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EXISTENCE AND UNIQUENESS OF GLOBAL WEAK SOLUTION

TO A KINETIC MODEL FOR THE SEDIMENTATION OF ROD-LIKE

PARTICLES∗

XIUQING CHEN† , XIAOLONG LI‡ , AND JIAN-GUO LIU§

Abstract. We investigate a kinetic model for the sedimentation of dilute suspensions of rod-like
particles under gravity, deduced by Helzel, Otto, and Tzavaras (2011), which couples the impressible
(Navier-)Stokes equation with the Fokker-Planck equation. With a no-flux boundary condition for
the distribution function, we establish the existence and uniqueness of a global weak solution to the
two dimensional model involving the Stokes equation.
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1. Introduction

Rod-like particle suspensions in fluid are common in nature, including examples
such as bacteria swimming in the water and liquid crystal molecules moving in a
solvent. The dilute suspensions of passive rod-like particles can be effectively modeled
by a coupled microscopic Fokker-Planck equation and macroscopic (Navier-)Stokes
equation, known as the Doi model (see Doi [9]; Doi and Edwards [10]). We refer to
[23] for the Doi model for suspensions of active rod-like particles without considering
the effects of gravity. Recently an extended model under gravity was introduced by
Hezel, Otto, and Tzavaras [16], which reads

∂tf+∇x ·(uf)−∆nf+∇n·
[

(Id−n⊗n)∇xunf
]

=∇x· [(Id+n⊗n)e2f ]

+γ∇x· [(Id+n⊗n)∇xf ],
(1.1)

σ=

∫

Sd−1

[(dn⊗n− Id)f ]dn, (1.2)

Re[∂tu+(u ·∇x)u]−∆xu+∇xp=βγ∇x ·σ−β

(
∫

Sd−1

fdn

)

e2,

(1.3)

∇x ·u=0, (1.4)

where (t,x,n)∈ [0,∞)×Ω×Sd−1, Ω⊂Rd is a bounded domain with ∂Ω of class C1 and
Sd−1⊂Rd is the unit sphere; σ is a stress tensor, p is the pressure, e2 is the unit vector
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in the upward direction; ∇n· and ∆n denote the tangential divergence and Laplace-
Beltrami operator on Sd−1, respectively. In this model, f(t,x,n) is a distribution
function which represents the configuration of a suspension of rod-like particles and
u(t,x) is the fluid velocity induced by the other particles in the suspension.

The coefficients Re≥0, β>0, and γ >0 are constants. Re is a Reynolds number;
β measures the relation between the rate of work of buoyancy vs. the rate of work of
the viscous force; γ measures the relation between the rate of work of elastic forces vs.
the rate of work of buoyancy (see [16], Remark 2.1-2.2). For convenience, if Re=0,
the model including a Stokes equation is called Stokes-type.

The first term on the right hand side of (1.1) represents the effects of gravity on
rod-like particles. Taking this particular form are due to the fact that the frictional
coefficient in the tangential direction is twice as large as that in the normal direction.
This result comes from classical slender body theory (see [17, 4, 19]). Since horizon-
tally orientated particles sediment slower than particles with a vertical orientation,
particles move sideways with a slight concentration in 45 degrees. One of the most
peculiar phenomena in sedimentation of rod-like particles is packet formation and
alignment in the gravity direction (see [16]). An anisotropic diffusivity in the second
term on the right hand side of (1.1) is also due to the inhomogeneity of the frictional
coefficients in the tangential direction and normal direction.

Defining the concentration density ρ :=
∫

Sd−1 f dn and integrating (1.1) over Sd−1,
we deduce that

∂tρ+u ·∇xρ=∇x ·
(

e2ρ+γ∇xρ+

∫

Sd−1

n⊗nf dne2+γ∇x·
∫

Sd−1

n⊗nf dn

)

. (1.5)

The last two terms account for the anisotropic effects of gravity and diffusivity. As a
result, we do not have L∞ and L2 estimates for density ρ.

In contrast to the FENE and the Hookean models with centre-of-mass diffusion,
the density ρ satisfies a convection diffusion equation

∂tρ+u ·∇xρ−D∆xρ=0,

and where the maximum principle holds (see [2]-[3]), in the Doi model for active
rod-like particle suspensions (see [5]),

∂tρ+u ·∇xρ+∇x ·
(
∫

Sd−1

(αnf)dn−D∇xρ

)

=0,

where ρ has L2-estimate. The L∞ or L2-estimate for ρ is the foundation for estab-
lishing the global entropy weak solution in [2]-[3] and [5].

It can be shown that this model with boundary conditions

(Id+n⊗n)(e2f+γ∇xf) ·v |∂Ω=0, u|∂Ω=0, (1.6)

has the following entropy estimate (see [16]):

d

dt

∫

Ω

(

β

∫

Sd−1

(γf lnf−γf+fx ·e2)dn+
Re

2
|u|2

)

dx

+4βγ

∫

Ω×Sd−1

∣

∣

∣
∇n

√

f
∣

∣

∣

2

dndx+

∫

Ω

|∇xu|2dx

+β

∫

Ω×Sd−1

(I+n⊗n)(e2f+∇xf) ·(e2f+∇xf)
1

f
dndx=0, (1.7)
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which reveals that the total energy

E(u,f) :=

∫

Ω

(

β

∫

Sd−1

(γf lnf−γf+fx ·e2)dn+
Re

2
|u|2

)

dx

is dissipated.
For this model, without an L∞ or L2-estimate of the density ρ, the entropy

estimate is not enough to establish the existence of global weak solutions. We also need
L2-estimates for the distribution f . In fact, multiplying (1.1) by f and integrating on
Ω×Sd−1, one has

1

2

d

dt

∫

Ω×Sd−1

|f |2dndx+
∫

Ω×Sd−1

|∇nf |2dndx+γ

∫

Ω×Sd−1

(Id+n⊗n)∇xf ·∇xfdndx

=−
∫

Ω×Sd−1

(Id+n⊗n)e2f ·∇xfdndx+
1

2

∫

Ω×Sd−1

[(Id−n⊗n)∇xun] ·∇nf
2dndx.

(1.8)

Because Id+n⊗n is a positive definite matrix with the smallest eigenvalue 1, we have

|∇xf |2≤ (Id+n⊗n)∇xf ·∇xf. (1.9)

This and Cauchy-Schwartz inequality yield that

1

2

d

dt

∫

Ω×Sd−1

|f |2dndx+
∫

Ω×Sd−1

[|∇nf |2+
γ

2
|∇xf |2]dndx

≤C

∫

Ω×Sd−1

|f |2dndx+ 1

2

∫

Ω×Sd−1

[(Id−n⊗n)∇xun] ·∇nf
2dndx. (1.10)

Integrating by parts, we have

I=:

∫

Ω×Sd−1

[(Id−n⊗n)∇xun] ·∇nf
2dndx

=

∫

Ω×Sd−1

(dn⊗n− Id)f2 :∇xudndx≤C‖∇xu‖L2(Ω)‖f‖2L4(Ω;L2(Sd−1)). (1.11)

If d=2, we have from Gagliardo-Nirenberg and Cauchy-Schwartz inequalities (see
(3.42)-(3.43)) that

I≤ γ

4

∫

Ω×Sd−1

|∇xf |2dndx+C
(

‖∇xu‖2L2(Ω)+1
)

‖f‖2L2(Ω×Sd−1). (1.12)

Therefore,

d

dt

1

2

∫

Ω×Sd−1

|f |2dndx+
∫

Ω×Sd−1

(

|∇nf |2+
γ

4
|∇xf |2

)

dndx

≤C
(

‖∇xu‖2L2(Ω)+1
)

‖f‖2L2(Ω×Sd−1). (1.13)

It follows from (1.13), Gronwall’s inequality, and the entropy estimate (1.7) that

‖f‖2L2(Ω×Sd−1)≤Ce
∫

t

0

(

‖∇xu‖
2
L2(Ω)

+1
)

ds≤C(t). (1.14)
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For d≥3, we cannot perform estimates similar to (1.12)-(1.14).
With the entropy estimate and two dimensional (2D) L2-estimate at hand, in this

paper we aim to prove the existence of global weak solutions to the 2D Stokes-type
model with boundary conditions (1.6) and initial condition

f |t=0=f0 on Ω×S
d−1. (1.15)

There are many works on the mathematical analysis of the Doi model for passive
particle suspensions (see [1, 6, 7, 8, 15, 16, 20, 21, 25]), in which the density ρ satisfies
a transport equation with and without diffusion, and hence the maximum principle
holds. In the Doi model for active particle suspensions (see [5]), the density ρ has
an L2-estimate. The estimates of ρ constitute a common foundation for their proofs.
However, this model lacks good estimates for ρ as mentioned before, which is the main
difference with other Doi related models. A combination of an entropy estimate and
an L2-estimate solves this problem.

