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Abstract: In this paper we study the Euler-Poincaré equations in R
N . We prove local

existence of weak solutions in W 2,p(RN ), p > N , and local existence of unique clas-
sical solutions in Hk(RN ), k > N/2 + 3, as well as a blow-up criterion. For the zero
dispersion equation (α = 0) we prove a finite time blow-up of the classical solution.
We also prove that as the dispersion parameter vanishes, the weak solution converges
to a solution of the zero dispersion equation with sharp rate as α → 0, provided that
the limiting solution belongs to C([0, T ); Hk(RN )) with k > N/2 + 3. For the station-
ary weak solutions of the Euler-Poincaré equations we prove a Liouville type theorem.
Namely, for α > 0 any weak solution u ∈ H1(RN ) is u = 0; for α = 0 any weak
solution u ∈ L2(RN ) is u = 0.

1. Introduction

We consider the following Euler-Poincaré equations in R
N :

(E P)

⎧
⎪⎨

⎪⎩

∂t m + (u · ∇)m + (∇u)�m + (div u)m = 0,

m = (1 − α�)u,

u0(x) = u0,

where u : R
N → R

N is the velocity, m : R
N → R

N represents the momentum, constant√
α is a length scale parameter, (∇u)� = the transpose of (∇u). The Euler-Poincaré

equations arise in diverse scientific applications and enjoy several remarkable properties
both in the one-dimensional and multi-dimensional cases.

The Euler-Poincaré equations were first studied by Holm, Marsden, and Ratiu in
1998 as a framework for modeling and analyzing fluid dynamics [18,19], particularly
for nonlinear shallow water waves, geophysical fluids and turbulence modeling. There
are intensive researches on analogous viscous or inviscid, incompressible Lagrangian
averaged models. We refer to [7,12,26] for results on Navier-Stokes-αmodel in terms of
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existence and uniqueness, zero α limit to the Navier-Stokes equations, global attractor,
etc. We refer to [2,20,23] for results on analysis and simulation of vortex sheets with
Birkhoff-Rott-α or Euler-α approximation.

In one dimension, the Euler-Poincaré equations coincide with the dispersion-less
case of Camassa-Holm (CH) equation [4]:

(C H) ∂t m + u∂x m + 2∂x u m = 0, m = (1 − α∂xx )u.

The solutions to (CH) are characterized by a discontinuity in the first order derivative
at their peaks and are thus referred to as peakon solutions. (CH) is completely integra-
ble with a bi-Hamiltonian structure and their peakon solutions are true solitary waves
that emerge from the initial data. Peakons exhibit a remarkable stability–their identity
is preserved through nonlinear interactions, see, e.g. [4,22]. We refer to a review paper
[25] for a survey of recent results on well-poseness and existence of local and global
weak solutions for (CH). The existence of a global weak solution and uniqueness was
proven in [3,6,8,10,29]. A class of the so called weak-weak solution was studied in
[29]. Breakdown of (CH) solutions was studied in [24].

The Euler-Poincaré equations have many further interpretations beyond fluid appli-
cations. For instance, in 2-D, it is exactly the same as the averaged template matching
equation for computer vision (see, e.g., [14,17,21]). The Euler-Poincaré equations also
have important applications in computational anatomy (see, e.g, [22,30]). The Euler-
Poincaré equations can also be regarded as an evolutionary equation for a geodesic
motion on a diffeomorphism group and it is associated with Euler-Poincaré reduction
via symmetry [1,11,15,22,30]. We refer to a recent book [22] for a comprehensive
review on the subject.

There are significant differences in solution behavior between the case of α > 0 and
the case of α = 0. This can be understood from the following dispersion relation for the
Camassa-Holm equation / Euler-Poincaré equations

ω

k
= u0 +

2u0

1 + αk2

This dispersion relation indicates the well known fact that long waves travel faster than
short ones in shallow water due to gravity. When α = 0, the phase velocity is reduced
to 3u0, i.e. the system is non-dispersive.

The main results obtained in this paper are

1. We provide a theorem on local existence of weak solution in W 2,p(RN ), p > N ,
and local existence of unique classical solutions in Hk(RN ), k > N/2 + 3. Further-
more, when α = 0, the Euler-Poincaré equations become a symmetric hyperbolic
system of conservation laws with a convex entropy. Consequently, there exists a
local unique classical solution if u0 ∈ Hk(RN ) with k > N/2 + 1. These results are
documented in Sect. 2.

2. For general initial data, the solution to the Euler-Poincaré equations blows up in
its derivative. In Sect. 3, we prove a theorem on a blow-up criterion, as well as, a
theorem on finite time blow-up of the classical solution for the zero dispersion equa-
tion. For classical solutions with reflection symmetry, the divergence ∇ · u satisfy a
Riccati equation at the invariant point under the reflection transformation and hence
there is a finite time blow up if the divergence is initially negative.

3. The Euler-Poincaré equations can be regarded as a dispersion regularization of the
limited equation. In Sect. 4, we prove that as the dispersion parameter α vanishes,
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the weak solution to the Euler-Poincaré equations converges to the solution of the
zero dispersion equation with a sharp rate as α → 0, provided that the limiting
solution belongs to C([0, T ); Hk(RN )) with k > N/2 + 3.

