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Abstract

The purpose of this paper is to establish a new method for proving the conver-
gence of the particle method applied to the Camassa-Holm (CH) equation. The CH
equation is a strongly nonlinear, bi-Hamiltonian, completely integrable model in the
context of shallow water waves. The equation admits solutions that are nonlinear su-
perpositions of traveling waves that have a discontinuity in the first derivative at their
peaks and therefore are called peakons. This behavior admits several diverse scientific
applications, but introduce difficult numerical challenges. To accurately capture these
solutions, one may apply the particle method to the CH equation. Using the concept of
space-time bounded variation, we show that the particle solution converges to a global
weak solution of the CH equation for positive Radon measure initial data.
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1 Introduction

The purpose of this paper is to establish convergence results for the particle method applied
to the Camassa-Holm (CH) equation, given as

mt + (um)x + uxm = 0 with m = u− α2uxx, (1.1)

which is considered subject to the initial condition

m(x, 0) = m0(x). (1.2)

Here the momentum m and velocity u are functions of the time variable t and the spatial
variable x, and α is a length scale. Equation (1.1) arises in diverse scientific applications
and, for instance, can be described as a bi-Hamiltonian model for waves in shallow water [3].
Equation (1.1) can also be used to quantify growth and other changes in shape, such as
occurs in a beating heart, by providing the transformative mathematical path between the
two shapes, (see, e.g, [8]).

The CH equation exhibits some remarkable properties. Of notable interest is the fact that
the equation is completely integrable and yields peakon solutions which are solitons (whose
identity is preserved through nonlinear interactions) with a sharp peak. Mathematically, this
sharp peak is characterized by a discontinuity at the peak in the wave slope, and therefore
are called peakons, [3].

Peakons may be accurately captured by applying particle methods to the CH equation
as shown in, e.g., [4–6, 8]. In these methods, the solution is sought as a linear combination
of Dirac distributions, whose positions and coefficients represent locations and weights of
the particles, respectively. The solution is then found by following the time evolution of
the locations and the weights of these particles according to a system of ODEs obtained by
considering a weak formulation of the problem. The main advantage of particle methods is
their (extremely) low numerical diffusion that allows one to capture a variety of nonlinear
waves with high resolution, see, e.g., [9] and references therein.

In this paper, we apply the particle method for numerical solution of the CH equation.
We begin with a brief overview of the particle method and some of its main features which
are relevant to our discussion. The main analytical results we provide is the convergence
proof of the particle method. While previous convergence results have been established for
this equation (e.g. see [1, 2, 4, 7, 10]), we propose a new self-contained method for showing
the convergence by establishing BV estimates for the particle solution. We then verify that
both the particle solution and its limit are weak solutions to the CH equation to complete
our study on the convergence analysis.

2 Description of a Particle Method

In this section, we describe the particle method and how it is used to solve the CH equation.
To solve (1.1), we follow [6] by searching for a weak solution as a linear combination of Dirac
delta functions. The weak solution to (1.1) has the following form:

mN(x, t) =
N∑
i=1

pi(t)δ(x− xi(t))). (2.1)
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Here, xi(t) and pi(t) represent the location of the i-th particle and its weight, and N denotes
the total number of particles. The solution is then found by solving the corresponding system
of ODEs [6]: 

dxi(t)

dt
= uN(xi(t), t),

dpi(t)

dt
+ uNx (xi(t), t)pi(t) = 0.

(2.2)

Using the special relationship between m and u given in (1.1), one can explicitly compute
the velocity u and its derivative, by the convolution uN = G ∗mN , where G is the Green’s
function

G(|x− y|) =
1

2α
e−|x−y|/α, (2.3)

associated with the one dimensional Helmholtz operator in (1.1). Thus we have the following
exact expressions for both u(x, t) and ux(x, t):

uN(x, t) =
1

2α

N∑
i=1

pi(t)e
−|x−xi(t)|/α, (2.4)

uNx (x, t) = − 1

2α2

N∑
i=1

pi(t)sgn(x− xi(t))e−|x−xi(t)|/α. (2.5)