The paper is organized as follows. Section 2 collects some preliminaries. In
Section 3, we prove the existence of the global weak solution for the 2D Stokes-type
model, where a semi-implicit scheme is used to construct the approximate problem
and compactness is shown. Then in Section 4, we prove the uniqueness of the weak
solution.

For conciseness in presentation, we set β=γ=1 in the rest of this paper.

2. Preliminaries

The following notations will be used in this paper:

L
p(Ω)=Lp(Ω,Rd),Hm(Ω)=Hm(Ω,Rd),

C
∞
0 (Ω)=C∞

0 (Ω,Rd),V ={u∈C
∞
0 (Ω) :∇x ·u=0},

H={u∈L
2(Ω) :∇x ·u=0,u ·v|∂Ω=0},V={u∈H

1
0(Ω) :∇x ·u=0},

V
m=V ∩H

m(Ω),

where V is dense in H, V , and V
m. We also use the notation: S :=S1, and let

Id∈Rd×d denote the unit matrix. A↪→B (or A↪→↪→B) denotes that A is continuously

(or compactly) embedded in B. fτ → (⇀or
∗
⇀)f in A denotes a sequence {fτ}τ>0⊂A

converges strongly (weakly or weakly star) to f in A as τ →0. C(a,b, · · ·) denotes a
constant only dependent on a,b,... .

To tackle the coupling term in (1.1), we need the following lemma of integration-
by-parts.

Lemma 2.1 ([5], Lemma 1.1). Let f ∈W 1,1(Sd−1) and X ∈Rd×d be a constant
matrix with tr(X)=0. Then

∫

Sd−1

[(Id−n⊗n)Xn] ·∇nfdn=

∫

Sd−1

(dn⊗n− Id)f :Xdn.

We let z(s) :=s(ln(s)−1)+1, s∈ [0,∞), and define some cut-off functions below.
These cut-off functions will be used in the approximate problem, the entropy estimate,
and the L2−estimate in Section 3.
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Definition 2.2. Let L>1. Define

EL(s) :=







0, if s≤0,
s, if 0≤s≤L,
L, if s≥L;

z
L(s) :=

{

s(ln(s)−1)+1, 0≤s≤L,
s2−L2

2L +s(ln(L)−1)+1, s≥L;

GL(s) :=

{

s2

2 , s≤L,
L2

2 +L(s−L), s≥L.

With some elementary computations, one could verify the following properties
(also see Barrett and Suli [2]-[3] for some of them).

Lemma 2.3. Let L>1. Then

EL∈C0,1(R);GL∈C1,1(R);zL∈C2,1(R+)∩C([0,∞)), (2.1)

(GL)′(s)=EL(s), GL(s)≤ s2

2
, ∀s∈ [0,∞), (2.2)

z
L(s)≥z(s), ∀s∈ [0,∞), (2.3)

(zL)′′(s)= [EL(s)]−1≥s−1, ∀s∈R
+, (2.4)

(zL)′′(s+α)≤ 1

α
, ∀α∈ (0,1),∀s∈ [0,∞), (2.5)

∀s∈ [0,∞), lim
L→∞

EL(s)=s, (2.6)

z
L(EL(s)+α)≤α+

α2

2
+z(s+α), ∀α∈ (0,1), ∀s∈ [0,∞). (2.7)

The global weak solutions to the 2D Stokes-type model are defined as below.

Definition 2.4. Suppose f0∈L1(Ω×S) and f0≥0 a.e. on Ω×S. A pair of mea-
surable functions (u,f) is called a global weak solution to the 2D Stokes-type model
with boundary conditions (1.6) and initial condition (1.15) if

u∈L2(0,∞;V), f ≥0 a.e. on [0,∞)×Ω×S, (2.8)

f ∈L∞(0,∞;L1(Ω×S)),
√

f ∈L2(0,∞;H1(Ω×S)), (2.9)

and for any v∈C∞
0 ((0,∞)×Ω) with ∇x ·v=0,

∫ ∞

0

∫

Ω

∇xu :∇xvdxdt

=−
∫ ∞

0

∫

Ω×S

(2n⊗n−Id)f :∇xvdndxdt−
∫ ∞

0

∫

Ω×S

fe2 ·vdndxdt; (2.10)

also, for any ϕ∈C∞
0 ([0,∞)×Ω×S),

−
∫ ∞

0

∫

Ω×S

f∂tϕdndxdt−
∫ ∞

0

∫

Ω×S

(uf) ·∇xϕdndxdt+

∫ ∞

0

∫

Ω×S

∇nf ·∇nϕdndxdt

=

∫ ∞

0

∫

Ω×S

[

(Id−n⊗n)∇xunf
]

·∇nϕdndxdt
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−
∫ ∞

0

∫

Ω×S

(Id+n⊗n)(e2f+∇xf) ·∇xϕdndxdt+

∫

Ω×S

f0(x,n)ϕ(0,x,n)dndx.

(2.11)

Remark 2.5. It follows from the Gagliardo-Nirenberg inequality that

∥

∥

∥

√

f
∥

∥

∥

L4(Ω;L2(S))
≤C

∥

∥

∥

√

f
∥

∥

∥

1/2

H1(Ω;L2(S))

∥

∥

∥

√

f
∥

∥

∥

1/2

L2(Ω;L2(S))
,

and hence by the Hölder inequality that

∥

∥

∥

√

f
∥

∥

∥

L4(0,∞;L4(Ω;L2(S)))
≤C

∥

∥

∥

√

f
∥

∥

∥

1/2

L2(0,∞;H1(Ω×S))

∥

∥

∥

√

f
∥

∥

∥

1/2

L∞(0,∞;L2(Ω×S))
. (2.12)

This and (2.9) yield f ∈L2((0,∞)×Ω;L1(S)). Therefore the ∇xunf -related integral
makes sense.

3. Existence of a global weak solution

In this section, we apply Barrett and Süli [2]-[3]’s cut-off techniques with some
improvements and follow the usual procedure in proving the existence of global weak
solutions.

First we use a semi-implicit scheme to construct a sequence of approximate solu-
tions, where the Leray-Schauder fixed point theorem and cut-off techniques are used.
In the construction of approximate solutions, our cut-off function is motivated by but
different from that of Barrett and Süli [2]-[3]. First Barrett and Süli [2]-[3] used a
cut-off only from above by L>1, then they used another cut-off from below by δ>0.
They established the uniform estimates for δ and took the limit δ→0. It seems that
their whole process is quite involved. However, we used a cut-off function by chopping
off from above by L>1 and from below by 0 for the drag-term (see Definition 2.2).
This single cut-off function is sufficient for the proof of existence for approximate
solutions.

Then we use compactness to show that these constructed approximate solutions
converge to a weak solution. In order to apply the time-space compactness theorems
with assumptions on derivatives (such as Aubin-Lions-Simon lemma [24, Theorem 5]
and the Dubinskĭi lemma [12, Theorem 1]), the traditional Rothe method for evolu-
tionary PDEs (see [22] and [18]) is necessary and requires the construction of linear
interpolation functions (also known as Rothe functions). However, the approach of
the Rothe functions is fairly indirect and sometimes tedious, requiring more estimates
and sometimes even more regularity assumptions on the initial data. In contrast,
our approach is to apply Theorem 1 of Dreher-Jüngel [11], which consists of a non-
linear and a linear time-space compactness theorem with simple piecewise-constant
functions of t, instead of the more complicated Rothe functions.

