revealed using a blow-up technique in order to perform
a matched asymptotic analysis. The profile solutions (Uε,δ,Vε,δ) are proved to be
bounded in sup-norm with bounded local total variation. It is nevertheless enough
to pass to the limit thanks to the ODE dynamics underlying the problem with a
stable attractive critical state at infinity. The natural monotonicity property of the
relaxation profile in U and underlying Kruzkov like entropy inequalities show a
perfect match to the outer solution (u, v).

Other than its value for the understanding of a multiscale and multiphysics
coupling computational method, the problem under study also provides a math-
ematical foundation for the following interesting mathematical problem: given a
2×2 hyperbolic system (1.1) (with λ = O(1) for x < 0 and the scalar conservation
law (1.4) for x > 0, how does one couple these two sets of equations through an
interface condition at x = 0 in a mathematically well-posed way, assuming that
the flux v is continuous across x = 0? Our study provides such a mathematical
framework: first one lifts (or regularizes) the problem in the domain x > 0 via the
relaxation (1.1) with relaxation rate given by (1.2), and then takes the limit ε → 0.
One then ends up with the coupling system (1.5)–(1.8).

Finally, we also propose a coupling for general nonlinear flux f (regardless of
the sign of f ′(u(t, 0+)):⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂t u + ∂xv = 0, x < 0, t > 0 (1.16a)

∂tv + a2∂x u = f (u)− v, (1.16b)

v(t, 0−) = f (u(t, 0+)), (1.16c)

u(0, x) = u0(x), v(0, x) = v0(x), (1.16d)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t u + ∂x f (u) = 0, x > 0, t > 0 (1.17a)

v(t, x) = f (u(t, x)), (1.17b)

u(t, 0+) BL N:= u(t, 0−) (1.17c)

u(0, x) = u0(x), (1.17d)

where (1.17d) holds in the sense of the well-known Bardos–Leroux–Nédélec con-
dition (BLN) [2]:

sgn(u(t, 0+)− u(t, 0−))( f (u(t, 0+))− f (k))

� 0, for all k between u(t, 0−) and u(t, 0+). (1.18)

Then notice that in the limit equations (1.16)–(1.17), the equality of the flux at the
interface is verified

v(t, 0−) = v(t, 0+) = f (u(t, 0+)). (1.19)

We point out that the solution u on x > 0 obeys by construction and in the
usual weak sense the Kruzkov’s entropy inequalities

∂t |u − k| + ∂x sgn(u − k)( f (u)− f (k)) � 0, x > 0, t > 0, (1.20)
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for all k ∈ R. Our coupling (1.16)–(1.17) is more general than (1.5)–(1.8) since we
do not assume the sign of f ′(u) at the interface.

To prove the ε-convergence to the coupled problem (1.16)–(1.17) and to infer
BLN, one needs to match the left and right solutions through an interface layer
of thickness O(ε) and blow up the transition profile by introducing a fast variable
y = x/ε to get in limit ε → 0+ the following ODE that describes that interface
layer connecting the left trace u(t, 0−) to the flux v(t, 0+) = f (u(t, 0+)):

⎧⎨
⎩ a2 d

dy
U(t, y) = f (U(t, y))− v(t, 0+), y > 0, (1.21a)

U(t, 0) = u(t, 0−). (1.21b)

We shall see that by construction :

U(t, y) ≡ U(t, 0), y < 0, t > 0 so that U(t,−∞) = u(t, 0−), t > 0.

(1.22)

It is important to point out that there is no need to solve the inner problem (1.21)
to close the coupling problem under consideration: namely the left and right IBVP
problems (1.16)–(1.17) form a closed and well posed Cauchy problem. This is in
sharp contrast with the kinetic-fluid coupling problem where the knowledge of the
solution of the Milne’s problem [5,6,25], governing the interface layer, is needed
to close the coupling problem.

Vasseur [25] studied the coupling of the Perthame–Tadmor kinetic model [21]
with the Burgers equation. As has already been emphasized, a kinetic layer has
to be solved in this framework to determine the coupling conditions between the
left and right solutions. In addition, Vasseur’s analysis makes use of a comparison
principle for special initial data while we rely on a space-time BV framework for
general well-prepared initial data.

Let us highlight the reason why the coupling problem (1.16)–(1.17) is an ex-
tension of (1.5)–(1.8) to a more general flux. Namely,

(i) if f ′(u) > 0 for u in between u(t, 0−) and u(t, 0+), then BLN gives u(t, 0−) =
u(t, 0+). In this case U(t, y) ≡ u(t, 0−) = u(t, 0+), so there is no interface
layer.

(ii) if f ′(u) < 0 in between u(t, 0−) and u(t, 0+), then BLN always holds and
f ′(u(t, 0−)) 
= f ′(u(t, 0+)). In this case, (1.21) gives a monotone interface
profile starting from u(t, 0−) and exponentially converges to u(t, 0+) as y →
∞. This property is crucially used in the proof of Lemma 10.
These two cases correspond to (1.5)–(1.8).

(iii) if f ′(u) changes signs between u(t, 0−) and u(t, 0+), BLN can give rise to
complicated behaviors, specifically, there is a possible steady shock stuck to
the interface layer, separating U(t,+∞) from u(t, 0+). Observe that such a
shock has to be entropy satisfying since every value along the jump is subject
to BLN (1.18). Such a standing shock (having zero shock speed) comes with
the property that f (U(t,+∞)) = f (u(t, 0+)). As an example, let us consider
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the setting of the Burger’s equation f (u) = u2/2 with the initial data

u0(x) =
{+1, x < 0,

−1, x > 0,
v0(x) = f (u0(x)), x ∈ R. (1.23)

Choosing a = 1, then the (unique) solution of the coupling problem (1.16)–
(1.17) is given by:

u(t, x) = u0(x), v(t, x) = f (u0(x)), x ∈ R, t > 0 while U(t, y)

≡ 1, y > 0, t > 0. (1.24)

This solution is nothing but a steady shock stuck at the coupling interface
layer U(t, y) ≡ 1. In general, the situation where u(t, 0−) 
= U(t,+∞), a
non-constant interface layer U exists and in addition a standing shock can be
attached to it : u(t, 0+) 
= U(t,+∞). This results in a non trivial compound
inner structure to connect the outer values u(t, 0−)with the inner one u(t, 0+).

While cases (i) and (ii) are fully studied in this paper, we leave case (iii) to the
future.

The rest of the paper is organized as follows. Section 2 proves well-posedness
of the original two scale equations (1.1) and provides all the necessary a priori
estimates used in Section 3 to pass to the limit in L1((0, T ) × R), T > 0, as
ε goes to 0. It is also proved in Section 3 that the limit function (u, v) satisfies
the coupling equations (1.16)–(1.17) in the left and right domains R+

t × R−
x and

R+
t × R+

x . Along the justification of this limit we are also able to establish the
regularity of the solution (u, v). Section 4 provides the matching interface layer
analysis, proving the BNL connection for the outer solution. The proof of the main
Theorem 1 is given at the end of Section 4. We conclude the paper in section 5.

2. Well-posedness of the Original Two-scale Hyperbolic System

2.1. A regularized system

Existence and stability of the solution to the Cauchy problem (1.1), (1.2)–(1.12)
will rely on a suitable regularization of the equations and the data. Let ρ(x) be a
non-negative symmetric kernel with

ρ ∈ C∞
c (R), ρ � 0, supp(ρ) ⊂ [−1, 1],

∫
R
ρ(x) dx = 1, (2.1)

and consider the sequence of mollifiers {ρδ}δ>0 generated by ρ

ρδ(x) = 1

δ
ρ

( x

δ

)
, x ∈ R. (2.2)

The discontinuous relaxation coefficient in (1.2) is given by the following classical
regularization

�(x, ε, δ) = (ρδ ∗ λ(·, ε)) (x) (2.3)
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with the property min(1, 1
ε
) � �(x, ε, δ) � max(1, 1

ε
). More precisely

�(x, ε, δ) =

⎧⎪⎨
⎪⎩

1
ε
, x � δ,

smooth transition, −δ < x < δ,

1, x � −δ,
(2.4)

so that for any given fixed ε > 0, ‖ �(·, ε, δ) − λ(·, ε) ‖L1(R) stays uniformly
bounded with respect to δ > 0 with the following well-known property

lim
δ→0

‖ �(·, ε, δ)− λ(·, ε) ‖L1(R)= 0, (2.5)

which will be heavily used in the forthcoming analysis. The main strategy is to
recover uniform estimates in ε when sending the regularization parameter δ to 0
while keeping ε fixed.

