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ABSTRACT. This paper investigates the existence of a uniform in time L°°
bounded weak entropy solution for the quasilinear parabolic-parabolic Keller-
Segel model with the supercritical diffusion exponent 0 < m < 2 — % in the
multi-dimensional space R? under the condition that the Ld@;m) norm of
initial data is smaller than a universal constant. Moreover, the weak entropy
solution u(z, t) satisfies mass conservation when m > 1 — % We also prove the
local existence of weak entropy solutions and a blow-up criterion for general

L' N L°° initial data.

1. Introduction. We study the following quasilinear parabolic-parabolic Keller-
Segel model in d > 3:

Ou = Au™ —V - (uVv), z€R4 t>0,
0 = Av — v+ u, zeR? >0, (1)
u(z,0) = uo(z), v(r,0) =0, xR
where the diffusion exponent m is taken to be supercritical in this paper, i.e. 0 <
m<2— %.

The Keller-Segel model was firstly presented in 1970 to describe the chemotaxis of
cellular slime molds [11][14]. u(z,t) represents the cell density, and v(z, t) represents
the concentration of the chemical substance. In this model, cells are attracted by
the chemical substance and also able to emit it. Without loss of generality, we
suppose v(z,0) = 0 which is reasonable with the meaning that there is no chemical
substance at the beginning, and then it is generated by cells.
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Forl <m < 27%, the associate free energy of problem (1) involves a conservative
variational function u and a non-conservative variational function v,

_; m _ 1 2 } 2
f(u(,t),v(,t))—m_l/wu dx /Rduvdx+2/Rd|Vv| dac—|—2/Rdv dzx.

Model (1) can be recast into the following mixed conservative and non-conservative

gradient flow
oF oOF
u =V - |uV—1, vy = ——.
! ( ou ) ! ov
This mixed variational structure is known as the Le Chaterlier Principle and it
formally possesses the following entropy-dissipation equality

d m m—1 ?
dt]:(t)—&—/]RduV(m_lu —v)

In the original parabolic-parabolic Keller-Segel model (m = 1,d = 2), there exists
a critical mass 87 for the initial data ug(x). If the initial mass [, uo(z)dz = M <
8, there exists a global weak non-negative solution [5].

By a natural extension to the quasilinear parabolic-parabolic Keller-Segel model,
the diffusion exponent m plays an important role. 0 < m < 1 is called the fast
diffusion and m > 1 is called the slow diffusion to describe the limiting behaviors
of the diffusivity coefficient in the diffusion term Au™ =V - (mu™"1Vu).

When 0 < m < 2 — % which is called the supercritical case, the aggregation
dominates the diffusion for the high density (large A) which leads to the finite-time
blow-up [3, 4, 9, 18], and the diffusion dominates the aggregation for the low density
(small \) which leads to the infinite-time spreading [1, 18, 20]. While m > 2 — %
which is called the subcritical case, the aggregation dominates the diffusion for the
low density (small \) which prevents spreading, while the diffusion dominates the
aggregation for the high density (large A) which prevents blow-up [12, 19, 20].

The model (1) has been widely studied in the slow diffusion case. Sugiyama
[19, 20] proved the global in time existence of weak solutions without any restriction
on the size of the initial date for m > 2. Then Ishida and Yokota [12] improved the
global existence result from m > 2 tom > 2 — % For the blow-up result in the slow
diffusion case, Ishida and Yokota [13] proved that every radially symmetric energy
solution with large negative initial energy blows up in either finite or infinite time
when1<m <2 — %. However, in the fast diffusion case, i.e. 0 < m < 1, few work
has been done for the parabolic-parabolic Keller-Segel model.

dx—i—/ |8;v|* da = 0.
R4

In the supercritical case 0 < m < 2 — %, there is an L? space, where p = d@_m)

The p is crucial when studying the existence and blow-up results of (1) and almost

all the results are related to [|uol|,za)- In fact, this critical L” space is widely used
in studying the parabolic-elliptic Keller-Segel models [1, 2, 20], especially p = % for
the original parabolic-parabolic Keller-Segel model (m = 1) in R [7].

For 0 <m < 2— %, if [[uollLr(ray < Cam, where Cyp, is a universal constant
depending on d and m, then we prove that there exists a global weak solution
(u,v) with the properties that u(z,t) preserves mass when 1 — 2 < m < 2 — 2,
and extincts at a finite time when 0 < m < 1 — %. Furthermore, for m > 1, this
weak solution is also a weak entropy solution satistying energy inequality if the
initial second moment is bounded and uy € L™(R%). With the initial condition
up € Lt N L>*(R%), we can prove that the weak solution is bounded uniformly in

time by using bootstrap iterative method(See [2], [16]). With no restriction of the
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LP norm on initial data, we prove the local existence of a weak entropy solution
forl<m<2— %. This result also provides a natural blow-up criterion that all
l[ull 4 (ay Plow up at exactly the same time for g € (p, +00).

The results concerning the finite-time blow-up for the solutions of the Keller-Segel
model in multi-dimension have only been proved for its parabolic-elliptic type until
Winkler made a breakthrough in [21] to introduce a new method in fully parabolic
problem when m = 1. There is few paper containing the finite time blow-up result
for the solutions when m = 1. This is still an open problem.

The paper is organized as follows. In Section 2, we define a weak solution and
introduce some crucial inequalities about semigroup theory and some lemmas. In
Section 3, we propose a priori estimates of a weak solution. In Section 4, we prove
our main theorem about uniformly in time L bound of weak solutions using a
bootstrap iterative method. In Section 5, we construct a regularized problem to
prove the existence of a weak solution. Finally, in Section 6, we prove the local
existence of weak entropy solutions and a blow-up criterion.

2. Preliminaries. The generic constant will be denoted by C, even if it is different
from line to line. At the beginning, we define a weak solution of (1).

Definition 2.1. (Weak solution) Let ug € L% (R?) be the initial data and T €
(0,00). Then (u,v) is a weak solution to (1) if it satisfies
(i) Regularity:

ue L™ (0,T; LY(RY)) N L* (0, T; L*(RY)), w™ € L* (0,T; L' (RY)),

loc

_ _o 2(+1) 1
e LP (o,T;W e <Rd)) . §=min {p*,p+ 1} > 1,
m
ve L® (0,T; HY(RY), o € L2 (o, T ngf’Q(Rd)) .

(ii) ¥V ¢(z) € C*(R?Y) and any 0 < t < oo,
/]Rd u(z, t)(x) de— /]Rd ug () (x) dx :/0 /]Rd u™ (z, s)AY(x) dxds
+/0 /Rd u(z, s)Vou(z,s) - Vi(z) dzds,

/Rd v(x, t)(z) de = /Ot /Rd Vo(z,s) - Vi(z) deds — /Ot /Rd o(w, $)ib(x) deds
w [ [ uteopwie) dss

We use semigroup theory in this paper. The following definition and estimates
are standard(See [12, 17]). Consider the following Cauchy problem:

Oh=Ah—h+f, zeRLt>0, @
h(z,0) = ho(z), z€R%L

Definition 2.2. Let T > 0, p > 1, hg € LP(RY) and f € L? (O,T; L2(Rd)). The
function h(z,t) € C ([0,T]; L*(R?)) given by

t
h(z,t) = e~ tet®ho(x) +/ e =) et=)A r( ) ds, 0<t<T, (3)
0
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is the unique mild solution of problem (2) on [0,7]. The heat semigroup operator
e!® is defined by

(€"2) (@,t) == G(a,t) * f (1),

||

where G(x,t) is the heat kernel by G(z,t) = i 1)4 e,
7t)2

Using Young’s inequality of the convolution and property of Gamma function,
we immediately obtain that

Ve 1] ey < Ct‘%"(“’)llfllm(m

where C' is a positive constant depending on p,q and d, for any 1 < ¢ < p < 400,
f € LI(RY) and all t > 0.

Let 1 < g <p < o0, % —% < %. Assuming f € L™ (0,00;Lq(Rd)) and hg €

LP(R9), using two inequalities above and Bochner Theorem in [8, pp.650], we have
for ¢t € [0, 00)

1 1\d
Hh( HLP S ”hO )||LP + C- F<1 - (q - p> 2) Hf”LOO(O,oo;LQM (4)

d d
IVAC, )l < Co 4G o () +C- r<2— 3- ;)2> 11l 0 ey ()

where C' is a positive constant depending on p, ¢ and d.