Now we state our main result.

Theorem 3.1. Suppose f0∈L2(Ω×S) and f0≥0 a.e. on Ω×S. Then the initial-
boundary problem of 2D Stokes-type model has a global weak solution (u,f) which
satisfies

u∈L∞
loc(0,∞;V)∩L2

loc(0,∞;V2), (3.1)

f ∈L∞
loc(0,∞;L2(Ω×S))∩L2

loc(0,∞;H1(Ω×S)), (3.2)

f ∈H1
loc(0,∞;(H1(Ω×S))′), (3.3)
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and for a.e. t∈ [0,∞),

∫

Ω×S

z(f(t))dndx+

∫ t

0

‖∇xu(s)‖2L2(Ω)ds

+2

∫ t

0

(

∥

∥∇x

√

f(s)
∥

∥

2

L2(Ω×S)
+
∥

∥∇n

√

f(s)
∥

∥

2

L2(Ω×S)

)

ds

≤
∫

Ω×S

z(f0)dndx+C‖f0‖2L1(Ω×S). (3.4)

Remark 3.2. Although the sedimentation problem for dilute rod-like particles we
study here is in the Stokes regime, it is a mathematically interesting question to ask if
the above result is still valid when the Stokes equation is replaced by the Navier-Stokes
equation. There are some technical difficulties in solving this problem. We cannot
directly obtain (3.20), and hence (3.22) in the approximate problem. Therefore we
are not able to get (3.45), and prove the uniform L2-estimate (3.38) by applying the
discrete Gronwall inequality.

3.1. Approximate problem. In the construction of the approximate prob-
lem, a cut-off function chopping off above by some L>1 and chopping off below by
0 is used to ensure the boundedness of the linear functional (3.9) for the discrete
Fokker-Planck equation required by the Lax-Milgram theorem, and the boundedness
estimates for the existence of fixed-point solutions needed by the Leray-Schauder fixed
point theorem. Using this effective cut-off, we obtain the existence of weak solutions
in V ×H1

M for the approximate problem, and then by applying the standard method
for the resulting elliptic equation we get the nonnegativity of approximate distribution
functions.

For any fixed 0<τ <<1 and for any k∈N, given fk−1, the approximate problem
for the 2D Stokes-type model with cut-off reads

∫

Ω

∇xu
k :∇xvdx=−

∫

Ω×S

(2n⊗n− Id)fk :∇xvdndx−
∫

Ω×S

fke2 ·vdndx, ∀v∈V,

(3.5)

∫

Ω×S

fk−fk−1

τ
ϕdndx−

∫

Ω×S

(ukfk) ·∇xϕdndx+

∫

Ω×S

∇nf
k ·∇nϕdndx

=

∫

Ω×S

[

(Id−n⊗n)∇xu
kn
]

Eτ−
1
4 (fk) ·∇nϕdndx

−
∫

Ω×S

(Id+n⊗n)

[

e2E
τ−

1
4 (fk)+∇xf

k

]

·∇xϕdndx, ∀ϕ∈H1(Ω×S), (3.6)

in which Eτ−
1
4 is the cut-off function given by Definition 2.2.

Definition 3.3.

Z :=
{

f ∈L2(Ω×S) :f ≥0a.e.on Ω×S

}

. (3.7)

Proposition 3.4. Let fk−1∈Z. Then there exists (uk,fk)∈V×(Z∩H1(Ω×S))
which solves (3.5)-(3.6).
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Proof. Step 1. Let f̄ ∈L2(Ω×S). We claim that there exists a unique element u∈V

such that

a(u,v)=A(f̄)(v), ∀v∈V, (3.8)

where a(u,v)=
∫

Ω
∇xu :∇xvdx, ∀u,v∈V, and

A(f̄)(v)=−
∫

Ω×S

(2n⊗n− Id)f̄ :∇xvdndx−
∫

Ω×S

f̄e2 ·vdndx, ∀v∈V.

Then thanks to the Poincaré inequality and ‖
∫

S
(2n⊗n− Id)f̄dn‖L2(Ω)≤

C‖f̄‖L2(Ω×S), we have that a(·, ·) is a bounded, coercive bilinear functional on V

and A(f̄)∈V
′. Hence by the Lax-Milgram theorem, we finish the proof of Step 1.

Step 2. We prove that for such f̄ ∈L2(Ω×S) and solutions u∈V in (3.8), there
exists a unique element f ∈H1(Ω×S) such that

b(u)(f,ϕ)=B(f̄ ,u)(ϕ), ∀ϕ∈H1(Ω×S), (3.9)

where

b(u)(f,ϕ)=

∫

Ω×S

fϕdndx+τ

∫

Ω×S

[

(Id+n⊗n)∇xf ·∇xϕ+∇nf ·∇nϕ
]

dndx

−τ

∫

Ω×S

(uf) ·∇xϕdndx, ∀f,ϕ∈H1(Ω×S);

B(f̄ ,u)(ϕ)=

∫

Ω×S

fk−1ϕdndx−τ

∫

Ω×S

[(Id+n⊗n)e2]E
τ−

1
4 (f̄) ·∇xϕdndx

+τ

∫

Ω×S

[

(Id−n⊗n)∇xun
]

Eτ−
1
4 (f̄) ·∇nϕdndx, ∀ϕ∈H1(Ω×S).

Indeed, by noting H1(Ω) ↪→L6(Ω), H1(Ω×S) ↪→L3(Ω×S), and ∇x ·u=0, we
have

∣

∣

∣

∫

Ω×S

(uf) ·∇xϕdndx
∣

∣

∣
≤‖u‖L6(Ω)‖f‖L3(Ω×S)‖∇xϕ‖L2(Ω×S)

≤C‖f‖H1(Ω×S)‖ϕ‖H1(Ω×S)

and
∫

Ω×S

(uf) ·∇xfdndx=0. (3.10)

Because Id+n⊗n is a positive definite matrix with smallest eigenvalue 1, we have

|∇xf |2≤ (Id+n⊗n)∇xf ·∇xf. (3.11)

Therefore b(u)(·, ·) is a bounded and coercive bilinear functional on H1(Ω×S). It

follows from 0≤Eτ−
1
4 (s)≤ τ−

1
4 (∀s∈R) that B(f̄ ,u)∈ (H1(Ω×S))′. We thus finish

the proof of Step 2 by the Lax-Milgram theorem.

Step 3. Define the mapping Φ :L2(Ω×S)→L2(Ω×S) by Φ(f̄)=f ∈H1(Ω×S)
via the procedure (3.8) and (3.9). By the Leray-Schauder fixed-point theorem (see
[14], Theorem 11.3), we obtain a solution f to Φ(f)=f , and hence a fixed-point
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solution (u,f)∈V ×H1(Ω×S) to (3.5) and (3.6). To prove this, we only need to
show the following three claims.

Claim 1. Φ:L2(Ω×S)→L2(Ω×S) is continuous.

Claim 2. Φ is compact.

Claim 3. Λ:=
{

f ∈L2(Ω×S) :f =σΦ(f) for someσ∈ (0,1]
}

is bounded in L2(Ω×
S).

Proof. [Proof of Claim 1.] Set f :=Φ(f̄) and fi :=Φ(f̄i), i∈N. If

f̄i→ f̄ inL2(Ω×S), as i→∞, (3.12)

we need to show

fi→f inL2(Ω×S), as i→∞. (3.13)

Indeed, for f̄ and f̄i, in view of the definition of Φ, there exist unique u∈V and
ui∈V such that

a(u,v)=A(f̄)(v), a(ui,v)=A(f̄i)(v), ∀v∈V , (3.14)

b(u)(f,ϕ)=B(f̄ ,u)(ϕ), b(ui)(fi,ϕ)=B(f̄i,ui)(ϕ), ∀ϕ∈H1(Ω×S). (3.15)

By subtracting the terms in (3.14), we obtain

a(ui,v)−a(u,v)=A(f̄i)(v)−A(f̄)(v),

and by taking v=ui−u, we have that

∫

Ω

|∇xui−∇xu|2dx≤C

∫

Ω×S

|f̄i− f̄ |(|∇xui−∇xu|+ |ui−u|)dndx.