The initial data u0 in (1.11) is smoothed according to

uδ0(x) = ρδ ∗ u0(x) (2.6)

so that uδ0 ∈ C∞
c (R) for all δ > 0. Recall that (see Guisti [12] for a proof)

ρδ ∗ u0 → u0 in L1(R) as δ → 0 with TV(ρδ ∗ u0)

� TV(u0), ‖ uδ0 ‖L∞(R)�‖ u0 ‖L∞(R) . (2.7)

Hence, the sequence {uδ0}δ>0 has uniformly bounded total variation and sup
norm. The initial data v0 is also regularized in a well-prepared manner by setting

vδ0 = f (uδ0), with vδ0 uniformly bounded in L∞(R) ∩ BV(R). (2.8)

In view of (2.7), we clearly have that vδ0 → v0 = f (u0) in L1(R) as δ → 0.
Equipped with these regularizations, we propose the following regularized Cauchy
problem {

∂t u
ε,δ + ∂xv

ε,δ = 0, (2.9a)

∂tv
ε,δ + a2∂x uε,δ = −�(x, ε, δ)(vε,δ − f (uε,δ)), (2.9b)

with initial data

uε,δ(0, x) = uδ0(x), vε,δ(0, x) = f (uδ0(x)). (2.10)

The existence theory for the smooth solution to Cauchy problem (2.9)–(2.10) is
classical, and we refer the reader to Protter and Weinberger [22], for, instance for
the following result. To simplify the notations, we omit the superscripts ε and δ
when they are fixed.

Theorem 2. Given initial data u0 and v0 in C1(R) that vanish outside the interval
[−M,M] for M > 0, there exists a unique classical solution (u, v) to the Cauchy
problem (2.9) defined on a maximal time interval [0, Tc). If the maximal time Tc is
finite, then necessarily:

lim
t→Tc

sup
x∈R

(|u(t, x)| + |v(t, x)|) = +∞. (2.11)

The solution (u, v) belongs to C1([0, Tc) × R) and vanishes outside
⋃

t∈[0,Tc)[−(M + at),M + at].
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Under the sub-characteristic condition (1.14), the global in time existence of
the classical solution (uε,δ, vε,δ) of (2.9)–(2.10) for any given δ > 0 and ε > 0 is
guaranteed by the following result due to Natalini [19].

Proposition 3. Under the sub-characteristic condition (1.14), the classical solution
(uε,δ, vε,δ) of (2.9)–(2.10) is bounded in sup norm for all time, uniformly with
respect to ε and δ with

|uε,δ(t, x)| � B(N0), |vε,δ(t, x)| � aB(N0), for (t, x) ∈ (0,∞)× R.

(2.12)

The smooth non-homogeneity in the space variable x in the relaxation parameter
�(x, ε, δ) > 0 does not affect the proof given by Natalini [19] which was for
constant �. In fact, exactly the same steps apply.

2.2. Existence and stability of the solution

The main results of this section ensure existence and stability for the two scale
Cauchy problem (1.1), (1.2)–(1.12).

Theorem 4. Given well-prepared initial data u0 and v0 satisfying the assumption
(1.11)–(1.12). Assume the sub-characteristic condition (1.14). Then for any given
fixed parameter ε > 0 and time T > 0, the sequence {(uε,δ, vε,δ)}δ>0 of classical
solutions of the regularized problem (2.9)–(2.10) converges as δ → 0 to a unique
weak solution (uε, vε) of the Cauchy problem (1.1), (1.2)–(1.12) in L1((0, T )×R).
This weak solution satisfies the following a priori estimates, for a real constant
C > 0 independent of ε:

(i) ‖ uε(t, ·) ‖L∞(R)� B(N0), ‖ vε(t, ·) ‖L∞(R)� aB(N0); (2.13)

(ii) T V (vε(t, ·)) � C; (2.14)

(iii) T V{x<0}(uε(t, ·)) � C(1 + T ), T V{x>0}(uε(t, ·)) � C

(
1 + T

ε

)
;

(2.15)

(iv) ||uε − f −1(vε)||L1((0,T );L2(R+
x ))

� CT
√
ε; (2.16)

for all time T > 0 while

(v)
∫

R
|uε(t2, x)− uε(t1, x)| d � C |t2 − t1|, 0 � t1 � t2 � T ; (2.17)∫

R
|vε(t2, x)− vε(t1, x)| d � C |t2 − t1|. (2.18)

Let us stress that the first estimate in (2.13) ensures from the definition (1.14)
of a that

| f ′(u)| < a. (2.19)
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It is important to point out that the BV estimate (2.15) for {uε}ε>0 in the right half
line {x > 0} is non uniform with respect to ε. The additional estimate (2.16) will be
shown as a consequence of the entropy dissipation estimation. The time and space
uniform BV properties satisfied by the sequence {vε}ε will imply on the first hand
that {vε}ε converges to a limit function v in the strong L1((0, R)×(0, T )) topology
for any given R > 0 and T > 0, while on the second hand the limit u = f −1(v) is
in BV ([0, T ] × Rx ) as a consequence of (iv).

The proof of this statement relies on the use of the characteristic variables

r±(t, x) = a u(t, x)± v(t, x), (2.20)

where we temporarily skip the small parameters in the notations for simplicity.
Then the relaxation system (1.1) or (2.9) can be written in the convenient diagonal
form: {

∂t r− − a∂xr− = −�(x, ε, δ)G(r−, r+), (2.21a)

∂t r+ + a∂xr+ = �(x, ε, δ)G(r−, r+), (2.21b)

where

G(r−, r+) = f

(
r− + r+

2a

)
− r+ − r−

2
. (2.22)

A key point of the analysis is that the sub-characteristic condition (1.14) (see Kat-
soulakis and Tzavaras [17], Natalini [19] for instance) makes the mapping G quasi-
monotone in the sense that

∂r− G(r−, r+) > 0, ∂r+ G(r−, r+) < 0 (2.23)

for any given pair (r−, r+) with |r− + r+|/2a < B(N0) and thus satisfying
| f ′((r− + r+)/2a))| < a with a prescribed according to (1.14). In other words
and equivalently, as soon as the solution (uε, vε) belongs to D(u0) in (1.1) then the
quasi-monotone property (2.23) is satisfied. In addition, there exists a unique C1

curve (r+, h(r+)) of equilibria locally which satisfies

G(h(r+), r+) = 0 (2.24)

for all r+ in R such that |r+ + h(r+)|/2a < B(N0) and hence (1.14) holds. For all
the r+ under consideration,

h(r+) is strictly increasing, (2.25)

and we have h(0) = 0. It is worth observing that the (well-defined) unique solution
	 of 	 + h(	) = 2ak for any given k with |k| < B(N0) satisfies the identity
	− h(	) = 2 f (k).

Let us also recall the L1 contraction property which will be heavily used later
on. Given two classical solutions of the equations (2.21), the differences r− − r̄−
and r+− r̄+ satisfy, once respectively multiplied by sgn(r−− r̄−) and sgn(r+− r̄+):

∂t |r− − r̄−| − a∂x |r− − r̄−|
= −�(x, ε, δ)(G(r−, r+)− G(r̄−, r̄+))sgn(r− − r̄−), (2.26)
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∂t |r+ − r̄+| + a∂x |r+ − r̄+|
= +�(x, ε, δ)(G(r−, r+)− G(r̄−, r̄+))sgn(r+ − r̄+). (2.27)

Thus adding these two identities gives

∂t (|r+ − r̄+| + |r− − r̄−|)+ a∂x (|r+ − r̄+| − |r− − r̄−|)
= �(x, ε, δ)(G(r−, r+)− G(r̄−, r̄+))(sgn(r+ − r̄+)

−sgn(r− − r̄−)) � 0, (2.28)

thanks to the quasi-monotonicity property (2.23). For any given 	 ∈ R with |	 +
h(	)|/2a < B(N0), choosing r̄+ = 	 and r̄− = h(	) in (2.28) yields

∂t (|r+ − 	| + |r− − h(	)|)+ a∂x (|r+ − 	| − |r− − h(	)|) � 0. (2.29)

A first consequence of these inequalities is

Proposition 5. Under the assumption of Theorem 4, the pair (uε,δ, vε,δ) satisfies
for all ε, δ > 0 the following entropy like inequalities expressed in terms of the
characteristic variables∫ ∫

R+
t ×Rx

[(|rε,δ+ − 	| + |rε,δ− − h(	)|)∂tϕ

+ a(|rε,δ+ − 	| − |rε,δ− − h(	)|)∂xϕ] dt dx � 0, (2.30)

for any given non negative test function ϕ in C1
c (R

+ × R) and all 	 ∈ R such that
|	+ h(	)|/2a < B(N0).

A second consequence is the following L1 contraction property (see also [17,
19]).

Proposition 6. Assume the sub-characteristic condition (1.14). Let (uε,δ, vε,δ) and
(ūε,δ, v̄ε,δ) be two classical solutions of the equations (2.9) with initial data (uδ0, v

δ
0)

and (ūδ0, v̄
δ
0) respectively that vanish outside the cone

⋃
t�0[−(M +at), (M +at)].

