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Abstract Strong compactness results for families of functions in seminormed nonnegative
cones in the spirit of the Aubin-Lions-Dubinskiı̆ lemma are proven, refining some recent
results in the literature. The first theorem sharpens slightly a result of Dubinskiı̆ (in Mat.
Sb. 67(109):609–642, 1965) for seminormed cones. The second theorem applies to piece-
wise constant functions in time and sharpens slightly the results of Dreher and Jüngel (in
Nonlinear Anal. 75:3072–3077, 2012) and Chen and Liu (in Appl. Math. Lett. 25:2252–
2257, 2012). An application is given, which is useful in the study of porous-medium or
fast-diffusion type equations.

Keywords Compactness in Banach spaces · Rothe method · Dubinskii lemma ·
Seminormed cone

Mathematics Subject Classification (2000) 46B50 · 35A35

1 Introduction

The Aubin-Lions lemma states criteria under which a set of functions is relatively compact
in Lp(0, T ;B), where p ≥ 1, T > 0, and B is a Banach space. The standard Aubin-Lions
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lemma states that if U is bounded in Lp(0, T ;X) and ∂U/∂t = {∂u/∂t : u ∈ U} is bounded
in Lr(0, T ;Y ), then U is relatively compact in Lp(0, T ;B), under the conditions that

X ↪→ B compactly, B ↪→ Y continuously,

and either 1 ≤ p < ∞, r = 1 or p = ∞, r > 1. Typically, when U consists of approximate
solutions to an evolution equation, the boundedness of U in Lp(0, T ;X) comes from suit-
able a priori estimates, and the boundedness of ∂U/∂t in Lr(0, T ;Y ) is a consequence of
the evolution equation at hand. The compactness is needed to extract a sequence in the set
of approximate solutions, which converges strongly in Lp(0, T ;B). The limit is expected to
be a solution to the original evolution equation, thus yielding an existence result.

In recent years, nonlinear counterparts of the Aubin-Lions lemma were shown [4, 8,
17]. In this note, we aim to collect these results, which are scattered in the literature, and
to prove some refinements. In particular, we concentrate on the case in which the set U

is bounded in Lp(0, T ;M+), where M+ is a nonnegative cone (see below). This situation
was first investigated by Dubinskiı̆, and therefore, we call the corresponding results Aubin-
Lions-Dubinskiı̆ lemmas.

Before detailing our main results, let us review the compactness theorems in the liter-
ature. The first result on the compact embedding of spaces of Banach space valued func-
tions was shown by Aubin in 1963 [3], extended by Dubinskiı̆ in 1965 [11], also see [16,
Théorème 5.1, p. 58]. Some unnecessary assumptions on the spaces were removed by Simon
in his famous paper [22]. The compactness embedding result was sharpened by Amann [2]
involving spaces of higher regularity, and by Roubíček, assuming that the space Y is only
locally convex Hausdorff [20] or that ∂U/∂t is bounded in the space of vector-valued mea-
sures [21, Corollary 7.9]. This condition can be replaced by a boundedness hypothesis in a
space of functions with generalized bounded variations [15, Prop. 2]. A result on compact-
ness in Lp(R;B) can be found in [23, Theorem 13.2].

The boundedness of U in Lp(0, T ;B) can be weakened to tightness of U with respect
to a certain lower semicontinuous function; see [19, Theorem 1]. Also the converse of the
Aubin-Lions lemma was proved (see [18] for a special situation).

Already Dubinskiı̆ [11] observed that the space X can be replaced by a seminormed
set, which can be interpreted as a nonlinear version of the Aubin-Lions lemma. (Recently,
Barrett and Süli [4] corrected an oversight in Theorem 1 of [11].) Furthermore, the space
B can be replaced by K(X), where K : X → B is a compact operator, as shown by Maitre
[17], motivated by the nonlinear compactness result of Alt and Luckhaus [1].