4. Finally, for the stationary weak solutions of the Euler-Poincaré equations we prove
a Liouville type theorem in Sect. 5. For α > 0, we prove that any weak solution
u ∈ H1(RN ) is u = 0. For α = 0, any weak solution u ∈ L2(RN ) is u = 0.

2. Preliminaries and Local Existence

In this section, we discuss some mathematical structures of (EP) and then we state a local
existence theorem for the weak solution and the classical solution. We refer to [17,22]
for more in-depth discussions on (EP).

(EP) can be recast as

∂t m + ∇ · (u ⊗ m) + (∇u)�m = 0. (1)

The last term above can be written in a conservative/tensor form

N∑

j=1

∂i u j m j =
N∑

j=1

∂i u j u j − α

N∑

j,k=1

∂i u j∂
2
k u j

= 1

2
∂i |u|2 − α

N∑

j,k=1

∂k(∂i u j∂ku j ) + α
N∑

j,k=1

∂k∂i u j∂ku j

= 1

2
∂i |u|2 − α

N∑

j,k=1

∂ j (∂i uk∂ j uk) +
α

2

N∑

j,k=1

∂i (∂ku j )
2

=
N∑

j=1

∂ j

(
1

2
δi j |u|2 − α∂i u · ∂ j u +

α

2
δi j |∇u|2

)

.

Set the stress-tensor

Ti j = mi u j +
δi j

2
|u|2 − α∂i u · ∂ j u +

αδi j

2
|∇u|2.

Then (EP) becomes

∂t mi +
N∑

j=1

∂ j Ti j = 0. (2)

The first term in Ti j involves a second order derivative of u and it can be rewritten as

mi u j = ui u j + α
N∑

k=1

∂kui∂ku j − α

N∑

k=1

∂k
(
u j∂kui

)
.

The symmetric part of tensor T is given by

T a = u ⊗ u + α∇u∇u� − α∇u�∇u +
1

2
(|u|2 + α|∇u|2) Id , (3)
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and the remainder terms in T are given by

T b
i, j = −α

N∑

k=1

∂k
(
u j∂kui

)
. (4)

Hence T = T a + T b. In view of this, the natural definition of the weak solution of (EP)
would be:

Definition 1. u ∈ L∞(0, T ; H1
loc(R

N )) is a weak solution of (EP) with initial data
u0 ∈ H1

loc(R
N ) if the following equation holds for all vector field φ(x, t) such that

φ(·, t) ∈ C∞
0 (R

N ) for all t ∈ [0, T ) and φ(x, ·) ∈ C1
0([0, T )) for all x ∈ R

N ,

∫ T

0

∫

RN

(
u · φt + α∇u : ∇φt

)
dxdt +

∫

RN

(
u0 · φ(·, 0) + α∇u0 : ∇φ(·, 0)

)
dx

+
∫ T

0

∫

RN
T a : ∇φ(x, t) dxdt + α

N∑

i, j,k=1

∫ T

0

∫

RN
u j∂kui∂ j∂kφi dxdt = 0, (5)

where T a is given by (3).

(EP) also has a natural Hamiltonian structure. Set

H = 1

2

∫

RN
u · m dx,

then δH
δm = u and (EP) can be recast as

∂t m = −AδH
δm

, (6)

where A is an anti-symmetric operator defined by

Au =
N∑

j=1

∂ j (mi u j ) +
N∑

j=1

∂i u j m j .

Consequently, from (2) and (6), there are two conservation laws

d

dt

∫

RN
m dx = 0,

d

dt

∫

RN
(|u|2 + α|∇u|2) dx = 0.

For the one-dimensional case, (EP) coincides with the dispersion-less case of the
Camassa-Holm (CH) equation and there is an additional Hamiltonian structure and
a Lax-pair which leads to a complete integrability of (CH) [4]. We refer to [13] for a
general discussion on bi-Hamiltonian system and complete integrability.

When α = 0, the above Hamiltonian structure shows that (EP) is a symmetric hyper-
bolic system of conservation laws

{
∂t u + div(u ⊗ u) + 1

2∇|u|2 = 0

u(x, 0) = u0
(7)
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which possess a global convex entropy function

1

2
∂t |u|2 + div(|u|2u) = 0. (8)

We refer to (7) as the zero dispersion equation, and we can recast it in the usual form of
a symmetric hyperbolic system (we state it in R

3):

ut + Aux + Buy + Cuz = 0

with

u =
⎛

⎝
u
v

w

⎞

⎠ , A =
⎛

⎝
3u v w

v u 0
w 0 u

⎞

⎠ , . . .

A is a symmetric matrix and has three eigenvalues: u, 2u + |u|, 2u − |u|, corresponding
to one linearly degenerate field, and two genuinely nonlinear fields, respectively, when
u 	= 0.

We shall remark that although the high dimensional Burgers equation has a similar
structure as (7), it does not possess a global convex entropy. In Sect. 5, we will prove a
Liouville type theorem for the steady solution of (7). This theorem does not hold true
for the high dimensional Burgers equation.

