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Abstract

We provide a complete and rigorous description of phase transitions for kinetic
models of self-propelled particles interacting through alignment. These models
exhibit a competition between alignment and noise. Both the alignment frequency
and noise intensity depend on a measure of the local alignment. We show that, in
the spatially homogeneous case, the phase transition features (number and nature of
equilibria, stability, convergence rate, phase diagram, hysteresis) are totally encoded
in how the ratio between the alignment and noise intensities depend on the local
alignment. In the spatially inhomogeneous case, we derive the macroscopic models
associated to the stable equilibria and classify their hyperbolicity according to the
same function.

1. Introduction

In this work we provide a complete and rigorous description of phase transitions
in a general class of kinetic models describing self-propelled particles interacting
through alignment. These models have broad applications in physics, biology and
the social sciences, for instance for the description of animal swarming behavior or
opinion consensus formation. Their essential feature is the competition between the
alignment process which provides self-organization, and noise which destroys it.
An important point is that both the alignment frequency and noise intensity depend
on a measure of the local alignment denoted by |J |. The phase transition behavior
in the spatially homogeneous case is totally encoded in the ratio between these two
functions denoted by k(|J |). Namely we have the following features:

(i) The function k gives rise to an algebraic compatibility relation whose roots
provide the different branches of equilibria of the kinetic model. One distin-
guished branch is given by isotropic or uniform distributions which correspond
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to no alignment at all, that is |J | = 0. The other branches are associated to
non-isotropic von Mises–Fisher distributions associated to non-zero |J |.

(ii) The stability of these various equilibria is completely determined by the
monotonicity of a function derived from k around these roots and there exists
an exponential rate of local convergence of the solution to one of these stable
equilibria.

(iii) The global shape of this function k provides the phase diagram which encodes
the order of the associated phase transitions. According to its monotonicity,
these can be second-order phase transitions, first-order phase transitions with
hysteresis behavior, or they can even be more complex. For second-order phase
transition, we give an explicit formula for the critical exponent in terms of the
local behavior of k. The involved phase transitions are spontaneous symme-
try breaking phase transitions between isotropic and non-isotropic equilibria.
Such phase transitions appear in many branches of physics, such as spon-
taneous magnetization in ferromagnetism, nematic phase transition in liquid
crystals and polymers, Higgs mechanism of mass generation for the elemen-
tary particles.

(iv) In the spatially inhomogeneous case, we can derive the hydrodynamic equa-
tions associated to both the isotropic and non-isotropic stable equilibria (the
former leading to diffusion behavior, the latter to hyperbolic models). The
hyperbolicity is again completely determined by this function, and is linked
to the critical exponent in the case of a second-order phase transition.

To our knowledge, this is the first time that a complete mathematical theory of
phase transitions in a physics system can be rigorously derived and related to one
single object with high physical significance: this function k. One of the main
achievements of this work is Theorem 2, which provides part of point (ii) above,
namely the nonlinear stability of the non-isotropic equilibria (the von Mises–Fisher
distributions) when the function associated to k is increasing. To be more precise,
let us write this set of equilibria as { f eq

� ,� ∈ S} (it has the same symmetries as
the unit sphere S of R

n , n being the dimension of the model). Then, we have a
rate of convergence λ and two positive constants δ and C such that, if the initial
condition f0 satisfies ‖ f0 − f eq

� ‖ < δ for some � ∈ S, then there exist �∞ ∈ S

such that for all t > 0, the solution f of the spatially homogeneous model satisfies
∥
∥
∥ f (t)− f eq

�∞

∥
∥
∥ � C

∥
∥ f0 − f eq

�

∥
∥ e−λt .

This stability result takes place in the Sobolev space Hs as long as s > n−1
2 . In

previous works (in the case where the function k is linear) such as [17] or [18] (for
the Kuramoto model in dimension n = 2, where a precise study of the attractor is
performed), the exponential convergence with rate β was only proven for all β < λ,
and the existence of such a constant C independent of f0 was lacking.

Self-propelled particle systems interacting through alignment have been widely
used in the modeling of animal swarms (see example the review [2,6,8,27–
29]). Kinetic models of self-propelled particles have been introduced and stud-
ied in [3,4,12,20,21]. Here, specifically, we are interested in understanding phase
transitions and continuum models associated to the Vicsek particle system [28].
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Phase transitions in the Vicsek system have been widely studied in the physics
literature [1,5]. There have been some controversies whether the involved phase
transitions were first or second order. In some sense, this paper provides a complete
answer to this question, at least in the kinetic framework.

The passage from the kinetic to macroscopic descriptions of the Vicsek sys-
tem was first proposed in [12]. Further elaboration of the model can be found
in [11,16]. The resulting continuum model is now referred to as the self-organized
hydrodynamic (SOH) model. In these derivations of the SOH, the noise and align-
ment intensities are functions of the local densities and not of the local alignment.
No phase transition results from this choice but the resulting SOH models are
hyperbolic. In [10,17], alignment intensity has been made proportional to the local
alignment. Second-order phase transition has been obtained. However, the result-
ing SOH model is not hyperbolic. In the present paper, we investigate general
relations between the noise and alignment intensities upon the local alignment |J |.
As described above, the phase diagram becomes extremely complex and its com-
plexity is fully deciphered here. The kind of alignment phase transition that we find
here is similar to nematic phase transitions in liquid crystals, polymer dynamics
and ferromagnetism [7,14,15,23,24].

The organization of the paper is as follows. In Section 2, we derive the kinetic
model from the particle system and determine its equilibria. In Section 3, we study
the stability of these equilibria in the spatially homogeneous case and find the rates
of convergences of the solution to the stable ones. Then, in Section 4, we use these
results to study two examples respectively leading to second order and first order
phase transitions, and in the case of first order phase transitions, to the hystere-
sis phenomenon. Finally, in Section 5, we return to the spatially inhomogeneous
case and investigate the macroscopic limit of the kinetic model towards hydrody-
namic or diffusion models according to the considered type of equilibrium. For the
hydrodynamic limit, we provide conditions for the model to by hyperbolic. Finally,
a conclusion is drawn in Section 6. We supplement this paper with Appendix A
which provides elements on the numerical simulation of the hysteresis phenom-
enon.

2. Kinetic Model and Equilibria

In this section, we derive the mean-field kinetic model from the particle system,
and determine its equilibria. We begin with the particle model in the next section.
Then, in Section 2.2 we derive the mean-field limit. The space-homogeneous case
will be highlighted in Section 2.3 and the equilibria will be determined in Sec-
tion 2.4.

2.1. The Particle Model

We consider a system of a large number N of socially interacting agents defined
by their positions Xi ∈ R

n and the directions of their velocities ωi ∈ S (where S is
the unit sphere of R

n). They obey the following rules, which are a time continuous
version of those of the Vicsek model [28]:
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– they move at constant speed a,
– they align with the average direction of their neighbors, as a consequence of

the social interaction,
– the directions of their velocities are subject to independent random noises,

which expresses either some inaccuracy in the computation of the social force
by the subject, or some trend to move away from the group in order to explore
the surrounding environment.