Instead of boundedness of ∂U/∂t in Lr(0, T ;Y ), the condition on the time shifts

‖σhu − u‖Lp(0,T −h;Y) → 0 as h → 0, uniformly in u ∈ U,

where (σhu)(t) = u(t + h), can be imposed to achieve compactness [22, Theorem 5]. If
the functions uτ in U are piecewise constant in time with uniform time step τ > 0, this
assumption was simplified in [10, Theorem 1] to

‖στuτ − uτ‖Lr (0,T −τ ;Y) ≤ Cτ,

where C > 0 does not depend on τ . This condition avoids the construction of linear inter-
polations of uτ (also known as Rothe functions [14]). It was shown in [10, Prop. 2] that
the rate τ cannot be replaced by τα with 0 < α < 1. Nonlinear versions were given in [8],
generalizing the results of Maitre.
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In the literature, discrete versions of the Aubin-Lions lemma were investigated. For
instance, compactness properties for a discontinuous and continuous Galerkin time-step
scheme were shown in [24, Theorem 3.1]. In [12], compactness of sequences of functions
obtained by a Faedo-Galerkin approximation of a parabolic problem was studied.

In this note, we generalize some results of [8, 10] (and [12]) to seminormed nonnegative
cones. We call M+ a seminormed nonnegative cone in a Banach space B if the following
conditions hold: M+ ⊂ B; for all u ∈ M+ and c ≥ 0, cu ∈ M+; and if there exists a function
[·] : M+ → [0,∞) such that [u] = 0 if and only if u = 0, and [cu] = c[u] for all c ≥ 0.
We say that M+ ↪→ B continuously, if there exists C > 0 such that ‖u‖B ≤ C[u] for all
u ∈ M+ ⊂ B . Furthermore, we write M+ ↪→ B compactly, if for any bounded sequence
(un) in M+ (here the boundedness means that there exists C > 0 such that for all n ∈ N,
[un] ≤ C), there exists a subsequence converging in B .

Theorem 1 (Aubin-Lions-Dubinskiı̆) Let B , Y be Banach spaces and M+ be a seminormed
nonnegative cone in B with M+ ∩ Y 
= ∅. Let 1 ≤ p ≤ ∞. We assume that

(i) M+ ↪→ B compactly.
(ii) For all (wn) ⊂ B ∩ Y , wn → w in B , wn → 0 in Y as n → ∞ imply that w = 0.

(iii) U ⊂ Lp(0, T ;M+ ∩ Y ) is bounded in Lp(0, T ;M+).
(iv) ‖σhu − u‖Lp(0,T −h;Y) → 0 as h → 0, uniformly in u ∈ U .

Then U is relatively compact in Lp(0, T ;B) (and in C0([0, T ];B) if p = ∞).

This result generalizes slightly Theorem 3 in [8]. The novelty is that we do not require
the continuous embedding B ↪→ Y . If both B and Y are continuously embedded in a topo-
logical vector space (such as some Sobolev space with negative index) or in the space of
distributions D′, which is naturally satisfied in nearly all applications, then condition (ii)
clearly holds. Therefore, we do not need to check the continuous embedding B ↪→ Y , which
is sometimes not obvious, like in [9, pp. 1206–1207], where B is an L1 space with a com-
plicated weight and Y is related to a Sobolev space with negative index. Thus, this general-
ization is not only interesting in functional analysis but also in applications.

The proof of Theorem 1 is motivated by Theorem 3.4 in [12] and needs a simple but new
idea. Taking the proof of Theorem 5 in [22] as an example, we compare the traditional proof
and our new idea. For this, we first list some statements:

B ↪→ Y continuously, (1)

X ↪→ B compactly, (2)

X ↪→ Y compactly, (3)

∀ ε > 0, ∃Cε > 0, ∀u ∈ X, ‖u‖B ≤ ε‖u‖X + Cε‖u‖Y , (4)

U is a bounded subset of Lp(0, T ;X), (5)

‖σhu − u‖Lp(0,T −h;Y) → 0 as h → 0, uniformly for u ∈ U, (6)

‖σhu − u‖Lp(0,T −h;B) → 0 as h → 0, uniformly for u ∈ U, (7)

U is relatively compact in Lp(0, T ;Y ), (8)

U is relatively compact in Lp(0, T ;B). (9)
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Simon proves (9) [22, Theorem 5] using the steps