Then for all time t > 0, the associated characteristic variables satisfy the following
inequality ∫ M

−M
( |rε,δ+ − r̄ε,δ+ | + |rε,δ− − r̄ε,δ− | )(t, x) dx

�
∫ M+at

−(M+at)
( |(r+)δ0 − (r̄+)δ0| + |(r−)δ0 − (r̄−)δ0| )(x) dx . (2.31)

For a problem invariant by translation in x , the above L1 contraction principle is
known to imply a uniform BV estimate for the solution to (2.9) as long as the initial
data (u0, v0) is chosen in BV (see [19] for instance). However, the dependence of
the relaxation coefficient �(x, ε, δ) in the space variable obviously prevents the
classical solution of the regularized equation (2.9) from being translation invari-
ant in x . Thus the expected uniform BV estimate can no longer be inferred from
(2.31), neither can it be derived from the direct differentiation with respect to x
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of the governing equations (2.9) (see [24]) since in the limit δ → 0, ∂x�(x, ε, δ)
concentrates in a Dirac mass at the interface x = 0. Instead, we can take advantage
of the invariance with respect to time variable of the classical solutions of (2.9) and
we prove hereafter that some uniform BV estimates can be inferred from it. The
key estimates are gathered in the following statement.

Proposition 7. Under the assumption of Theorem 4, the classical solution (uε,δ,
vε,δ) of the regularized Cauchy problem (2.9)–(2.10) satisfies, for any given ε > 0
and δ > 0,

(rmi) ‖ uε,δ(t, ·) ‖L∞(R)� B(N0), ‖ vε,δ(t, ·) ‖L∞(R)� aB(N0); (2.32)

(rmii) ‖ ∂t u
ε,δ(t, ·) ‖L1(R)� C, ‖ ∂tv

ε,δ(t, ·) ‖L1(R)� C; (2.33)

(rmiii) T V (vε,δ(t, ·)) � C; (2.34)

(rmiv) T V {x�0}(uε,δ(t, ·)) � CT (1+ ‖ λ(·, ε)−�(·, ε, δ) ‖L1(R)); (2.35)

T V {x�0}(uε,δ(t, ·)) � CT (1+ ‖ λ(·, ε)−�(·, ε, δ) ‖L1(R))

(
1 + 1

ε

)
;

(2.36)

for t ∈ (0, T ), for any given time T > 0 and some constant CT > 0 independent
of ε and δ. Moreover, under the assumption (1.9) or (1.10), introducing the inverse
function f −1 of f , the following estimate holds

(rmv) ||uε,δ − f −1(vε,δ)||L1([0,T ],L2(R+)) � CT
√
ε + δ. (2.37)

Notice that the BV estimate for uε,δ in the right half line {x > 0} is uniform
only with respect to δ for fixed ε > 0.

Proof. (i) (2.32) is nothing but the estimate (2.12) stated in Proposition 3.
(ii) Deriving the uniform L1 estimate for the time derivative of the classical so-

lutions (uε,δ, vε,δ) relies on differentiating system (2.9) with respect to time.
Define

sε,δ− (t, x) = a∂t u
ε,δ(t, x)− ∂tv

ε,δ(t, x), (2.38)

sε,δ+ (t, x) = a∂t u
ε,δ(t, x)+ ∂tv

ε,δ(t, x), (2.39)

then they solve the system{
∂t s

ε,δ
− − a∂x sε,δ− = −�(x, ε, δ)R(sε,δ− , sε,δ+ ), (2.40a)

∂t s
ε,δ
+ + a∂x sε,δ+ = �(x, ε, δ)R(sε,δ− , sε,δ+ ), (2.40b)

with

R(s−, s+) = f ′(u) s− + s+
2a

− s+ − s−
2

, (2.41)

where we again omit the superscripts ε, δ for simplicity. Under the sub-
characteristic condition (1.14), R obeys the quasi-monotonicity property

∂s−R(s−, s+) > 0, ∂s+R(s−, s+) < 0 (2.42)
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for any given ε > 0 and δ > 0. Similar steps to those used in the derivation
of the L1 contraction principle from quasi-monotonicity yields∫

|x |<M
(|sε,δ+ (t, x)| + |sε,δ− (t, x)|) dx

�
∫

|x |<M+at
(|sε,δ+ (0, x)| + |sε,δ− (0, x)|) dx (2.43)

for any given real number M > 0 such that the initial data sε,δ+ (0, x), sε,δ− (0, x)
vanish for all x with |x | � M . Next observe that the governing equations (2.9)
expressed at time t = 0 reads⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂t u

ε,δ(0, x) = − d

dx
vδ0(x), (2.44a)

∂tv
ε,δ(0, x) = −a2 d

dx
uδ0(x)+�(x, ε, δ)( f (uδ0)(x)− vδ0(x)),

(2.44b)

then by the choice of the well-prepared initial data vδ0 = f (uδ0), we get

‖ ∂t u
ε,δ(0, ·) ‖L1(R) � ‖ f ′(uδ0) ‖L∞(R) TV(uδ0), (2.45)

‖ ∂tv
ε,δ(0, ·) ‖L1(R) � a2TV(uδ0) (2.46)

which implies the bound

max(‖ sε,δ+ (0, ·) ‖L1(R), ‖ sε,δ− (0, ·) ‖L1(R))

� a(‖ f ′(uδ0) ‖L∞(R) +a)TV(uδ0) � C, (2.47)

where C > 0 is independent of δ. We therefore deduce from the L1 contraction
property (2.43) that

‖ sε,δ− (t, ·) ‖L1(R)� C, ‖ sε,δ+ (t, ·) ‖L1(R)� C. (2.48)

These uniform estimates clearly imply (2.33).
(iii) The expected BV estimate (2.34) of vε,δ immediately follows from the identity

∂xv
ε,δ(t, x) = −∂t u

ε,δ(t, x).

(iv) Let us now establish the uniform BV estimate (2.35). Rewrite the second PDE
as

a2∂x uε,δ = −∂tv
ε,δ + λ(x, ε)( f (uε,δ)− vε,δ)+�ε,δ, (2.49)

where we have set

�ε,δ(t, x) = (�(x, ε, δ)− λ(x, ε))( f (uε,δ)− vε,δ). (2.50)

Observe that∫
R

|�ε,δ(t, x)| dx � ‖ ( f (uε,δ)− vε,δ)(t, .) ‖L∞(R)‖ λ(., ε)−�(., ε, δ) ‖L1(R)

� C ‖ λ(., ε)−�(., ε, δ) ‖L1(R) (2.51)
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for some constant C > 0 independent of ε and δ. First focusing on negative
values of x so that λ(x, ε) = 1, we give the easy estimate:

a2T V{x<0}(uε,δ(t, .)) � ||∂tv
ε,δ||L1(R) + || f (uε,δ)− vε,δ||L1(R)

+ C ‖ λ(., ε)−�(., ε, δ) ‖L1(R) . (2.52)

That is, for all T > 0 and almost everywhere t ∈ [0, T ]
T V{x<0}(uε,δ(t, .)) � CT (1+ ‖ λ(., ε)−�(., ε, δ) ‖L1(R)), (2.53)

for some constant CT > 0 independent of ε and δ since uε,δ(t, .) and vε,δ(t, .)
have compact support for all finite time t > 0. Considering positive values
of x for which λ(x, ε) = 1/ε and following identical steps, one gets, for all
T > 0 and almost everywhere t ∈ [0, T ],

T V{x>0}(uε,δ(t, .)) � CT (1+ ‖ λ(., ε)−�(., ε, δ) ‖L1(R))

(
1 + 1

ε

)
,

(2.54)

again for some constant CT > 0 independent of ε and δ.
(v) The derivation of the last estimate (2.37) relies on estimating the entropy

dissipation rate taking place on the positive half line, for some convenient
smooth entropy pairs first proposed by Chen et al. [7] (see also Natalini [19]).
These are smooth functions �,
 such that � is strictly convex with

∂vv�(u, v) � η� > 0, for all (u, v), |u| � B(N0), |v| � aB(N0),

(2.55)

for some strictly positive real number ηφ > 0. One also has

∂v�(u, f (u)) = 0, for all u ∈ R. (2.56)

Without loss of generality, we assume that�(0, 0) = 0. Those properties will
suffice to our purpose and readers are referred to [7,19] for additional ones.
By construction, the smooth solutions (uε,δ, vε,δ) obey the following entropy
differential equation:

∂t�(u
ε,δ, vε,δ)+ ∂x
(u

ε,δ, vε,δ)

= −�(x, ε, δ)∂v�(uε,δ, vε,δ) · (vε,δ − f (uε,δ)). (2.57)

Observe from (2.56) that

∂v�(u
ε,δ, vε,δ) = ∂v�(u

ε,δ, vε,δ)− ∂v�(u
ε,δ, f (uε,δ))