Remark 1. It is well known that the mild solution defined above is also a weak
solution. In fact, for any test function ¢ € C° ([O T) x Rd)7 multiply ¢; to both
sides of (3) and integrate over [0,7) x R? to obtain

/ /]Rd z,t)p(x, t) dedt = / ho(z)o(x,0) dx
~ /0 /R d [e_temho(x)]t¢(x,t) dadt — /O ' [ F@.t)o(a1) dade
_/OT/Rd /t [e—“—S)e(t—S)Af(m)] dsd(z,t) dudt
= —/ ho(z)o(x,0) dx —/ 9 flz, t)p(z,t) dadt
/ /R A — Td)h(z, )é(x, ) dudt
:’/Rd ho()é(z, 0) dxf/ [ G t)0(a, 1) dade

T
—I—/ Vh(z,t) - Vo(x,t) dedt +/ h(z,t)p(z,t) dedt, (6)
0o Jrd
where in the last equality, we use the regularity in (5)

Then recall the following well-known maximal LP-regularity result for the heat
kernel:
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Lemma 2.3. Let 1 < p < 400 and T > 0. Then for each f € LP (O T; L”(Rd)),
problem (2) has a unique solution h(z,t) with ho(z) = 0 in the L? (0,T; LP(R%))
sense. Moreover, there exists a positive constant C, such that

[AR(z, )], (o.mizrme) = Collf HLP(OVT;LP(M)), (7)

for all f € LP(O7T; Lp(Rd)).

The lemma above is a special case of the famous maximal LP-regularity Theorem
which was proved by Hieber and Priiss in [10]. We can use the maximal L? result
in our paper since the space R% and elliptical operator A satisfy the conditions of
the Theorem 3.1 in [10], and we consider vo(x) = 0. We also refer the readers to a
thorough review on maximal LP-regularity for parabolic equation [15].

The following four lemmas which are proved in [1] are useful for later estimations.

Lemma 2.4. Let0<m§2—%,p:@. Then for q > p

m4q—1
2

a3 gy < 83|V

N 9 ®)

where Sy is the sharp constant in Sobolev inequality for d > 3.
Moreover, for g > r > p, we have

2m +m 1]2
+1 4 r \0
JullTor < WHVU 12 + C(g,r,d) (|lullz-)", (9)
where(5:1+1r+%;r>l,
7d<2q(77‘+)1)
2 1420 —p)/d T 2r —
g [ 22t~ 1 20— cn
S, Colg+m—1)2(q—r+1) dlg—r+1)+2(r—p)
d(2—m
Lemma 2.5. Let0<m<2—f p= (22 ). Then for q > p andueLL(Rd),
we have

q+m 1

(1+2(q p) )
N [

(10)

. 1+7n;i«;%
(s < 87| v

Lemma 2.6. Assume y(t) > 0 is a C* function for t > 0 satisfying y'(t) < v —
By(t)* forv>0,8>0 and a > 0. Then

(i) for a > 1, y(t) has the following hyper-contractive property:

~ 3 1 T
y(t) < (5) + [5(a— 1)J . t>0,
(i) fora =1, y(t) decays as

y(t) < % +y(0)e™ 7,

(iti) for a <1, v =0, y(t) has the ﬁnite time extinction, which means that there

exists a Topy satisfying 0 < Tppe < 2 A 7(3)) such that y(t) =0 for all t > Teyy.

Lemma 2.7. Assume f(t) > 0 is a non-increasing function for t > 0, y(t) > 0 is
a Ct function for t > 0 and satisfies y'(t) < f(t) — By(t)* for some constants a > 1
and B > 0, then for any tog > 0 one has

1

y(t) < (f(;()))i + (5((1 1)(tto)>_al, fort > to.
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With the additional condition that y(0) is bounded, we have Lemma 2.8 which
can be proved by contradiction arguments.

Lemma 2.8. Assume y(t) > 0 is a C* function for t > 0 satisfying y'(t) < v —
By(t)* for v >0 and B8 > 0. If y(0) is bounded, then

(1) < max (ym), (3) i) 0

for all a > 0.

3. A priori estimates of weak solutions. In this section, we prove Theorem 3.1
which is concerning a priori estimates of weak solutions for (1).

Theorem 3.1. (A priori estimates) Let d > 3,0 <m < 2—= and p = M C,

7
is the positive constant in (7). Under the assumption that ug € LY N LP(RY) and
_ (12— 2— 2 _ 4mp
= Cd,mm _ ||UO|‘LP&d) >0, where C ’n;n — m is a umversal constant,

let (u,v) be a non-negative weak solution of (1). Then u € L™ (Ry; LP(RY)), u €

Lt (Ry; LPYH(RY)) and Vu"F e L2 (Ry; L*(RY)). Furthermore, the following
a priori estimates hold true:

(i) For0<m <1—=2 |ju(-,t)||ps(rae) has finite time extinction. The extinct time
Tert satisfies

0< Text S TO;

where Ty depends on d,m,n, |[uoll 1 (gay and |uoll pp(gay-
(ii) Form=1—= 2 |u(-,t)| rra) decays exponentially in time
Cp(p—1)n

D)
pllu oHLl&d)

lu( )l e ey < lluollLoraye

(iii) For 1 —2 <m < 2— 2, the solution u(z,t) satisfies mass conservation and
lu(-,t)|| e (ray decays in time

HUOHLp(Rd)

u( )l Lr@ay < P
p(m—1+2/d)

L Cd,m,m ol e, |uo||m>t}

And for any 1 < q <p, ||u(:,t)||Laray decays in time

péq i) 71)
leto )11 2 g lao Ol

(s )|l Lamay < —
g(m—1+2/d)
[1 T Cdymyn, ol |uo||Lp)t}

For any p < q < 00, u(x,t) has hyper-contractive property

Q=

1) oy < C (¢ T T i )

4m(p+e)
Syt (mtp+e—1)2Cpc
depending on m,d,q,n and |lug|| L1 (ra)-

where € satisfies

HUOHLP(Rd) > 2, and C is a constant
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Proof. Step 1. (LP estimate for 0 < m < 2 — 7) Multiplying the first equation in
model (1) by puP~! and mtegratmg it over R%, we obtain
dmp(p

7(m+p_1 (t)’ 7(p71)/Rd wPAv dz. (11)

Now we estimate the second term on the right hand side. Using Hélder’s inequality,
we have

m+p 1 2

GO gy = Hv oo

—(p— 1)/RdupAv de < (p— 1)/Rdup|Av| dx
< (p = D741 gay A0 @) [ Lo+2 (ma)- (12)
Define
1(t) == (p = DIu@)lI 41 gy | Av(B) [ o1 (R3)-
Then (11) turns to

i e |
— —_— t I(t). 13
IO < PP o, #1003
Integrating (13) from 0 to ¢, it follows that
dmp(p —1) [* mtp-1 2
IOy <ol ey = om0, L, s
t
+/ I(s) ds. (14)
0

Next, using Holder’s inequality and Lemma 2.3, we obtain

1

/ 1(s) ds < (p— 1) (/ lu(s) 5 gy ds ) (/ A0 oy )

-1) / [[u(s |Lp+1(Rd) (15)
where C), is the constant in Lemma 2.3. Substituting (15) into (14), we see that
4mp m+p 1
L e AT
Cylp—1) / lu(IEE s gy (16)

From Lemma 2.4 with ¢ = p, then (16) turns to

a2 gy < et g

2

L ds, (17)

—Sdl(p—l)Cp/Ot (caom = luts)I2 )Hvu’"+§ 1

where
dmp
Syt m+p—1)2C,

By contradiction arguments, we can prove that for all ¢ > 0,

Ci;nm = (18)

[uls Ol ey < l[wollLr@ey < Cam- (19)
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Therefore, comblmng (17) and (19), we obtain

(DI ey + L /va”l |

i.e.

L2 (R?)

ue L™ (Ry; LP(RY), Vu™
In the same time, from Lemma 2.4, we have

u € LPT (Ry; LPTH(RY))

~ € L? (Ry; LA(RY)).

Step 2. (LP decay estimates). From the fact [|u(-,t)|p1(rey < [Juollprre) and
Lemma 2.5 with ¢ = p, we have

g (1)
ptm— 2 p(Rd
HVU mot > L (R4) (20)
L2(R9) 1”
OHLI (R4)
Substituting (20) into (17), we see that
142
Cplp—1)n [ L
a0y < Mol = 2P () ) ds.  (21)
UOHEI(Rd)
Define
Cylp =1 [ A
y( ) = ||u( )HLp(Rd) - ||U0H1£;.(Rd) + pj/ (Hu(s)HiI’(Rd)) ds.
Uo 21(Rd) o
For any small ¢y > 0, we have
y(t + €0) =l t + €0) 2, gy — ol g
— 2
Colo— 1y [+ pes
S [ () T s
||U0||L1 (R2) 0
Then from two equations above, we obtain that
y(t+ o) —y(t) =llul-,t + o) [7pmay — Ul 70 ga
m—1+42
Cp(p =) [T+ L
+JLﬁ7—/ (2 s d. (@)
t

||U0|| L1(R%)

In the similar way of obtaining (21), integrating from ¢ to t+¢g instead of integrating
from 0 to t, we see that

Cpp— 1)y [TH et
lu(,t + €o)llze — lul )L + ||p||1/ (lu(s)llzs) 7= ds <0,
Uo z;(Rd)

It means that y(¢) is a non-increasing function in time, i.e.