Then from the Cauchy-Schwartz inequality one has that ‖ui−u‖2H1(Ω)≤C‖f̄i−
f̄‖2L2(Ω×S). Thus (3.12) yields

ui→u inH1(Ω), as i→∞. (3.16)

By (3.15), using the same procedure as above and noting that

∫

Ω×S

(uifi−uf) ·∇x(fi−f)dndx

=

∫

Ω×S

ui(fi−f) ·∇x(fi−f)dndx+

∫

Ω×S

(ui−u)f ·∇x(fi−f)dndx

=

∫

Ω×S

(ui−u)f ·∇x(fi−f)dndx,

one has

‖fi−f‖2H1(Ω×S)

≤C
(

‖EL(f̄i)−EL(f̄)‖2L2(Ω×S)+‖(ui−u)f‖2L2(Ω×S)

+‖
[

(Id−n⊗n)∇xuin
]

EL(f̄i)−
[

(Id−n⊗n)∇xun
]

EL(f̄)‖2L2(Ω×S)

)
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=:C
(

I21 +I22 +I23

)

.

We have from Eτ−
1
4 ∈C0,1(R) with Lipschitz coefficient 1 that I1≤‖f̄i− f̄‖L2(Ω×S).

It follows from (3.16) that

I2≤C‖ui−u‖L6(Ω)‖f‖L3(Ω×S)≤C‖ui−u‖H1(Ω)‖f‖H1(Ω×S)

≤C‖ui−u‖H1(Ω)→0 as i→0.

Now we estimate I3.

I3≤‖
[

(Id−n⊗n)(∇xui−∇xu)n
]

Eτ−
1
4 (f̄i)‖L2(Ω×S)

+‖
[

(Id−n⊗n)∇xun
][

Eτ−
1
4 (f̄i)−Eτ−

1
4 (f̄)

]

‖L2(Ω×S)

=: I3,1+I3,2.

However (3.16) yields I3,1≤Cτ−
1
4 ‖∇x(ui−u)‖L2(Ω)→0 as i→∞. We only need to

deal with I3,2. In fact, because (Id−n⊗n)∇xun∈L
2(Ω) and C

∞(Ω) is dense in
L
2(Ω), we have that

∀ε>0, ∃w∈C
∞(Ω) such that ‖(Id−n⊗n)∇xun−w‖L2(Ω)<ε.

Moreover, using (3.12) and the fact that Eτ−
1
4 ∈C0,1(R) with Lipschitz coefficient 1,

∃i0∈N,∀i> i0, ‖w
[

Eτ−
1
4 (f̄i)−Eτ−

1
4 (f̄)

]

‖L2(Ω×S)≤‖w‖L∞(Ω)‖f̄i− f̄‖L2(Ω×S)<ε.

Therefore

I3≤
∥

∥

∥

∥

[

(Id−n⊗n)∇xun−w
][

Eτ−
1
4 (f̄i)−Eτ−

1
4 (f̄)

]

∥

∥

∥

∥

L2(Ω×S)

+

∥

∥

∥

∥

w
[

Eτ−
1
4 (f̄i)−Eτ−

1
4 (f̄)

]

∥

∥

∥

∥

L2(Ω×S)

≤τ−
1
4 ‖(Id−n⊗n)∇xun−w‖L2(Ω×S)+‖w

[

Eτ−
1
4 (f̄i)−Eτ−

1
4 (f̄)

]

‖L2(Ω×S)<C(τ)ε.

Consequently fi→f in H1(Ω×S) and hence (3.13) holds. This ends the proof of
Claim 1.

Proof. [Proof of Claim 2.] It is quite easy to deduce that

∃C(τ)>0, ∀f̄ ∈L2(Ω×S), ‖Φ(f̄)‖H1(Ω×S)≤C(τ)(1+‖f̄‖L2(Ω×S)).

Thus we have from H1(Ω×S) ↪→↪→L2(Ω×S) that Claim 2 holds.

Proof. [Proof of Claim 3.] For any f ∈Λ, there exists a unique u∈V such that

a(u,v)=A(f)(v), ∀v∈V , (3.17)

b(u)(f,ϕ)=σB(f,u)(ϕ), ∀ϕ∈H1(Ω×S). (3.18)

Taking v=u in (3.17), we have from the Cauchy-Schwartz inequality and the Poincaré
inequality that

∫

Ω

|∇xu|2dx≤C

∫

Ω×S

|f |(|∇xu|+ |u|)dndx≤ 1

2

∫

Ω

|∇xu|2dx+C‖f‖2L2(Ω;L1(S)).

(3.19)
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Therefore

∫

Ω

|∇xu|2dx≤C‖f‖2L2(Ω×S). (3.20)

Taking ϕ=f in (3.18), we deduce from (3.10), (3.11), the Cauchy-Schwartz inequality,
and the identity

2(a−b)a=a2+(a−b)2−b2, ∀a,b∈R,

that

1

2

∫

Ω×S

|f |2dndx+τ

∫

Ω×S

[

|∇xf |2+ |∇nf |2
]

dndx

≤1

2

∫

Ω×S

|σfk−1|2dndx−στ

∫

Ω×S

[

(Id+n⊗n)e2]E
τ−

1
4 (f) ·∇xfdndx

+στ

∫

Ω×S

[

(Id−n⊗n)∇xun
]

Eτ−
1
4 (f) ·∇nfdndx

≤1

2

∫

Ω×S

|fk−1|2dndx+Cτ

∫

Ω×S

|f ||∇xf |dndx+Cτ
3
4

∫

Ω×S

|∇xu||∇nf |dndx

≤1

2

∫

Ω×S

|fk−1|2dndx+ τ

2

∫

Ω×S

(|∇xf |2+ |∇nf |2)dndx

+Cτ

∫

Ω×S

|f |2dndx+Cτ
1
2

∫

Ω×S

|∇xu|2dndx. (3.21)

Thus (3.20) and (3.21) yield

‖f‖2L2(Ω×S)≤‖fk−1‖2L2(Ω×S)+Cτ
1
2 ‖f‖2L2(Ω×S).

Noting that Cτ
1
2 < 1

2 , we have

‖f‖2L2(Ω×S)≤2‖fk−1‖2L2(Ω×S), (3.22)

proving Claim 3.

Step 4. We prove the nonnegativity for f . For explicitness, we relabel (u,f) as
(uk,fk).

In fact, set [fk]− :=min{fk,0}. Then [fk]−∈H1(Ω×S). Choosing ϕ=[fk]−

in (3.6) and noting that Eτ−
1
4 (fk)∇x[f

k]−=Eτ−
1
4 (fk)∇n[f

k]−=0, we deduce from
|∇x[f

k]−|2≤ (Id+n⊗n)∇x[f
k]− ·∇x[f

k]− that

∫

Ω×S

|[fk]−|2dndx+τ

∫

Ω×S

[

|∇x[f
k]−|2+ |∇n[f

k]−|2
]

dndx

≤
∫

Ω×S

fk−1[fk]−dndx≤0. (3.23)

Therefore [fk]−=0 a.e. on Ω×S and hence fk≥0 a.e. on Ω×S. Thus fk ∈Z. This
finishes the proof of Proposition3.4.
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3.2. Entropy estimate, uniform in τ and time t. Suppose f0∈L2(Ω×
S)) and f0≥0 a.e. on Ω×S. Let f0=Eτ−

1
4 (f0). Then f0∈Z. Using Proposition 3.4

iteratively, we obtain a sequence of approximate solutions

(uk,fk)∈V ×(Z∩H1(Ω×S)), (k∈N) (3.24)

to (3.5)-(3.6). Choosing ϕ=1 in (3.6), one has the following lemma directly.