Now we introduce some notations and then we state a theorem on local existence of
the weak solution and local existence and uniqueness of the classical solution.

For s ∈ R and p ∈ [1,∞] we define the Bessel potential space Ls,p(RN ) as follows

Ls,p(RN ) = { f ∈ L p(RN ) | ‖(1 −�)
s
2 f ‖L p := ‖ f ‖Ls,p < ∞}.

For s ∈ N ∪ {0} it is well-known that Ls,p(RN ) is equivalent to the standard Sobolev
space W s,p(RN )(see e.g. [27]). This, in turn, implies immediately that there exist C1,C2
such that

C1‖u‖W k+2,p ≤ ‖m‖Lk,p ≤ C2‖u‖W k+2,p (9)

for all k ∈ N ∪ {0}, p ∈ (1,∞). As usual we denote Hs(RN ) = W s,2(RN ).

Theorem 1. (i) Assume α > 0 and u0 ∈ W 2,p(RN ) with p > N. Then, there exists
T = T (‖u0‖W 2,p ) such that a weak solution to (EP) exists, and belongs to u ∈
L∞(0, T ; W 2,p(RN )) ∩ Lip(0, T ; W 1,p(RN )).

(ii) Let α > 0 and u0 ∈ Hk(RN ) with k > N/2 + 3. Then, there exists T =
T (‖u0‖Hk ) such that a classical solution to (EP) exists uniquely, and belongs
to u ∈ C([0, T ); Hk(RN )).

(iii) For α = 0, (EP) is a symmetric hyperbolic system of conservation laws with a
convex entropy. Consequently, if u0 ∈ Hk(RN ) with k > N/2 + 1. Then, there
exists T = T (‖u0‖Hk ) such that a classical solution to (EP) exists uniquely, and
belongs to u ∈ C([0, T ); Hk(RN )).

Proof. The proof of symmetric hyperbolicity and existence of convex entropy in (iii) are
given in (7)–(8). The proof of existence of the unique classical solution for symmetric
hyperbolic system is standard, see e.g [16].
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The proof of local existence part is standard, and below we derive the key local in
time estimate of u(t) ∈ L∞([0, T ); W 2,p(RN )) ∩ Lip(0, T ; W 1,p(RN )),

1

p

d

dt
‖m‖p

L p = − 1

p

∫

RN
(u · ∇)|m|p dx −

N∑

i, j=1

∫

RN
∂ j ui mi m j |m|p−2 dx

−
∫

RN
(div u)|m|p dx

= −
(

1 − 1

p

) ∫

RN
T r(S)|m|p dx −

N∑

i, j=1

∫

RN
Si j mi m j |m|p−2 dx

≤ C‖S‖L∞‖m‖p
L p ≤ C‖∇u‖L∞‖m‖p

L p ≤ C‖m‖p+1
L p , (10)

and therefore

d

dt
‖m‖L p ≤ C‖m‖2

L p .

We thus have the following estimate on L∞(0, T ; W 2,p(RN )):

‖u(t)‖W 2,p ≤ C‖u0‖W 2,p

1 − Ct‖u0‖W 2,p
∀t ∈ [0, T ), (11)

where T = 1
(C‖u0‖W 2,p )

. In order to have the estimate of u in Lip(0, T ; W 1,p(RN )), we

take L2(RN ) inner product (EP) with the test function ψ ∈ W 1, p
p−1 (RN ) for p > N .

Then,

∫

RN
∂t m · ψ dx =

∫

RN
m(u · ∇)ψ dx −

∫

RN
m · ∇u · ψ dx

≤ C‖m‖L p‖u‖L∞‖∇ψ‖
L

p
p−1

+ C‖m‖L p‖∇u‖L∞‖∇ψ‖
L

p
p−1

≤ C‖m‖2
L p‖ψ‖

W
1, p

p−1
,

which provides us with the estimate,

‖∂t u‖L∞(0,T ;W 1,p(RN )) ≤ C‖∂t m‖L∞(0,T ;W−1,p(RN )) ≤ C‖m‖2
L∞(0,T );L p(RN )

.

Hence, for all 0 < t1 < t2 < T we have

‖u(t2)− u(t1)‖W 1,p ≤
∫ t2

t1
‖∂t u(t)‖W 1,p dt ≤ C(t2 − t1)‖m‖2

L∞(0,T ;L p(RN ))
.