= ∂vv�(u
ε,δ, θ

ε,δ
1 )(vε,δ − f (uε,δ)), (2.58)

for some uniformly bounded value θε,δ1 in between vε,δ and f (uε,δ). Hence
the entropy balance law (2.57) reads

∂t�(u
ε,δ, vε,δ)+ ∂x
(u

ε,δ, vε,δ)

= −�(x, ε, δ)∂vv�(uε,δ, θε,δ1 ) { f ′(θε,δ2 )}2 | f −1(vε,δ)− uε,δ|2,
(2.59)
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for some θε,δ2 in between uε,δ and f −1(vε,δ). Given T > 0, integrating the
above identity over the time space domain (0, T )× R+ clearly yields

∫
R+
�(uε,δ, vε,δ)(T, x) dx + C2

0 η�

∫ T

0

∫
R+
�(x, ε, δ)| f −1(vε,δ)

− uε,δ|2 dt dx �
∫

R+
�(uε,δ0 , f (uε,δ0 ))(x) dx

+
∫ T

0

(uε,δ, vε,δ)(t, 0) dt, (2.60)

where C0 comes from non-vanishing wave velocity assumption (1.9) or (1.10),
η� > 0 is the convexity modulus of� introduced in (2.55). Uniform bounded
sup-norm for uε,δ and vε,δ then ensures the following upper bound for the right
hand side∫

R+
�(uε,δ0 , f (uε,δ0 ))(x)dx +

∫ T

0

(uε,δ, vε,δ)(t, 0) dt � C (1 + T ),

(2.61)

for some constant C > 0 independent of ε and δ. We therefore infer from
(2.60) the estimate:∫ T

0

∫ +∞

δ

| f −1(vε,δ)− uε,δ|2 dt dx � C(1 + T )ε, (2.62)

for some uniform constant C > 0, since for all x > δ, ε�(x, ε, δ) = 1.
Arguing again from the uniform sup norm estimates, we arrive at:

∫ T

0

∫
R+

| f −1(vε,δ)− uε,δ|2 dt dx � C(1 + T )(ε + δ). (2.63)

This ends the proof. ��
Now we are ready to prove the main theorem in this section.

Proof the Theorem 4. First we show the existence of the limit (uε, vε). Since
uε,δ(t, 0−) = uε,δ(t, 0+), first observe from the estimates (iv) in Proposition 7
that, for fixed ε > 0 and any given δ > 0

TVR(u
ε,δ(t, ·)) = TV{x<0}(uε,δ(t, ·))+ TV{x>0}(uε,δ(t, ·))

+ |uε,δ(t, 0+)− uε,δ(t, 0−)|
� C(1+ ‖ λ(·, ε)−�(·, ε, δ) ‖L1(R))

(
1 + 1

ε

)
, (2.64)

and also

‖ ∂t u
ε,δ(t, ·) ‖L1(R)� C, ‖ ∂tv

ε,δ(t, ·) ‖L1(R)� C, (2.65)
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for some positive constant C independent of ε and δ. Now let ε be fixed, these
estimates ensure that {uε,δ}δ>0 and {vε,δ}δ>0 stay uniformly with respect to δ in
BV ([0, T ] × Rx ) for all time t ∈ (0, T ) with T > 0 given, while being uni-
formly bounded in sup-norm. The well-known Helly’s theorem asserts that for any
given compact K in [0, T ] × Rx , the canonical embedding of L1(K ) ∩ BV (K ) is
compact in L1(K ). A classical diagonal extraction procedure gives the existence
of an extracted subsequence, still labeled by {(uε,δ, vε,δ)}δ>0 which converges in
L1([0, T ], L1(Rx )) to some limit (uε, vε) with bounded sup-norm as δ goes to 0.

Let us conclude by showing that all extracted subsequences actually converge
to the same limit which proves in turn the uniqueness. Start from the L1 contraction
principle (2.31) which is valid in view of (2.19), one has for all time t ∈ (0, T ) and
M > 0

∫ M

−M
( |rε,δ+ − r̄ε,δ+ + |rε,δ− − r̄ε,δ− | )(t, x) dx

�
∫ M+at

−(M+at)
( |(r+)δ0 − (r̄+)δ0| + |(r+)δ0 − (r̄+)δ0| )(x) dx . (2.66)

The above convergence results assert that there exists an extracted subsequence
(rε,δ+ , rε,δ− ) (resp. (r̄ε,δ+ , r̄ε,δ− )) which converges to some limit (rε+, rε−) (resp. (r̄ε+, r̄ε−))
in L1((0, T ), L1

loc(Rx )) as δ goes to 0. These limits are seen to satisfy

∫ M

−M
( |rε+ − r̄ε+| + |rε− − r̄ε−| )(t, x) dx

�
∫ M+at

−(M+at)
( |r0+ − r̄0+| + |r0− − r̄0−| )(x) dx, (2.67)

which gives the expected uniqueness property. Let us now characterize the limit
(uε, vε). First observe from the inequality (2.28) that for any given non-negative
test function, ϕ ∈ C1

c ((0, T ] × R)

∫ ∫
[0,T ]×R

[(|rε,δ+ − r̄ε,δ+ | + |rε,δ− − r̄ε,δ− |)∂tϕ

+ a(|rε,δ+ − r̄ε,δ+ | − |rε,δ− − r̄ε,δ− |)∂xϕ] dt dx � 0. (2.68)

Now choose well-prepared initial data ū0 and v̄0 with compact support such that
(r̄+)δ0 = ψδ(x)	 and (r̄−)δ0 = ψδ(x)h(	) for any given 	 ∈ R with |	+ h(	)|/2a <

B(N0). Observe that uε(t, x) = 	+h(	)
2a , vε(t, x) = 	−h(	)

2 trivially solve the Cauchy
problem (1.1) so that by uniqueness we have in the limit δ → 0: r̄ε+(t, x) = 	 and
r̄ε−(t, x) = h(	). Therefore we have proved (2.30) for all the 	 under consideration.
An additional characterization of the limit (uε, vε) comes as follows. Let us consider
test function ϕ ∈ C1

c ((0, T ] × R), then the weak form of (2.9) reads
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ ∫
[0,T ]×Rx

uε,δϕt + vε,δϕx dx dt = 0, (2.69a)∫ ∫
[0,T ]×Rx

vε,δϕt + a2uε,δϕx +�(x, ε, δ)( f (uε,δ)− vε,δ)ϕ dx dt = 0.

(2.69b)

Notice that since f is smooth with f (0) = 0 and {uε,δ} stays uniformly bounded in
sup norm, one has f (uε,δ(t, x))| � C |uε,δ|. Moreover, f (uε,δ(t, x)) → f (uε(t, x))
almost everywhere in t and x . Therefore by Lebesgue’s dominated convergence the-
orem,
f (uε,δ(t, x)) → f (uε(t, x)) in L1([0, T ] × Rx ). Now passing to the limit in
(2.69), notice that∫ ∫

[0,T ]×Rx

�(x, ε, δ)( f (uε,δ)− vε,δ)ϕ dt dx

=
∫ ∫

[0,T ]×Rx

(�(x, ε, δ)− λ(x, ε))( f (uε,δ)− vε,δ)ϕ dt dx

+
∫ ∫

[0,T ]×Rx

λ(x, ε)( f (uε,δ)− vε,δ)ϕ dt dx, (2.70)

and by (2.5) and the sup norm estimate (2.32), the limit (uε, vε) indeed solves⎧⎪⎪⎨
⎪⎪⎩

∫ ∫
uεϕt + vεϕx dx dt = 0, (2.71a)∫ ∫
vεϕt + a2uεϕx + λ(x, ε)( f (uε)− vε)ϕ dx dt = 0, (2.71b)

for any given test function ϕ in C1
c ((0, T ] × R).

Now let us conclude this section by proving the expected a priori estimates
stated in Theorem 4.

(i) It has been proved when we showed the existence of the limit.
(ii) Concerning the uniform BV estimate for vε, first observe from the estimate

(2.34) that for any given ϕ ∈ C1
c (Rx ) with ‖ ϕ ‖L∞(R)�1,∫

R
vε,δ(t, x)∂xϕ dx � sup

ϕ∈C1
c (Rx )

∫
Rx

vε,δ∂xϕ dx = TVR(v
ε,δ) � C. (2.72)

Sending δ to 0 with ε > 0 kept fixed yields∫
Rx

vε(t, x)∂xϕ dx � C (2.73)

with the same uniform constant C above which does not depend on ε. We
therefore conclude that

TVR(v
ε(t, ·)) = sup

ϕ∈C1
c (Rx ),||ϕ||L∞(R)�1

∫
Rx

vε(t, x)∂xϕ dx � C.