These rules are expressed by the following system of stochastic differential equa-
tions:

dXi = a ωi dt, (2.1)

dωi = ν(|Ji |)Pω⊥
i
ω̄i dt +√2τ(|Ji |)Pω⊥

i
◦ dBi

t , (2.2)

ω̄i = Ji

|Ji | , Ji = a

N

N
∑

	=1

K (|X	 − Xi |) ω	. (2.3)

Equation (2.1) simply translates that particle i moves with velocity a ωi . The first
term at the right-hand side of (2.2) is the social force, which takes the form of a
relaxation of the velocity direction towards the mean direction of the neighbors ω̄i ,
with relaxation rate ν (the operator Pω⊥

i
is the projection on the tangent space

orthogonal to ωi , ensuring that ωi remains a unit vector). Equation (2.3) states that
the mean direction is obtained through the normalization of the average current Ji ,
itself computed as the average of the velocities of the particles. This average is
weighted by the observation kernel K , which is a function of the distance between
the test particle i and its considered partner 	. Without loss of generality, we can
assume that

∫

K (|ξ |) dξ = 1. The second term of (2.2) models the noise in the
velocity direction. Equation (2.2) must be understood in the Stratonovich sense (as
indicated by the symbol ◦), with N independent standard Brownian motions Bi

t
in R

n . The quantity τ > 0 is the variance of the Brownian processes.
In this paper, we assume that the relaxation rate ν and the noise intensity τ are

functions of the norm of the current |J |. The present hypothesis constitutes a major
difference with previous works. Indeed, the case where ν and τ are constant has
been investigated in [12], while the case where ν(|J |) = |J | and τ = 1 has been
treated in [10]. We recall that no phase transition appears at the macroscopic level
in the first case while in the second case, a phase transition appears. This phase
transition corresponds to a change in the number of equilibria as the density crosses
a certain threshold called critical density. The critical exponent is 1/2 in this case.
Here, we investigate the more general case of almost arbitrary dependences of ν
and τ upon |J |, and show that the phase transition patterns can be much more
complex than those found in [10]. For later convenience, we will denote by τ0 > 0
the value of τ(0).

To understand why |J | is the crucial parameter in this discussion, let us intro-
duce the local density ρi and order parameter (or mean alignment) ci as follows:

ci = |Ji |
a ρi

, ρi = 1

N

N
∑

	=1

K (|X	 − Xi |),
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and we note that 0 � ci � 1. The value ci ∼ 0 corresponds to disorganized
motion, with an almost isotropic distribution of velocity directions, while ci ∼ 1
characterizes a fully organized system where particles are all aligned. Therefore |Ji |
appears as the “density of alignment” and increases with both particle density and
order parameter. This paper highlights that the dependence of ν and τ upon |Ji |
acts as a positive feedback which triggers the phase transition. Besides, in [16], it
has been shown that making ν and τ depend on the density ρ only does not produce
any phase transition, and that the recovered situation is qualitatively similar to that
of [12]. The present work could be extended to ν and τ depending on both ρ and |J |
at the expense of an increased technicality, which will be omitted here. The present
framework is sufficient to cover all interesting situations that can be desirable at
the macroscopic scale.

2.2. Mean-Field Derivation of the Kinetic Model

The first step in the study of the macroscopic behavior of this system consists
in considering a large number of particles. In this limit, we aim at describing the
evolution of the density probability function f N (x, ω, t) of finding a particle with
directionω at position x . This has been studied in [3] in the case where ν(|J |) = |J |
and τ = 1. It is nearly straightforward to perform the same study in our more general
case.

For convenience, we will use the following notation for the first moment of a
function f with respect to the variable ω (the measure on the sphere is the uniform
measure such that

∫

S
dω = 1):

J f (x, t) =
∫

ω∈S

ω f (x, ω, t) dω. (2.4)

For the following, we will assume that:

Hypothesis 2.1. (i) The function K is a Lipschitz bounded function with finite
second moment.

(ii) The functions |J | �→ ν(|J |)
|J | and |J | �→ τ(|J |) are Lipschitz and bounded.

In these conditions the mean-field limit of the particle model is the following
kinetic equation, called Kolmogorov–Fokker–Planck equation:

∂t f + a ω · ∇x f + ν(|J f |)∇ω · (Pω⊥ ω̄ f f ) = τ(|J f |)ω f (2.5)

with

J f (x, t) = a (K ∗ J f )(x, t) , ω̄ f = J f

|J f | , (2.6)

where ∗ denotes the convolution in R
n (only on the x variable), ω and ∇ω· stand

for the Laplace–Beltrami and divergence operators on the sphere S.
More precisely, the following statements hold:

Proposition 2.1. If f0 is a probability measure on R
n ×S with finite second moment

in x ∈ R
n, and if (X0

i , ω
0
i )i∈�1,N� are N independent variables with law f0, then:
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(i) There exists a pathwise unique global solution f to the particle system (2.1)–
(2.3) with initial data (X0

i , ω
0
i ).

(ii) There exists a unique global weak solution of the kinetic equation (2.5) with
initial data f0.

(iii) The law f N at time t of any of one of the processes (Xi , ωi ) converges to f
as N → ∞.

The proof of this proposition follows exactly the study performed in [3], using
auxiliary coupling processes as in the classical Sznitman’s theory (see [25]), and
is omitted here. Let us make some comment on the structure of the kinetic equa-
tion (2.5). The first two terms of the left hand side of (2.5) correspond to the free
transport with speed given by a ω. It corresponds to (2.1) in the particle model. The
last term of the left hand side corresponds to the alignment mechanism towards the
target orientation ω̄ f , with intensity ν(|J f |), while the term at the right hand side
is a diffusion term in the velocity variable, with intensity τ(|J f |). These two terms
correspond to (2.2) in the particle model. We will see in (2.7) and (5.6) that these
two terms, under certain assumptions (spatially homogeneous case, or expansion in
terms of a scaling parameter η), behave as a local collision operator Q, only acting
on the velocity variable ω. Finally, the convolution with K in (2.6) expresses the
fact that J f is a spatial averaging of the local momentum J f defined in (2.4), it
corresponds to the definition (2.3) in the particle model.

2.3. The Space-Homogeneous Kinetic Model

The hydrodynamic limit involves an expansion of the solution around a local
equilibrium (see Section 5.1). Therefore, local equilibria of the collision operator Q
are of key importance. We will see that such equilibria are not unique. The existence
of multiple equilibria requires an a priori selection of those equilibria which make
sense for the hydrodynamic limit. Obviously, unstable equilibria have to be ignored
because no actual solution will be close to them. In order to make this selection,
in the present section, we consider the spatially homogeneous problem. In the
most possible exhaustive way, in Section 3, we will determine the stable equilibria
and characterize the convergence rate of the solution of the space-homogeneous
problem to one of these equilibria. In Section 4, we will illustrate these results on two
examples. Finally, in Section 5, we will deal with the spatially non-homogeneous
case and apply the conclusions of the spatially homogeneous study.