Namely,

‖u‖Lip(0,T ;W 1,p(RN )) ≤ C‖m‖2
L∞(0,T ;L p(RN ))

.
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This gives (i). Next we prove local in time persistency of regularity for u(t) in Hk(RN ))

with k > N/2 + 3. Let β = (β1, . . . , βN ) be the standard multi-index notation with
|β| = β1 + · · · + βN . Taking the Hk(RN ) inner product (EP) with m, we find

1

2

d

dt

∑

|β|≤k

‖Dβm‖2
L2 = −

∑

|β|≤k

∫

RN
Dβ{(u · ∇)m} · Dβm dx

−
∑

|β|≤k

∫

RN
Dβ{(∇u)�m} · Dβm dx

−
∑

|β|≤k

∫

RN
Dβ{(div u)m} · Dβm dx

:= I1 + I2 + I3. (12)

We write

I1 = −
∑

|β|≤k

∫

RN
{Dβ(u · ∇)m − (u · ∇)Dβm} · Dβm dx

+
∑

|β|≤k

∫

RN
(u · ∇)Dβm · Dβm dx

:= J1 + J2,

and using the standard commutator estimate, we deduce

J1 ≤
∑

|β|≤k

‖Dβ(u · ∇)m − (u · ∇)Dβm‖L2‖Dβm‖L2

≤ C(‖∇u‖L∞‖m‖Hk + ‖u‖Hk ‖∇m‖L∞)‖m‖Hk

≤ C(‖u‖H N/2+1+ε‖m‖Hk + ‖m‖Hk−2‖m‖H N/2+1+ε )‖m‖Hk (∀ε > 0)

≤ C‖m‖3
Hk (13)

if k > N/2 + 1, where we used the fact u = (1 − α�)−1m, and therefore ‖u‖Hs ≤
‖m‖Hs−2 for all s ∈ R,

J2 = 1

2

∑

|σ |≤k

∫

RN
(u · ∇)|Dσm|2 dx = −1

2

∑

|σ |≤k

∫

RN
(div u)|Dβm|2 dx

≤ C‖∇u‖L∞‖m‖2
Hk ≤ C‖m‖H N/2−1+ε‖m‖2

Hk (∀ε > 0)

≤ C‖m‖3
Hk (14)

if k > N/2 − 1. The estimates of I2, I3 are simpler, and we have

I2 + I3 ≤ ‖(∇u)�m‖Hk ‖m‖Hk ≤ C(‖∇u‖L∞‖m‖Hk + ‖u‖Hk+1‖m‖L∞)‖m‖Hk

≤ C(‖m‖H N/2−1+ε‖m‖Hk + ‖m‖Hk−1‖m‖H N/2+ε )‖m‖Hk

≤ C‖m‖3
Hk (15)

if k > N/2. Summarizing the above estimates, we obtain

d

dt
‖m‖2

Hk ≤ C‖m‖3
Hk
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for k > N/2 + 1, which implies

‖u(t)‖Hk ≤ C‖u0‖Hk

1 − C‖u0‖Hk t
∀t ∈ [0, T ), where T = 1

C‖u0‖Hk
,

where k > N/2 + 3.
We now prove uniqueness of the solution in this class. Let (u1,m1), (u2,m2) be

two solution pairs corresponding to initial data (u1,0,m1,0), (u2,0,m2,0). We set u =
u1 − u2, and so on. Subtracting the equation for (u2,m2) from that of (u1,m1), we find
that

∂t m + div
(
u1 ⊗ m

)
+ div

(
u ⊗ m2

)
+ (∇u1)

�m + (∇u)�m2 = 0. (16)

Let p > N . Taking L2(RN ) the product of (16) with m|m|p−2, we obtain

1

p

d

dt
‖m(t)‖p

L p = −
(

1 − 1

p

) ∫

RN
(div u1)|m|p dx −

∫

RN
(div u)m2 · m|m|p−2 dx

−
∫

RN
(u · ∇)m2 · m|m|p−2 dx −

∫

RN
(∇u1)

�m · m|m|p−2 dx

−
∫

RN
(∇u)�m2 · m|m|p−2 dx

≤ C(‖div u1‖L∞‖m‖p
L p + ‖∇u‖L∞‖m2‖L p‖m‖p−1

L p

+‖u‖L p‖∇m2‖L∞‖m‖p−1
L p + ‖∇u1‖L∞‖m‖p

L p

+‖∇u‖L∞‖m2‖L p‖m‖p−1
L p )

≤ C(‖u1‖Hk + ‖u2‖Hk )‖m‖p
L p

for k > N/2 + 3. Hence,

‖m(t)‖L p ≤ ‖m0‖L p exp

(

C
∫ t

0
(‖u1(τ )‖Hk + ‖u2(τ )‖Hk )dτ

)

.

This inequality implies the desired uniqueness of solutions in the class L1(0, T ; Hk(RN ))

with k > N/2 + 3. This gives (ii). The proof of (iii) was explained at the end of Sect. 2.
This completes the proof of Theorem 1. ��

3. Finite Time Blow Up

In this section, we first present a theorem on a blow-up criterion and then we prove a
theorem on finite time blow up for the zero dispersion equation.

We denote the deformation tensor for u by S = (Si j ), where Si j := 1
2 (∂i u j + ∂ j ui ).

We recall the Besov space Ḃ0∞,∞, which is defined as follows. Let {ψm}m∈Z be the

Littlewood-Paley partition of unity, where the Fourier transform ψ̂m(ξ) is supported on
the annulus {ξ ∈ R

N | 2m−1 ≤ |ξ | < 2m}(see e.g. [28]). Then,

f ∈ Ḃ0∞,∞ if and only if sup
m∈Z

‖ψm ∗ f ‖L∞ := ‖ f ‖Ḃ0∞,∞ < ∞.