(2.74)
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(iii) In view of the uniform in δ > 0 BV estimate (2.35) satisfied by uε,δ in the left
half-line {x < 0}, ε being fixed, similar steps apply to get

TV{x<0}(uε(t, ·))= sup
ϕ∈C1

c (R
−
x ),||ϕ||L∞(R)�1

∫
R−

x

uε(t, x)∂xϕ dx � C(1+T ),

(2.75)

for some constant C > 0 independent of ε. Identical steps equally apply to
infer the following non-uniform in ε BV estimate for uε,δ in the right half-line

TV{x>0}(uε(t, ·)) = sup
ϕ∈C1

c (R
+
x ),||ϕ||L∞(R)�1

∫
R+

x

uε∂xϕ dx � C

(
1 + T

ε

)
.

(2.76)

(iv) For any given fixed ε > 0, the expected last estimate

|| f −1(vε)− uε||L1((0,T );L2(R+
x ))

� CT
√
ε, (2.77)

follows by passing to the limit δ → 0 in (2.37), from the L1 convergence
of {uε,δ}δ>0 to uε and strong L1 convergence of { f −1(vε,δ)}δ>0 to f −1(vε)

derived from Lebesgue’s dominated convergence theorem, using uniform sup
norm boundedness for the sequence {vε,δ}δ>0.

(v) At last, let us write that for all times t1, t2 with 0 < t1 < t2 < T , for some
T > 0 ∫

Rx

|uε,δ(t2, x)− uε,δ(t1, x)| dx

�
∫ t2

t1

∫
Rx

|∂t u
ε,δ(t, x)| dx dt �‖ ∂t u

ε,δ(t, .) ‖L1(R) (t2 − t1)

(2.78)

which yields the required L1 Lipschitz continuity property (2.17) for uε by
sending δ → 0. The estimate (2.18) for vε is derived the same way. This
concludes the proof of Theorem 4. ��

3. Strong convergence in L1((0, T )× R)

In this section, we show the limit behavior when sending the relaxation para-
meter ε to 0. The following theorem is an extension of Theorem 1.

Theorem 8. Being given any initial condition u0, v0 satisfying (1.11)-(1.12) and
assume the sub characteristic condition (1.14).

i There is a subsequence (uε, vε) that converges to a limit (u, v) in L1((0, T )×
R)2, for all T > 0 with for all t ∈ (0, T ) :

||u(t, .)||L∞(R) � B(N0), ||v(t, .)||L∞(R) � aB(N0), (3.1)

so that (2.19) is again valid.
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ii On the left half line {x < 0}, the limit is a weak solution in the sense that it
verifies for any test function ϕ ∈ C1

c ((0, T )× R−
x ) :∫

[0,T ]×R−
x

uϕt + vϕx dx dt = 0, (3.2)∫
[0,T ]×R−

x

vϕt + a2uϕx − ( f (u)− v)ϕ dx dt = 0. (3.3)

iii In the right half line {x > 0}, the limit obeys

v(t, x) = f (u(t, x)), almost everywheret > 0, x > 0, (3.4)

and for any given non-negative test function ϕ ∈ C1
c ((0, T ) × R+

x ), the limit
function u solves∫

[0,T ]×R+
x

|u − k|ϕt + sgn(u − k)( f (u)− f (k))ϕx dx dt � 0, ϕ � 0,

(3.5)

for all k ∈ R with |k| � B(N0).
iv The following conservation law holds in the weak sense over the whole real

line ∫
[0,T ]×Rx

uϕt + vϕx dx dt = 0, (3.6)

for all ϕ ∈ C1
c ((0, T )× Rx ).

v u and v are in L∞∩BV ((0, T )×Rx ). For almost everywhere t > 0, there exist
left and right traces at the coupling interface, denoted by u(t, 0−), u(t, 0+),
and v(t, 0−), v(t, 0+) with the property v(t, 0−) = v(t, 0+).

vi The L1 contraction principle (1.15) holds and the estimates (i)–(iii) in Theorem
4 are satisfied for (u, v) as well.

Proof. For any given T > 0 and sufficiently large RT > 0 with the support of the
solutions included in (−RT ,+RT ) at time T , define the time–space domain Q =
(0, T )× (−RT , RT ). First we consider the convergence of the sequence {vε}ε>0 to
a limit function v in L1(Q). Theorem 4 asserts that vε is L1 Lipschitz continuous
in time uniformly in ε while T V(−R,R)(v

ε(t, ·)) remains uniformly bounded in ε
and time t ∈ [0, T ], so that vε is in BV (Q). Helly’s theorem then ensures the
existence of an extracted subsequence, still labelled by {vε}ε which converges
to a limit function v in L1(Q) as ε goes to zero, and almost everywhere up to
another extracted subsequence. Since {vε}ε has uniformly bounded L∞(Q)-norm,
the Lebesgue dominated convergence theorem ensures that the family { f −1(vε)}ε
converges as ε goes to zero to the limit f −1(v) in L1(Q).

Let us now introduce the time–space domain Q− = (0, T ) × (−RT , 0) and
prove the strong convergence of {uε}ε>0 in the limit ε → 0 to a limit u in
L1(Q−). Again the uniform boundedness with respect to ε and time t ∈ (0, T )
of T V(−RT ,0)(u

ε(t, ·)) and the uniform in ε L1 Lipschitz continuity of uε imply
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a uniform estimate in ε for T VQ−(uε), and hence yield the existence of a subse-
quence, denoted by {uε}ε>0, which converges in L1(Q−) and almost everywhere
to some limit function u.

Then introduce Q+ = (0, T ) × (0, RT ), and consider the following triangle
inequality

||uε − f −1(v)||L1((0,T ),L2(R+)) � ||uε − f −1(vε)||L1((0,T );L2(R+))

+ || f −1(vε)− f −1(v)||L1((0,T );L2(R+)), (3.7)

we easily deduce from the estimate ||uε − f −1(vε)||L1((0,T );L2(R+)) � CT
√
ε and

the property that f −1(vε) → f −1(v) in the strong L1(Q+) topology while being
compactly supported that {uε}ε>0 actually converges to f −1(v). As a conclusion
uε converges to its limit u, strongly and almost everywhere in Q+. Gathering the
above two results, we have proved that uε actually converges strongly in L1(Q) =
L1(Q−) ∪ L1(Q+) and almost everywhere to a limit u. Let us then recall that for
any given test function ϕ ∈ C1

c ((0, T ] × Rx ), one has:∫
[0,T ]×Rx

uεϕt + vεϕx dx dt = 0, (3.8)

so that passing to the limit ε → 0 gives the expected conservation law (3.6):∫
[0,T ]×Rx

uϕt + vϕx dx dt = 0. (3.9)

As an immediate consequence, the well-defined left and right traces of v at the
interface x = 0 verify v(t, 0−) = v(t, 0+) for almost everywhere t > 0. In
addition, u is seen to inherit bounded total variation from v from:

T V (u) = T V ( f −1(v)) � 1

C0
T V (v).

Let us now prove that the limit function (u, v) under consideration solves (3.2),
(3.3), (3.5) and (3.6) in the usual sense of distribution. Namely choosing any test
function ϕ ∈ C1

c (Q−) in⎧⎪⎪⎨
⎪⎪⎩

∫
uεϕt + vεϕx dx dt = 0, (3.10a)∫
vεϕt + a2uεϕx + ( f (uε)− vε)ϕ dx dt = 0, (3.10b)

a direct application of Lebesgue’s dominated convergence theorem proves that
the sequence { f (uε)}ε>0 converges to f (u) in L1(Q−) and yields the expected
conclusion.

In order to prove that in the time–space domain Q+, the limit u is an en-
tropy weak solution of the underlying scalar conservation law, let us first derive
the expected L1 contraction principle from the one established in (2.31). Keeping
unchanged the notations, arguing of the strong convergence of (rε+, rε−) to the limit
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(r+ = au + v, r− = au − v) in L1(Q), we pass to the limit ε → 0 in the reported
inequality to get:∫ 0

−M
(|r+−r̄+|+|r− − r̄−|)(t, x) dx+

∫ M

0
(|r+ − r̄+|+|h(r+)−h(r̄+)|)(t, x) dx

�
∫

|x |<M+at
(|r0+ − r̄0+| + |h(r0+)− h(r̄0+)|)(x)dx (3.11)

since the initial data is well-prepared. Now by the increasing monotonicity property
of h, one has

(r+ − r̄+)(h(r+)− h(r̄+)) � 0 (3.12)

so that

|r+ − r̄+| + |h(r+)− h(r̄+)| = |r+ − r̄+ + h(r+)− h(r̄+)| = 2a|u − ū|.
(3.13)

Therefore we can write∫ M

0
(|r+ − r̄+| + |h(r+)− h(r̄+)|)(t, x) dx = 2a

∫ M

0
|u − ū|(t, x) dx,

(3.14)

and correspondingly∫
|x |�M+at

(|r0+ − r̄0+| + |h(r0+)− h(r̄0+)|)(x)dx = 2a
∫

|x |�M+at
|u0 − ū0|(x) dx .