The spatially homogeneous version of this model consists in looking for solu-
tions of the kinetic equation (2.5) depending only on ω and t . Obviously, such
solutions cannot be probability measures on R

n × S any more, so we are looking
for solutions which are positive measures on S. In that case, J f = a J f , and (up
to writing ν̂(|J f |) = ν(a|J f |) and τ̂ (|J f |) = τ(a|J f |)) the kinetic equation (2.5)
reduces to

∂t f = Q( f ), (2.7)

where the operator Q is defined by

Q( f ) = −ν(|J f |)∇ω · (Pω⊥� f f )+ τ(|J f |)ω f, (2.8)
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where� f = J f
|J f | and where we have dropped the “hats” for the sake of clarity. Let

us remark that by Hypothesis 2.1, we do not have any problem of singularity of Q
as |J f | → 0: if |J f | = 0, we simply have Q( f ) = τ0ω f .

The investigation of the properties of the operator Q is of primary importance,
as we will see later on. For later usage, we define

k(|J |) = ν(|J |)
τ (|J |) , �(r) =

∫ r

0
k(s)ds, (2.9)

so that �(|J |) is an antiderivative of k: d�
d|J | = k(|J |). The space-homogeneous

dynamics corresponds to the gradient flow of the following free energy functional:

F( f ) =
∫

S

f ln f dω −�(|J f |). (2.10)

Indeed, if we define the dissipation term D( f ) by

D( f ) = τ(|J f |)
∫

S

f |∇ω(ln f − k(|J f |) ω ·� f )|2 dω, (2.11)

we get the following conservation relation:

d

dt
F( f ) = −D( f ) � 0. (2.12)

The main ingredient to derive this relation is the identity Pω⊥� f = ∇ω(ω · � f ).
Therefore, the collision operator Q defined in (2.8) can be written:

Q( f ) = τ(|J f |)∇ω · [ f ∇ω(ln f − k(|J f |) ω ·� f )
]

. (2.13)

Finally, since

d

dt
F =

∫

S

∂t f (ln f − k(|J f |) ω ·� f ) dω,

using (2.7), (2.13) and integrating by parts, we get (2.12).
We first state results about the existence, uniqueness, positivity and regularity

of the solutions of (2.7). Under Hypothesis 2.1, we have the following

Theorem 1. Given an initial finite nonnegative measure f0 in Hs(S), there exists
a unique weak solution f of (2.7) such that f (0) = f0. This solution is global in
time. Moreover, f ∈ C1(R∗+,C∞(S)), with f (ω, t) > 0 for all positive t .

Finally, we have the following instantaneous regularity and uniform bounded-
ness estimates (for m ∈ N, the constant C being independent of f0):

‖ f (t)‖2
Hs+m � C

(

1 + 1

tm

)

‖ f0‖2
Hs .
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The proof of this theorem follows exactly the lines of the proof given in [17]
for the case where ν(|J |) = |J |, and will be omitted here. Let us remark that here
we do not need the bounds on ν(|J |)

|J | and on τ provided by Hypothesis 2.1, since the
positivity ensures that |J | takes values in [0, ρ0], where ρ0 is the total mass of f0
(a conserved quantity). Therefore τ is uniformly bounded from below in time, by
a positive quantity τmin, and ν(|J |)

|J | is also uniformly bounded from above in time.

Finally, the fact that f is only C1 in time comes from the fact that the proof only
gives f ∈ C([0, T ], Hs(S)) for all s, and we use the equation to get one more
derivative. We could obtain a better time regularity at the price of a better regularity
for the functions ν(|J |)

|J | and on τ .

2.4. Equilibria

We now define the von Mises–Fisher distribution which provides the general
shape of the non-isotropic equilibria of Q.

Definition 2.1. The von Mises–Fisher distribution of orientation � ∈ S and con-
centration parameter κ � 0 is given by:

Mκ�(ω) = eκ ω·�
∫

S
eκ υ·� dυ

. (2.14)

The order parameter c(κ) is defined by the relation

JMκ� = c(κ)�, (2.15)

and has expression:

c(κ) =
∫ π

0 cos θ eκ cos θ sinn−2 θ dθ
∫ π

0 eκ cos θ sinn−2 θ dθ
. (2.16)

The function c : κ ∈ [0,∞) �→ c(κ) ∈ [0, 1) defines an increasing one-to-one
correspondence. The case κ = c(κ) = 0 corresponds to the uniform distribution,
while when κ is large (or c(κ) is close to 1), the von Mises–Fisher distribution is
close to a Dirac delta mass at the point �.

For the sake of simplicity, we will assume the following:

Hypothesis 2.2. The function |J | �→ k(|J |) = ν(|J |)
τ (|J |) is an increasing function. We

denote by j its inverse, that is

κ = k(|J |) ⇔ |J | = j (κ). (2.17)

This assumption is not critical. It would be easy to remove it at the price of an
increased technicality. Additionally, it means that when the alignment of the par-
ticles is increased, the relative intensity of the social force compared to the noise
is increased as well. This can be biologically motivated by the existence of some
social reinforcement mechanism. It bears analogies with diffusion limited aggrega-
tion (see [30]), in which the noise intensity is decreased with larger particle density.
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This can also be related with what is called “extrinsic noise” in [1], where the noise
corresponds to some uncertainty in the particle-particle communication mecha-
nism. Indeed in this case, the intensity of the noise increases when |J | decreases.

The equilibria are given by the following proposition:

Proposition 2.2. The following statements are equivalent:

(i) f ∈ C2(S) and Q( f ) = 0.
(ii) f ∈ C1(S) and D( f ) = 0.