I. Theorem 5 in [22]: (1), (2), (5), (6) ⇒ (9).
II. Lemma 8 in [22]: (1), (2) ⇒ (4).

III. Theorem 3 in [22]: (2), (5), (7) ⇒ (9), or (3), (5), (6) ⇒ (8).

More precisely,

Traditional proof of I: New proof of I:

(1), (2)
II==⇒ (4)

(5)
(1), (2) =⇒(3)

(5)
(6)

⎫
⎬

⎭

III==⇒ (8)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=⇒ (9);

(2)
(5)

(1), (2)
II==⇒ (4)

(5)
(6)

⎫
⎪⎬

⎪⎭
=⇒ (7)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

III==⇒ (9).

In the traditional proof of I, the step (1), (2) ⇒ (3) depends on the continuous embedding
(1). Hence, in that proof, (1) is essential. In our new proof, only step II: (1), (2) ⇒ (4)
depends on (1), which can be replaced by condition (ii) of Theorem 1. This condition follows
from (1) and hence, it is weaker than (1).

If U consists of piecewise constant functions in time (uτ ) with values in a Banach space,
condition (iv) in Theorem 1 can be simplified. The main feature is that it is sufficient to
verify one uniform estimate for the time shifts uτ (· + τ) − uτ instead of all time shifts
uτ (· + h) − uτ for h > 0.

Theorem 2 (Aubin-Lions-Dubinskiı̆ for piecewise constant functions in time) Let B , Y be
Banach spaces and M+ be a seminormed nonnegative cone in B . Let either 1 ≤ p < ∞,
r = 1 or p = ∞, r > 1. Let (uτ ) ⊂ Lp(0, T ;M+ ∩ Y ) be a sequence of functions, which are
constant on each subinterval ((k − 1)τ, kτ ], 1 ≤ k ≤ N , T = Nτ . We assume that

(i) M+ ↪→ B compactly.
(ii) For all (wn) ⊂ B ∩ Y , wn → w in B , wn → 0 in Y as n → ∞ imply that w = 0.

(iii) (uτ ) is bounded in Lp(0, T ;M+).
(iv) There exists C > 0 such that for all τ > 0, ‖στuτ − uτ‖Lr (0,T −τ ;Y) ≤ Cτ .

Then, if p < ∞, (uτ ) is relatively compact in Lp(0, T ;B) and if p = ∞, there exists a sub-
sequence of (uτ ) converging in Lq(0, T ;B) for all 1 ≤ q < ∞ to a limit function belonging
to C0([0, T ];B).

This result generalizes slightly Theorem 1 in [10] and Theorem 3 in [8] (for piecewise
constant functions in time). The proof in [10] is based on a characterization of the norm
of Sobolev-Slobodeckii spaces. Our proof just uses elementary estimates for the difference
στuτ − uτ and thus simplifies the proof in [10]. Note that Theorems 1 and 2 are also valid
if M+ is replaced by a seminormed cone or Banach space. We observe that for functions
uτ (t, ·) = uk for t ∈ ((k − 1)τ, kτ ], 1 ≤ k ≤ N , the estimate of (iv) can be formulated in
terms of the difference uk+1 − uk since

‖στuτ − uτ‖r
Lr (0,T −τ ;B) =

N−1∑

k=1

∫ kτ

(k−1)τ

‖uk+1 − uk‖r
Bdt = τ

N−1∑

k=1

‖uk+1 − uk‖r
B .
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A typical application is the cone of nonnegative functions u with um ∈ W 1,q (Ω), which
occurs in diffusion equations involving a porous-medium or fast-diffusion term. Applying
Theorem 2, we obtain the following result.

Theorem 3 Let Ω ⊂ R
d (d ≥ 1) be a bounded domain with ∂Ω ∈ C0,1. Let (uτ ) be a

sequence of nonnegative functions which are constant on each subinterval ((k − 1)τ, kτ ],
1 ≤ k ≤ N , T = Nτ . Furthermore, let 0 < m < ∞, γ ≥ 0, 1 ≤ q<∞, and p ≥ max{1, 1

m
}.