(3.15)

We thus have for any given M > 0 and time t > 0∫ 0

−M
(|r+ − r̄+| + |r− − r̄−|)(t, x) dx

+2a
∫ M

0
|u − ū|(t, x) dx � 2a

∫
|x |�M+at

|u0 − ū0|(x)dx, (3.16)

which proves the L1 contraction principle (1.15). This principle implies uniqueness
of the limit (u, v). Let us at last derive (3.5) from inequality (2.30) focusing on the
non-negative test function ϕ with compact support in R+

x . Taking the limit ε → 0
provides ∫

[0,T ]×R+
x

(|r+ − 	| + |h(r+)− h(	)|)ϕt

+a(|r+ − 	| − |h(r+)− h(	)|)ϕx dt dx � 0 (3.17)

for any given 	 ∈ R such that k = 	+h(	)
2a verifies |k| < B(N0). Observe that

	−h(	)
2 = f (k). The increasing property met by h ensures

|r+ − 	| + |h(r+)− h(	)| = |r+ + h(r+)− (	+ h(	))| = 2a|u − k| (3.18)
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as well as

|r+ − 	| − |h(r+)− h(	)| = sgn(r+ − 	)(r+ − 	− h(r+)+ h(	))

= 2sgn(u − k)( f (u)− f (k)) (3.19)

since (u − k)(r+ − 	) � 0. This yields the expected Kruz̆kov entropy inequalities.
��

4. Matched asymptotic analysis

So far we only showed that the solution of the original system (1.1) converges
to the weak solution of (3.2)–(3.5) in Q− ∪ Q+. However, since the test function
ϕ vanishes in a neighborhood of the interface, we missed the information at x = 0.
In this section, we want to derive the interface condition by matched asymptotic
analysis in a rigorous way, which is the generalization of the one used in the domain
decomposition system (1.5)–(1.8).

Since an interface layer may develop at the interface, we propose to reveal its
structure in the limit ε → 0 using a blow-up technique (see [25] in a related setting).
Fix ε > 0 and δ > 0, define the fast variable y = x

ε
so that x = εy and let

Uε,δ(t, y) = uε,δ(t, εy), Vε,δ(t, y) = vε,δ(t, εy), y ∈ R. (4.1)

Observe that Uε,δ(t, .) and uε,δ(t, .) (resp. Vε,δ(t, .) and vε,δ(t, .)) have the same
sup norm and total variation, so that Proposition 7 ensures

‖ Uε,δ(t, ·) ‖L∞(R)� C, (4.2)

TV{y�0}(Uε,δ(t, ·)) � C(1+ ‖ λ(·, ε)−�(·, ε, δ) ‖L1(R))(1 + T ), (4.3)

‖ Vε,δ(t, ·) ‖L∞(R)� C, TV(Vε,δ(t, ·)) � C, (4.4)

for some constant C > 0 independent of ε and δ. Since again Uε,δ and uε,δ have
identical sup norm, the following sub-characteristic condition holds uniformly in
ε and δ :

| f ′(Uε,δ)| < a, (4.5)

with a prescribed according to (1.14). Hence, the quasi-monotone property (2.23)
and the monotonicity of h expressed in (2.25) apply for all the values of Uε,δ under
consideration. This will play an important role hereafter. Note that∫ T

0

∫
R+

|Uε,δ(t, y)− f −1(Vε,δ(t, y))|2 dy dt

=
∫ T

0

∫
R+

|uε,δ(t, εy)− f −1(vε,δ(t, εy))|2 dεy

ε
dt

= 1

ε

∫ T

0

∫
R+

|uε,δ(t, x)− f −1(vε,δ(t, x))|2 dx dt � C. (4.6)
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The entropy dissipation rate estimate thus no longer implies the strong convergence
of sequence {Uε,δ}ε,δ in L1((0, T ), L2(R+

y )), but a direct analysis allows to infer a
uniform BV (R+

y ) estimate for {Uε,δ(t, ·)}ε,δ for almost everywhere t ∈ [0, T ], T >

0. Such an estimate is derived from the governing equations for the rescaled profiles
Uε,δ and Vε,δ that are easily seen to be C1 solutions of{

ε∂tUε,δ + ∂yVε,δ = 0, t > 0, y ∈ R, (4.7a)

ε∂tVε,δ + a2∂yUε,δ = ε�(εy, ε, δ)( f (Uε,δ)− Vε,δ), (4.7b)

for any given positive ε and δ.

Lemma 9. For all T > 0 and almost every time t ∈ [0, T ], for all R > 0, the
following BV estimate holds

T V(−R,R)(Uε,δ(t, ·)) � C R (4.8)

for some constant C > 0 independent of ε and δ.

Proof. Let us recast the second equation in (4.7):

a2∂yUε,δ = ε�(εy, ε, δ)( f (Uε,δ)− Vε,δ)− ε∂tVε,δ, (4.9)

to infer the crude upper-bound

a2|∂yUε,δ| � |( f (uε,δ)− vε,δ)(t, εy)| + ε|∂tVε,δ|, (4.10)

since ε�(εy, ε, δ) � 1. Integrating the above inequality for y ∈ (0, R) clearly
yields the expected conclusion

a2T V(−R,R)(Uε,δ(t, ·)) � 2||( f (uε,δ)−vε,δ)(t, ·)||L∞(R) R+||∂tv
ε,δ(t, ·)||L1(Rx )

,

(4.11)

since uε,δ and vε,δ are uniformly in ε and δ bounded in sup norm. ��
In view of the estimates (4.3)–(4.4)–(4.8), sending δ to 0 with ε fixed and

then letting ε go to 0, the sequence {(Uε,δ(t, ·),Vε,δ(t, ·))}ε,δ>0 can be shown to
converge to some limit (U(t, ·),V(t, ·)) in L1

loc(Ry) for any given t > 0. Clearly
(U(t, ·),V(t, ·)) have bounded sup norm and locally bounded total variation. They
will be referred hereafter to as the inner interface layer or the inner solution for
short, while (u(t, ·), v(t, ·)) will be called the outer solution.

Let us first establish the following results only concerned with the inner solu-
tions.

Lemma 10. For almost everywhere t > 0, the inner solution (U(t, ·), V(t, ·))
is Lipschitz continuous in y and admits bounded asymptotic limits (U(t,±∞),
V(t,±∞)). It verifies

V(t, y) ≡ V(t,+∞) = V(t,−∞), y ∈ R, (4.12)
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and

U(t, y) ≡ U(t,−∞), y < 0, (4.13){
a2dyU(t, y) = f (U(t, y))− V(t,+∞), y > 0,
U(t, 0) = U(t,−∞).

(4.14)

Moreover, we have :

f (U(t,+∞)) = V(t,+∞) = V(t,−∞). (4.15)

If at time t > 0, the solution U(t, ·) to (4.14) is not locally constant in the half line
{y > 0}, then it must be strictly monotone for y > 0 with

f ′(U(t,+∞)) < 0. (4.16)

Observe that the time t acts as a parameter for the inner solution. The asymptotic
limits U(t,±∞) and V(t,±∞) will be determined in the forthcoming matching
analysis (see Proposition 11) with the left and right traces at x = 0 of the outer
solution u(t, x) and v(t, x).

Proof. The weak form of (4.7) reads⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ ∫
[0,T ]×[−R,R]

ε Uε,δ∂tϕ+Vε,δ∂yϕ dt dy =0, (4.17a)
∫ ∫

[0,T ]×[−R,R]
ε Vε,δ∂tϕ+a2Uε,δ∂yϕ + ε�(εy, ε, δ)( f (Uε,δ)− Vε,δ)ϕ dt dy = 0,

(4.17b)

for any given test function ϕ ∈ C1
c ((0, T )× (−R, R)). We clearly have

lim
δ→0

ε�(εy, ε, δ) := α(y, ε) =
{
ε, y < 0,
1, y > 0,

(4.18)

so that for any given time t > 0 the uniform sup norm and local total variation
estimates (4.3)–(4.8) clearly ensure, up to some diagonal extraction procedure, that
in the limit δ → 0, ε fixed, and then ε → 0, there exists a limit (U ,V) which is
bounded in sup norm and has locally bounded total variation. This limit verifies

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ ∫
[0,T ]×[−R,R]

V(t, y)∂yϕ(t, y) dt dy = 0, (4.19a)
∫ ∫

[0,T ]×[−R,R]
a2U(t, y)∂yϕ(y)+ α(y, 0)( f (U(t, y))− V(t, y))ϕ(t, y) dt dy = 0.