(iii) There exists ρ � 0 and � ∈ S such that f = ρMκ�, where κ � 0 satisfies
the compatibility equation:

j (κ) = ρc(κ). (2.18)

Sketch of the proof. The proof is identical to that of [17], and we just summarize
the main ideas here. The main ingredient is to observe that Q( f ) (or D( f )) is equal
to zero if and only if f is proportional to Mk(|J f |)� f . This is quite straightforward
for D using (2.11). For Q, it follows from the following expression:

Q( f ) = τ(|J f |)∇ω ·
[

Mk(|J f |)� f ∇ω
(

f

Mk(|J f |)� f

)]

. (2.19)

This expression comes from Definition 2.1, which gives first

∇ω
(

1

Mk(|J f |)� f

)

= −k(|J f |)∇ω(ω ·� f )

Mk(|J f |)� f

= − k(|J f |)
Mk(|J f |)� f

Pω⊥� f ,

and therefore, applying the chain rule to the right-hand side of (2.19), we recover
the definition of Q given in (2.8). Hence, we obtain

∫

S

Q( f )
f

Mk(|J f |)� f

dω = −τ(|J f |)
∫

S

∣
∣
∣∇ω

(
f

Mk(|J f |)� f

)∣
∣
∣

2
Mk(|J f |)� f dω.

So if Q( f ) = 0, we get that f
Mk(|J f |)� f

is equal to a constant. Conversely if f is

proportional to Mk(|J f |)� f , we directly get with (2.19) that Q( f ) = 0.
Now if f is proportional to Mk(|J f |)� f , we write f = ρMκ�, with κ = k(|J f |),

which corresponds to |J f | = j (κ) thanks to (2.17). But then by (2.15), we get
that |J f | = ρc(κ), which gives the compatibility equation (2.18). Conversely, if
we have (iii), we also get that |J f | = ρc(κ) = j (κ) and so κ = k(|J f |), which
gives that f is proportional to Mk(|J f |)� f . �

We now make comments on the solutions of the compatibility equation (2.18).
Let us first remark that the uniform distribution, corresponding to κ = 0 is always
an equilibrium. Indeed, we have c(0) = j (0) = 0 and (2.18) is satisfied. However,
Proposition 2.2 does not provide any information about the number of the non-
isotropic equilibria. The next proposition indicates that two values, ρ∗ and ρc, that
can be expressed through the function k only, are important threshold values for
the parameter ρ, regarding this number of non-isotropic equilibria.
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Proposition 2.3. Let ρ > 0. We define

ρc = lim
κ→0

j (κ)

c(κ)
= lim|J |→0

|J |
c(k(|J |)) = lim|J |→0

n|J |
k(|J |) , (2.20)

ρ∗ = inf
κ∈(0,κmax)

j (κ)

c(κ)
= inf|J |>0

|J |
c(k(|J |)) , (2.21)

where ρc > 0 may be equal to +∞, where κmax = lim|J |→∞ k(|J |), and where we
recall that n denotes the dimension. Then we have ρc � ρ∗, and

(i) If ρ < ρ∗, the only solution to the compatibility equation is κ = 0 and the
only equilibrium with total mass ρ is the uniform distribution f = ρ.

(ii) If ρ > ρ∗, there exists at least one positive solution κ > 0 to the compatibility
equation (2.18). It corresponds to a family {ρMκ�,� ∈ S} of non-isotropic
equilibria.

(iii) The number of families of nonisotropic equilibria changes as ρ crosses the
threshold ρc (under regularity and non-degeneracy hypotheses that will be
precised in the proof, in a neighborhood ofρc, this number is even whenρ < ρc

and odd when ρ > ρc).

Proof. Some comments are necessary about the definitions of ρc and ρ∗. First
note that, under Hypotheses 2.1 and 2.2, k is defined from [0,+∞), with values
in an interval [0, κmax), where we may have κmax = +∞. So j is an increasing
function from [0, κmax) onto R+, and this gives the equivalence between the two
terms of (2.21). Thanks to Hypothesis 2.1, we have

k(|J |) = ν1

τ0
|J | + o(|J |) as |J | → 0,

with τ0 = τ(0) and ν1 = lim|J |→0
ν(|J |)
|J | , and the last term of (2.20) is well defined

in (0,+∞] (we have ρc = nτ0
ν1

if ν1 > 0 and ρc = +∞ if ν1 = 0). The last equality

in (2.20) comes from the fact that c(κ) ∼ 1
n κ as κ → ∞ (see [17] for instance),

and the first equality comes from the correspondence (2.17).
To investigate the positive solutions of equation (2.18), we recast it into:

j (κ)

c(κ)
= ρ, (2.22)

which is valid as long as κ �= 0, since c is an increasing function. This gives
points (i) and (ii): there is no solution to (2.22) if ρ < ρ∗, and at least one solution
if ρ > ρ∗, since κ �→ j (κ)

c(κ) is a continuous function, and its infimum is ρ∗.
Let us be precise now about the sense of point (iii). We fix ε > 0, and we

suppose that j
c is differentiable and that for ρ ∈ (ρc − ε, ρc)∪ (ρc, ρc + ε), all the

solutions of the compatibility equation satisfy ( j
c )

′(κ) �= 0. Then, the number of
solutions of the compatibility equation (2.22), if finite, is odd for ρ ∈ (ρc, ρc + ε)

and even for ρ ∈ (ρc − ε, ρc).
Indeed, under these assumptions, by the intermediate value theorem, the

sign of ( j
c )

′ must be different for two successive solutions of the compatibility
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equation (2.22). Moreover, since j is unbounded (it maps its interval of defini-
tion [0, κmax) onto [0,+∞)), we have

lim
κ→κmax

j (κ)

c(κ)
= +∞, (2.23)

so the sign of ( j
c )

′ must be positive for the greatest solution of the compatibility
equation (2.22). Finally for the smallest solution, this sign must be the same as the
sign of ρ − ρc. �

Except from these facts, since c and j are both increasing, we have no further
direct information about this function κ �→ j (κ)/c(κ).

Remark 2.1. The results of Proposition 2.3 are illustrated by Fig. 1: the number of
families of non-isotropic equilibria is given by the cardinality of the level set at ρ
of the function κ �→ j (κ)

c(κ) . We see that depending on the value of ρ, this number
can be zero, one, two or even more. The minimum of this function and its limiting
value at κ = 0 provide a direct visualization of the thresholds ρ∗ and ρc thanks
to (2.21)–(2.20).

We will see later on that the importance of the threshold ρc is above all due to
a loss of stability of the uniform equilibrium, more than a change in the number of
families of nonisotropic equilibria. And we will see that the sign of ( j

c )
′(κ) which

played a role in counting this number in the proof of point (iii) will actually play a
stronger role in determining the stability of the nonisotropic equilibria.

We now turn to the study of the stability of these equilibria, through the study
of the rates of convergence.

Fig. 1. The green, blue, red and purple curves correspond to various possible profiles for

the function κ �→ j (κ)
c(κ) (color figure online)
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3. Stability and Rates of Convergence to Equilibria

3.1. Main Results

We provide an overview of the most important results of this section. We empha-
size that the results of this section are concerned with the space-homogeneous model
as reviewed in Section 2.3 and 2.4.

The first result deals with the stability of uniform equilibria. We prove that the
critical density ρc defined previously at (2.20) acts as a threshold:

(i) If ρ < ρc, then the uniform distribution is locally stable and we show that
the solution associated to any initial distribution close enough to it converges
with an exponential rate to the uniform distribution.

(ii) If ρ > ρc, then the uniform distribution is unstable, in the sense that no
solution (except degenerate cases that we specify) can converge to the uniform
distribution.