D02 gy < ~ P gy, ) T (23)

HU’OHEI(IRd)

Then we have the conclusion that
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(a) for 1—2 <m <2—2 |lu(,t)| 1»ga) decays in time

ol Lo (e
[u(y )] Lo ety < &) e (24)

p(m—1+2/d)
[1 O, ol oo luoll o )

, o\ molt2/d
C, —14+2/d p—1
where C(d,m, . ol ol ) = 2220 0lin) T
luoll 75

(b) for m =1— 2 |lu(:,t)|| 1»ga) decays exponentially in time

Cp(p 1)n
1
TR

”u('at)”Lz’(Rd) < ||u0||Lp(]Rd)6 Ll(Rd>

(c) for 0 <m < 1= 2, |[u(t)||pr(re) has finite time extinction. The extinct time

7p(mflt2/d) 1/(p—1)
ol a? ol
—Cpn(m—1+2/d)

Text satisfies 0 < Tyt < Tp, where Ty =

. . : 2 2
Step 3 (Hyper:contractlve estimate for any p < ¢ < oo with 1 -5 <m <2 - 3).
L" estimate with r := p + € for ¢ small enough.

Since Cs;nm - ||u0||i;&§,i) = 1, there exists € > 0 such that

n

dm(p + € m
O uollZg > 1. (25)

Syt (m+p+e—1)2Cpy

In the similar way of obtaining (23), we obtain

d ) . 14 mid2/d n(r —1)C,
GO gy < =B (Ilu(t)llde>) , B= L (142¢/d)

2”“0 LI(Rd)

Since 1 — % <m<2-— %, from Lemma 2.6, we have

[u( N7 @ey < C(d,m,n,m, l|uo|| g1 )t~ ==1+27a, (26)

Hyper-contractive estimates of L? norm for ¢ > r.
Combining (9) and (16) with ¢ = p, we have

2mg(g —1) [, mta=
N L / Vu o

+Clara) | (e )l (27)

where § =1+ 1+q . Substituting (26) into (27), we obtain

I O o ey <ltollzae) = inmiq— 11))2 / HV C )’ 2L2(Rd)
+ottmna o) [ 555 ds (28)
Then in the similar way of obtaining (23), (28) turns to
d i JICENTCErTS i
il Dllze < (||U||Lq Rd)) +C(d,m,n, q, ||luo|| g1 )t~ TrTrRrmE=m |

(29)
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where 3 = 2ma(a— 1) . Using Lemma, 2.7 and choosing tq = &

1 2(‘1 p) 27
(m+<] 1)25 Huo” ( )
d L (]Rd)

we obtain that for any ¢t > 0

(pte—1)(g—p+1)(g—1)

||u(.,t)||%q(Rd) < O(t c(m=—1F2/d)(aFm—2F2/d) 4 { m— 1+2/al)7 (30)

where C'is a constant depending on m, d, ¢,n and |uo| 11 (ra), € satisfies (25).

Step 4. (L? decay estimate for any 1 < ¢ < p with 1 — % <m<2-— % ). For
1-— % <m<2-— %, by using interpolation inequality and (24), we obtain that for
any t > 0,

p(g—1)
o ()| 5 gty 10 (- )IIE‘J’RZ)
lu(- )| Loray < ®) ( —. (31)
q(m—1+2/d)

L+ C(d,m,n, [luol| L1, [[uol z»)t

Step 5. (Mass conservation for u(z,t) when 1 — 2 <m <2 — 2).
We take a cut-off function 0 < 9 (z) < 1, satisfying

(1, iffe] <1,
i(z) = { 0, if [2| > 2,

where 11 (z) € C°(R9).
Define ¥gr(z) := 11 (%), then we know that H}im Yr(z) = 1, [Vyg(x)] < %
— 00

and |Ayg(z)| < 3 for x € R, where Cy and Cs are positive constants.
From the definition of weak solution for u and taking ¢¥r(z) € C2°(RY) as test
function, we have

[, ute.0vnta) do = [ wo(alinto) as = | t [ e n(e) s
T /Ot /Rd u(z, s)Vo(z, s) - Vipg(z) deds. (32)

For 1 — % < m < 1, we can estimate the first term on RHS by using Holder’s

inequality

¢
// u™(x, $)Avg(x) dxds<—// (z,s) dads
0 JRd Bar

= W/O HU(-’S)”?l(Bma) ds

C (||U0||L1(Rd))

Using young’s inequality, the second term on RHS of (32) goes to

¢ t
/O /Rd w(z, $)Vo(z, s) - Vipg(z) dods < C];/O /BzR u(z, s)|Vo(z, s)| deds

c [ 9 c [t 9
<= u?(z,s) drds + = [Vo(z,s)|? deds.  (34)
R 0 BQR R 0 BQR
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Recalling the second equation of (1) v; = Av — v + w, multiplying it by —Awv and
integrating from 0 to ¢ and over R?, we have

1 ¢ t
7/ |Vo(z,t)|? da;—i—/ / |Av(z, s)|? dmds+/ / |Vo(z,s)|? deds
2 Jga 0o Jrd 0 Jrd
t
§/ / |Av(z, s)|u(z, s) deds
0 JRre
t t
S/ / |Av(z, s)|? dxds—i—/ / u?(z, s) dads
0 R4 0 Rd
t
< C/ / u?(x,s) dads, (35)
0 JRrd

where the last inequality can be obtained from (7).
From (34) and (35), by using interpolation inequality, Holder’s inequality and
u € LPT! (Ry; LPTH(RY)), we have

// (z,8)Vu(z,s) - Vygr(z dxds<—// (z,s) dxds
R4 Bar

<7/ [ 1) s g

1
(p’HUO”Ll(Rd) (/ (-, )i )ds>ptppl
LPT1(Bapr

- C (p, ||u0||L1(]R'i))t L
- R
Therefore, collecting (32), (33) and (36) together, it shows that

C (|luollLr) C (p, |uol|z1) ,e=2
R2—d(1— U R e

[ utetionta) do = [ uoteyvnte) de| <

Since 2 — d(1 —m) >0 from 1 — 2 <m < 1, we have

/ u(zx,t)dx z/ uo(z)dz, as R — oo,
R4 R

by the dominated convergence theorem.
For1<m<2-— 7, also using interpolation inequality and Hoélder’s inequality,
we have the following estimate

¢ ¢
/ / u™(x, 8)AYg(x) dxds < %/ / u™(x,s) dxds
0 JRd Bar

(m=1)(p+1)
< / e )t 1 )l ety

m—1 p—m+1
P

(IIUoIIL1 R4 s
< Z \THONLI(R)) ) /H I;L(Bm)d /Olds

- C (m,py ”UO”Ll(Rd))tVTw.

< - (37)
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Then from (36) and (37), we have

C (p, o
‘ [ utw0n(e) do = [ wole)in(z) ds| < (.ol ) oo
R4 R4 R
C (m,p, ”uO”L1 Rd)) ,p=md+l
L = ) st (38)
ie. [pau(z,t) dz = [p.uo(z) dz, as R — oo. Therefore, for 1 — 2 <m < 2— 2,
we have mass conservation for u. O

4. The uniformly in time L*>° estimate of weak solutions. In this section, we
prove our main theorem about uniformly in time L° boundness of weak solution
by using a bootstrap iterative method.

At the beginning of this section, we prove the following proposition concerning
L7 norm estimates of the weak solution for 1 < ¢ < oco.

Proposition 1. Letd > 3,0 <m < 2-2 andp = d(2 ™) Ifuo € L} (RH)NLY(RY)
2 m 2— 4mp
forl<g<ooandn=C3., ||u0||Lp(Rd) > 0, where Cia = 5Tt p-1)2C, is
a universal constant, let (u,v) be a non-negative weak solutwn of (1). Then u(x,t)
satisfies for any t > 0
p(g—1)

||7.L( )”Lq (Rd) = (pa q, ||u0||L1)||u0||Lp(]Rd)7 1< q < D, (39)
where C' depends on p,q and |uo| 11 (ra),
lu( Ol ey < Cits P < g <00, (40)

where C is a constant depending on d,m,q, ||uo| 11 (gay and [[uol|pqgay, € satisfies

4m(p+e)
Sd_1 (m~+p+e—1)2Cp4c

- ||u0||2L;a§d) > 2. Furthermore, for anyt >0

HU('vt)HleDO(Rd) < C;)o’ (41)
where C° is a positive constant depending on CIT1.