With the exception of a few isolated cases, the functions xi(t) and pi(t), i = 1, . . . , N
must be determined numerically and the system (2.2) must be integrated by choosing an
appropriate ODE solver. In order to start the time integration, one should choose the
initial positions of particles, x0i , and the weights, p0i , so that (2.1) represents a high-order
approximation to the initial data m0(x) in (1.2), as it is shown in [6, 9]. The latter can be
done in the sense of measures on R. Namely, we choose (xi(0), pi(0)) in such a way such that
for any test function φ(x) ∈ C∞0 (R), we have that

〈
mN(·, 0), φ(·)

〉
=

∫
R
m0(x)φ(x)dx ≈

N∑
i=1

p0iφ(xi). (2.6)

where

mN
0 (x) =

N∑
i=1

pi(0)δ(x− xi(0))). (2.7)

Based on (2.6), we observe that determining the initial weights, p0i , is exactly equivalent to
solving a standard numerical quadrature problem.

One way of solving this problem is to first divide the computational domain Ω into N
nonoverlapping subdomains Ωi, such that their union is Ω. We then set the i-th particle
xi(0) to be the center of mass Ωi. For instance, given initial particles {xi(0)}Ni=1, we may
define Ωi as

Ωi = [xi−1/2, xi+1/2] =
{
x | xi−1/2 ≤ x ≤ xi+1/2

}
, i = 1, . . . , N,
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and by xi(0) = ∆x the center Ωi. For example, a midpoint quadrature will be then given
by setting pi(0) = ∆xm0(xi(0)). In general, one can build a sequence of basis functions
{ϕi(x)}Ni=1 and approximate the initial data by taking pi(0) =

∫
R ϕi(x) dm0 in (2.7).We note

that the latter makes sense only if m0 ∈M(R), where M(R) is the set of Radon measures.
Furthermore, one can prove that mN

0 converges weakly to m0(x) as N →∞.
The system (2.2) may be derived in one of two ways. Following [6], we may consider a

weak formulation of the problem and make a suitable substitution to derive (2.2) or one may
follow [4,5] by considering the Hamiltonian structure of (1.1). Following [6], it can be shown
that xi(t), and pi(t) satisfy the canonical Hamiltonian equations:

dxi
dt

=
∂HN

∂pi
,

dpi
dt

= −∂H
N

∂xi
, i = 1, . . . , N, (2.8)

where HN(t) is the Hamiltonian function defined as:

HN(t) =
1

4α

N∑
i=1

N∑
i=1

pi(t)pj(t)e
−|xi(t)−xj(t)|/α, (2.9)

and that the total linear momentum of the particle system is conserved, that is,

d

dt

[
N∑
i=1

pi(t)

]
= 0. (2.10)

Also, one can easily establish the following result.

Proposition 2.1. Consider the Hamiltonian function given in (2.9). Then

HN(t) =
1

2

∫ ∞
−∞

(uN)2(x, t) + α2(uNx )2(x, t) dx (2.11)

with uN(x, t) and uNx (x, t) given by (2.4) and (2.5) respectively.

Proof. From (2.4) and (2.5), we observe that

(uN)2(x, t) =
1

4α2

N∑
i=1

N∑
j=1

pi(t)pj(t)e
−|x−xi(t)|/α−|x−xj(t)|/α (2.12)

and

α2(uNx )2(x, t) =
1

4α2

N∑
i=1

N∑
j=1

pi(t)pj(t)sgn(x− xi(t))sgn(x− xj(t))e−|x−xi(t)|/α−|x−xj(t)|/α.

(2.13)
Substituing (2.12) and (2.13) into (2.11), yields

1

2

∫ ∞
−∞

(uN)2(x, t) + α2(uNx )2(x, t) dx =

=
1

8α2

N∑
i=1

N∑
j=1

pi(t)pj(t)

∫ ∞
−∞

(1 + sgn(xi(t)− x)sgn(xj(t)− x)) e−|x−xi(t)|/α−|x−xj(t)|/α dx.
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Computing the integral in the right-hand side (RHS) of the last equation, we obtain∫ ∞
−∞

(1 + sgn(xi(t)− x)sgn(xj(t)− x)) e−|x−xi(t)|/α−|x−xj(t)|/α dx = 2αe−|xi(t)−xj(t)|/α

and thus prove the proposition.

The Hamiltonian nature of the particle system and its complete integrability allows one
to establish the global existence results for the solution of (2.2) and to show that for a
relatively wide class of initial data there are no particle collisions in finite times. In particular,
we remark that for positive intial momenta, (2.2) has a unique global solution, and hence
pi(t) 6= pj(t) for all i 6= j, t ≥ 0.