The second result deals with the stability of anisotropic equilibria. As seen in
the previous section, the anisotropic equilibria are given by the von Mises–Fisher
distributions f = ρMκ�, defined in (2.14), of concentration parameter κ and
associated order parameter c(κ), given by the formula (2.16). Recall that j (κ) is
the inverse function of |J | �→ k(|J |) = ν(|J |)

τ (|J |) . We also recall that, for a von Mises–
Fisher distribution to be an equilibrium, the compatibility equation (2.18) that is
the relation j (κ)

c(κ) = ρ must be satisfied. Then:

(i) The von Mises–Fisher equilibrium is stable if
( j

c

)′
> 0 where the prime

denotes derivative with respect to κ . Then, we have an exponential rate of
convergence of the solution associated to any initial distribution close enough
to one of the von Mises–Fisher distributions, to a (may be different) von
Mises–Fisher distribution (with the same κ but may be different �).

(ii) The von Mises–Fisher equilibrium is unstable if
( j

c

)′
< 0. Here, the proof

for instability relies on the fact that on any neighborhood of an unstable von
Mises–Fisher distribution there exists a distribution which has a smaller free
energy than the equilibrium free energy, which only depends on κ but not
on �. The instability follows from the time decay of the free energy.

The main tool to prove convergence of the solution to a steady state is LaSalle’s
principle. We recall it in the next section and only sketch its proof. Indeed, the proof
follows exactly the lines of [17]. Then, in Section 3.3, we consider stability and
rates of convergence near uniform equilibria. Finally, in Section 3.4, we investigate
the same problem for non-isotropic equilibria.

3.2. LaSalle’s Principle

By the conservation relation (2.12), we know that the free energyF is decreasing
in time (and bounded from below since |J | is bounded). LaSalle’s principle states
that the limiting value of F corresponds to an ω-limit set of equilibria:
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Proposition 3.1. LaSalle’s invariance principle: let f0 be a positive measure on
the sphere S, with mass ρ. We denote by F∞ the limit of F( f (t)) as t → ∞,
where f is the solution to the mean-field homogeneous equation (2.7) with initial
condition f0. Then

(i) the set E∞ = { f ∈ C∞(S) with mass ρ and s.t. D( f ) = 0 and F( f ) = F∞}
is not empty.

(ii) f (t) converges in any Hs norm to this set of equilibria (in the following sense):

lim
t→∞ dHs ( f, E∞) = 0, where dHs ( f, E∞) = inf

g∈E∞
‖ f (t)− g‖Hs .

This result has been proved in [17]. Since the different types of equilibria are
known, we can refine this principle to adapt it to our problem:

Proposition 3.2. Let f0 be a positive measure on the sphere S, with mass ρ. If
no open interval is included in the set {κ, ρc(κ) = j (κ)}, then there exists a
solution κ∞ to the compatibility solution (2.18) such that we have:

lim
t→∞ |J f (t)| = ρc(κ∞) (3.1)

and

∀s ∈ R, lim
t→∞ ‖ f (t)− ρMκ∞� f (t)‖Hs = 0. (3.2)

This proposition helps us to characterize the ω-limit set by studying the single
compatibility equation (2.18). Indeed, when κ∞ = 0 is the unique solution, Propo-
sition 3.2 implies that f converges to the uniform distribution. Otherwise, two
cases are possible: either κ∞ = 0, and f converges to the uniform distribution,
or κ∞ > 0, and the ω-limit set consists in the family of von Mises–Fisher equilib-
ria {ρMκ∞�,� ∈ S}, but the asymptotic behavior of � f (t) is unknown.

Proof. We first recall some useful formulas regarding functions on the sphere. Any
function g in Hs can be decomposed g =∑	 g	 where g	 is a spherical harmonic of
degree 	 (an eigenvector of −ω for the eigenvalue 	(	+n−2), which has the form
of a homogeneous polynomial of degree 	), and this decomposition is orthogonal
in Hs . The spherical harmonics of degree 1 are the functionsω �→ ω· A for A ∈ R

n ,
and we have

∫

S

ω ⊗ ω dω = 1
n In, that is ∀A ∈ R

n,

∫

S

(A · ω)ω dω = 1
n A, (3.3)

which gives that the first mode g1 of g is given by the function ω �→ n ω · Jg , where
the first moment Jg is defined in (2.4). We refer to the appendix of [17] for more
details on these spherical harmonics. Another useful formula is

∫

S

ω∇ω · A(ω) dω = −
∫

A(ω)dω, (3.4)

where A is any tangent vector field [satisfying A(ω) · ω = 0].
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Since the decomposition in spherical harmonics is orthogonal in Hs , we have
a lower bound on the norm of f (t)− ρMκ� (for κ � 0 and � ∈ S) with the norm
of its first mode:

‖ f (t)− ρMκ�‖2
Hs �

∫

S

n ω · (J f − JρMκ�)(−ω)s[n ω · (J f − JρMκ�)] dω

� (n − 1)s
∫

S

n2 [ω · (J f − JρMκ�)]2 dω,

and using (3.3), we get

‖ f (t)− ρMκ�‖2
Hs � n(n − 1)s |J f − ρc(κ)�|2 (3.5)

� n(n − 1)s
∣
∣|J f | − ρc(κ)

∣
∣2. (3.6)

Since E∞ consists in functions of the form ρMκ� with � ∈ S and κ a
solution of (2.18) (and such that F(ρMκ�) = F∞), if we define S∞ =
{ρc(κ), κ s.t. ρc(κ) = j (κ)}, we get that the distance dHs ( f, E∞) is greater
than

√
n(n − 1)s/2d(|J f |, S∞), where the notation d(|J f |,J∞) denotes the usual

distance in R between |J f | and the set S∞. By LaSalle’s principle, we then
have limt→∞ d(|J f |, S∞) = 0. Since |J f | is a continuous function, bounded in
time, its limit points consist in a closed interval, which is included in S∞. Obvi-
ously, if no open interval is included in the set of solutions to the compatibility
equation (2.18), then no open interval is included in S∞, and the limit points of |J f |
are reduced to a single point ρc(κ∞). Since |J f | is bounded, this proves (3.1).