(a) If there exists C > 0 such that for all τ > 0,

τ−1‖στuτ − uτ‖L1(0,T −τ ;(Hγ (Ω))′) + ‖um
τ ‖Lp(0,T ;W1,q (Ω)) ≤ C,

then (uτ ) is relatively compact in Lmp(0, T ;Lmr(Ω)), where r ≥ 1
m

is such that
W 1,q (Ω) ↪→ Lr(Ω) is compact.

(b) If additionally max{0, (d − q)/(dq)} < m < 1 + min{0, (d − q)/(dq)} and

‖uτ loguτ‖L∞(0,T ;L1(Ω)) ≤ C (10)

for some C > 0 independent of τ > 0, then (uτ ) is relatively compact in Lp(0, T ;Ls(Ω))

with s = qd/(qd(1 − m) + d − q) > 1.

Part (a) of this theorem generalizes Lemma 2.3 in [7], in which only relative compactness
in Lm
(0, T ;Lmr(Ω)) for 
 < p and q = 2 was shown. Part (b) improves part (a) for m < 1
by allowing for relative compactness in Lp with respect to time instead of the larger space
Lmp . It generalizes Proposition 2.1 in [13] in which m = 1

2 and p = q = 2 was assumed. Its
proof shows that the bound on uτ loguτ can be replaced by a bound on φ(uτ ), where φ is
continuous and convex.

The additional estimate (10) is typical for solutions of semidiscrete nonlinear dif-
fusion equations for which

∫

Ω
uτ loguτdx is an entropy (Lyapunov functional) with∫

Ω
|∇um

τ |2dx as the corresponding entropy production (see, e.g., [7, Lemma 3.1]). The-
orem 3 improves standard compactness arguments. Indeed, let 1

m
≤ q < d . The addi-

tional estimate yields boundedness of (uτ ) in L∞(0, T ;L1(Ω)). Hence, ∇uτ = 1
m
u1−m

τ ∇um
τ

is bounded in Lp(0, T ;Lα(Ω)) with α = q/(1 + q(1 − m)). Thus, (uτ ) is bounded in
Lp(0, T ;W 1,α(Ω)) ↪→ Lp(0, T ;Ls(Ω)). By the Aubin-Lions lemma [10], (uτ ) is relatively
compact in Lp(0, T ;Lβ(Ω)) for all β < s. Part (b) of the above theorem improves this com-
pactness to β = s under the condition that (uτ loguτ ) is bounded in L∞(0, T ;L1(Ω)).

This note is organized as follows. In Sect. 2, Theorems 1–3 are proved. Section 3 is
concerned with additional results.

2 Proofs

2.1 Proof of Theorem 1

The proof of Theorem 1 is based on the following Ehrling type lemma.

Lemma 4 Let B , Y be Banach spaces and M+ be a seminormed nonnegative cone in B . We
assume that

(i) M+ ↪→ B compactly.
(ii) For all (wn) ⊂ B ∩ Y , wn → w in B , wn → 0 in Y as n → ∞ imply that w = 0.



38 X. Chen et al.

Then for any ε > 0, there exists Cε > 0 such that for all u, v ∈ M+ ∩ Y ,

‖u − v‖B ≤ ε([u] + [v]) + Cε‖u − v‖Y .

Proof The proof is performed by contradiction. Suppose that there exists ε0 > 0 such that
for all n ∈N, there exist un, vn ∈ M+ ∩ Y such that

‖un − vn‖B > ε0([un] + [vn]) + n‖un − vn‖Y . (11)

This implies that [un]+ [vn] > 0 for all n ∈N since otherwise, [um] = [vm] = 0 for a certain
m ∈N would lead to um = vm = 0 which contradicts (11). Define

ũn = un

[un] + [vn] , ṽn = vn

[un] + [vn] .

Then ũn, ṽn ∈ M+ ∩ Y and [ũn] ≤ 1, [ṽn] ≤ 1. Taking into account the compact embedding
M+ ↪→ B , there exist subsequences of (ũn) and (ṽn), which are not relabeled, such that
ũn → u and ṽn → v in B and hence,

ũn − ṽn → u − v in B. (12)

We infer from (11) that ‖ũn − ṽn‖B > ε0 + n‖ũn − ṽn‖Y . This shows, on the one hand,
that ‖ũn − ṽn‖B > ε0 and, by (12), ‖u − v‖B≥ε0. On the other hand, using the continuous
embedding M+ ↪→ B ,

‖ũn − ṽn‖Y ≤ 1

n
‖ũn − ṽn‖B ≤ C

n
([ũn] + [ṽn]) ≤ 2C

n
.