Lemma 3.5.

sup
k∈N

‖fk‖L1(Ω×S)≤‖f0‖L1(Ω×S). (3.25)

We use (zτ−
1
4 )′(fk+α) as test function and then let α→0, to deal with the

singularity when fk(x,n)=0 on some subset of Ω×S. Another problem is tackling
the term

∫

Ω×S

[

(Id−n⊗n)∇xu
kn
]

·∇nf
kdndx in the proof. We apply Lemma 2.1 to

solve this problem.

Lemma 3.6. For any k∈N,

∫

Ω×S

z(fk)dndx+τ

k
∑

i=1

‖∇xu
i‖2L2(Ω)

+2τ

k
∑

i=1

(

‖∇x

√

f i‖2L2(Ω×S)+‖∇n

√

f i‖2L2(Ω×S)

)

≤
∫

Ω×S

z(f0)dndx+C‖f0‖L1(Ω×S). (3.26)

Proof. Let α∈ (0,1) and denote L := τ−
1
4 . Taking ϕ=(zL)′(fk+α)+x ·e2∈

H1(Ω×S) in (3.6), we have from the convexity of zL that
∫

Ω×S

[zL(fk+α)−z
L(fk−1+α)]dndx+

∫

Ω×S

[

fkx ·e2−fk−1x ·e2
]

dndx

+τ

∫

Ω×S

|∇nf
k|2(zL)′′(fk+α)dndx

≤τ

∫

Ω×S

(ukfk) ·∇x[(z
L)′(fk+α)]dndx+τ

∫

Ω×S

(ukfk) ·e2dndx

+τ

∫

Ω×S

[

EL(fk)(zL)′′(fk+α)
][

(Id−n⊗n)∇xu
k)n
]

·∇nf
kdndx

−τ

∫

Ω×S

(Id+n⊗n)[e2E
L(fk)+∇xf

k] · [e2+(zL)′′(fk+α)∇xf
k]dndx

=:J1+J2+J3+J4. (3.27)

Integrating by parts, one has from uk ∈V that

J1=−τ

∫

Ω×S

(uk ·∇xf
k)(zL)′(fk+α)dndx=−τ

∫

Ω×S

uk ·∇x[z
L(fk+α)]dndx=0.

For J3, one divides it into two parts as below:

J3=τ

∫

Ω×S

[

EL(fk)(zL)′′(fk+α)−1
][

(Id−n⊗n)∇xu
kn
]

·∇nf
kdndx
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+τ

∫

Ω×S

[

(Id−n⊗n)∇xu
kn
]

·∇nf
kdndx

=:J3,1+J3,2. (3.28)

The Cauchy-Schwartz inequality, EL∈C0,1(R) with Lipschitz coefficient 1, (2.4), and
(2.5) imply

J3,1≤Cτ

∫

Ω×S

∣

∣∇xu
k
∣

∣

∣

∣∇nf
k
∣

∣

∣

∣(zL)′′(fk+α)
∣

∣

∣

∣EL(fk+α)−EL(fk)
∣

∣dndx

≤C
√
ατ

∫

Ω×S

∣

∣∇xu
k
∣

∣

∣

∣∇nf
k
∣

∣

√

(zL)′′(fk+α)dndx

≤Cατ

∫

Ω

∣

∣∇xu
k
∣

∣

2
dx+

τ

2

∫

Ω×S

∣

∣∇nf
k
∣

∣

2
(zL)′′(fk+α)dndx. (3.29)

It follows from Lemma 2.1 that

J3,2= τ

∫

Ω×S

(2n⊗n− Id)fk :∇xu
kdndx. (3.30)

Now we estimate J4. First we divide it into four parts as follows:

J4=−τ

∫

Ω×S

EL(fk)(Id+n⊗n)e2 ·e2dndx

−τ

∫

Ω×S

(zL)′′(fk+α)(Id+n⊗n)∇xf
k ·∇xf

kdndx

−τ

∫

Ω×S

(Id+n⊗n)∇xf
k ·e2dndx

−τ

∫

Ω×S

EL(fk)(zL)′′(fk+α)(Id+n⊗n)e2 ·∇xf
kdndx

=:J4,1+J4,2+J4,3+J4,4. (3.31)

Because Id+n⊗n is a positive definite matrix with smallest eigenvalue 1, we have

J4,1+J4,2≤−τ

∫

Ω×S

EL(fk)dndx−τ

∫

Ω×S

|∇xf
k|2(zL)′′(fk+α)dndx

≤−τ

∫

Ω×S

|∇xf
k|2(zL)′′(fk+α)dndx. (3.32)

It follows from Cauchy-Schwartz inequality that

J4,3≤Cτ

∫

Ω×S

∣

∣∇xf
k
∣

∣dndx=Cτ

∫

Ω×S

∣

∣∇xf
k
∣

∣

√

fk+α

√

fk+αdndx

≤Cτ

∫

Ω×S

(fk+α)dndx+
τ

8

∫

Ω×S

∣

∣∇xf
k
∣

∣

2

fk+α
dndx

≤Cατ+Cτ‖fk‖L1(Ω×S)+
τ

8

∫

Ω×S

∣

∣∇xf
k
∣

∣

2

fk+α
dndx. (3.33)

Similar to (3.29) and (3.33), we deduce that

J4,4=−τ

∫

Ω×S

[

EL(fk)(zL)′′(fk+α)−1
]

(Id+n⊗n)e2 ·∇xf
kdndx
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−τ

∫

Ω×S

(Id+n⊗n)e2 ·∇xf
kdndx

≤Cατ+Cτ‖fk‖L1(Ω×S)+
τ

4

∫

Ω×S

∣

∣∇xf
k
∣

∣

2
(zL)′′(fk+α)dndx

+
τ

8

∫

Ω×S

∣

∣∇xf
k
∣

∣

2

fk+α
dndx. (3.34)

Consequently, (2.4) implies

J4≤− τ

2

∫

Ω×S

∣

∣∇xf
k
∣

∣

2
(zL)′′(fk+α)dndx

+Cατ+Cτ‖fk‖L1(Ω×S)+
τ

4

∫

Ω×S

∣

∣∇xf
k
∣

∣

2
[ 1

fk+α
−(zL)′′(fk+α)

]

dndx

≤− τ

2

∫

Ω×S

∣

∣∇xf
k
∣

∣

2
(zL)′′(fk+α)dndx+Cατ+Cτ‖fk‖L1(Ω×S). (3.35)

Taking v=uk in (3.5), one has

τ

∫

Ω

|∇xu
k|2dx=−τ

∫

Ω×S

(2n⊗n− Id)fk :∇xu
kdndx−τ

∫

Ω×S

(ukfk) ·e2dndx

=−J3,2−J2. (3.36)

Combining (3.27)-(3.36) and summing up, we have, by noting that f0=EL(f0), that

∫

Ω×S

z
L(fk+α)dndx+τ

(

1−Cα
)

k
∑

i=1

∫

Ω

|∇xu
i|2dx

+
τ

2

k
∑

i=1

∫

Ω×S

(

∣

∣∇xf
i
∣

∣

2
+
∣

∣∇nf
i
∣

∣

2
)

(zL)′′(f i+α)dndx

≤
∫

Ω×S

z
L(EL(f0)+α)dndx+

∫

Ω×S

[EL(f0)−fk]x ·e2dndx

+Cτ
k
∑

i=1

‖f i‖L1(Ω×S)+Cα. (3.37)

Thus it follows from (2.3), (2.4), (2.7), and (3.25) that

∫

Ω×S

z(fk+α)dndx+τ
(

1−Cα
)

k
∑

i=1

∫

Ω

|∇xu
i|2dx

+
τ

2

k
∑

i=1

∫

Ω×S

(

∣

∣∇xf
i
∣

∣

2

f i+α
+

∣

∣∇nf
i
∣

∣

2

f i+α

)

dndx

≤
∫

Ω×S

[α+
α2

2
+z(f0+α)]dndx+C‖f0‖L1(Ω×S)+Cα.