Proof. Actually, the proof of Proposition 1 is almost the same as the proof of
Theorem 3.1, except for the different initial condition ug € L% (R%) N L9(R?) for
1 < g < oo. Step 1 is L? estimate for u(x,t) and Step 2 is the uniform estimate for
v(x,t). We omit some details which are similar to the proof of Proposition 1 in [2].

Step 1. (L? estimate for u(x,t))We have obtained the uniform LP estimate for
0<m<2-—2in (19)

||u(',t)HLp(]Rd) < ||U0HLp(]Rd) < Cd,m; for all t > 0.
Then for 1 < ¢ < p, using interpolation inequality, we have

p(g—1)
= I s N[ (42)

which is (39) by taking C(p,q, |uollz1) = ||“0||§Rd)' For p < r < ¢, it is not
hard to see that |[u(-,t)||Lrge) < |luol prrey for any £ > 0. By the similar way of
obtaining (29), we have

m—1+2

d q 3 q = r J
%Hu(Wt)”Lq(Rd) < _ﬁ (Hu”Lq(Rd)> —|—C(q7r7 d) (HUOHLT(Rd)) ’ (43)
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where § = 1+ % and 3 = 2ma(q— 1) I Using Lemma 2.8 and
(-0 ol 10T

Ll(]Rd)
interpolation inequality, we can obtain
S
e(g+m—
Ju- ¢ [ﬂm%<<nwx{uud&qR@,c«Lnquwahﬂ>(Wmni%R@ }
= CY,

4m(p+5)
Sgl(mJFIH“E*l)QCer HuOHLP(Rd) Z 9"

Step 2. (Uniform W estimate for v(x,t)). From (4) and (5) with vo(z) = 0,

where € satisfies

choosing p = oo and ¢ = d+ 1 to satisfy 1 < ¢ < p < o0, % — % < é, we obtain for
any t >0

[0( )| oo ey < CUA)ull poe (0, 005101 mayy < CACET,

V0 (s ) oo (ay < CUA) [l poo (0,00, 101 (may) < CA)CH,
i.e.

||’U('7t)HW1,oo(Rd) S C(d)03+1 = Cgo
O

Next, we will prove the uniformly in time L* boundness of u(z,t) by using a
bootstrap iterative technique [2, 16] with Proposition 1 and an additional initial
condition ug € L= (R?).

Theorem 4.1. Letd >3,0<m <2—2 andp = d(2;m). Ifug € LY (RY)NL>(RY)
CQ m_ 4mp

d,m S, (m+p-1)2C,
constant, suppose (u,v) be a non-negative weak solution of (1). Then for anyt > 0,

||U(, t) HL"C(Rd) < C(m7 d7 K0)7

_ 2—m 2—m . .
and n = C " — ||u0||Lp(]Rd) > 0, where is a universal

where Ky = max {17 luoll 1 (mey, ||'LL0||L00(]RL£)}.

Proof. Step 1. (The L% estimate). We denote

d(2 —m)
2
Multiplying the first equation in (1) by gru% ! and integrating, we have

=3+ + 1, for k> 1.

d _ 4mqk( Kk — 1 m+% 112 qr—1

%”“( | T ——WH L2+Qk(q/c—1)/Rdu Vu - Vv dx
dmar(qr — 1) H mag=1 )2 / -1
5 - 1)C>® =\ Vu| d 44
C(mtqr—1)? et ar(ae = 1), i |Vl dz, (44)

where the inequality holds from (41). By using Young’s inequality and interpolation
inequality, we obtain

2 —1HC>® ap—m Qptm—
ar(qr —1)CP / w1V dz = 2060~ VG” / e i P
R4 g +m—1 R
ominlie — 0 g | el DOEE [ st g
T (mtgr—1)? L2 2m Rl
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2map(ae —1) || g, mtu=t 2, aelae = D(CF)?, g (o) S
- m L2 + 2 || 0|| |u||qu+1(R )
< M M 2 W
T (mtq—1)? Ler 9 llwoll 1
(qe — m)(qr — 1)(C°)? o
+ 2m H ||%qu+1 (R4)? (45)

where inequalities hold since 1 < g —m+1 < g +1 and g > m. Then substituting
(45) into (44) yields to

d meg=1)12 (g — 1)(CF°)?
%”u(at” LAk (RT) < 201HVU' 2 + f”uOHLl(Rd)
(qr —m)(qx — 1)(CP)? 1
n L e (16)
where 0 < C; < % is a fixed constant since % — m as k — oo.

In order to change the form of (46) into what we want, firstly we try to estimate
g
|lu(-,t) ||%";1ﬁ1 by using interpolation inequality and Sobolev inequality,
41 +1) :+1)(1—-60
e 9L gy < M D) it ey e ) T
L~ d-2 (R)

2(qp+1)(1-0)
mq,—1

L2(R%)

(qp+1)(1-0)

L) —0) +1)6
<S¢ Tt ”u( )”[?;k 1(Rd)

mqp—1

Vu™ 2 , (47)

where
_ ak—1(2qx +md — 2d + 2)
(gx + 1)[(m + g — 1)d = gr—1(d — 2)]’

d(qr — qr—1+1)(m +qx — 1)
(e + D[(m+qr — 1)d — qr—1(d = 2)]’

(g +1)(1-0) _ d(gr—qr—1+1) . d(2—m)
We can see that =T = W= ar A1)+ 2ar Tmd—ad < 1 since g1 > —=—5—-.

Then using Young’s inequality, we obtain

1-60=

2

— —1 00)2 m qk 1
(a1 — m)(qw )(CF) Hu('7t)||qk+l < 51 Hvu +

m Lak+1(R4)

L2(R9)

9o — (gpt+1)(1-0) 1 @
(g —m)(gr — 1)(C°)°Sq mFan—t py[latax+1)0
2m ”u(’ )”qu—l(Rd)

1
+ =6 ¢
a

mqp—1

< Cleu 2

2
a a 6
+ Cala) ™ [fuC ) 5 (48)

where

m+qe—1 dlgr — qr—1+ 1) +2qx_1 +md — 2d
b: = >17
(g +1)(1—-0) d(qr — qr—1+1)

. b d(gk — qr—1+1) +2qk—1 +md — 2d .
Tb—1" 2qx_1 +md — 2d ’

1 4, oon2a o — LaEtDA=0)
51 = (€10}, Calar) = ——(Cub)~F(C) s, s
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By some simple computations, we know that a — 1 +d, b — Z as k — oo. Then
C5(gx) is uniformly bounded as k — co. Substituting (48) into (46), we obtain

d migeo12 (g — 1)(CP)?
Sl Oy < =V |+ R g
71
+ Calar)a®® (lul )35ty ) (49)
where
0 1 2 d—2d+ 2
by = O0lak 1) _ 29 +m +t2
qk—1 2qk—1 +md —2d
mtq—1 [[2
Secondly, we will estimate HVu — )’ From interpolation inequality, it
L2(R
shows that
1—
e 1% ey < s 2L s gy I, DI
L~ d-2 (R)
ap (1= 8) 5 S qujr(lfﬂ)
_apt=F) mtq, —1
S Sd mtaqp—1 Hu( )H%Aqk 1(R4) Vu L2 (R4 ; (50)
where
5= qr-1(2q; +md — d)
qgr[(m + qx —1)d — gr—1(d — 2)]’
1_ 8= d(gr — qr—1)(m + g — 1)
ar[(m+ qr — 1)d — qi—1(d — 2)]
It is shown that ';]V:C"!(‘;k ﬂ)l = d(qk_qkfiff’)‘;g;;j3+md_d < 1 since qx—1 > M. Using
Young’s inequality for (50), we have
| e ’ 1yl mta=t2
lu(-, )] %qu(]Rd) < 552 Sy~ T ||u-, )||C£££'“I(Rd) + 552 ‘Vu 2 L)
mtqg—1 |2 . V2
= ClHV“ ’ ‘ Ly T Cs(ar) (”“("t)| %quil(w)) ’ (51)
where
Y — m+qe—1  dlgy — qr-1) +2q—1 +md—d
= = > 1,
ar(1 — ) d(qrx — qr—1)
o — b d(gr—qr-1) +2q1 +md—d o1
b1 251 + md—d ’
b 13 o otz
0 = (C1b)", Clar) = — (CLb7) " Sq mio=T,

qeBa’  2qp +md—d
r-1  2qp—1+md—d

Y2 = < 3.