(4.19b)

Choosing test function ϕ(t, y) = φ(t)ψ(y) for φ ∈ C1
c ([0, T ]) and ψ ∈

C1
c ([−R, R]) yields for almost everywhere t > 0⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫
[−R,R]

V(t, y)ψ ′(y) dy = 0, (4.20a)∫
[−R,R]

a2U(t, y)ψ ′(y)+ α(y, 0)( f (U(t, y))− V(t, y))ψ(y) dy = 0,

(4.20b)
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since φ can be chosen arbitrarily. Obviously V(t, y) is constant in y for almost
everywhere t > 0 and thus (4.12) holds. Then choosing ψ with compact support
in [−R, 0], (4.18) immediately gives that U(t, .) also stays constant in the half line
{y < 0}

U(t, y) ≡ U(t,−∞) y < 0. (4.21)

Then choosing ψ with compact support in [0, R], one easily infers that U(t, .) is a
classical solution of the ordinary differential equation

a2 d

dy
U(t, y) = f (U(t, y))− V(t,+∞), y > 0. (4.22)

To derive the required interface data U(t, 0+), we choose at last ψ ∈ C1
c (Ry) and

argue the property that U(t, y) is constant with α(y, 0) = 0 for y < 0 while being a
smooth solution of (4.22) for y > 0. Integrations by part in (4.19) which we recast
as follows ∫

[−R,0]
a2U(t, y)ψ ′(y) dy +

∫
[0,R]

a2U(t, y)ψ ′(y)

+α(y, 0)( f (U(t, y))− V(t, y))ψ(y) dy = 0, (4.23)

gives rise to

a2(U(t, 0+)− U(t, 0−)) ψ(0) = 0, (4.24)

which is, in view of (4.21)

U(t, 0+) = U(t, 0−) = U(t,−∞). (4.25)

This identifies the initial data of the ODE Cauchy problem (4.22) and proves by
the way the Lipshitz continuity property of U(t, ·) in the fast variable y.

Let us prove that the solution U(t, ·) of the ODE Cauchy problem (4.22)–(4.25)
is either trivial, that is U(t, y) ≡ U(t,−∞) for all y > 0 (and thus all y in
R), or strictly monotone in the half line {y > 0}. Indeed assume that dyU(t, y)
vanishes for some y� > 0 so that U(t, y�) is a critical point of (4.19), that is
f (U(t, y�))− V(t,+∞) = 0. But classical properties of scalar autonomous ODE
problem ensure that a critical point cannot be achieved for finite y > 0, so that
if y� is finite, necessarily U(t, y) stays constant for all y. Conversely assume the
inner solution to be non-trivial, then it is necessarily strictly monotone for all finite
y > 0 with

lim
y→+∞ dyU(t, y) = 0. (4.26)

By the Hartman–Grobman’s Theorem [14], we observe that the critical point
U(t,+∞) cannot be unstable, namely f ′(U(t,+∞)) > 0 cannot hold, so that
the last claim of Lemma 10

f ′(U(t,+∞)) < 0,

must be valid in the present setting. ��
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We now derive the following matching conditions to link the inner solution
(U ,V) with the outer solution (u, v).

Proposition 11. For almost everywhere t > 0, V and v perfectly match

V(t, y) ≡ v(t, 0−) = v(t, 0+), for all y ∈ R. (4.27)

U and u are linked according to

U(t, y) ≡ u(t, 0−), y < 0. (4.28)

Defining R±(t, y) = aU(t, y)± V(t, y), the following inequalities hold

1

2
(|R+(t, y)− 	| − |R−(t, y)− h(	)|)

� sgn(u(t, 0+)− k)( f (u(t, 0+))− f (k)), y > 0, (4.29)

for any given 	 ∈ R such that k = (	+ h(	))/2a verifies |k| < B(N0).

Proof. Let (rε,δ− , rε,δ+ ) denote the solution of the Cauchy problem (2.21) in diagonal
form, with initial data (r±)δ0 = auδ0 ± vδ0. Then for any given 	 ∈ R with |(	 +
h(	))/2a| � B(N0), let us consider the following entropy like inequality (2.29)

∂t (|rε,δ+ − 	| + |rε,δ− − h(	)|)+ a∂x (|rε,δ+ − 	| − |rε,δ− − h(	)|) � 0. (4.30)

To condense the notations, let pε,δ	 = |rε,δ+ −	|+ |rε,δ− −h(	)| and qε,δ	 = a(|rε,δ+ −
	| − |rε,δ− − h(	)|), so that (4.30) reads

∂t pε,δ	 + ∂x qε,δ	 � 0. (4.31)

Given ε > 0 and fix y > 0, consider any b > 0 satisfying

0 < εy < b. (4.32)

For any given time T > 0, multiply (4.31) by any given non-negative test function
ϕ(t) ∈ C1

c ((0, T )) and integrate (t, x) over [0, T ] × [εy, b] to obtain:∫ T

0

∫ b

εy
−pε,δ	 (t, x)ϕ′(t) dt dx +

∫ T

0
(qε,δ	 (t, b)− qε,δ	 (t, εy))ϕ(t) dt � 0.

(4.33)

Define Rε,δ± (t, y) = aUε,δ(t, y)± Vε,δ(t, y) = rε,δ± (t, εy) and set

Qε,δ
	 (t, y) = a(|Rε,δ+ − Rε,δ+,	| − |Rε,δ− − Rε,δ−,	|)(t, y),

we have the identity Qε,δ
	 (t, y) = qε,δ	 (t, εy). Hence changing the sign in (4.33)

gives:∫ T

0

∫ b

εy
pε,δ	 (t, x)ϕ′(t) dt dx +

∫ T

0
(Qε,δ

	 (t, y)− qε,δ	 (t, b))ϕ(t) dt � 0.

(4.34)
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Choose η > εy and average the above inequality (valid for all b > εy) for b ∈
(η, 2η) to get

1

η

∫ T

0

∫ 2η

η

∫ b

εy
pε,δ	 (t, x)ϕ′(t) dt db dx

+
∫ T

0

(
Qε,δ
	 (t, y)− 1

η

∫ 2η

η

qε,δ	 (t, b)db

)
ϕ(t) dt � 0. (4.35)

Observe that∣∣∣∣1

η

∫ T

0

∫ 2η

η

∫ b

εy
pε,δ	 (t, x)ϕ′(t) dt db dx

∣∣∣∣
� sup

0�t�T
‖ pε,δ	 (t, ·) ‖L∞(R)‖ ϕ′ ‖L1(0,T )

1

η

∫ 2η

η

(b − εy)db � C

(
3

2
η − εy

)

(4.36)

for some uniform constant C > 0 in ε and δ thanks to the corresponding uniform
sup norm estimates satisfied by the solutions (uε,δ, vε,δ) and (uε,δ	 , v

ε,δ
	 ) of the

regularized problem (2.9). Recall that the sequence {Qε,δ}ε,δ>0 has uniformly in
ε and δ bounded local total variation, it converges by sending first δ → 0, then
ε → 0 in L1

loc(Ry) to a limit Q	 and almost everywhere. For fixed time t , the limit
is smooth in the fast variable y and thus left and right traces coincide. For fixed
ε > 0, passing to the limit δ → 0 and then to the limit ε → 0 in (4.35) thus yield∫ T

0
ϕ(t)

(
Q	(t, y)− 1

η

∫ 2η

η

q	(t, b) db

)
dt � −3

2
Cη. (4.37)

Observe that this inequality now holds for any η > 0 since the ordering condition
(4.32) implies b > 0. In (4.37), we have

Q	(t, y) = a (|R+(t, y)− 	| − |R−(t, y)− h(	)|) (4.38)

with R±(t, y) = aU(t, y)± V(t, y) while

q	(t, b) = a (|r+(t, b)− 	| − |h(r+(t, b))− h(	)|) (4.39)

since all b under consideration are positive, that is we deal with the equilibrium
half line {b > 0} with the property that r−(t, b) = h(r+(t, b)). Arguments based
on the monotonicity of h and equation (3.19) that have already been developed in
the proof of Theorem 8 ensure the identity

q	(t, b) = 2a sgn(u(t, b)− k)( f (u(t, b))− f (k)), k = 	+ h(	)

2a
. (4.40)

Passing to the limit η → 0 in (4.37) yields (recall that u(t, b) has bounded total
variation by Theorem 8.iv, and thus admits a right trace at b = 0+)∫ T

0
ϕ(t)

(Q	(t, y)− q	(t, 0+)
)

dt � 0. (4.41)



Semilinear Hyperbolic Relaxation System 1079

This inequality is valid for any given non-negative test function ϕ in C1
c ((0, T )),

so that we deduce the inequality (4.29). Now let us prove that the next matching
condition V(t, y) ≡ v(t, 0+) for y > 0 and almost everywhere t > 0. To this aim,
we start from the equation ∂t uε,δ + ∂xv

ε,δ = 0 and repeat the same arguments as
previously to get

∫ T

0
ϕ(t)

(
V(t, y)− 1

η

∫ 2η

η

v(t, b)db

)
= 0, y > 0, almost everywhere t > 0

(4.42)

for all η > 0 and all test functions ϕ ∈ C1
c ((0, T )). Sending η → 0 yields V(t, y) =

v(t, 0+). To derive the condition U(t, y) ≡ u(t, 0−) when y < 0, we proceed
mutatis mutandis the same way, choosing ε > 0, some fixed y < 0 and negative
real number b satisfying the ordering condition b < εy < 0 and apply the above
steps to the equation ∂tv