The following is a well-known embedding result,

L∞(RN ) ↪→ B M O(RN ) ↪→ Ḃ0∞,∞(RN ). (17)
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Theorem 2. For α ≥ 0, we have the following finite time blow-up criterion of the local
solution of (EP) in u ∈ C([0, t∗); Hk(RN )), k > N/2 + 3.

lim sup
t→t∗

‖u(t)‖Hk = ∞ if and only if
∫ t∗

0
‖S(t)‖Ḃ0∞,∞dt = ∞. (18)

Remark 1.1. Combining the embedding relation, W 1,N (RN ) ↪→ B M O(RN ) ↪→
Ḃ0∞,∞(RN ) with the inequality ‖D2u‖L p ≤ C‖m‖L p for p ∈ (1,∞)(see (22) below),
we have

‖S‖Ḃ0∞,∞ ≤ C‖S‖B M O ≤ C‖DS‖L N ≤ C‖D2u‖L N ≤ C‖m‖L N .

Therefore we obtain the following criterion as an immediate corollary of the above
theorem: for all p > N ,

lim sup
t→t∗

‖m(t)‖L p = ∞ if and only if
∫ t∗

0
‖m(t)‖L N dt = ∞. (19)

Remark 1.2. In the one dimensional case of the Camassa-Holm equation (CH) the above
criterion implies that finite time blow-up does not happen if

∫ t
0 ‖uxx (τ )‖L1 dτ < ∞ for

all t > 0. Thanks to the conservation law we have sup0<τ<t ‖ux (τ )‖L2 ≤ ‖u0‖H1 < ∞
for all t > 0. Since we have embedding W 2,1(R) ↪→ H1(R), and we do have finite time
blow-up for (CH) [24], our criterion is sharp in this one dimensional case.

Proof of Theorem 2. We only give a proof for the case α > 0. The proof for the case
α = 0 is similar and simpler, hence, will be omitted.

Using estimates (12, 13, 14, 15) for I1, I2, I3 in the proof of Theorem 1 in the Appen-
dix, one has

d

dt
‖m(t)‖Hk ≤ C(‖∇u‖L∞ + ‖m‖L∞ + ‖∇m‖L∞)‖m(t)‖Hk

≤ C(‖m‖L p + ‖Dm‖L p + ‖D2m‖L p )‖m(t)‖Hk .

Hence,

‖m(t)‖Hk ≤ ‖m0‖Hk exp

[

C
∫ t

0

{
‖m(τ )‖L p + ‖Dm(τ )‖L p + ‖D2m(τ )‖L p

}
dτ

]

(20)

for k > N/2 + 1 and p > N , where we used the Sobolev embedding. Consequently,
blow up of ‖m(t)‖Hk as t → t∗ implies that at least one of ‖m(t)‖L p , ‖Dm(t)‖L p and
‖D2m(t)‖L p blow up as t → t∗. In the following three steps, we show blow-up criterion
for each of them are all given by (18).

Step 1. We first recall the following logarithmic Sobolev inequality (see e.g. [28]),

‖ f ‖L∞ ≤ C(1 + ‖ f ‖Ḃ0∞,∞)(log(1 + ‖ f ‖W s,p )), (21)

where s > 0, 1 < p < ∞ and sp > N . From the estimate in (10) in the Appendix we
obtain

d

dt
‖m‖L p ≤ C(1 + ‖S‖Ḃ0∞,∞) log(1 + ‖S‖W 1,p )‖m‖L p (for p > N )

≤ C(1 + ‖S‖Ḃ0∞,∞) log(1 + ‖D2u‖L p )‖m‖L p

≤ C(1 + ‖S‖Ḃ0∞,∞) log(1 + ‖m‖L p )‖m‖L p
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for p > N , where we used the boundedness on L p(RN ) of the pseudo-differential
operator

σi j (D) := ∂i∂ j (1 − α�)−1 = −Ri R j�(1 − α�)−1

with the Riesz transforms {R j }N
j=1 on R

N (see Lemma 2.1, pp. 133 [27]), which provides
us with

‖D2u‖L p =
N∑

i, j=1

‖σi j (D)m‖L p ≤ C‖m‖L p (22)

for all p ∈ (1,∞). By Gronwall’s Lemma we obtain

log (1 + ‖m(t)‖L p ) ≤ log(1 + ‖m0‖L p ) exp

(

C
∫ t

0
(1 + ‖S(τ )‖Ḃ0∞,∞)dτ

)

(23)

for p > N . This implies that

lim sup
t→t∗

‖m(t)‖L p = ∞ if and only if
∫ t∗

0
‖S(t)‖Ḃ0∞,∞dt = ∞. (24)

Step 2. Taking the derivative of (EP) and L2(RN ) the inner product with Dm|Dm|p−2,
we find that