Consequently, ũn − ṽn → 0 in Y . Together with (12), condition (ii) implies that u − v = 0,
contradicting ‖u − v‖≥ε0. �

Proof of Theorem 1 First, we prove that

‖σhu − u‖Lp(0,T −h;B) → 0 as h → 0, uniformly in u ∈ U. (13)

Indeed, by condition (iii), there exists C > 0 such that ‖u‖Lp(0,T ;M+) ≤ C for all u ∈ U .
Lemma 4 shows that for any ε > 0, there exists Cε > 0 such that for all 0 < h < T , u ∈ U ,
and t ∈ [0, T − h],

‖u(t + h) − u(t)‖B ≤ ε

4C

([u(t + h)] + [u(t)]) + Cε‖u(t + h) − u(t)‖Y .

Integration over t ∈ (0, T − h) then gives

‖σhu − u‖Lp(0,T −h;B) ≤ ε

2C
‖u‖Lp(0,T ;M+) + Cε‖σhu − u‖Lp(0,T −h;Y)

≤ ε

2
+ Cε‖σhu − u‖Lp(0,T −h;Y).

We deduce from condition (iv) that for ε1 = ε/(2Cε), there exists η > 0 such that for all
0 < h < η and u ∈ U , ‖σhu − u‖Lp(0,T −h;Y) ≤ ε1. This shows that ‖σhu − u‖Lp(0,T −h;B) ≤
ε/2 + ε/2 = ε, proving the claim.
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Because of condition (iii) and (13), the assumptions of Lemma 6 in [8] are satisfied,
and the desired compactness result follows. In Lemma 6, only the (compact) embedding
M+ ↪→ B is needed. Let us mention that this lemma is a consequence of a nonlinear Maitre-
type compactness result [8, Theorem 1] (see Proposition 7), which itself uses Theorem 1 in
[22]. �

2.2 Proof of Theorem 2

The proof of Theorem 2 is based on an estimate of the time shifts σhuτ − uτ .

Lemma 5 Let 1 ≤ p ≤ ∞ and let uτ ∈ Lp(0, T ;B) be piecewise constant in time, i.e.,
uτ (t) = uk for (k − 1)τ < t ≤ kτ , k = 1, . . . ,N , T = Nτ . Then, for 0 < h < T ,

‖σhuτ − uτ‖Lp(0,T −h;B) ≤ h1/p

N−1∑

k=1

‖uk+1 − uk‖B = h1/p

τ
‖στuτ − uτ‖L1(0,T −τ ;B).

Proof Denoting by H the Heaviside functions, defined by H(t) = 0 for t ≤ 0 and H(t) = 1
for t > 0, we find that

uτ (t) = u1 +
N−1∑

k=1

(uk+1 − uk)H(t − kτ), 0 < t < T .

This gives

uτ (t + h) − uτ (t) =
N−1∑

k=1

(uk+1 − uk)
(
H(t + h − kτ) − H(t − kτ)

)
, 0 < t < T − h,

and

‖στuτ − uτ‖Lp(0,T −h;B) ≤
N−1∑

k=1

‖uk+1 − uk‖B‖H(t + h − kτ) − H(t − kτ)‖Lp(0,T −h). (14)

If 1 ≤ p < ∞, we have for 1 ≤ k ≤ N − 1,

‖H(t + h − kτ) − H(t − kτ)‖p

Lp(0,T −h)

≤
∫ ∞

−∞

∣
∣H(t + h − kτ) − H(t − kτ)

∣
∣pdt

=
(∫ kτ−h

−∞
+

∫ kτ

kτ−h

+
∫ ∞

kτ

)
∣
∣H(t + h − kτ) − H(t − kτ)

∣
∣pdt =

∫ kτ

kτ−h

dt = h.