Choosing sufficiently small α>0 and then performing α→0, one finishes the proof
by applying Lebesgue’s dominated convergence theorem and Fatou’s lemma.
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3.3. L2(Ω×S) and time regularity estimates, uniform in τ .
Lemma 3.7. For any fixed T >0, we might as well let N =T/τ (otherwise let
N =[T/τ ]+1), then

sup
1≤k≤N

‖fk‖2L2(Ω×S)+τ

N
∑

k=1

[

‖∇xf
i‖2L2(Ω×S)+‖∇nf

i‖2L2(Ω×S)

]

≤C(T ). (3.38)

Proof. Denote L := τ−
1
4 . Taking ϕ=fk in (3.6) and performing a procedure similar

to (3.21), we have

1

2

∫

Ω×S

|fk|2dndx+τ

∫

Ω×S

(

|∇xf
k|2+ |∇nf

k|2
)

dndx

=
1

2

∫

Ω×S

|fk−1|2dndx−τ

∫

Ω×S

[

(Id+n⊗n)e2]E
L(fk) ·∇xf

kdndx

+τ

∫

Ω×S

[

(Id−n⊗n)∇xu
kn
]

EL(fk) ·∇nf
kdndx

=:
1

2

∫

Ω×S

|fk−1|2dndx+P1+P2 (3.39)

and

P1≤Cτ

∫

Ω×S

|fk||∇xf
k|dndx≤ τ

4

∫

Ω×S

|∇xf
k|2dndx+Cτ

∫

Ω×S

|fk|2dndx. (3.40)

It follows from Lemma 2.1, (2.2), and Hölder’s inequality that

P2=τ

∫

Ω×S

[

(Id−n⊗n)∇xu
kn
]

·∇nG
L(fk)dndx

=τ

∫

Ω×S

(2n⊗n− Id)GL(fk) :∇xu
kdndx≤Cτ

∫

Ω×S

|GL(fk)||∇xu
k|dndx

≤Cτ

∫

Ω×S

|fk|2|∇xu
k|dndx≤Cτ‖∇xu

k‖L2(Ω)‖fk‖2L4(Ω;L2(S)). (3.41)

Applying the Gagliardo-Nirenberg inequality, we have that

‖fk‖2L4(Ω;L2(S))≤C‖fk‖H1(Ω;L2(S))‖fk‖L2(Ω;L2(S))

≤C
(

‖∇xf
k‖L2(Ω×S)‖fk‖L2(Ω×S)+‖fk‖2L2(Ω×S)

)

. (3.42)

Therefore by Cauchy-Schwartz inequality, one has

P2≤
τ

4
‖∇xf

k‖2L2(Ω×S)+Cτ(‖∇xu
k‖2L2(Ω)+‖∇xu

k‖L2(Ω))‖fk‖2L2(Ω×S). (3.43)

Combining (3.39), (3.40), and (3.43), then summing up, we deduce that

‖fk‖2L2(Ω×S)+

k
∑

i=1

‖f i−f i−1‖2L2(Ω×S)+τ

k
∑

i=1

(

‖∇xf
i‖2L2(Ω×S)+‖∇nf

i‖2L2(Ω×S)

)

≤‖f0‖2L2(Ω×S)+Cτ

k
∑

i=1

(‖∇xu
i‖2L2(Ω)+1)‖f i‖2L2(Ω×S). (3.44)
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It follows from (3.22) and 0≤f0=EL(f0)≤f0 that

‖fk‖2L2(Ω×S)≤‖f0‖2L2(Ω×S)+2Cτ

k
∑

i=1

(‖∇xu
i‖2L2(Ω)+1)‖f i−1‖2L2(Ω×S)

=‖f0‖2L2(Ω×S)+2Cτ

k−1
∑

i=0

(‖∇xu
i+1‖2L2(Ω)+1)‖f i‖2L2(Ω×S). (3.45)

Therefore (3.45) and Lemma 3.6 imply (3.38) by employing the discrete Gronwall
inequality. This finishes the proof of Lemma 3.7.

The next result follows from the regularity of Stokes’ equation (see [26], p.35,
Proposition 2.3).

Lemma 3.8. For any k∈N,

‖∇xu
k‖L2(Ω)≤C‖fk‖L2(Ω;L1(S)); ‖uk‖H2(Ω)≤C‖∇xf

k‖L2(Ω;L1(S)). (3.46)

Definition 3.9. Define the piecewise function in t by

fτ (t, ·, ·) :=fk(·, ·), t∈ ((k−1)τ,kτ ], k∈N,

and the difference quotient of size τ by

∂τ
t fτ (t, ·, ·) :=

fk(·, ·)−fk−1(·, ·)
τ

, t∈ ((k−1)τ,kτ ], k∈N.

Likewise, define uτ .

Corollary 3.10. For any fixed T >0,

‖uτ‖L∞(0,T ;V)∩L2(0,T ;H2(Ω))≤C(T ), (3.47)

‖fτ‖L∞(0,T ;L2(Ω×S))∩L2(0,T ;H1(Ω×S))≤C(T ). (3.48)

Proof. We can deduce (3.47)-(3.48) directly from Lemma 3.6-3.8.

Lemma 3.11. For any fixed T >0,

‖∂τ
t fτ‖L2(0,T ;(H1(Ω×S))′)≤C(T ). (3.49)

Proof. We deduce from (3.6) and the Poincaré inequality that

∥

∥

∥

∥

fk−fk−1

τ

∥

∥

∥

∥

(H1(Ω×S))′

≤C
[

‖fk‖H1(Ω×S)+(‖uk‖L4(Ω)+‖∇xu
k‖L4(Ω))‖fk‖L4(Ω;L2(S))

]

≤C
[

‖fk‖H1(Ω×S)+‖∇xu
k‖L4(Ω)‖fk‖L4(Ω;L2(S))

]

. (3.50)

For any fixed T >0, we might as well let N =T/τ (otherwise let N =[T/τ ]+1), so
that
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‖∂τ
t fτ‖L2(0,T ;(H1(Ω×S))′)

=

(

τ

N
∑

k=1

∥

∥

∥

∥

fk−fk−1

τ

∥

∥

∥

∥

2

(H1(Ω×S))′

)1/2

≤C

(

τ

N
∑

k=1

[

‖fk‖H1(Ω×S)+‖∇xu
k‖L4(Ω)‖fk‖L4(Ω;L2(S))

]

)1/2

=C

(

N
∑

k=1

∫ kτ

(k−1)τ

[

‖fτ‖H1(Ω×S)+‖∇xuτ‖L4(Ω)‖fτ‖L4(Ω;L2(S))

]

)1/2

≤C
(

‖fτ‖L2(0,T ;H1(Ω×S))+‖fτ‖L4(0,T ;L4(Ω;L2(S)))‖∇xuτ‖L4(0,T ;L4(Ω))

)

. (3.51)

It follows from the Gagliardo-Nirenberg inequality that

‖∇xuτ‖L4(Ω)≤C‖uτ‖1/2H2(Ω)‖∇xuτ‖1/2L2(Ω),

and hence by Hölder’s inequality that

‖∇xuτ‖L4(0,T ;L4(Ω))≤C‖uτ‖1/2L2(0,T ;H2(Ω))‖∇xuτ‖1/2L∞(0,T ;L2(Ω)). (3.52)

Now we estimate ‖fτ‖L4(0,T ;L4(Ω;L2(S))). Applying the same discussion as for (2.12),
we deduce from the Gagliardo-Nirenberg inequality and Hölder’s inequality that

‖fτ‖L4(0,T ;L4(Ω;L2(S)))≤‖fτ‖1/2L2(0,T ;H1(Ω×S))‖fτ‖
1/2
L∞(0,T ;L2(Ω×S)). (3.53)

Combining (3.51)-(3.53), we deduce from Corollary 3.10 that (3.49) holds. This ends
the proof of Lemma 3.11.