3 Convergence Results

In this section, we propose a new,concise method for showing the convergence of the particle
method to a unique weak solution for the Camassa-Holm equation. It should be noted that
this result has already been verfied in a varierty of ways. For instance see [6]. However,
by utilizing some bounded variation estimates associated with uN and uNx , one may show
the convergence of the particle method applied to the Camassa Holms equation by using an
associated compactness result to pass the limit. As mentioned above, we will assume that
the initial momenta pi(0) is positive and hence no two particles may cross in finite time. We
begin by establishing the necessary space-time BV estimates for uN and uNx .

3.1 Space and Time BV Estimates

In the following section, we recall what it means for the total variation of a function to be
bounded. We then show that the total variations of uN(x, t) and uNx (x, t) are bounded.

Definition 3.1. Consider a (possibly unbounded) interval J ⊆ R and a function u : J → R.
The total variation of u is defined as

Tot.Var. {u} ≡ sup

{
N∑
j=1

|u(xj)− u(xj−1)|

}
, (3.1)

where the supremum is taken over all N ≥ 1 and all (N + 1)-tuples of points xj ∈ J such
that x0 < x1 < · · · < xN . If the right hand side of (3.1) is bounded, then we say that u has
bounded variation, and write u ∈ BV (R).

The following theorem establishes both space and time bounded variation estimates for
both uN and uNx .

Theorem 3.2. Let uN(x, t) and uNx (x, t) be functions defined in (2.4) and (2.5), respectively.
Then, both uN(x, t) and uNx (x, t) are BV functions in the two variables x, t.
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Proof. We begin with showing that Tot. Var.
{
uN(·, t)

}
and Tot. Var.

{
uNx (·, t)

}
are bounded.

Indeed, from (2.3) we have Tot.Var.{G(x)} = 1/α and Tot.Var.{Gx(x)} = 2/α2. Using the
fact that the total momentum of the particle system is conserved, we obtain

Tot.Var.{uN(·, t)} ≤
N∑
j=1

pj(t)Tot.Var.{G(x)} =
1

α

N∑
j=1

pj(t) =
1

α
|m0|, (3.2)

Tot.Var.{uNx (·, t)} ≤
N∑
j=1

pj(t)Tot.Var.{Gx(x)} =
2

α2

N∑
j=1

pj(t) =
2

α2
|m0|. (3.3)

In order to prove that uN(x, t) and uNx (x, t) have bounded variation with respect to t as
well, it now suffices to show that uN and uNx are both Lipschitz continuous in time in
L1, [1, Theorem 2.6].

We first consider expression (2.4) for uN to have
∞∫

−∞

|uN(x, t)− uN(x, s)| dx

≤ 1

2α

∫ ∞
−∞

∣∣∣∣∣
N∑
i=1

(
pi(t)e

−|x−xi(t)|/α − pi(s)e−|x−xi(s)|/α
)∣∣∣∣∣ dx

Next, we add and subtract the term
∫∞
−∞ pi(t)e

−|x−xi(s)| dx in the last equations to obtain

∞∫
−∞

|uN(x, t)− uN(x, s)| dx ≤ 1

2α

∞∫
−∞

N∑
i=1

pi(t)
∣∣e−|x−xi(t)|/α − e−|x−xi(s)|/α∣∣ dx

+
1

2α

∫ ∞
−∞

N∑
i=1

e−|x−xi(s)|/α|pi(t)− pi(s)| dx.

Simple calculations show that
∞∫

−∞

∣∣e−|x−xi(t)|/α − e−|x−xi(s)|/α∣∣ dx ≤ 4|xi(t)− xi(s)| and

∞∫
−∞

e−|x−xi(t)|/α dx ≤ 2α,

and hence, we have∫ ∞
−∞
|uN(x, t)− uN(x, s)| dx ≤ 2

α

N∑
i=1

pi(t)|xi(t)− xi(s)|+
N∑
i=1

|pi(t)− pi(s)|. (3.4)