If p = ∞, we infer that

‖H(t + h − kτ) − H(t − kτ)‖L∞(0,T −h) ≤ ‖H(t + h − kτ) − H(t − kτ)‖L∞(R)

= ‖H(t + h − kτ) − H(t − kτ)‖L∞(kτ−h,kτ) = 1.

Hence,

‖H(t + h − kτ) − H(t − kτ)‖L∞(0,T −h) ≤ h1/p, 1 ≤ p ≤ ∞.

Together with (14), this finishes the proof. �
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Theorem 1 above and Lemma 4 in [22] imply the following proposition involving the
time derivative instead of the time shifts.

Proposition 6 Let B , Y be Banach spaces and M+ be a seminormed nonnegative cone in B .
Let either 1 ≤ p < ∞, r = 1 or p = ∞, r > 1. Assume that conditions (i)–(iii) of Theorem
1 hold and

∂U

∂t
is bounded in Lr(0, T ;Y ).

Then U is relatively compact in Lp(0, T ;B) (and in C0([0, T ];B) if p = ∞).

Proof of Theorem 2 The case 1 ≤ p < ∞ is a consequence of Theorem 1 and Lemma 5.
Therefore, let p = ∞. We define the linear interpolations

ũτ (t) =
{

u1 if 0 < t ≤ τ,

uk − (kτ − t)(uk − uk−1)/τ if (k − 1)τ < t ≤ kτ, 2 ≤ k ≤ N.

Since (kτ − t)/τ ≤ 1 for (k − 1)τ < t ≤ kτ , we have

‖ũτ‖L∞(0,T ;M+) ≤ 2‖uτ‖L∞(0,T ;M+) ≤ C,

using condition (iii). Furthermore, by condition (iv),

∥
∥
∥
∥
∂ũτ

∂t

∥
∥
∥
∥

Lr (0,T ;Y)

= 1

τ
‖στuτ − uτ‖Lr (0,T −τ ;Y) ≤ C.

By Proposition 6, there exists a subsequence (ũτ ′) of (ũτ ) such that ũτ ′ → ũ in C0([0, T ];B)

(and ũ ∈ C0([0, T ];B)). Applying Theorem 2 with p = 1 and r = 1, there exists a subse-
quence (uτ ′′) of (uτ ′) such that uτ ′′ → u in L1(0, T ;B). Since

‖ũτ − uτ‖L1(0,T ;B) ≤ ‖στuτ − uτ‖L1(0,T −τ ;B) ≤ Cτ,

it follows that (ũτ ′′) and (uτ ′′) converge to the same limit, implying that ũ = u. By the
boundedness of (uτ ) in L∞(0, T ;M+) ⊂ L∞(0, T ;B) and interpolation, we infer that for
1 ≤ q < ∞, as τ → 0,

‖uτ ′′ − u‖Lq(0,T ;B) ≤ ‖uτ ′′ − u‖1/q

L1(0,T ;B)
‖uτ ′′ − u‖1−1/q

L∞(0,T ;B) ≤ C‖uτ ′′ − u‖1/q

L1(0,T ;B)
→ 0.

This shows that a subsequence of (uτ ) converges in Lq(0, T ;B) to a limit function u ∈
C0([0, T ];B). �

2.3 Proof of Theorem 3

(a) We apply Theorem 2 to B = Lmr(Ω), Y = (H s(Ω))′, and M+ = {u ≥ 0 : um ∈ W 1,q (Ω)}
with [u] = ‖um‖1/m

W1,q (Ω)
for u ∈ M+. Then M+ is a seminormed nonnegative cone in B .

We claim that M+ ↪→ B compactly. Indeed, it follows from the continuous embedding
W 1,q (Ω) ↪→ Lr(Ω) that for any u ∈ M+,

‖u‖Lmr (Ω) = ‖um‖ 1
m

Lr (Ω) ≤ C‖um‖ 1
m

W1,q (Ω)
= C[u].
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Then M+ ↪→ B continuously. Let (vn) be bounded in M+. Then (vm
n ) is bounded in

W 1,q (Ω). Since W 1,q (Ω) embeddes compactly into Lr(Ω), up to a subsequence which
is not relabeled, vm

n → z in Lr(Ω) with z ≥ 0. Again up to a subsequence, vm
n → z a.e. and

vn → v := z1/m a.e. Hence vm
n → vm in Lr(Ω) which yields

lim
n→∞‖vn‖Lmr (Ω) = lim

n→∞‖vm
n ‖1/m

Lr (Ω) = ‖vm‖1/m

Lr (Ω) = ‖v‖Lmr (Ω).