We can check that C3(gg) is uniformly bounded as k — oco. Substituting (51) into
(49), we obtain

H (oD o ray < = el O s zay + Cagilluoll L gay

Y1 Y2
+ Calae)ae® (luC, )%t a )+ Colar) (IuC DI me) o (52)
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where Cy = (0520)2. Since Ca(qx) and Cs(gx) are all uniformly bounded as g, — oo,
we can choose a constant Cs > 1 which is an upper bound of Cs(qx), Cs(qx) and
Culluo|l 11 (gay- Then by g, > 1 and a > 1, we have L estimate

d . . a -1\ —
ZleC O < =l Zo +Csax” [(Illt(lf)ll‘?am)7 +(IIU(t)||quqk11)”+1}- (53)

Step 2. (Uniform L estimate). Let yx(t) = ||u(~,t)||%’i,k(Rd) and multiply e to
both sides of (53)

d
= (etyk (t)) < Cyqp?® (ygll(t) +yr () + 1) el < 3C5q,%* max {1, sup y,?;l(t)} et.
>0

Solving this ODE, we obtain for ¢t > 0

yr(t) < e yr(0) + 3C5qx>* max {1, sup yi_l(t)} (1 — eft)

t>0
< 3C5:2 max {1, ue(0), sup yz_m} | (54)
t>0
We have
d 9 _ 2a d 9 _ 2a
q,>" = (3k L dzom) 5 m) 1) < Cp32e <( 5 ) 1) ) (55)

where Cj is an appropriate positive constant. Combining (54) and (55) together,
we can see

d2-m) N 5
y(t) < Co | =———+1) 3" max {1, 4(0), Sugykfl(t) ;

>

where Cg = 3CyCs. Then after some iterative steps, we have

k1

nlt) < (06 (4250 ) T (s )
k-1 )
.max{L Zyg,Z(O), sugyg (t)} (56)
i=0 t>

Denote KQ = max {1, ||U,()HLl(]Ral)7 ||’U,0||Loo(]Rcl)}7 then

91(0) = o125, oy < 10 { ol % g ol 2o oy} < G,

and
k=1
max{l, Zyi’_z(())} < kK{*.
i=0

Taking power qik to both sides of (56) and letting k — oo, we obtain

lu(- )|l oo (ray < C max {SUP Yo(t), Ko} ; (57)

t>0
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a(d+1) (2—m) d+1 .
where C' =372 C¢ <7 + 1) since a = d+ 1 as k — oco. Recalling (40)

in Proposition 1, it shows that
Yo(t) = |lu(:, )||Lp+2(Rd) <Cr p+2, (58)
Then (57) turns to
[u(-,8)][Lee < C(m, d, Ko).
O
5. Global existence of weak entropy solutions. In this section, we prove a

theorem of the existence of a weak entropy solution by constructing a corresponding
regularized problem.

Theorem 5.1. Let d > 3, 0 < m < 2 —% and p = @. Assume ug €
_ _ —m 4 .
LY N LP(RY) and n = C';,mm - ||uoHip(Tﬁéd) > 0, where Cimm = W is a

universal constant. Then there exists a non-negative global weak solution (u,v) of
(1), such that all the a priori estimates in Theorem 3.1 hold true. Furthermore, for
1 <m<2—2 ifthe initial data satisfies [g. |2 ug(z)da < oo, and [uoll, ¢ 2 Rd) <
C, then

(i) the second moments [g. lz[*u(z,t) dz and Jza |z|*v(x,t) dz are bounded for
any 0 <t < oo,
(i) the free energy of (1) is

_ 1 m _ 1 2 1 2
}—(u(’t)’v(’t))_im—l/wu dx /}Rduvdm—l—Q/RJVM dx+2/Rdv dz,

which is non-increasing in time,
(ii) with an extra assumption that ug € L™(R?) when dT-2 <m<2-2, forall
l<m<?2-— 2, the weak solution of (1) also satisfies energy inequality

o+ [, Lo (G =)

a.e. t> 0.

Proof. We separate the proof of Theorem 5.1 into nine steps. In Step 1, we con-
struct the regularized problem of (1) and show that all the a priori estimates in
Theorem 3.1 hold true. In Step 2-5, by applying Aubin-Lions-Dubinskii Lemma,
we prove that the non-negative weak solution of regularized problem (59) converges
strongly to a non-negative weak solution of (1) in a bounded region which shows the
existence of a non-negative weak solution of (1) in R%. Then in Step 6, with a little
improvement of initial data, we extend the strong convergence to the whole space
R? through the proof of the second moments are finite when 1 < m < 2— %. In Step
7 and 8, we show the convergence of the free energy and the lower semi-continuity
of the dissipation term. Furthermore, In Step 9, we prove that the global weak
solution satisfies energy inequality.

2

t
drds + / / 10,0 deds < F(0),
0 Rd

Step 1. (Regularized problem and a priori estimates). We consider the regularized
problem of (1) for € > 0,

Orue = Au™ + eAuc — V- (uc Vo), = € R4t >0,
Ove = Ave —ve +u., x€RYE>0, (59)
ue(2,0) = upe(z), ve(z,0) =0, =z &R,
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where d > 3,0 < m < 2 — 2. The initial data ugc(z) € C*°(R?) is a sequence of

approximation for ug(x), which satisfies that there exists § > 0 such that for all
0<e<d,
toe(z) > 0,2 € RY,
uge(z) € L™(RY), for all 7 > 1,
||u0€(')HL1(Rd) = ”UO(')”Ll(Rd)a

HUOC(')HL%(Rd) S Ca

/ |x|2u0E dr — / |x|2u0 dx, as € — 0.
Rd Rd

For the existence of a strong solution of problem (59), we refer to [20, Section
3]. Our existence result of regularized problem can be obtained by almost the
same way of proving Theorem 7 in [20], except for some small details. Then the
regularized problem has a global strong solution (u.,v.) with u, € W;jrlg (RTx Ry ).
Since Wj-s-l3 (R*x Ry ) is a subset of L> (Ry; L™ (RY)) N L™+ (Ry; L™ (R?)) for all
r > 1, we have

ue € L™ (Ry; L"(RY) N L7 (Ry; L7HH(RY)) .

Then we will prove that all the a priori estimates in Theorem 3.1 hold true for
our regularized problem. Multiplying the first equation of (59) by pu?~1¢g(z) and
integrating over R? x (0,t), where 1r(x) is the cut-off function defined before, we
obtain

dmp(p / /
Plx,t d
/Rd Ue(ﬂf, )QZJR(I) JC—|— +p—1 o
de(p—1) »
’ e(pp/o [ 1908 Funte) aoas
t
= [ it @wn) de—-1) [ [ wtocbnte) deds
Rd o JR4
t
__mp m4p—1
+m+P—1/0 /Rduf " AYg(x) deds

¢ t
—|—/ / ulVo, - Vipp(z) deds + e/ / u?AYpp(z) deds.  (60)
0 JR4 0 JR4

In order to estimate the right hand side of (60), we should have estimates of v, at
first.

Multiplying 8;v. = Av, — ve + ue by —Av, and integrating over R? and from 0
to t, we have

1 t t
f/ Vo (z,t)]? da:Jr/ / |Ave(x, 5)|? dads +/ / |Voe(x, s)|? deds
2 Jra 0o Jre 0o Jre

t
< / |Ave(z, 8)|ue(z, s) dads
o Jr

¢ ¢
S/ |Avc(z, 5)]? dxds—|—/ / u?(z,s) drds
0 Jrd 0o Jre
¢
< (Cp—i-l)/ / u?(z,s) duds. (61)
0o Jre

Vu6 R Yr(x) daxds
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In the same way, multiplying 0,v. = Av, — v, + u, by v, and integrating over R
and from 0 to ¢, we have

¢
1/ v (,t) dac—i—/ |Vve(z, s)|? deds + = / / (x,s) dzxds
2 R4 R4
< / / (x,s) dxds. (62)
=3/ |

Combining (61) with (62), we see that
ve € L™ (Ry; H'(RY) N L? (Ry; HA(RY))

since ue € L? (Ry; L*(R?)). Then using Hélder’s inequality, we obtain

—(p—1 / /Rd uP Ave deds < (p—1 / ||u6Hsz Ra) | Avell L2 (ray ds

p-1( [l 5 ) TN ——
< c(e),

which means that we can use the dominated convergence theorem for this term as
R — oo for any small e.