The sums in the RHS of (3.4) can now be estimated using the ODE system (2.2) and
the facts that

|xi(t)− xi(s)| =

∣∣∣∣∣∣
t∫

s

dxi
dτ

dτ

∣∣∣∣∣∣ ≤
t∫

s

|u(xi(τ), τ)| dτ

≤ 1

2α

t∫
s

N∑
j=1

pj(τ) dτ =
1

2α

N∑
j=1

pj(0)(t− s) =
1

2α
|m0|(t− s),

(3.5)
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and

|pi(t)− pi(s)| =

∣∣∣∣∣∣
t∫

s

dpi
dτ

dτ

∣∣∣∣∣∣ ≤ 1

2α2

t∫
s

pi(τ)
N∑
j=1

pj(τ) dτ

≤ 1

2α2

t∫
s

pi(τ) dτ
N∑
j=1

pj(0) =
1

2α2
|m0|

t∫
s

pi dτ.

Also,

N∑
i=1

|pi(t)− pi(s)| ≤
1

2α2
|m0|

t∫
s

N∑
j=1

pi(τ) dτ =
1

2α2
|m0|2(t− s). (3.6)

Substituting (3.5) and (3.6) into (3.4), yields∫ ∞
−∞
|uN(x, t)− uN(x, s)| dx ≤ 3

2α2
|m0|2 (t− s) ,

proving that uN is Lipshitz continuous in time in L1 and thus has bounded variation with
respect to both x and t.

Similarly, for uNx we have:∫ ∞
−∞
|uNx (x, t)− uNx (x, s)| dx =

1

2α2

∫ ∞
−∞

∣∣∣∣∣
N∑
i=1

pi(t)sgn (xi(t)− x) e−|x−xi(t)|/α − pi(s)sgn(xi(s)− x)e−|x−xi(s)|/α

∣∣∣∣∣ dx.
If we add and subtract pi(s)sgn(xi(t)− x)e−|x−xi(t)|/α in the last equation, then

∫ ∞
−∞
|uNx (x, t)− uNx (x, s)| dx ≤ 1

2α2

∫ ∞
−∞

N∑
i=1

|pi(t)− pi(s)|e−|x−xi(t)|/α dx

+
1

2α2

N∑
i=1

pi(s)

∫ ∞
−∞

∣∣sgn(xi(t)− x)e−|x−xi(t)|/α − sgn(xi(s)− x)e−|x−xi(t)|/α
∣∣ dx

≤ 1

α

N∑
i=1

|pi(t)− pi(s)|+
2

α2

N∑
i=1

pi(s)|xi(t)− xi(s)|.

(3.7)

Substituting (3.5) and (3.6) into (3.7), we finally conclude that∫ ∞
−∞
|uNx (x, t)− uNx (x, s)| dx ≤ 3

2α3
|m0|2(t− s),

which together with (3.3) proves that uNx (x, t) is a BV function in x, t and the statement of
the theorem.
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3.2 Compactness and Convergence

Now that we have established the necessary space and time bounded variation estimates for
uN and uNx , we are now in a position to use an associated compactness property to prove
convergence of the particle method. We begin this section with a definition of a weak solution
to the CH equation. From here, one may show that the particle method applied to the CH
equation is indeed a weak solution to (1.1). Finally, we state our main convergence result
which is proved using the compactness results garnered from the BV estimates established
above.

Definition 3.3. u(x, t) ∈ C(0, T ;H1(R)),m(x, t) = u(x, t)−α2uxx(x, t) is said to be a weak
solution to (1.1) if

∫ ∞
−∞

φ(x, 0)m(x, 0) dx+

∞∫
0

∞∫
−∞

[
φt(x, t)− α2φtxx(x, t)

]
u(x, t) dxdt

+

∞∫
0

∞∫
−∞

[
3

2
φx(x, t)−

α2

2
φxxx(x, t)

]
u2(x, t) dxdt

+

∞∫
0

∞∫
−∞

α2

2
φx(x, t)u

2
x(x, t) dxdt = 0

(3.8)

for all φ ∈ C∞0 (R× R+).

Proposition 3.4. Assume that m0 ∈ M(R), then the particle solution (mN(x, t), uN(x, t))
given by (2.1), (2.2) is a weak solution of the problem (1.1), (1.2).