Then it follows from Brezis-Lieb theorem (see [5, p. 298, 4.7.30] or [6]) that vn → v in
Lmr(Ω) (for a subsequence). This proves the claim. Next, let wn → w in Lmr(Ω) and wn →
0 in (Hγ (Ω))′. Since Lmr(Ω) ↪→ D′(Ω) and (Hγ (Ω))′ ↪→ D′(Ω), the convergences hold
true in D′(Ω) which gives w = 0. Furthermore, the following bound holds:

‖uτ‖Lmp(0,T ;M+) = ‖um
τ ‖1/m

Lp(0,T ;W1,q (Ω))
≤ C.

By Theorem 2, (uτ ) is relatively compact in Lmp(0, T ;Lmr(Ω)).
(b) Note that the condition max{0, (d − q)/(dq)} < m < 1 + min{0, (d − q)/(dq)} en-

sures that s > 1. By the first part of the proof, up to a subsequence, uτ → u a.e. It is shown
in the proof of Proposition 2.1 in [13] that this convergence and (10) imply that uτ → u in
L∞(0, T ;L1(Ω)). We infer from the elementary inequality |a − b|1/m ≤ |a1/m − b1/m| for
all a, b ≥ 0 that

‖um
τ − um‖L∞(0,T ;L1/m(Ω)) ≤ ‖uτ − u‖L∞(0,T ;L1(Ω)) → 0 as τ → 0.

Then the Gagliardo-Nirenberg inequality gives

‖um
τ − um‖Lp/m(0,T ;Ls/m(Ω)) ≤ C‖um

τ − um‖m

Lp(0,T ;W1,q (Ω))
‖um

τ − um‖1−m

L∞(0,T ;L1/m(Ω))

≤ C‖um
τ − um‖1−m

L∞(0,T ;L1/m(Ω))
→ 0.

In particular, we infer that

‖uτ‖m
Lp(0,T ;Ls(Ω)) = ‖um

τ ‖Lp/m(0,T ;Ls/m(Ω)) ≤ C.

Furthermore, by the mean-value theorem, |a − b| ≤ 1
m
(a1−m + b1−m)|am − bm| for all a,

b ≥ 0, which yields, together with the Hölder inequality,

‖uτ − u‖Lp(0,T ;Ls(Ω)) ≤ C
(‖uτ‖1−m

Lp(0,T ;Ls(Ω)) + ‖u‖1−m
Lp(0,T ;Ls(Ω))

)‖um
τ − um‖Lp/m(0,T ;Ls/m(Ω))

≤ C‖um
τ − um‖Lp/m(0,T ;Ls/m(Ω)) → 0.

This proves the theorem.

3 Additional Results

Using Lemma 5, we can specify Maitre’s nonlinear compactness result and Aubin-Lions
lemma with an intermediate spaces assumption for piecewise constant functions in time.

Proposition 7 (Maitre nonlinear compactness) Let either 1 ≤ p < ∞, r = 1 or p = ∞,
r > 1. Let X, B be Banach spaces, and let K : X → B be a compact operator. Furthermore,
let (vτ ) ⊂ L1(0, T ;X) be a sequence of functions, which are constant on each subinterval
((k − 1)τ, kτ ], 1 ≤ k ≤ N , T = Nτ , and let uτ = K(vτ ) ∈ Lp(0, T ;B). Assume that
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(i) (vτ ) is bounded in L1(0, T ;X), (uτ ) is bounded in L1(0, T ;B).
(ii) There exists C > 0 such that for all τ > 0, ‖στuτ − uτ‖Lr (0,T −τ ;B) ≤ Cτ .

Then, if p < ∞, (uτ ) is relatively compact in Lp(0, T ;B) and if p = ∞, there exists a sub-
sequence of (uτ ) converging in Lq(0, T ;B) for all 1 ≤ q < ∞ to a limit function belonging
to C0([0, T ];B).