Let us now suppose that (3.2) does not hold. We can find an increasing and
unbounded sequence tn such that ‖ f (tn) − ρMκ∞� f (tn)‖Hs � ε. By LaSalle’s
principle, we can find gn ∈ E∞ such that ‖ f (tn)− gn‖ → 0 when n → ∞.
Since gn is of the form ρMκn�n , we then have by the estimation (3.6) that

∣
∣|J f (tn)|−

ρc(κn)
∣
∣ → 0, and so c(κn) → c(κ∞), consequently κn → κ∞. If κ∞ �= 0,

then we also get by (3.5) that |� f (tn) − �n| → 0, so in any case, that gives
that ‖gn − ρMκ∞� f (tn)‖Hs → 0 (it is equal to ‖ρMκn�n − ρMκ∞� f (tn)‖Hs ). But
then we obtain the convergence of ‖ f (tn)− ρMκ∞� f (tn)‖Hs to 0, which is a con-
tradiction. �

From this proposition, the asymptotic behavior of a solution can be improved
in two directions. First, as pointed out above, the behavior of � f (t) is unknown
and we are left to compare the solution to a von Mises–Fisher distribution with
asymptotic concentration parameter κ∞ but local mean direction � f (t), varying
in time. If we are able to prove that � f → �∞ ∈ S, then f would converge to a
fixed non-isotropic steady-state ρMκ∞�∞ . The second improvement comes from
the fact that Proposition 3.2 does not give information about quantitative rates of
convergence of |J f | to ρc(κ∞), and of ‖ f (t)− ρMκ∞� f (t)‖Hs to 0, as t → ∞.

So we now turn to the study of the behavior of the difference between the
solution f and a target equilibrium ρMκ∞� f (t). There are two tools we will use.
First, a simple decomposition in spherical harmonics will give us an estimation
in Hs norm near the uniform distribution. Then we will expand the free energy F
and its dissipation D around the nonisotropic target equilibrium Mκ∞� f (t). In case
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of stability, we will see that it gives us control on the displacement of � f (t),
allowing to get actual convergence to a given steady-state. We split the stability
analysis into two cases: stability about uniform equilibrium, and stability about
anisotropic equilibrium.

3.3. Local Analysis About the Uniform Equilibrium

We first state the following proposition, about the instability of the uniform
equilibrium distribution for ρ above the critical threshold ρc.

Proposition 3.3. Let f be a solution of (2.7), with initial mass ρ. If ρ > ρc, and
if J f0 �= 0, then we cannot have κ∞ = 0 in Proposition 3.2.

This proposition tells us that the uniform equilibrium is unstable, in the sense that no
solution of initial mass ρ and with a nonzero initial first moment J f0 can converge
to the uniform distribution.

Proof. We first derive an estimation for the differential equation satisfied by J f

which will also be useful for the next proposition.
We expand f under the form f = ρ+n ω · J f +g2 (g2 consists only in spherical

harmonics modes of degree 2 and more), and we get
∫

S
g2 dω = 0 and

∫

S
g2 ωdω =

0. Let us first expand the alignment term ∇ω · (Pω⊥� f f ) of the operator Q defined
in (2.8), using the fact that ∇ω · (Pω⊥� f ) = ω(� f · ω) = −(n − 1)� f · ω. We
get

∇ω · (Pω⊥� f f ) = −ρ(n −1)� f ·ω−n2|J f |
[

(� f ·ω)2 − 1
n

]+∇ω · (Pω⊥� f g2),

(3.7)
and we remark that the term in brackets is a spherical harmonic of degree 2, asso-
ciated to the eigenvalue 2n of −ω. Multiplying (2.7) by ω and integrating on the
sphere, we obtain, using (3.7), (3.4) and (3.3) (and observing that the terms

∫

S
ω dω

and
∫

S
(ω ·� f )

2 ω dω are both zero):

d

dt
J f = n − 1

n
ρ ν(|J f |)� f + ν(|J f |)

∫

S

Pω⊥� f f dω − (n − 1)τ (|J f |) J f

= −(n − 1)τ (|J f |)
[

1 − ρ k(|J f |)
n|J f |

]

J f + ν(|J f |)
∫

S

Pω⊥� f g2 dω. (3.8)

Using (2.20) and Hypothesis 2.1, we can write:

d

dt
J f = −(n − 1)τ0

(

1 − ρ

ρc

)

J f + R(|J f |)J f + ν(|J f |)
|J f |

(∫

S

Pω⊥ g2 dω

)

J f ,

(3.9)
with the remainder estimation, with an appropriate constant C > 0.

R(|J |) � C |J |. (3.10)

Equation (3.9) can be seen as d
dt J f = M(t)J f , the matrix M being a continuous

function in time. Therefore we have uniqueness of a solution of such an equa-
tion (even backwards in time), and if J f0 �= 0, then we cannot have J f (t) = 0
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for t > 0. Now if we suppose that ‖ f − ρ‖Hs → 0, then we have |J f | → 0
and

∫

S
Pω⊥ g2 dω → 0 (as a matrix). So, for any ε > 0, and for t sufficiently large,

taking the dot product of (3.9) with J f , we get that

1

2

d

dt
|J f |2 �

[

(n − 1)τ0

(
ρ

ρc
− 1

)

− ε

]

|J f |2,

which, for ε sufficiently small, leads to an exponential growth of |J f |, and this is a
contradiction. �

We now turn to the study of the stability of the uniform distribution when ρ is
below the critical threshold ρc. We have the

Proposition 3.4. Suppose that ρ < ρc. We define

λ = (n − 1)τ0

(

1 − ρ

ρc

)

> 0.

Let f0 be an initial condition with massρ, and f the corresponding solution of (2.7).
There exists δ > 0 independent of f0 such that if ‖ f0 −ρ‖Hs < δ, then for all t � 0

‖ f (t)− ρ‖Hs � ‖ f0 − ρ‖Hs

1 − 1
δ
‖ f0 − ρ‖Hs

e−λt .

Proof. We multiply (2.7) by (−ω)s g2 and integrate by parts on the sphere.
Using (3.7), (3.4), and the fact that g2 is orthogonal to the spherical harmonics
of degree 1, we get

1

2

d

dt
‖g2‖2

Hs = − ν(|J f |) n2|J f |
∫

S

[

(� f · ω)2 − 1
n

]

(−ω)s g2 dω

+ ν(|J f |)
∫

S

[

� f · ∇ω(−ω)s g2

]

g2 dω

− τ(|J f |)
∫

S

g2(−ω)s+1g2 dω.

Using the fact that the second eigenvalue of −ω is 2n, we get

1

2

d

dt
‖g2‖2

Hs = −τ(|J f |)‖g2‖2
Hs+1 − n2ν(|J f |)|J f |

∫

S

(2n)s(� f · ω)2g2dω

+ ν(|J f |)
∫

S

[� f · ∇ω(−ω)s g2]g2 dω. (3.11)

We can directly compute the Hs norm of the first mode of f − ρ as in (3.5), and
we get by orthogonal decomposition that

‖ f − ρ‖2
Hs = n(n − 1)s |J f |2 + ‖g2‖2

Hs . (3.12)
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Taking the dot product of (3.9) with n(n − 1)s J f and summing with (3.11), we get
the time derivative of ‖ f − ρ‖2

Hs :

1

2

d

dt
‖ f − ρ‖2

Hs = − n(n − 1)s+1τ0

(

1 − ρ

ρc

)

|J f |2 − τ(|J f |)‖g2‖2
Hs+1

+ n(n−1)s R(|J f |)|J f |2+ν(|J f |)
∫

S

g2� f · ∇(−ω)s g2 dω

+ [n(n − 1)s − n2(2n)s]ν(|J f |)|J f |
∫

S

� f · Pω⊥� f g2dω.