Next, we prove that last three terms on the right hand side of (60) go to 0 as
R — oo. Firstly, from u, € L™ (R+' L (Rd)) for any t > 0 and small €, we have

C(t,e)
m+p—1 < m+p 1 <
//]Rd AYg(x) dads Rz/ /Bm dzds Tz

sincem—+p—12>1.
Secondly, from u, € L (Ry; L"(R?)) and v, € L? (Ry; H2(RY)), we have

t
/ / ulVo, - Vipg(z) deds < C(E),
0o JRrd R

/ /Rd uP Ag(z) drds < C;’;).

Using the dominated convergence theorem, when R — oo, (60) turns to

dmp(p
P _
/Rduﬁ(x,t)dx /Ruoe()dx—k mtp_1)2 //Rd
< —(p—l)/ / uP Av, dzds, (63)
0 JRrd

which is same to (11) by the method of obtaining (23). From all above, we have the
conclusion that all the a priori estimates in Theorem 3.1 hold true for the solution
of the regularized problem. Then we have following estimates,

m+p—1
2

dxds

||u6||L°°(R+;L3rmLP(Rd)) <, (64)

||u€HLp+l(R+;Lp+1(Rd)) S C) (65)

m4r—1
’ Vue 2

<C, 1<r<p. 66
L2 (RysL2(RY)) — =P (66)
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Letting r =3 —m — d, we know that 1 < r < psince 0 < m < 2 — =. From (66),
by using interpolation inequality and Sobolev inequality, we have

[ele] [ee] (m+4r—3)d+4 (m+r—1)d
2 2 7 2 2
/ el )12 gy dt</ et E gy ™ llue (- 1) Vierona - dt
0 L

=2 (RY)
Evnir g;ji; m4r—1 2
<54 / et ”LT(er) Ve L2(R4) ,

i.e.

||Ue||L2 (R+;L2(Rd)) <C. (67)
Then we have uniform estimates for v,

10l (5 s ay) < © (68)

||v€||L2(R+;H2(Rd)) S C (69)

Step 2. (Time regularity of u.). In this step, we estimate d;u,. in any bounded
domain in order to use Aubin Lions-Dubinskii Lemma. For any test function o(z)

which satisfies ¢ € w2 ( )s llell WD o <1, we have

|<8tu67 90>| = |<Au£n7 90> + 6<A’LL€, ‘P> - <v : (uevve)ﬂ SDH

Slud'l 2w A ellucll zoen A ueVoel 2w
L »H3 (Q) L r»+3 (Q) L P (Q)

< 0@ (el s+ llelirsaimy + ol zgsp ) (70

% < p+1 and pH) < p+1 from

O0<m<2— %. Choosing p = min{%m—i— 1} > 1, for any T > 0, we obtain

T T T
[ 10ad? o dtscm)( | ey dt € [ Tl
0 w Q) 0 0

’ p+3
T
+/ [ACA 2AptD) dt)
0 L3 (Q)

T
<C@QT)(1++CQ) / el s ) V0
<20(Q,7). (71)

where the last inequality holds since

Then we have H@tueﬂ L, 241 <C.
( 0,T;W > " pF3 (Q))

Step 3. (Application of Aubin-Lions-Dubinskii Lemma). Before using Aubin-
Lions-Dubinskii Lemma, we introduce the definition of Seminormed non-negative
cone in a Banach space which can be found in [6].

Definition 5.2. Let B be a Banach space, M, C B satisfies

(1) Cue My, for all w € M and C > 0,
(2) there exists a function [-]: M, — [0, 00) such that [u] = 0 if and only if u = 0,
(3) [Cu] = Clu], for all C > 0,

then M, is a Seminormed non-negative cone in B.
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Now by choosing B = LPT1(2), we construct

2
mtp—1

L2(Q)

m4p—1

M (Q) := {u ] = | vu + llull ey + ||u||Lp+1(Q)} ,

which is a Seminormed non-negative cone in LPT1(€2) that can be checked. Then
we will prove M, () << LPTY(Q), i.e. for any bounded sequence {u.} in M (Q),

there exists a subsequence converging in LP*1(Q).

. 2(p+1)
Since H(Q) << L=t»-1(Q), from 2+ < 24 e can find a subsequence
m+p—1 d—2

m4p—1
{ue 2 } in H(Q2) without relabeling such that

m+tp—1 m+p—1 . 2(p+1)

Ue 2 —u 2 in L=+r=1(Q2) ase— 0.

i

For m+p— 1> 2, we have

/ |ue — u|p+1 dr = /
Q Q

mip—1l 2 m+4p—1 2 ptl
ue 2 m+p—1 —u 2 mEp—1

dx

(P+1)ﬁp71
dr — 0, ase—0.

mtp—1 m+p—1
2

For m + p — 1 < 2, using Holder’s inequality, one has

/ |e — ulPT da :/
Q Q
<)

Q

<

mip-l __ 2 m+p—1 2 pFl
Ue 2 m+p—1 U D) mIp—1 dl‘

(p+1)(83—m—p)
m+p—1

p+1l| m4p—1 mtp—1

myp—1 mtp—1 : .
2 u u
€

Ue 2 —u

dzx

(p+1)(8—m—p)
mtp—1

2(p+1)
Lm+p=1(Q)

mtp—1 mtp—1

m+p—1 mtp—1 1
2 Ue +u 2

Ue 2 —u

p+1
2(p+1) ‘
Lmtr=1(Q)

— 0, as e — 0.

From above, for all 0 <m < 2— 2, M, (Q) << LPT1(Q).
Until now, we have already obtained

<,

||ue||Lm+p—1 (07T;M+(Q)) -

e

<c,
)_

Lmtr=1(0,75Lp+1(Q)

HatUeH - _o 2(p+1)
LP(O,T;W TP (Q)

)SC,

and

M (Q) e Q) — W25 (Q).
By Aubin-Lions-Dubinskii Lemma, there exists a subsequence of {u.} without re-
labeling such that

ue —u in L™PT(0,T5 LPTH(Q)) . (72)

Let {Bi}32, € R% be a sequence of balls centered at 0 with radius Ry, and Ry — oo
as k — oo. By a standard diagonal argument, there exists a subsequence {u.}
without relabeling, such that the following uniformly strong convergence holds true

ue —u in L™ (0,T; LPT(By,)) , Vk. (73)
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Step 4. (Strong convergence of v.). From the second equation of (1), using (67) and

(69), for any test function ¢(x) which satisfies ¢ € W22(Q) and [|¢||w22(0) < 1,
we have

[(0:Vve, )| < [(Vve, Ap)| + [(ve, Vo) | + [(ue, Vip)|
S | Vvellzz) + [[vellz2a) + [luel 2 ()- (74)
Then for any 7' > 0, we obtain

T T T
AH@Wﬂ%ﬂmWMﬁl|Wmm@ﬁ+CAHM@th

T
+C [ Judae dt<C.
0

ie. ||(9tV’UE||L2 (0.raw—22() < C. Since HVUEHL2 (0,311 (@) < C, by using Aubin-
Lions Lemma, there exists a subsequence of {v.} without relabeling such that

Vue — Vo in L* (0,T; L*(2)), (75)

ve v in L?(0,T; H'()) . (76)

Also let {By}32, € R? be a sequence of balls centered at 0 with radius Ry, and
R — oo as k — oo, one has that

ve = v in L?(0,T; H'(By)) , Vk. (77)
Step 5. (Existence of a global weak solution). Next, we will prove that (u,v) is

a weak solution of problem (1). The weak formulation for u. is that for any test
function ¥(x) € C*(RY) and any 0 < t < oo,

/Rd ue(z, ) (x) dor — /Rd uge(z)Y(z) do = /Ot /Rd u™(x, ) Ad(z) drds
+e/ot /Rd uc(z, 8)Atp(x) dads + /Ot /Rd ue(z, $)Voe(z, 8) - Vip(z) deds.  (78)

Firstly, we try to prove that
u = u™ in L' (0,75LY(Q)),

by using strong convergence (72). For 0 < m < 1, using Hoélder’s inequality, we

have
T T
/ /|u2” —u™| drds < / / lue —u|™ dzds
0o Ja o Jo

S CO D=l ey 7O €0 (1)

Forl<m<2-— %, also using Holder’s inequality, we obtain

T T
/ /|u’5” —u™| dzds < / / lue — ul|ue +u|™ " dads
o Jo o Jo

< C(.T) ue —ul ’

=T
Lmtr=1(0,15L041(Q))

— 0, fore—0. (80)
From (79) and (80), we have proved that
u »u™ in L' (0,75 L1(Q)) . (81)

||t + u

Lm+p—1 (O,T;LP+1 (Q))
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Next, we have