3.4. Convergence and proof of Theorem 3.1.

Proposition 3.12. As τ →0, there exist a subsequence of {(uτ ,fτ )}0<τ�1, not
relabeled, and a pair of functions (u,f) satisfying (2.8)-(2.9), (3.1)-(3.3), and (3.4)
such that

uτ ⇀u in L2(0,∞;V), (3.54)
√

fτ
∗
⇀
√

f in L∞(0,∞;L2(Ω×S)), (3.55)
√

fτ⇀
√

f in L2(0,∞;H1(Ω×S)), (3.56)

and for any T >0,

uτ
∗
⇀u in L∞(0,T ;V), (3.57)

uτ ⇀u in L2(0,T ;V2), (3.58)

fτ
∗
⇀f in L∞(0,T ;L2(Ω×S)), (3.59)

fτ ⇀f in L2(0,T ;H1(Ω×S)), (3.60)

fτ →f in L2((0,T )×Ω×S), (3.61)

Eτ−
1
4 (fτ )→f in L2((0,T )×Ω×S). (3.62)
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Proof. Applying Lemma 3.5-3.8 and Corollary 3.10, we deduce that there exist a
subsequence and a pair of functions (u,f) which satisfy (2.8)-(2.9), (3.1)-(3.3), and
(3.54)-(3.60).

For any fixed T >0, we might as well let N =T/τ (otherwise let N =[T/τ ]+1).
Then we have from (3.38) and (3.49) that

‖ττfτ −fτ‖2L2(0,T−τ ;(H1(Ω×S))′)= τ

N−1
∑

k=1

∥

∥fk+1−fk
∥

∥

2

(H1(Ω×S))′
≤Cτ2, (3.63)

where ττuτ (t) :=uτ (t+τ). Employing Theorem 1 in [11], we obtain (3.61) from (3.63),

(3.48), and H1(Ω×S) ↪→↪→L2(Ω×S). Then we have from Eτ−
1
4 ∈C0,1(R) with Lip-

schitz coefficient 1 that

‖Eτ−
1
4 (fτ )−f‖L2((0,T )×Ω×S)

≤‖Eτ−
1
4 (fτ )−Eτ−

1
4 (f)‖L2((0,T )×Ω×S)+‖Eτ−

1
4 (f)−f‖L2((0,T )×Ω×S)

≤‖fτ −f‖L2((0,T )×Ω×S)+‖Eτ−
1
4 (f)−f‖L2((0,T )×Ω×S). (3.64)

Moreover, employing Lebesgue’ dominated convergence theorem, one deduces from

(2.6) and 0≤Eτ−
1
4 (f)≤f that

‖Eτ−
1
4 (f)−f‖L2((0,T )×Ω×S)→0 as τ →0. (3.65)

Then (3.65) and (3.64) imply (3.62).
In light of the weakly lower semi-continuity of norm, we obtain the energy in-

equality (3.4) directly from (3.26) and the convergent results (3.54)-(3.56) and (3.61).
This ends the proof of Proposition 3.12.

Next we shall prove Theorem 3.1. We need to establish the convergence of the
discrete derivatives ∂τ

t fτ as well as their weak integral. These follow from the time
regularity estimate (Lemma 3.11) of ∂τ

t fτ and its convergence to ∂tf in the sense of
distribution.

Proof. [Proof of Theorem 3.1.] We only need to show that for any fixed T >0, (2.10)-
(2.11) hold with time interval [0,∞) replaced by [0,T ) and test functions replaced by
v∈L2(0,T ;V ) and ϕ∈C∞([0,T )×Ω×S). Indeed, in view of Definition 3.3, the weak
approximation form of (3.5)-(3.6) reads: for any v∈L2(0,T ;V ),

∫ T

0

∫

Ω

∇xuτ :∇xvdxdt

=−
∫ T

0

∫

Ω×S

(2n⊗n− Id)fτ :∇xvdndxdt−
∫ T

0

∫

Ω×S

fτe2 ·vdndxdt, (3.66)

and for any ϕ∈C∞([0,T )×Ω×S),

∫ T

0

∫

Ω×S

∂τ
t fτϕdndxdt−

∫ T

0

∫

Ω×S

(

uτfτ
)

·∇xϕdndxdt

+

∫ T

0

∫

Ω×S

∇nfτ ·∇nϕdndxdt
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=

∫ T

0

∫

Ω×S

[

(Id−n⊗n)∇xuτn
]

Eτ−
1
4 (fτ ) ·∇nϕdndxdt

−
∫ T

0

∫

Ω×S

(Id+n⊗n)(e2E
τ−

1
4 (fτ )+∇xfτ ) ·∇xϕdndxdt. (3.67)

We first claim that as τ →0,

∫ T

0

∫

Ω×S

∂τ
t fτϕdndxdt→−

∫ T

0

∫

Ω×S

f∂tϕdndxdt−
∫

Ω×S

f0(x,n)ϕ(0,x,n)dndx,

(3.68)

∂τ
t fτ ⇀∂tf in L2(0,T ;(H1(Ω×S))′). (3.69)

Indeed,

∫ T

0

∫

Ω×S

∂τ
t fτϕdndxdt

=

∫ T

τ

∫

Ω×S

fτ (t)−fτ (t−τ)

τ
ϕdndxdt+

∫ τ

0

∫

Ω×S

fτ (t)−f0

τ
ϕdndxdt

=

∫ T

0

∫

Ω×S

fτ (t)

τ
ϕdndxdt−

∫ T−τ

0

∫

Ω×S

fτ (t)

τ
ϕ(t+τ)dndxdt

−
∫ τ

0

∫

Ω×S

Eτ−
1
4 (f0)

τ
ϕdndxdt

=

∫ T

T−τ

∫

Ω×S

fτ (t)
ϕ

τ
dndxdt−

∫ T−τ

0

∫

Ω×S

fτ (t)
ϕ(t+τ)−ϕ(t)

τ
dndxdt

−
∫ τ

0

∫

Ω×S

Eτ−
1
4 (f0)

ϕ

τ
dndxdt.

Then
∣

∣

∣

∣

∣

∫ T

0

∫

Ω×S

∂τ
t fτϕdndxdt+

∫ T

0

∫

Ω×S

f∂tϕdndxdt+

∫

Ω×S

f0(x,n)ϕ(0,x,n)dndx

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫ T

T−τ

∫

Ω×S

(

fτ
ϕ

τ
+f∂tϕ

)

dndxdt

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ T−τ

0

∫

Ω×S

(

f∂tϕ−fτ
ϕ(t+τ)−ϕ(t)

τ

)

dndxdt

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω×S

[

f0ϕ(0)−Eτ−
1
4 (f0)

∫ τ

0

ϕ

τ
dt

]

dndx

∣

∣

∣

∣

=: I1+I2+I3.

Thanks to ϕ(T )=0, we have from the mean value theorem of differentials that

I1≤ τ‖∂tϕ‖L∞((0,T )×Ω×S)

(

‖fτ‖L∞(0,T ;L1(Ω×S))+‖f‖L∞(0,T ;L1(Ω×S))

)

≤Cτ,

I2≤
∣

∣

∣

∣

∣

∫ T−τ

0

∫

Ω×S

f

(

∂tϕ− ϕ(t+τ)−ϕ(t)

τ

)

dndxdt

∣

∣

∣

∣

∣
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+

∣

∣

∣

∣

∣

∫ T−τ

0

∫

Ω×S

(f−fτ )
ϕ(t+τ)−ϕ(t)

τ
dndxdt

∣

∣

∣

∣

∣

≤τ‖∂ttϕ‖L∞((0,T )×Ω×S)‖f‖L∞(0,T ;L1(Ω×S))

+‖f−fτ‖L1((0,T )×Ω×S)‖∂tϕ‖L∞((0,T )×Ω×S)

≤C
(

τ+‖f−fτ‖L1((0,T )×Ω×S)

)

.

It follows from the proof of (3.65) and the mean value theorem that

I3≤
∫

Ω×S

|f0−Eτ−
1
4 (f0)||ϕ(0)|dndx+

∫

Ω×S

Eτ−
1
4 (f0)

∣

∣

∣

∣

ϕ(0)− 1

τ

∫ τ

0

ϕ(t)dt

∣

∣

∣

∣

dndx→0.