1

p

d

dt
‖Dm(t)‖p

L p = 1

p

∫

RN
(div u)|Dm|p dx−

∫

RN
(Du · ∇)m · Dm|Dm|p−2 dx

−
∫

RN
D(∇u)�m · Dm|Dm|p−2 dx −

∫

RN
(∇u)�Dm · Dm|Dm|p−2 dx

−
∫

RN
D(div u)m · Dm|Dm|p−2 dx −

∫

RN
(div u) Dm · Dm|Dm|p−2 dx

≤
(

3 +
1

p

)∫

RN
|Du||Dm|p dx + 2

∫

RN
|D2u||m||Dm|p−1 dx

≤
(

3 +
1

p

)

‖Du‖L∞‖Dm‖p
L p + 2‖D2u‖L2p‖m‖L2p‖Dm‖p−1

L p

≤ C‖m‖L p‖Dm‖p
L p + C‖m‖2

L2p‖Dm‖p−1
L p

for p > N , where we used the Sobolev embedding and (22) to estimate

‖Du‖L∞ ≤ C‖D2u‖L p ≤ C‖m‖L p

for p > N . Hence, for p > N we have

d

dt
‖Dm(t)‖L p ≤ C‖m‖L p‖Dm‖L p + C‖m‖2

L2p .

By Gronwall’s lemma, we have

‖Dm(t)‖L p ≤ exp

(

C
∫ t

0
‖m(τ )‖L p dτ

) (

‖Dm0‖L p + C
∫ t

0
‖m(τ )‖2

L2p dτ

)

(25)
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for p > N . From estimate (23), one has

∫ t

0
‖m(s)‖L p ds ≤ t max

0≤s≤t
‖m(s)‖L p

≤ t max
0≤s≤t

exp (log(1 + ‖m(s)‖L p ))

≤ t exp

(

log(1 + ‖m0‖L p ) exp

(

C
∫ t

0
(1 + ‖S(τ )‖Ḃ0∞,∞)dτ

))

. (26)

Similarly,

∫ t

0
‖m(s)‖L2p ds

≤ t exp

(

log(1 + ‖m0‖L2p ) exp

(

C
∫ t

0
(1 + ‖S(τ )‖Ḃ0∞,∞)dτ

))

. (27)

Combining (25, 26) and (27), one obtains

lim sup
t→t∗

‖Dm(t)‖L p = ∞ if and only if
∫ t∗

0
‖S(t)‖Ḃ0∞,∞dt = ∞. (28)

Step 3. Similarly, taking D2 of (EP) and L2(RN ) the inner product with
D2m|D2m|p−2, we find that

1

p

d

dt
‖D2m(t)‖p

L p

≤ 4
∫

RN
|Du||D2m|p dx + 3

∫

RN
|D2u||Dm||D2m|p−1 dx

+2
∫

RN
|D3u||m||D2m|p−1 dx

≤ 4‖Du‖L∞‖D2m‖p
L p + 3‖D2u‖L2p‖Dm‖L2p‖D2m‖p−1

L p

+2‖D3u‖L2p‖m‖L2p‖D2m‖p−1
L p

≤ C‖m‖L p‖D2m‖p
L p + C‖m‖L2p‖Dm‖L2p‖D2m‖p−1

L p

for p > N , where we used the estimate (22) as follows

‖D3u‖Lq = ‖
{

D2(1 − α�)−1
}

D(1 − α�)u‖Lq

≤
N∑

i, j=1

‖σi j (D)Dm‖Lq ≤ C‖Dm‖Lq ,

which holds for all q ∈ (1,∞). Hence,

d

dt
‖D2m(t)‖L p ≤ C‖m‖L p‖D2m‖L p + C‖m‖L2p‖Dm‖L2p .
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By Gronwall’s Lemma we have

‖D2m(t)‖L p ≤ exp

(

C
∫ t

0
‖m(τ )‖L p dτ

) (
‖D2m0‖L p

+C
∫ t

0
‖m(τ )‖L2p‖Dm(τ )‖L2p dτ

)

for p > N . Similarly to the estimates in (26) and (27), the right hand side terms in the
above inequality can all be controlled

∫ t

0
(1 + ‖S(τ )‖Ḃ0∞,∞)dτ.

Therefore, we have

lim sup
t→t∗

‖D2m(t)‖L p = ∞ if and only if
∫ t∗

0
‖S(t)‖Ḃ0∞,∞dt = ∞. (29)

Combination of (20, 24, 28, 29) gives the proof of the theorem. ��
We now present a finite time blow-up result for α = 0.

Theorem 3. Let the initial data of the system (7), u0 ∈ Hk(RN ), k > N/2 + 2, has the
reflection symmetry with respect to the origin, and satisfies div u0(0) < 0. Then, there
exists a finite time blow-up of the classical solution.

Proof. Taking divergence of (7), we find

∂t (div u) + u · ∇(div u) + 2
N∑

i, j=1

S2
i j +

N∑

j=1

(�u j )u j + (div u)2 +
N∑

i, j=1

(∂i∂ j ui )u j = 0,

(30)

where we used Si j = 1
2 (∂i u j + ∂ j ui ), and the fact

N∑

i, j=1

∂i u j∂ j ui +
N∑

i, j=1

∂i u j∂i u j = 2
N∑

i, j=1

∂i u j Si j =
N∑

i, j=1

(∂i u j + ∂ j ui )Si j = 2
N∑

i, j=1

S2
i j .