T
/ / |ueVoe — uVo| dxds
o Jo
T T
< / / |ue Ve — uVoe| dads —|—/ / [uVve — uVv| dzds
0o Jao 0o Ja

< C(Q,T)lue — U||Lm+p,1(0,T;Lp+1(Q)) HVUE||LOO(O7T;L2(Q))
+ [ull , (0.1322(®) IVve = V|, (01:22(@) —0, ase—0, (82)
since
HVUE||L°°(O,T;L2(Q)) <G
<C,

el s (0.13L7+1(0))

Vue — Vo in L? (0,T; L*(2)) .
Then (82) turns that
u. Vo, = uVo in L (O,T; Lt (Q)) . (83)

Owing to (81) and (83), passing limit € — 0, one has that for any 0 < ¢ < oo,

/Rd u(x, t)y(z) do— / uo(z ) dx —/ /]Rd (z,s)AY(x) dxds
—|—/0 /Rd u(z, s)Vu(z, s) - Vip(z) dzds. (84)

The weak formulation for v, is that for any test function ¢ (z) € C>°(R%) and any
0<t<oo,

/ve(xt dm—//vsstw da:ds—//vexs ) dxds
R Rd
/ / ue(z, 8)(x) dads. (85)
Rd

From strong convergences we have obtained for u. and v, it is easy to see that

T
/ / |ve —v| dzds — 0, as e — 0, (86)
0o Jao

T
/ / |ue —u| dzds — 0, ase— 0. (87)
0o Ja

Then passing limit € — 0, one has that for any 0 < ¢ < oo,

/ v(z, d:z:—//Rd (x, s)Ay(x d:nds—//Rd v(z, s)Y(z) dads
//Rd u(z, s)Y(x) dads. (88)
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Now we have the conclusion that (u,v) is a global weak solution of (1).

Step 6. (Strong convergence in R? for the weak solution). For 1 < m < 2 — %, we
estimate the second moments of u. and v, at first. From (59), one has that
d

—ma(ue(-,t)) = / 2> 0,ue do = / \x|2(Auzn + eAue — V- (ueVoe)) dx
dt Rd Rd

< 2d uldr + 2de/

uedr + 2/ ux - Voo dx
R R R

< 2d||u€||Tm(Rd) + 2de|ucll 1 gay + /Rd ue|Voe|® dz+ma.  (89)

Then using Gronwall’s inequality, (89) turns to

t t
() < e'ma(uod) + 24! [l P ds-+ 2dee’ [ el ds

t
—l—et// u|Vo|* deds, (90)
0 Jre

since et < 1 from ¢ > 0. By using interpolation inequality for 1 < m < p + 1, we
can obtain that

[

for any t € (0,T7.
Next we estimate fot Joa e Vve|* dads in (90). Since luoell, 4

in Proposition 1, we have

Ty ds < C(T / e[ gy ds < C(T), (91)

$gey = < C, from (40)

¢ <C. 2
From Sobolev inequality and (69), one has that

1 t
L1902 e < 5 [ 180 e ds < (99)

Combining two estimates above and using Hoélder’s inequality, we obtain

//}Rduequ dxds</ el g |7l it gy s < O (99)

Until now, we have mg (uc(,t)) < C(T) for any 0 <t < T.
From the second equation of (59), it shows that

d
— ve dx < —/ Ve dx—|—/ Uge dx. (95)
dt Jga R Rd
By using Gronwall’s inequality, we have
/ ve do < / uge dx = [|[uol| 1 (gay- (96)
Rd ]Rd
Then for mo (ve(-, t)), one has that
d
L (ve(,t)) <2d [ we do+ ma(uc(-t)) < C(T), (97)
R4

i.e. ma(ve(:,t)) < C(T) for any 0 <t < T.
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By using ma (uc(-,t)) < C(T) and ma(ve(-,t)) < C(T), we obtain that for any
1<nr <p+1,1§7‘2<2

T T
/0 el gy dt < / [ S [ [ e
< 1 T (m+p—1)(1—-061) (m+p—1)6,
= W/O [ma (ue(- )] el o+ (o> ry
C(T)

Sm-}(L BJSR—>C>O7 (98)

11— 01 0,
where = + o3 and

T T
2 2(1 6
10l s agomy @< [ I0ell Ty el 75y
0 0

1 T 201-05), 126
g (IO e T
(1)
SW—)O, asR—>oo, (99)

where i =1=f2 4 % By weak semi-continuity of L™*P~1(0,T; L™ (|z| > R)) and
L*(0,T; L™ (|z| > R)), we have

T T
+p-1 - +p—1
/ Hu”?ﬁpup}% dt < hIglJélf/ Hue||2nrlax|>R) dt -0, as R — oo,
0 0

T T
2 - 2
/(; ||U‘|LT2(I-T‘>R) dt S hIgi}lélf/O\ ||’U6||L7‘2(‘$|>R) dt — O, as R — oo.
From (73), (77) and Hélder’s inequality, one has that

T
/ llue — u||7£lr'f€|;|1<3) dt -0, ase— 0,R— oo,
) <

T
/ ||U€—’U||ir2(|zl<3) dt -0, ase—0,R— oo,
o <

and
T T m+p—1
+p—1
/0 [lue — u”anrlde) dt = /o (HUE*UHLm(\x\gR)JFHUe*UHLm(\g;pR)) dt
T s T o T s
m — m m —
<O | [ = allitdny dt+ [ Ml e+ [l g
— 0, ase — 0, R — oo, (100)

T ) T 2
/0 [|ve — UHer(Rd) dt = /0 <||v€ - U||er(|$|gR) + [Jve = U||er(\x|>R)) dt

T 2 T 2 T 2
/O e = 01 s oy + / A / - dt]
— 0, ase — 0, R — oo. (101)

<C

Thus we have the following strong convergence in R? for the weak solution

ue — win L™~ (0, T, L7 (RY) , 1 <7y <p+1, (102)
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ve — v in L? (0,75 L™ (R%)) ,1 <7y < 2. (103)
Step 7. (Convergence of the free energy for m > 1). The free energy of the

regularized problem is

1 1
F(ue(',t),ve(~,t)) = / ul® dx —/ UeVe dT + 5/ |Vv€|2 dx
R Rd R

m—1
1 2
+ = vZ dx. (104)
2 Jra
In this step, we want to prove that as ¢ — 0,
f(u6(~,t),v€(-,t)) — f(u(-,t),v(-,t)), a.e. in (0,7).

Firstly, using the similar way of obtaining (80) and (82), we have

T
/ / |ul® — u™| dadt
0 R4
T
<o) ( el
0

m—1

I /T e
m+p—1 m+p—1
L7 (R%) dt) (/O HUE”LT/(mfl)(Rd) dt)

— 0, as e — 0, (105)
where
1 1
-1
roor ’
p+1
1< —< 1
<p—m—|—2 T<3—m<p+ ’

2<r’'(m—-1)<p+1,

and
T
/ / |ueve — uv| ddt
0 JRd
T . ﬁpfl T ) %
< o) ( e =l dt) ( | 1ol dt)
1 1
T mFp—1 T 2
+C(T) w7 dt ve — |2y 0 dt
0 Ls2 (]Rd) 0 € L% (Rd)
— 0,as € = 0, (106)
where
1 1 1 1
—_ + - = 17 —_ + - = 1)
S1 S1 S92 So

2< 81,8 <p+1, 1<s), 85 <2

Secondly, we estimate fOT fRd

Vool = [VoP| dedt and [ fi |02 = 02| dadt to-
gether. We just give the detail of estimating fOT fRd

[Vue|* — |Vv\2’ dzdt, since the
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other one can be obtained in the similar way. From (7), (68) and (102) it shows
that

T T
/)/‘WmF—NW’MﬁSC/|Wm—VMBm
0 R4 0

T
< c/ A0 — Al 20 dt
0 Ldtz

T 1 .
<o) / Jue =l de) ™
0
—0, ase—0,

where m+p—1> d+2 since 1 < m < 2 — 2. From estimates above, we have that
as € = 0,

F(u6(~,t),v€(~,t)) = F(u(-,t),v(-1)), ae. in (0,7T).
Step 8. (Lower Semi-continuity of the dissipation term for m > 1). With the

extra assumption ug € L™(R?) when % <m < 2- , we know that ug €
LLinLP N L™RY) for all 1 < m < 2— 2 and [luoc| m ®e) < C. By denoting
q := max{m,p} and using the similar method in Step 1 of Theorem 3.1, we have

forany T'> 0

Vue 2 <C, forl<r<g. (107)

2 T
m&+/‘/|@mPMﬁ
0 R4

T
dxdt + 2/ / ue|Voe|? dadt
0o Jrd

‘ m+r—1

20,7522 (R%))
The dissipation term satisfies

2m

T
/0 /]Rd 2m
T
<2 / / 2
0 Rd 2m
T
—I—/ / |0rve|? dadt.
0 Rd

From (107) by taking » = m and (94), we have for any 7' > 0

2
/ ‘/]Rd 2m—1

dzdt < C,
/ / u5|VU5\2 dxdt < C.
0o Jrd

Then the first term in dissipation is uniformly bounded, i.e.
2
dzdt < C.