Proof. Let mN(x, 0),mN(x, t) and uN(x, t), uNx (x, t) be given by formulae (2.1) and (2.2),
respectively, and φ ∈ C∞0 (R× R+) be a test function. Then, the following relations can be
easily established by direct substitutions:

〈mN , φt〉 = 〈uN , φt − α2φtxx〉, (3.9)

〈mNuN , φx〉 =

〈
(uN)2, φx −

α2

2
φxxx

〉
+ α2

〈
(uNx )2, φx

〉
, (3.10)

〈
mNuNx , φ

〉
=

〈
α2(uNx )2 − (uN)2

2
, φx

〉
. (3.11)

Using (6.1)–(6.3) and substituting mN(x, t) as defined by (2.1) into (3.8), yields

N∑
i=1

pi(0)φ(xi(0), 0) +

∫ ∞
0

N∑
i=1

pi(t)φt (xi(t), t) dt+

∫ ∞
0

N∑
i=1

pi(t)u
N(xi(t), t)φx (xi(t), t) dt−

∫ ∞
0

N∑
i=1

pi(t)u
N
x (xi(t), t)φ (xi(t), t) dt = 0.

(3.12)
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We now add and subtract
N∑
i=1

∫ ∞
0

pi(t)
dxi
dt
φx(xi(t), t) dt into the last equation, use the fact

that
dφ(xi(t), t)

dt
= φx(xi(t), t)

dxi(t)

dt
+ φt(xi(t), t)

and rewrite (3.12) as follows:

N∑
i=1

pi(0)φ(xi(0), 0) +

∫ ∞
0

N∑
i=1

pi(t)
dφ(xi(t), t)

dt
dt

∫ ∞
0

N∑
i=1

pi(t)

[
uN(xi(t), t)−

dxi(t)

dt

]
φx (xi(t), t) dt

−
∫ ∞
0

N∑
i=1

pi(t)u
N
x (xi(t), t)φ (xi(t), t) dt = 0.

(3.13)

Integrating by parts the second term in the first row in (3.13), and rearranging other terms,
we finally obtain: ∫ ∞

0

N∑
i=1

pi(t)

[
dxi(t)

dt
− uN(xi(t), t)

]
φx (xi(t), t) dt

+

∫ ∞
0

N∑
i=1

[
dpi(t)

dt
+ pi(t)u

N
x (xi(t), t)

]
φ(xi(t), t) dt = 0.

(3.14)

Since the functions xi(t) and pi(t) satisfy the system (2.2), the last equation holds for any φ
implying that mN , uN defined by (2.1), (2.4) is a weak solution of (1.1), (1.2). This completes
the proof.

We are now in a position to establish a convergence result for the particle method. Using
the BV estimates for uN(x, t) and uNx (x, t), and the fact that the particle solution is a weak
solution to the CH equation, we may establish the following convergence result.

Theorem 3.5. Suppose that (mN(x, t), uN(x, t)) is a particle solution of (2.1), (2.2) with

initial approximation mN(·, 0)
∗
⇀ m0, m0 ∈ M+(R). Then there exist functions u(x, t) ∈

BV(R × R+) and m(x, t) ∈ M+(R × R+) such that mN(x, t) and uN(x, t) converge to
m(x, t) and u(x, t), respectively in the sense of distributions as N → ∞. Furthermore,
the limit (u,m) is the unique weak solution to the CH equation (1.1) with regularity u ∈
C(0, T ;H1(R)), ux ∈ BV(R× R+).

Proof. Using BV estimates for uN(x, t) and uNx (x, t), we refer to the compactness property
in [1, Theorem 2.4] and conclude that there exist functions u and ux and a subsequence (still
labeled as uN(x, t)) such that

||uN − u||L1
loc(R×R+) → 0, ||uNx − ux||L1

loc(R×R+) → 0 (3.15)

as N →∞.
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From Proposition 3.4, we know that (mN , uN) is a weak solution and thus satisfy equation
(3.8). To complete the proof, we need to show that each terms in (3.8) converges to that of
the limit solution (m,u). Indeed, by the construction of the initial approximation, one has

lim
N→∞

∫ ∞
−∞

φ(x, 0)mN(x, 0) dx =

∫ ∞
−∞

φ(x, 0)m(x, 0) dx (3.16)

Furthermore, for any φ ∈ C∞0 (R× R+), we have∣∣∣ ∫∫ φ
(
uN)2 − (u)2

)
dxdt

∣∣∣ =
∣∣∣ ∫∫ φ(uN + u)(uN − u)dxdt

∣∣∣
≤ ‖φ‖L∞(‖uN‖L∞ + ‖u‖L∞)

∫∫
(x,t)∈supt of φ

∣∣uN(x, t)− u(x, t)
∣∣ dxdt→ 0,

and thus ∫∫
φ(uN)2dxdt→

∫∫
φu2dxdt,

as as N →∞. Similarly, we obtain∫∫
φ(uNx )2dxdt→

∫∫
φ(ux)

2dxdt.