(3.13)

Using the Poincaré inequality, and again, that the second eigenvalue of −ω is 2n,
we get that

‖g2‖2
Hs+1 � 2n‖g2‖2

Hs � (n − 1)

(

1 − ρ

ρc

)

‖g2‖2
Hs . (3.14)

We combine the first two terms of the right-hand side of (3.13) with (3.14) to get
an estimation of 1

2
d
dt ‖ f − ρ‖2

Hs in terms of a constant times ‖ f − ρ‖2
Hs and a

remainder that we expect to be of smaller order:

1

2

d

dt
‖ f − ρ‖2

Hs � −(n − 1)τ0

(

1 − ρ

ρc

)

‖ f − ρ‖2
Hs + Rs, (3.15)

where

Rs = n(n − 1)s R(|J f |)|J f |2 + ν(|J f |)
∫

S

g2� f · ∇(−ω)s g2 dω

+ [n(n − 1)s − (2n)s]ν(|J f |)|J f |
∫

S

(� f · ω)2g2dω

+ [τ0 − τ(|J f |)](n − 1)

(

1 − ρ

ρc

)

‖g2‖2
Hs .

(3.16)

Using Lemma 2.1 of [17], there exists a constant C1 (independent of g2) such that
∣
∣
∣
∣

∫

S

g2� f · ∇(−ω)s g2 dω

∣
∣
∣
∣
� C1‖g2‖2

Hs .

Together with the estimates R, ν and τ given by (3.10) and hypothesis (2.1), and
the fact that the function ω �→ (� f · ω)2 belongs to H−s , we can estimate every
term of (3.16), giving existence of constants C2,C3, such that

Rs � C2
[|J f |3 + |J f |2‖g2‖Hs + |J f |‖g2‖2

Hs

]

� C3‖ f − ρ‖3
Hs ,

the last inequality coming from equation (3.12). Solving the differential inequal-
ity y′ � −λy + C3 y2 which corresponds to (3.15) with y = ‖ f − ρ‖Hs , we get
that

y

λ− C3 y
� y0

λ− C3 y0
e−λt ,
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provided that y < δ = λ
C3

. If y0 < δ, the differential inequality ensures that y is
decreasing and the condition y < δ is always satisfied. In this case, we get

y � y

1 − y
δ

� y0

1 − y0
δ

e−λt ,

which ends the proof. �

Remark 3.1. We can indeed remove this condition of closeness of f0 to ρ by using
the method of [17] in the case where ρ < ρ̂, where the critical threshold ρ̂ is defined
as follows: ρ̂ = inf |J | n|J |

k(|J |) (since we have c(κ) � κ
n for all κ , compared to the

definition (2.20)–(2.21) of ρc and ρ∗, we see that ρ̂ � ρ∗ � ρc, with a possible
equality if for example |J | �→ k(|J |)

|J | is nonincreasing).
We can use the special cancellation presented in [17]:

∫

∇g ̃n−1g = 0,

where ̃n−1 is the so-called conformal Laplacian on S, a linear operator defined,
for any spherical harmonic Y	 of degree 	, by

̃n−1 Y	 = 	(	+ 1) . . . (	+ n − 2)Y	.

Multiplying (2.7) by ̃−1
n−1( f − ρ) and integrating by parts, we get the following

conservation relation:

1
2

d
dt

(

n
(n−1)! |J f |2 + ‖g2‖2

H̃− n−1
2

)

= −τ(|J f |)
[

n
(n−2)!

(

1 − ρk(|J f |)
n|J f |

)

|J f |2 + ‖g2‖2

H̃− n−3
2

]

, (3.17)

where the norms ‖·‖
H̃− n−1

2
and ‖·‖

H̃− n−3
2

are modified Sobolev norms respectively

equivalent to ‖ · ‖
H− n−1

2
and ‖ · ‖

H− n−3
2

.

So if ρ < ρ̂, Equation (3.17) can be viewed as a new entropy dissipation for the
system, and we have global exponential convergence with rate λ̂ = (n −1)τmin(1−
ρ

ρ̂
), where τmin = min|J |�ρ τ (|J |):

‖ f − ρ‖
H̃− n−1

2
� ‖ f0 − ρ‖

H̃− n−1
2

e−λ̂t , (3.18)

valid for any initial condition f0 ∈ H− n−1
2 (S) with initial mass ρ, whatever its

distance to ρ.
Let us also remark that if ρ̂ � ρ < ρ∗, whereρ∗ is defined in (2.21), any solution

with initial mass ρ converges to the uniform distribution (the unique equilibrium),
but we do not have an a priori global rate. We can just locally rely on Proposition 3.4.
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3.4. Local Analysis about the Anisotropic Equilibria

We fix κ > 0 and let ρ be such that κ is a solution of the compatibility equa-
tion (2.18), that is ρ = j (κ)

c(κ) . In this subsection, to make notations simpler, we will
not write the dependence on κ when not necessary.

We make an additional hypothesis on the function k:

Hypothesis 3.1. The function |J | �→ k(|J |) is differentiable, with a derivative k′
which is itself Lipschitz.

We can then state a first result about the stability or instability of a non-isotropic
solution ρMκ�, depending on the sign of ( j

c )
′. In summary, if the function κ �→ j

c
is (non-degenerately) increasing then the corresponding equilibria are stable, while
if it is (non-degenerately) decreasing the equilibria are unstable. For example, for
the different cases depicted in Fig. 1, it is then straightforward to determine the
stability of the different equilibria.

Proposition 3.5. Let κ > 0 and ρ = j (κ)
c(κ) . We denote by Fκ the value of F(ρMκ�)

(independent of � ∈ S).

(i) Suppose ( j
c )

′(κ) < 0. Then any equilibrium of the form ρMκ� is unstable,
in the following sense: in any neighborhood of ρMκ�, there exists an initial
condition f0 such that F( f0) < Fκ . Consequently, in that case, we cannot
have κ∞ = κ in Proposition 3.2.

(ii) Suppose ( j
c )

′(κ) > 0. Then the family of equilibria {ρMκ�,� ∈ S} is stable,
in the following sense: for all K > 0 and s > n−1

2 , there exists δ > 0 and C
such that for all f0 with mass ρ and with ‖ f0‖Hs � K , if ‖ f0 −ρMκ�‖L2 � δ

for some � ∈ S, then for all t � 0, we have

F( f ) � Fκ ,
‖ f − ρMκ� f ‖L2 � C‖ f0 − ρMκ� f0

‖L2 .