This result extends Theorem 1 in [8], which was proven for r = p only, for piecewise
constant functions in time. In fact, Lemma 5 shows that condition (ii) implies a bound on
σhuτ − uτ in Lp(0, T − h;B), and Theorem 1 in [8] applies for p < ∞. The case p = ∞ is
treated as in the proof of Theorem 2.

Proposition 8 (Aubin-Lions compactness) Let X, B, Y be Banach spaces and 1 ≤ p < ∞.
Assume that X ↪→ Y compactly, X ↪→ B ↪→ Y continuously and there exist θ ∈ (0,1), Cθ >

0 such that for any u ∈ X, ‖u‖B ≤ Cθ‖u‖1−θ
X ‖u‖θ

Y . Furthermore, let (uτ ) be a sequence of
functions, which are constant on each subinterval ((k − 1)τ, kτ ], 1 ≤ k ≤ N , T = Nτ . If

(i) (uτ ) is bounded in Lp(0, T ;X).
(ii) There exists C > 0 such that for all τ > 0, ‖στuτ − uτ‖L1(0,T −τ ;Y) ≤ Cτ .

Then (uτ ) is relatively compact in Lq(0, T ;B) for all p ≤ q < p/(1 − θ).

Proof Let p ≤ q < p/(1 − θ) and set 
 = θ/(1/q − (1 − θ)/p). Then 
 ∈ [1,∞) and 1/q =
(1 − θ)/p + θ/
. Hence it follows from Lemma 5 that ‖σhuτ − uτ‖L
(0,T −h;Y) ≤ Ch1/
 for
all 0 < h < T . This and Theorem 7 of [22] prove the result. �

This result improves Theorem 1 in [10] for the case p < ∞. For piecewise constant
functions, Lemma 5 can be applied to Theorem 1.1 of [2] which yields another compactness
result.

In finite-element or finite-volume approximation, un ∈ Yn may be the solution of a dis-
cretized evolution equation, where (Yn) is a sequence of (finite-dimensional) Banach spaces
which “approximates” the (infinite-dimensional) Banach space Y . Since the spaces Yn de-
pend on the index n, the classical Aubin-Lions lemma generally does not apply. Gallouët
and Latché [12] have proved a discrete version of this lemma. We generalize their result for
seminormed cones Mn and allow for the case p = ∞.

Proposition 9 (Discrete Aubin-Lions-Dubinskiı̆) Let B , Yn be Banach spaces (n ∈ N) and
let Mn be seminormed nonnegative cones in B with “seminorms” [·]n. Let 1 ≤ p ≤ ∞.
Assume that

(i) (un) ⊂ Lp(0, T ;Mn ∩ Yn) and there exists C > 0 such that ‖un‖Lp(0,T ;Mn) ≤ C.
(ii) ‖σhun − un‖Lp(0,T −h;Yn) → 0 as h → 0, uniformly in n ∈N.

Then (un) is relatively compact in Lp(0, T ;B) (and in C0([0, T ];B) if p = ∞).

Proof The proof uses the same techniques as in Sect. 2, therefore we give only a sketch.
Similarly as in Lemma 4, a Ehrling-type inequality holds: Let un ∈ Mn (n ∈ N). Assume
that (i) if [un]n ≤ C for all n ∈ N, for some C > 0, then (un) is relatively compact in B;
(ii) if un → u in B as n → ∞ and limn→∞ ‖un‖Yn = 0 then u = 0. Then for all ε > 0, there
exists Cε > 0 such that for all n ∈N, u, v ∈ Mn ∩ Yn,

‖u − v‖B ≤ ε([u]n + [v]n) + Cε‖u − v‖Yn .
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We infer as in the proof of Theorem 1 that conditions (i) and (ii) imply that

‖σhun − un‖Lp(0,T −h;B) → 0 as h → 0, uniformly for n ∈N.

Finally, as in the proof of Lemma 6 in [8], the relative compactness of (un) in Lp(0, T ;B)

(and in C0([0, T ];B) if p = ∞) follows. �
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