This shows that the limit (m,u) is indeed a weak solution to the CH equation.

4 Discussion of a 2 Particle Example

We are now in a position to solve the Camassa-Holm equation with α = 1. We first consider
the two particle system of ODEs analytically, and show that the particles cannot cross in
finite time. We then provide some numerical examples which illistrates some of the interesting
properties about the interaction between solitons. We know from above that the CH equation
admits peakons (solitons with a sharp peak). In mathematics and physics, a soliton is a self-
reinforcing solitary wave that maintains its shape while it travels at a constant finite speed.
Solitons arise as the solutions of a widespread class of weakly nonlinear dispersive partial
differential equations describing physical systems. While it is usually difficult to give a precise
definition of a soliton, we generally associate any solution of a nonlinear partial differential
equation that

• represents a wave of permanent form

• is localized, so that it decays or approaches a constant value at infinity

• can undergo a strong interaction with other solitons and retain its identity.

as a soliton. The last property is most peculiar and is highly unusual for nonlinear partial
differential equations. In our examples, we use the particle method, as well as redistribution
of particles to capture this phenomenon. In particular, we consider the two particle system
(i.e. a particle method for which there are only two nonzero initial particle weights) with
different initial weights.
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4.1 2 Positive Peakons

Consider the corresponding system of ODEs for the two-soliton problem:

dx1
dt

=
1

2
p1(t) +

1

2
p2(t)e

−|x2(t)−x1(t)|

dx2
dt

=
1

2
p2(t) +

1

2
p1(t)e

−|x1(t)−x2(t)|

dp1
dt

=
1

2
p1(t)p2(t)sgn(x1(t)− x2(t))e−|x1(t)−x2(t)|

dp2
dt

=
1

2
p1(t)p2(t)sgn(x2(t)− x1(t))e−|x2(t)−x1(t)|

To analylize the seperation of particles as t→∞, we consider the following ODE where
s(t) = x2(t)− x1(t):

ds

dt
=

1

2
(p2(t)− p1(t))

(
1− e−s(t)

)
(4.1)

In particular, we investigate how the distance between particles change if initially, we
have x1(0) < x2(0) and p1(0) > p2(0) > 0–that is, the two peakons catch up to one another
eventually. Our previous analysis suggest that the peakons do get closer as t gets larger, but
do not cross. That is, x1(t) 6= x2(t) in finite time. To show this analytically, we may solve
the above ODE with the initial condition, s(0) = x2(0)− x1(0) , to obtain

s(t) = ln
(

1 +
(
es(0) − 1

)
e
∫ t
0
p2(τ)−p1(τ)

2
dτ
)

(4.2)

From above, we observe that as long as the initial momenta is positive and if the particle
weights sastify (2.2), then particles can never cross (at least analytically) because s(t) 6= 0
for all finite times t.

From above, we observe that as long as the initial momenta is positive and if the particle
weights sastify (??), then particles can never cross (at least analytically) because s(t) 6= 0
for all finite times t. However, the distance between particles will move closer to each other
as time increases.

We now provide some numerical examples which show how two peakons interact in dif-
ferent situations:

One Peakon overtakes Another: We consider the case where one peakon passes
another peakon in finite time. To do so, we consider two peakons initially placed at x1(0) = 0,
and x2(0) = 2 with initial weights p1(0) = 2 and p2(0) = 1. We observe that the peakon
defined by its initial location at (x1, p1) has a bigger weight and will hence move faster than
the peakon defined by (x2, p2). Thus, we expect that at some finite time, the two peakons will
collide and exchange momentums. This phenomonem occurs when the machine is unable to
determine the true distance between the particles. Once the particles collide, they reemerge
and spread apart as time grows.
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Figure 1: One Peakon Catches Up With Another