Therefore (3.68) is proved. Moreover, if we take ϕ∈C∞
0 ((0,T )×Ω×S), then (3.68)

implies

∂τ
t fτ ⇀∂tf in D

′((0,T );(C1(Ω×S))′). (3.70)

Then (3.70) and Lemma 3.11 yield (3.69).
Combining Proposition 3.12, Lemma 3.6, and Corollary 3.10, we obtain Theorem

3.1.

4. Uniqueness

Theorem 4.1. The solution in Theorem 3.1 is unique.

Proof. We only need to prove uniqueness on [0,T ] for any T >0. Because f ∈
L2(0,T ;H1(Ω×S))∩H1(0,T ;(H1(Ω×S))′), we have f ∈C([0,T ];L2(Ω×S)) and

d

dt
‖f‖2L2(Ω×S)=2〈∂tf,f〉, (4.1)

where 〈·, ·〉 denotes the dual product between H1(Ω×S) and its dual (H1(Ω×S))′

(see [26], p.260, Lemma 1.2). Suppose (u1,f1) and (u2,f2) are both solutions of
(2.10)-(2.11). That is, for a.e. t∈ [0,T ] and i=1,2,
∫

Ω

∇xui :∇xvdx=−
∫

Ω×S

(2n⊗n− Id)fi :∇xvdndx−
∫

Ω×S

fie2 ·vdndx, ∀v∈V ,

(4.2)

〈∂tfi,ϕ〉−(uifi,∇xϕ)+(∇nfi,∇nϕ)

=((Id−n⊗n)∇xuinfi,∇nϕ)−((Id+n⊗n)(e2fi+∇xfi),∇xϕ), ∀ϕ∈H1(Ω×S),
(4.3)

and

fi|t=0=f0 a.e. on Ω×S. (4.4)

We have from Corollary 3.10 and Proposition 3.12 that

‖ui‖L∞(0,T ;H1(Ω))∩L2(0,T ;H2(Ω))+‖fi‖L∞(0,T ;L2(Ω×S))∩L2(0,T ;H1(Ω×S))≤C(T ). (4.5)

By substraction and then setting v=u1−u2 in (4.2), we have by the Cauchy-
Schwartz inequality and the regularity of weak solution to the Stokes’ equation (see
[26], p.35, Proposition 2.3) that for a.e. t∈ [0,T ],

‖∇xu1−∇xu2‖L2(Ω)≤C‖f1−f2‖L2(Ω×S), (4.6)
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‖u1−u2‖H2(Ω)≤C‖∇xf1−∇xf2‖L2(Ω×S). (4.7)

Substracting and then setting ϕ=f1−f2 in (4.3), we have, by noting (4.1), that
for a.e. t∈ [0,T ],

1

2

d

dt
‖f1−f2‖2L2(Ω×S)+‖∇nf1−∇nf2‖2L2(Ω×S)

=(u1f1−u2f2,∇xf1−∇xf2)+
(

(Id−n⊗n)(∇xu1nf1−∇xu2nf2),∇nf1−∇nf2

)

−
(

(Id+n⊗n)e2(f1−f2),∇xf1−∇xf2

)

−
(

(Id+n⊗n)(∇xf1−∇xf2),∇xf1−∇xf2

)

=:Q1+Q2+Q3+Q4. (4.8)

We deduce from (4.5), (4.6), Hölder’s inequality, the Gagliardo-Nirenberg inequality,
the Poincaré inequality, and the Cauchy-Schwartz inequality that for a.e. t∈ [0,T ],

Q1=((u1−u2)f1,∇xf1−∇xf2)+(u2(f1−f2),∇xf1−∇xf2)

=((u1−u2)f1,∇xf1−∇xf2)

≤‖u1−u2‖L4(Ω)‖f1‖L4(Ω;L2(S))‖∇xf1−∇xf2‖L2(Ω×S)

≤C‖∇xu1−∇xu2‖1/2L2(Ω)‖u1−u2‖1/2L2(Ω)

×‖f1‖1/2H1(Ω;L2(S))‖f1‖
1/2
L2(Ω×S)‖∇xf1−∇xf2‖L2(Ω×S)

≤C‖f1−f2‖L2(Ω×S)‖f1‖1/2H1(Ω×S)‖∇xf1−∇xf2‖L2(Ω×S)

≤1

8
‖∇xf1−∇xf2‖2L2(Ω×S)+C‖f1−f2‖2L2(Ω×S)‖f1‖H1(Ω×S). (4.9)

We divide Q2 into two parts:

Q2=
(

(Id−n⊗n)(∇xu1−∇xu2)nf1,∇nf1−∇nf2

)

+
(

(Id−n⊗n)∇xu2n(f1−f2),∇nf1−∇nf2

)

=:Q2,1+Q2,2. (4.10)

Similar to (4.9), in light of (4.5)-(4.7), we have that for a.e. t∈ [0,T ],

Q2,1≤C‖∇xu1−∇xu2‖L4(Ω)‖f1‖L4(Ω;L2(S))‖∇nf1−∇nf2‖L2(Ω×S)

≤C‖u1−u2‖1/2H2(Ω)‖∇xu1−∇xu2‖1/2L2(Ω)

×‖f1‖1/2H1(Ω;L2(S))‖f1‖
1/2
L2(Ω×S)‖∇nf1−∇nf2‖L2(Ω×S)

≤C‖∇xf1−∇xf2‖1/2L2(Ω×S)‖f1−f2‖1/2L2(Ω×S)‖f1‖
1/2
H1(Ω×S)‖∇nf1−∇nf2‖L2(Ω×S)

≤1

2
‖∇nf1−∇nf2‖2L2(Ω×S)

+C‖∇xf1−∇xf2‖L2(Ω×S)‖f1−f2‖L2(Ω×S)‖f1‖H1(Ω×S)

≤1

2
‖∇nf1−∇nf2‖2L2(Ω×S)+

1

8
‖∇xf1−∇xf2‖2L2(Ω×S)

+C‖f1−f2‖2L2(Ω×S)‖f1‖2H1(Ω×S). (4.11)
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It follows from Lemma 2.1, the Gagliardo-Nirenberg inequality, and (4.5) that for a.e.
t∈ [0,T ],

Q2,2=
1

2

(

(Id−n⊗n)∇xu2n,∇n(f1−f2)
2
)

=
1

2

(

(2n⊗n− Id)(f1−f2)
2 :∇xu2

)

≤C‖f1−f2‖2L4(Ω;L2(S))‖∇xu2‖L2(Ω)

≤C
[

‖∇xf1−∇xf2‖L2(Ω×S)‖f1−f2‖L2(Ω×S)+‖f1−f2‖2L2(Ω×S)

]

≤1

8
‖∇xf1−∇xf2‖2L2(Ω×S)+C‖f1−f2‖2L2(Ω×S). (4.12)

One has from the Cauchy-Schwartz inequality that

Q3≤C‖∇xf1−∇xf2‖L2(Ω×S)‖f1−f2‖L2(Ω×S)

≤1

8
‖∇xf1−∇xf2‖2L2(Ω×S)+C‖f1−f2‖2L2(Ω×S). (4.13)

Because Id+n⊗n is a positive definite matrix with smallest eigenvalue 1, we have

Q4≤−‖∇xf1−∇xf2‖2L2(Ω×S). (4.14)

Combining (4.8)-(4.14), we have for a.e. t∈ [0,T ],

d

dt
‖f1−f2‖2L2(Ω×S)≤C

(

1+‖f1‖H1(Ω×S)+‖f1‖2H1(Ω×S)

)

‖f1−f2‖2L2(Ω×S). (4.15)

Because (4.5) implies ‖f1‖L2(0,T ;H1(Ω×S))≤C and (4.4) yields (f1−f2)|t=0=0, it fol-
lows from Gronwall’s inequality that f1≡f2 a.e. on [0,T ]×Ω×S, and hence from
(4.6) and the Poincaré inequality that u1≡u2 on a.e. [0,T ]×Ω×S. This ends the
proof of Theorem 4.1.
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