ε,δ + a2∂x uε,δ = f (uε,δ)− vε,δ to get

∫ T

0

(
Uε,δ(t, y)− 1

|η|
∫ −|η|

−2|η|
uε,δ(t, b)db

)
ϕ(t) dt

+ 1

|η|a2

∫ T

0

∫ −|η|

−2|η|

∫ b

εy
(vε,δ(t, x)ϕ′(t)

+( f (uε,δ(t, x))− vε,δ(t, x))ϕ(t)) dx dt db = 0 (4.43)

for any given test function ϕ ∈ C1
c ((0, T )). Uniform sup norm estimates for uε,δ

and vε,δ again apply to prove that the second term vanishes in the limit δ → 0 then
ε → 0 and η → 0, while the first term gives rise to

∫ T

0
(U(t, y)− u(t, 0−))ϕ(t) dt = 0, y < 0. (4.44)

This implies U(t, y) = u(t, 0−). Proving that V(t, y) = v(t, 0−), y < 0, t > 0,
follows similar steps. Hence the identities (4.27) are readily inferred from the
property that V(t, y) stays constant for all y. ��

Observe that the matching condition (4.27) together with the identity V(t,−∞)

= f (U(t,+∞)) stated in (4.15) actually ensures

f (U(t,+∞)) = v(t, 0+) = v(t, 0−). (4.45)

In the sequel and for any given real numbers a and b, �a, b� denotes the interval
(min(a, b),max(a, b)).

Corollary 12. For almost everywhere t > 0, the following Kruz̆kov inequalities
hold

sgn(U(t,+∞)− k)( f (U(t,+∞))− f (k))

� sgn(u(t, 0+)− k)( f (u(t, 0+))− f (k)), (4.46)
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for all k ∈ �U(t,+∞), u(t, 0+)�. In particular, we have:

f (U(t,+∞)) = f (u(t, 0+)) = v(t, 0−). (4.47)

At last U(t,+∞) and u(t, 0+) necessarily match

U(t,+∞) = u(t, 0+). (4.48)

Proof. Sending y to +∞ in (4.29), one has for any given l ∈ R such that k =
(	+ h(	))/2a verifies |k| < B(N0) :

1

2
(|R+(t,+∞)− 	| − |R−(t,+∞)− h(	)|)
� sgn(u(t, 0+)− k)( f (u(t, 0+))− f (k)). (4.49)

In particular, these inequalities are valid for specially chosen 	 such that k be-
longs to �U(y,+∞), u(t, 0+)�. This will suffice for our purpose. Note from (4.15)
that R±(t,+∞) = aU(t,+∞) ± f (U(t,+∞)), thus the identity R−(t,+∞) =
h(R+(t,+∞)) holds. Rephrasing arguments developed in the course of Theorem
8 (see (3.19)), the left hand side of the inequality (4.49) is seen to boil down to
sgn(U(t,+∞)−k)( f (U(t,+∞))− f (k)) for all the k under consideration, which
is nothing but (4.46). It then suffices to choose successively k = U(t,+∞) and
k = u(t, 0+) to get (4.47). From the first equality stated in (4.47), the assumption
(1.9) or (1.10) immediately implies U(t,+∞) = u(t, 0+). ��

To further explore the matching conditions in between U and u in the setting of a
general flux function f , let us state another consequence of the entropy inequalities
(4.29) :

Lemma 13. For almost everywhere t > 0, the following inequalities are met :

sgn(u(t, 0+)− k)( f (u(t, 0+))− f (k)) � 0, (4.50)

for all k in �u(t, 0−), u(t, 0+)�.

Proof. Let us first observe from the reported matching properties that R±(t, y) =
aU(t, y)±V(t, y) = aU(t, y)± f (U(t,+∞)) for almost everywhere t > 0, from
the matching condition (4.27). Now given y > 0 fixed, choose 	y = aU(t, y) +
f (U(t, y)) in (4.29) with the properties that h(	y) = aU(t, y)− f (U(t, y)), ky =
(	y + h(	y))/2a
= U(t, y) with |ky | < B(N0). Observe that :

|R+(t, y)− 	y | = | f (U(t, y))− f (U(t,+∞))|,
|R−(t, y)− h(	y)| = | f (U(t, y))− f (U(t,+∞))|,

so that (4.29) ensures

0 � sgn(u(t, 0+)− U(t, y))( f (u(t, 0+))− f (U(t, y))), y > 0, t > 0,

(4.51)
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since again ky = U(t, y). But by construction, U(t, y) covers monotonically the
range �u(t, 0−), u(t, 0+)� as y runs over R+ since U(t, y) is monotone and con-
tinuous with U(t, 0) = u(t, 0−) and U(t,+∞) = u(t, 0+). This readily im-
plies that for all y > 0, sgn(u(t, 0+) − U(t, y)) = sgn(u(t, 0+) − k) for all
k ∈ �u(t, 0−), u(t, 0+)�. ��

As a direct consequence of Lemma 13, the most important outcome of the
matching analysis is the last result of this section:

Proposition 14. For almost everywhere t > 0, left and right traces of the outer
solution u(t, x) at x = 0 obey :

sgn(u(t, 0+)− u(t, 0−))( f (u(t, 0+))− f (k)) � 0, k ∈ �u(t, 0−), u(t, 0+)�,
(4.52)

while

v(t, 0−) = f (u(t, 0+)). (4.53)

Proof. It just follows from the fact that sgn(u(t, 0+)−u(t, 0−)) = sgn(u(t, 0+)−
k) for all k ∈ �u(t, 0−), u(t, 0+)�. ��

Rephrasing this statement, the traces of the outer solution u(t, x) at x = 0 are
linked by the so-called Bardos–Leroux–Nédélec boundary condition (1.18). With
this noted and as already emphasized along the introduction, the detailed knowledge
of the inner solution U can be bypassed.

To conclude, let us deduce Theorem 1 as a consequence of the main results of
the present and previous sections.

Proof of Theorem 1. Theorem 4 ensures the existence and uniqueness of global
solution (uε, vε) of the original two-scale problem. This is part 1. Then Theorem 8.i
gives the existence of a limit (u, v) in L1((0, T ) × R) for a subsequence (uε, vε)
as ε goes to 0. From part (iv) of the above Theorem, the limit (u, v) belongs to
L∞ ∩ BV ((0, T ) × R). In addition, the lower semi-continuity of the L1-norm
implies for any given t ∈ (0, T ), T > 0 :

||u(t, .)− u0||L1(R) � lim inf
ε→0

||uε(t, .)− u0||L1(R), ||v(t, .)− v0||L1(R)

� lim inf
ε→0

||vε(t, .)− v0||L1(R). (4.54)

Then the estimates (2.17)–(2.18) yield, choosing t2 = t and t1 = 0 :

||u(t, .)− u0||L1(R) � C t, ||v(t, .)− v0||L1(R) � C t, (4.55)

so that (1.5c)–(1.6c) or (1.7c)–(1.8c) holds.
By Theorem 8.ii, (1.6a)–(1.6b) or (1.7a)–(1.7b) holds in the sense of the distri-

butions. Then (3.4) is nothing but (1.5b) or (1.8b). To prove that u(t, x) for x > 0
solves (1.5a) or (1.8a) in the sense of the distributions and in view of (3.1), it suf-
fices to choose successively k = B(N0) and k = −B(N0) in (3.5). The identity
(4.53) reads as the transmission condition stated in (1.6d) or (1.7d). Turning to
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consideration of the transmission condition (1.8d), it directly follows from (4.52)
under the assumption (1.9). To summarize, all the conditions stated from (1.5a) to
(1.8d) are valid. Theorem 8.vi gives the L1-contraction property (1.15) and implies
uniqueness. This concludes the proof of parts (2) and (3) of Theorem 1. ��

5. Conclusion

The present work has been devoted to the analysis of the Jin–Xin relaxation
system in a two- scale setting. We have established its well-posedness and sin-
gular limit as the smaller relaxation time goes to zero. The limit is a multiscale
coupling problem which couples the original Jin–Xin system on the domain when
the relaxation time is O(1) with its relaxation limit in the other domain through
interface conditions which can be derived by matched interface layer analysis. This
sets up a theoretical foundation of multiscale computation for hyperbolic systems
with drastically different relaxation time scales.

Our analysis is based on the assumption that the interface is non-characteristic.
This allows us to prevent possible strong oscillations from developing at the inter-
face. It has also ruled out any standing shock sticking to the interface. An interesting
problem for the future is to analyze the coupling system found in (1.16) and (1.17),
which allows the intricate interplay between an interface layer and a standing shock,
and to more general hyperbolic systems.
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