Redistribution of Particles:As mentioned in [], it may be necessary to implement a
redistribution of particles to prevent the particles from artificially crossing each other. In
this example, we redistribute the particles by combining their weights at a new location,
once the distance between the two particles are sufficiently small. Following this method, we
observe that as the particles move closer to each other, they merge into one particle whose
weight approaches the sum of the two particles’ individual weights. The trajectories both
initially and after redistribution are given below:
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Figure 2: Redistribution of Particles

4.2 Peakon-AntiPeakon Interaction

If we do not require that the initial momemtum be positive, then we are no longer guaranteed
that the distance between particles will be nonzero. In fact, if we consider the antipeakon-
peakon solution, then we may show numerically that without redistribution, the distance
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between two nonzero particles will always be zero at some finite time. Furthermore, this
particular solution is not unique. Once the peakon and antipeakon collide, we may continue
the solution at u(x, t) = 0 for all t > t∗, where t∗ is the time of collision, or we may take
advantage of the symmetry of u, and redistribute (exchange) particles, and continue the
solution. Both cases are illustrated below:
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Figure 3: Peakon-AntiPeakon Solution

5 Conclusion–Future Work

6 Appendix

This appendix provides additional details and proofs of propositions omitted above.

Proposition 6.1. Suppose that uN(x, t), uNx (x, t) and mN(x, t) are given by (2.4), (2.5), and
(2.1) respectively. Then the following relations are true for any φ(x, t) ∈ C∞0 (R× R+):
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〈mN , φt〉 = 〈uN , φt − α2φtxx〉, (6.1)

〈mNuN , φx〉 =

〈
(uN)2, φx −

α2

2
φxxx

〉
+ α2

〈
(uNx )2, φx

〉
, (6.2)

〈
mNuNx , φ

〉
=

〈
α2(uNx )2 − (uN)2

2
, φx

〉
. (6.3)

Proof. To begin, we first show that mN(x, t) = uN(x, t) − α2uNxx(x, t) in the sense of distri-
butions.

Indeed for any φ(x, t) ∈ C∞0 (R× R+), we have the following relation by direct substitu-
tion and integration by parts:〈

uN − α2uNxx, φ
〉

=
〈
uN , φ

〉
+ α2

〈
uNx , φx

〉
=

1

2

∫ ∞
0

N∑
i=1

pi(t)

∫ ∞
−∞

e−|x−xi(t)|/α
(

1

α
φ(x, t)− sgn(x− xi(t))φx(x, t)

)
dx dt

Now using the fact that for any a ∈ R, and φ ∈ C∞0 (R) we have

∫ a

−∞

(
1

α
φ(x) + φx(x)

)
e−|x−a|/α dx+

∫ ∞
a

(
1

α
φ(x)− φx(x)

)
e−|x−a|/α dx = 2φ(a)

we obtain that 〈
uN , φ

〉
+ α2

〈
uNx , φx

〉
=

∫ ∞
0

N∑
i=1

pi(t)φ(xi(t), t) dt

=
〈
mN , φ

〉
From here, we see that (6.1) follows immediately via integration by parts.
Next, we verify (6.2) as follows.
Direct substitution shows that

〈
mNuN , φx

〉
=

1

2α

∫ ∞
0

N∑
i=1

N∑
j=1

pi(t)pj(t)e
−|xi(t)−xj(t)|/αφx(xi(t), t) dt

Via integration by parts, we also have that

〈
(uN)2, φx −

α2

2
φxxx

〉
+ α2

〈
(uNx )2, φx

〉
=
〈
(uN)2 + α2(uNx )2, φx

〉
+ α2

〈
uN(uNx ), φxx

〉

=

∫ ∞
0

∫ ∞
−∞

φx(x, t)

( 1

2α

N∑
i=1

pi(t)e
−|x−xi(t)|/α

)2

+

(
1

2α2

N∑
j=1

pj(t)sgn(xj(t)− x)e−|x−xj(t)|/α

)2
 dxdt
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+

∫ ∞
0

∫ ∞
−∞

φxx(x, t)

[(
1

2α

N∑
i=1

pi(t)e
−|x−xi(t)|/α

)(
1

2α2

N∑
j=1

pj(t)sgn(xj(t)− x)e−|x−xj(t)|/α

)]
dxdt

We consider the two-particle system and note that establishing this identity depends only
on integrating with respect to x. Thus, it suffices to show that for φ ∈ C∞0 (R)