1
m_1
Vue ? —J/uVoe

m—i

2m

T
/O/Rd 2m

_1
Furthermore, there exists a subsequence of 251"11 Vue % —/u. Vv, without relabel-

e P _ Ve Ve

ing which weakly converges to f in L? (0,T; L*(R?)). By the lower semi-continuity
of L? norm, we obtain for any T > 0,

2m
2m —

Now we will prove that the weak limit f = 2’" Vum_§ VuVo.

<C.

£2(0,7:L2 (RY))

||f||L2 ((],T;LQ(Rd)) S lilgl)iélf

1
m_1
Vue 2 — Vu Vo,
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For any test function ¢ € C2° ([0,T') x R%) which is dense in H' ([0,T) x R?),
it turns to prove

T 2 m—1
/ / (mue 2V + \ﬁueva) dadt
0o Jrd -1

—>/ /]R (Qm_ 1 m—sz+\/EVv¢> dadt. (108)

From (81) by taking m — 5 instead of m which is reasonable since we consider
1 <m < 2— 2 here, we have

m—3

Ue 2 — um*%, in L (O,T;LI(Q)) ,

ie.

"Ry dedt / / w3V dadt. 109
/ /Rdzmq VY dodt = Rd2mf1 VY da (109)
Next from (75) and (81), we obtain

/ /|\/IT€VUe VuVu| dzdt < Hu€||2

£t (0.1:L1( Q))”v - Vi

£2(0,1522(2))

+ e — ul?

Ll(OTLl Q)) HVUHL2(O)T;L2(Q)) — 0, ase—0,

ie.
T T
/ / VueVoepdrdt — / VuVvdrdt. (110)
0 R4 0 Rd

Combining (109) and (110), we have proved (108), i.e. f = 272nm1Vum_§ —y/uVo.

Then for any T' > 0, we obtain lower semi-continuity of the first term in dissipation

/ /Rd om — 1v —Vuvu
< hIEILI(I)lf/ /Rd YVue \/>Vve

Next we will use the same method to prove the lower semi-continuity of the second
term in dissipation. From the second equation of (1), using (67) and (69), we have

2
dxdt

dadt. (111)

2m —1

r 2 T 2 r 2 r 2
| 10wy de < C [ Nude € [ e derC [ uda
0 0 0 0

<C.

Then there exists a subsequence of dyv. without relabeling which weakly converges
to g in L? (0, T L2(]Rd)). Also by the lower semi-continuity of L? norm, we obtain
that for any 7' > 0

< liminf ||Opvc||
e—0

||g||L2 (O,T;LZ(Rd)) L2 (0,T;L2(Rd))'

We will prove g = d;v. Choosing any test function ¢ € C2° ([0,T) x R?), we have

T T
/ / VO dadt — / / v dxdt,
0 JRE 0 JRd
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directly from (86). Then it turns that

T T
/ / EXE dxdtgliminf/ / |8yve|” dadt. (112)
R4 =20 Jo Jra

From (111) and (112), the dissipation term satisfies for any 7' > 0

2 T
/ / Vu™ 2 — \/uVv dmdtJr/ / |0 |* dxdt
R4 2m —1 0 R4
2m

1 2 T
< lim3 m—3 2 .
_hggf(/o /}R 3 Vu, NTAS dxdt—i—/o /R 0wl d:vdt)

Step 9. (Weak entropy solution with the energy inequality for 1 < m < 2 — %)

Multiplying the first equation in (59) by —“<u”"! — v, and integrating over R?

1 %e
shows that
1 d m 2
—_— mdr — O d . mel d
p— Wu6 T /Rdv LU x—|—/Rdu V(m_lu6 v) x
4e m |2
— Vue | de=¢€ | Vu. Vv dz. (113)

R4 R4
Multiplying the second equation in (59) by d;v. and integrating over R? turns that
1d 1d
/ 0yv|” do + = — \Vve| do + -— v dx — / uOve de = 0. (114)
Rd 2 d 2 d Rd

Then from two equations above, integratmg from 0 to ¢, we have

t 2 t
]-'(ue(t),vg(t)) —|—/ / ue|V ( n u™t — ve) dxds +/ / |0pve|? daxds
0 JRd m—1 0 JRd

t
< F(0) + 6/ Vue - Voe dads. (115)
0 Jre

From (67) and (69), one has that for any ¢t > 0

t
/ Vue - Ve deds < ||uel| [|Av|] C.
0 Jre

2 (0,6;L2(RY) ) 2 (0,62 (RY) ) <

Then combining the convergence of the free energy and the lower semi-continuity
of dissipation term, by letting ¢ — 0, there exists a global weak entropy solution

which satisfies the energy inequality
t
dxds +/ / 0,v|? dxds
0 JRrd

g //Rd ()|

), a.e. t>0.

O

6. Local existence of a weak entropy solution and a blow-up criterion. In
this section, we prove that for ug € L} N L™ (R?), a weak entropy solution of (1)
exists locally without any restriction for the size of initial data. Furthermore, we
also prove that if a weak solution blows up in finite time, then all L?-norms of the
weak solution blow up at the same time for g € (p, +00).
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Theorem 6.1. (Local existence of a weak entropy solution) Let d > 3, 1 < m <
2 - % and p = @. Assume ug € L1 N L>(R%) and the initial second moment

Jga z|*ug(z)de < co. Then there are T > 0, such that (1) has a weak entropy
solution in 0 < t < T with properties

/ u(z,t) dx :/ uo(x) dz, for allt € (0,T),
R4 R4

/ v(z,t) de < / uo(x) dz, for allt € (0,T).
Re RY

Proof. Take any fixed ¢ > p. Using the same way of obtaining (16) and taking
g=r>pin (9), we have

4mq(q — 1) +m—1 2
%Hu( )HLq(]Rd) (—}—TH e=— LaRe) (q - 1)0 ||UHL‘1+1(RCL)
2mq(qg —1) H atmo1 2 1+
e (1)
(q+m_ 1 Vu L2(RY) + (q ) ||u||Lq(Rd)
ie.
d q 1+
)y < C@ ) (Il dugmey) - (116)
Solving the inequality (116) shows that
a-p
Cad)
u( Ol Fagay < ’ - : (117)

—_ P—q
ity (luollduea) " —t
P
Denoting T : C(q d (HUOHLq Rd)) """ then for any fixed ¢, we choose 0 < T < T,.
Next by the same way of proving Theorem 5.1, there exists a local in time weak
entropy solution with properties

/ u(z,t) de = / uo(z) dz, forallte (0,T),
Rd Rd

/ v(z,t) dr < / uo(z) dz, forallte (0,T),
R R
where the second one is obtained by (96). O

Proposition 2. (Blow-up criterion) Under the same assumptions as Theorem 6.1
and r = p + € where € is small enough, let T} .. be the largest L™ -norm ezistence
time of a weak solution, i.e.

Hu("t)“L’“(]Rd) < 09, fOT’ al0<t< Tmaxa

tim sup [u(- 1) gy = o0,
and T3, be the largest L9-norm existence time of a weak solution for ¢ > r > p.
Then if T, < oo for any q,

max

7. . =1Tr

max max?

for all g > r.
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Proof. Since |[u(-,t)||L1 ey < [[uol| L1 (ra), by using interpolation inequality, we know
that for ¢ > r, Thax < Thax- I Tihax < Tinax for any ¢ > r, then we will have
contradiction arguments. Tiax < Tax implies

limsup [[u(-, )| r gay =: A < o0.

t—Tihax
Then using the similar way of obtaining (116) and taking ¢ > r > p, we have

14g—r

d . 14 11
%”u('at)”%q(]gd) S C(erv d)(”“’”LT(]Rd)) S C(Q7r7 dv A)v (118)

i.e.
||u("t)||Lq(Rd) <C <q77'aA: ||u0||Lq(Rd)7TIqIIaX) , for t € (0, Tihax) »
which contradicts with

lim sup ||U(',t)HLq(]Rd) =
t*}Tr(rzlaX

Thus we have the conclusion that T2, = T7 .. for all ¢ > r > p, i.e. L9-norms

blow up at the same time. O
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