Now we consider the reflection transform:

R : x → x̄ = −x, u(x, t) → ū(x, t) = −u(−x, t).

Obviously the system (7) is invariant under this transform. The origin of the coordinate
is the invariant point under the reflection transform. We consider the smooth initial data
u0 ∈ Hk(RN ), k > N/2+2, which has the reflection symmetry. Then, by the uniqueness
of the local classical solution in Hk(RN ), and hence in C2(RN ), the reflection symme-
try is preserved as long as the classical solution persists. We consider the evolution of
the solution at the origin of the coordinates. Then, u(0, t) = 0 and D2u(0, t) = 0 for
all t ∈ [0, T∗), where T∗ is the maximal time of existence of the classical solution in
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Hk(RN ). If T∗ = ∞, we will show that this leads to a contradiction. The system (30) at
the origin is reduced to

∂t (div u) + 2
N∑

i, j=1

S2
i j + (div u)2 = 0,

which implies

∂t (div u) = −2
N∑

i, j=1

S2
i j − (div u)2 ≤ −(div u)2, (31)

and therefore

div u(0, t) ≤ div u0(0)

1 + div u0(0)t
.

Since div u0(0) < 0 by hypothesis, we have T∗ ≤ 1
|div u0(0)| and hence contradicts to

the assumption of T∗ = ∞. ��

4. Zero α Limit for Weak Solutions

In this section, we show the following theorem on the zero dispersion limit α → 0 for
the weak solutions.

Theorem 4. Let uα ∈ L∞((0, T ); H1(RN )) be a weak solution with initial data uα0 to
(EP) with α > 0, and u ∈ L∞((0, T ); Hk(RN ))∩ Lip((0, T ); H2(RN )), k > N/2 + 3,
be the classical solution with initial data u0 to (EP) with α = 0, i.e., (7). Then, we have

sup
0≤t≤T

{‖uα(t)− u(t)‖L2 +
√
α‖∇(uα(t)− u(t))‖L2}

≤ C
(
α + ‖uα0 − u0‖L2 +

√
α‖∇(uα0 − u0)‖L2

)
, (32)

where C = C(‖u‖L∞(0,T ;Hk (RN )), ‖u‖Lip(0,T ;H2(RN ))) is a constant.

Proof. We denote m := u − α�u. Then (u, m) satisfy (EP) with a truncation term as
below

∂t m + div (u ⊗ m) + (∇u)�m = −α
{
�ut + div(u ⊗�u) + (∇u)��u

}
. (33)

Subtracting (33) from the first equation of (EP), and setting m̄ := mα − m and ū :=
uα − u, we find

∂t m̄ + div(ū ⊗ m̄) + div(ū ⊗ m) + div(u ⊗ m̄) + (∇ ū)�m̄ + (∇ ū)�m + (∇u)�m̄

= α
{
�ut + div(u ⊗�u) + (∇u)��u

}
. (34)

Taking the L2(RN ) inner product (34) with ū, and integrating by part, and observing
∫

RN
div(ū ⊗ m̄) · ū dx = −

∫

RN
ū · (∇ ū)�m̄ dx

∫

RN
div(ū ⊗ m) · ū dx = −

∫

RN
ū · (∇ ū)�m dx,
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we obtain that

1

2

d

dt

∫

RN

(
|ū|2 + α|∇ ū|2

)
dx = −

∫

RN
div(u ⊗ m̄) · ū dx −

∫

RN
ū · (∇u)�m̄ dx

+α
∫

RN

[
ū ·

{
�ut + div(u ⊗�u) + (∇u)��u

}]
dx

:= I1 + I2 + I3.

We estimate

I1 = −
N∑

i, j=1

∫

RN
∂i ui (ū j − α�ū j )ū j dx −

N∑

i, j=1

∫

RN
ui∂i (ū j − α�ū j )ū j dx

= J1 + J2,

where

J1 = −
N∑

i, j=1

∫

RN
∂i ui |ū j |2dx + α

N∑

i, j,k=1

∫

RN
∂i∂kui (∂k ū j )ū j dx

+α
N∑

i, j,k=1

∫

RN
∂i ui (∂k ū j )∂k ū j dx

≤ C‖u(t)‖C2(‖ū‖2
L2 + α‖∇ ū‖2

L2),

and

J2 = −
N∑

i, j=1

∫

RN
ui (∂i ū j )ū j dx + α

N∑

i, j=1

∫

RN
ui∂i (�ū j )ū j dx

= −1

2

N∑

i, j=1

∫

RN
ui∂i |ū j |2 dx − α

N∑

i, j,k=1

∫

RN
∂kui∂i (∂k ū j )ū j dx

−α
2

N∑

i, j,k=1

∫

RN
ui∂i |∂k ū j |2 dx

= 1

2

N∑

i, j=1

∫

RN
∂i ui |ū j |2 dx + α

N∑

i, j,k=1

∫

RN
∂i∂kui (∂k ū j )ū j dx

+α
N∑

i, j,k=1

∫

RN
∂kui (∂k ū j )∂i ū j dx +

α

2

N∑

i, j,k=1

∫

RN
∂i ui |∂k ū j |2 dx

≤ C‖u(t)‖C2(‖ū‖2
L2 + α‖∇ ū‖2

L2).