∫ ∞
−∞

φx(x)

[(
γ

2α
e−|x−a|/α +

β

2α
e−|x−b|/α

)2

+

(
γ

2α2
sgn(a− x)e−|x−a|/α +

β

2α2
sgn(b− x)e−|x−b|/α

)2
]
dx

+

∫ ∞
−∞

φxx(x)

[(
γ

2α
e−|x−a|/α +

β

2α
e−|x−b|/α

)(
γ

2α2
sgn(a− x)e−|x−a|/α +

β

2α2
sgn(b− x)e−|x−b|/α

)]
dx

=
γβ

2α
e−|a−b|/αφx(a) +

γβ

2α
e−|a−b|/αφx(b)

To show that this is indeed true we consider the case where a < b. We split the integral
into three pieces: x < a, a < x < b, x > b. This reduces the integral to∫ a

−∞
(φxV1(x))′ dx+

∫ b

a

(φxV2(x))′ dx+

∫ ∞
b

(φxV3(x))′ dx

where

• V1(x) =
(
γ
2α
e(x−a)/α + β

2α
e(x−b)/α

)2
• V2(x) =

(
γ
2α
e(a−x)/α + β

2α
e(x−b)/α

) (
− γ

2α
e(a−x)/α + β

2α
e(x−b)/α

)
• V3(x) = −

(
γ
2α
e(a−x)/α + β

2α
e(b−x)/α

)2
Integrating and substituting V1, V2, V3 leads us to our desired conclusion and by induction,

the claim is true for N particles.
Finally, we would like to show that

〈
mNuNx , φ

〉
=

〈
α2(uNx )2 − (uN)2

2
, φx

〉
We proceed in a similar manner as above by first observing that

〈
mNuNx , φ

〉
=

1

2α2

∫ ∞
0

N∑
i=1

N∑
j=1

pi(t)pj(t)φ(xi(t), t)sgn(xj(t)− xi(t))e−|xi(t)−xj(t)|/α dt

Now, via integration by parts, we have that〈
α2(uNx )2 − (uN)2

2
, φx

〉
=

1

2

〈
α2(uNx )2, φx

〉
+
〈
(uN)(uNx ), φ

〉
=

∫ ∞
0

∫ ∞
−∞

φ(x, t)

(
1

2α

N∑
i=1

pi(t)e
−|x−xi(t)|/α

)(
1

2α2

N∑
j=1

pj(t)sgn(xj(t)− x)e−|x−xj(t)|/α

)
dxdt
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+
α2

2

∫ ∞
0

∫ ∞
−∞

φx(x, t)

(
1

2α2

N∑
j=1

pj(t)sgn(xj(t)− x)e−|x−xj(t)|/α

)2

dxdt

Once again, we consider the two-particle system and show that for any φ ∈ C∞0 (R),

∫ ∞
−∞

φ(x)

(
γ

2α
e−|x−a| +

β

2α
e−|x−b|

)(
γ

2α2
sgn(a− x)e−|x−a| +

β

2α2
sgn(b− x)e−|x−b|

)
dx

+
α2

2

∫ ∞
−∞

φx(x)

(
γ

2α2
sgn(a− x)e−|x−a| +

β

2α2
sgn(b− x)e−|x−b|

)2

dx

=
1

2α2
φ(a)γβsgn(a− b)e−|a−b|/α +

1

2α2
φ(b)γβsgn(b− a)e−|a−b|/α

Similar to the previous identity, we suppose that a < b, and we split the integral into
three intervals (x < a, a < x < b, x > b). This allows us to simplify the integral to∫ a

−∞
(φW1(x))′ dx+

∫ b

a

(φW2(x))′ dx+

∫ ∞
b

(φW3(x))′ dx

where

• W1(x) = α2
(

γ
2α2 e

(x−a)/α + β
2α2 e

(x−b)/α)2
• W2(x) = α2

2

(
− γ

2α2 e
(a−x)/α + β

2α2 e
(x−b)/α)2

• W3(x) = α2

2

(
− γ

2α2 e
(a−x)/α − β

2α2 e
(b−x)/α)2

Integrating and substituting W1,W2, and W3 leads us to our desired identitity.
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