I2 =
N∑

i, j=1

∫

RN
ūi∂i u j (ū j − α�ū j ) dx

=
N∑

i, j=1

∫

RN
ūi∂i u j ū j dx + α

N∑

i, j,k=1

∫

RN
∂k ūi∂i u j∂k ū j dx
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+α
N∑

i, j,k=1

∫

RN
ūi∂i∂ku j∂k ū j dx

≤ C‖u(t)‖C2(‖ū‖2
L2 + α‖∇ ū‖2

L2).

One can estimate I3 immediately as

I3 ≤ ‖ū‖2
L2 + α2C(‖u‖2

Lip(0,T ;H2(RN ))
+ ‖u‖4

L∞(0,T ;H3(RN ))
).

Summarizing the above estimates, we obtain

d

dt
(‖ū‖2

L2 + α‖∇ ū‖2
L2) ≤ C‖u(t)‖C2(‖ū‖2

L2 + α‖∇ ū‖2
L2)

+α2C(‖u‖2
Lip(0,T ;H2(RN ))

+ ‖u‖4
L∞(0,T ;H3(RN ))

),

which implies by Gronwall’s Lemma that

‖ū‖2
L2 + α‖∇ ū‖2

L2 ≤ C1(α
2 + ‖ū(0)‖2

L2 + α‖∇ ū(0)‖2
L2),

where constant C1 depended only on ‖u‖Lip(0,T ;H2(RN )) and ‖u‖L∞(0,T ;H3(RN )). This
completes the proof of theorem. ��

5. Liouville Type Theorem for Stationary Solutions

In this section, we prove a Liouville type theorem for stationary solutions. Recall that
the stationary weak solution defined in Definition 1 reduces to

Definition 2. u ∈ H1(RN ) is a stationary weak solution to (EP) on R
N , if the following

holds:

N∑

j=1

∫

RN

{
ui u j + α∇ui · ∇u j

}
∂ jϕi dx + α

N∑

j=1

∫

RN
u j∇ui · ∇∂ jϕi dx

+
N∑

j=1

∫

RN

{
δi j

2
|u|2 − α∂i u · ∂ j u +

αδi j

2
|∇u|2

}

∂ jϕi dx = 0 (35)

for i = 1, . . . , N and for all φ ∈ C∞
0 (R

N ).

Theorem 5. (i) Let u ∈ H1(RN ) be a stationary weak solution to (EP) with α > 0.
Then, u = 0.

(ii) Let u ∈ L2(RN ) be a stationary weak solution to (EP) with α = 0. Then, u = 0.

Proof. For α > 0, one can write (35) in the following form:

N∑

j=1

∫

RN
T a

i j∂ jϕi dx +
N∑

j,k=1

∫

RN
T̃ b

i jk∂ j∂kϕi dx = 0, (36)

where T a
i j is defined in (3) and we recall here

T a
i j = ui u j + α∇ui · ∇u j +

δi j

2
|u|2 − α∂i u · ∂ j u +

αδi j

2
|∇u|2,
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and

T̃ b
i jk = αu j∂kui .

corresponding to T b
i j in (4).

Let us consider the radial cut-off function σ ∈ C∞
0 (R

N ) such that

σ(|x |) =
{

1 if |x | < 1,

0 if |x | > 2,

and 0 ≤ σ(x) ≤ 1 for 1 < |x | < 2. Then, for each R > 0, we define

σ

( |x |
R

)

:= σR(|x |) ∈ C∞
0 (R

N ).

Choosing ϕi (x) = xiσR(x) in (36), we obtain

0 =
N∑

i=1

∫

RN
T a

ii σR(x) dx +
N∑

i, j=1

∫

RN
T a

i j x j∂iσR(x) dx +
N∑

i,k=1

∫

RN
T̃ b

iik∂kσR(x) dx

+
N∑

i, j=1

∫

RN
T̃ b

i j i∂ jσR(x) dx +
N∑

i, j,k=1

∫

RN
T̃ b

i jk xi∂ j∂kσR(x) dx

= I1 + I2 + I3 + I4 + I5. (37)

The hypothesis u ∈ H1(RN ) implies that T ∈ L1(RN ). Thus, we obtain

|I2| ≤ 1

R

∫

{R≤|x |≤2R}
|T a ||x ||∇σ | dx ≤ 2‖∇σ‖L∞

∫

{R≤|x |≤2R}
|T a | dx → 0

as R → ∞ by the dominated convergence theorem. Similarly, I3, I4, I5 → 0 as R →
∞.

Thus, passing R → ∞ in (37), we have

0 = lim
R→∞

N∑

i=1

∫

RN
T a

ii σR(x) dx

=
∫

RN

{
(N + 2)

2
|u|2 +

αN

2
|∇u|2

}

dx,

which implies u = 0. This gives (i).
For the case α = 0. All the terms involving α drop and (ii) holds true. This completes

the proof of the theorem ��
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