Proof. We first make some preliminary computation which will also be useful for
the following theorem. We expand the solution f of (2.7) (with initial mass ρ)
around a “moving” equilibrium ρMκ� f (t). Let us use the same notations as in [17]:
we write 〈g〉M for

∫

S
g(ω)Mκ� f dω, we denote ω ·� f by cos θ and we write:

f = Mκ� f (ρ + g1) = Mκ� f (ρ + α(cos θ − c)+ g2),

where

α = |J f | − ρc

〈(cos θ − c)2〉M
. (3.19)

We have 〈g1〉M = 〈g2〉M = 0, and definition of α ensures that 〈ω g2〉M = 0. The
derivative of c with respect to κ is given by

c′(κ) = 〈cos2 θ〉M − 〈cos θ〉2
M = 〈(cos θ − c)2〉M . (3.20)
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We are now ready to estimate the difference between the free energy of f and of
the equilibrium ρMκ� f . We have a first expansion, for the potential term of the
free energy (2.9):

�(|J f |)=�(ρc)+k(ρc)α〈(cos θ−c)2〉M +k′(ρc)
α2

2
〈(cos θ − c)2〉2

M + O(α3)

= �( j)+ κc′(κ)α + (c′(κ))2

j ′(κ)
α2

2
+ O(α3).

Now, we will use the following estimation, valid for any x ∈ (−1,+∞):

|(1 + x) ln(1 + x)− x − 1
2 x2| � 1

2 |x |3. (3.21)

To get this estimation, we note that h2(x) = (1 + x) ln(1 + x)− x − 1
2 x2 is such

that h2, h′
2 and h′′

2 cancel at x = 0, and that h(3)2 (x) = −1
(1+x)2

∈ (−1, 0) for x > 0.

Therefore Taylor’s formula gives − 1
6 x3 < h2(x) < 0 for x > 0. For x < 0 we have

by the same argument h2(x) > 0, but Taylor’s formula is not sufficient to have a
uniform estimate on (−1, 0). We introduce h3 = h2+ 1

2 x3. By induction from i = 3

to i = 1 we have that h(i)3 has a unique root γi in (−1, 0), with γ3 > γ2 > γ1.
Since h′

3(x) → −∞ as x → −1, h3 is decreasing on (−1, γ1) and increasing
on (γ1, 0), but we have h3(−1) = h3(0) = 0 so h3 < 0 on (−1, 0), which ends the
derivation of (3.21).

Using (3.21) with x = g1
ρ

, we have that

∫

S

f ln f dω =
〈

(ρ + g1)

[

ln

(

1 + g1

ρ

)

+ ln(ρMκ� f )

]〉

M

= 〈ρ ln(ρMκ� f )〉M + 〈κ cos θg1〉M + 1

2ρ

〈

g2
1

〉

M
+ O(〈|g1|3〉M )

=
∫

S

ρMκ� f ln(ρMκ� f )dω + ακc′ + 1

2ρ

[

α2c′ +
〈

g2
2

〉

M

]

+ O(〈|g1|3〉M ).

Finally we get

F( f )− F(ρMκ� f ) = α2

2
c′
(

1

ρ
− c′

j ′

)

+ 1

2ρ

〈

g2
2

〉

M
+ O(〈|g1|3〉M )

= 1

2ρ

[
c′c
j ′
( j

c

)′
α2 +

〈

g2
2

〉

M

]

+ O(〈|g1|3〉M ). (3.22)

Now, we prove (i). We simply take α sufficiently small and g2 = 0, and the
estimation (3.22) gives the result. Indeed, since c and j are increasing functions
of κ , the leading order coefficient in (3.22), which is 1

2ρ
c′c
j ′
( j

c

)′, is negative by the
assumption.

We now turn to point (ii). We will use the following simple lemma, the proof
of which is left to the reader.
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Lemma 1. Suppose x(t) � 0 is a continuous function and y(t) is a decreasing
function satisfying

|x(t)− y(t)| � Cx(t)1+ε, ∀t � 0,

for some positive constants C and ε. Then there exist δ > 0 and C̃ such that,
if x(0) � δ, then

y(t) � 0, and |x(t)− y(t)| � C̃ y(t)1+ε, ∀t � 0.

By Sobolev embedding, Sobolev interpolation, and the uniform bounds of The-
orem 1, we have

‖g1‖∞ � C‖g1‖
H

n−1
2

� C‖g1‖1−ε
Hs ‖g1‖εL2 � C1(〈g2

1〉M )
ε, (3.23)

for some ε > 0, and where the constant C1 depends only on K (the constant in
the statement of the proposition, which is an upper bound for ‖ f0‖Hs ), s, κ and
the coefficients ν and τ of the model. We will denote by Ci such a constant in the
following of the proof.

We define x(t) = 1
2ρ [ cc′

j ′ (
j
c )

′ α2 + 〈g2
2〉M ] and y(t) = F( f ) − Fκ . Together

with the estimate (3.22), since 〈g2
1〉M = c′α2 +〈g2

2〉M , and ( j
c )

′ > 0, we can apply
Lemma 1. It gives us that if 〈g2

1〉M is initially sufficiently small, then F( f ) � Fκ
and we have

x(t) = 1

2ρ

[
cc′

j ′

(
j

c

)′
α2 +

〈

g2
2

〉

M

]

= F( f )− Fκ + O
(

(F( f )− Fκ)1+ε) .

Now, using the fact that x(t), 〈g2
1〉M and ‖ f −ρMκ� f ‖2

L2 are equivalent quantities
(up to a multiplicative constant) and the estimate (3.22), we get that

‖ f − ρMκ� f ‖2
L2 � C2x(t) � C3(F( f )− Fκ). (3.24)

Using the fact that F( f ) − Fκ is decreasing in time, and the same equivalent
quantities, we finally get

‖ f − ρMκ� f ‖2
L2 � C3(F( f0)− Fκ) � C4‖ f0 − ρMκ� f0

‖2
L2 .

This completes the proof, with the simple remark that, as in the proof of proposi-
tion 3.2, we can control |�−� f0 | by ‖ f0−ρMκ�‖L2 [using the formula (3.5)]. Then
we can also control the quantities ‖ρ(Mκ� − Mκ� f0

)‖L2 and ‖ f0 − ρMκ� f0
‖L2 ,

and finally the initial value of 〈g2
1〉M , by this quantity ‖ f0 − ρMκ�‖L2 . �

We can now turn to the study of the rate of convergence to equilibria when it
is stable [in the case ( j

c )
′ > 0]. The main result is the following theorem, which

also gives a stronger stability result, in any Sobolev space Hs with s > n−1
2 . Let

us remark that this theorem is an improvement compared to the results of [17], in
the case where τ is constant and ν(|J |) is proportional to |J |. In what follows, we
call constant a quantity which does not depend on the initial condition f0 (that is
to say, it depends only on s, κ , n and the coefficients of the equation ν and τ ).
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Theorem 2. Suppose ( j
c )

′(κ) > 0. Then, for all s > n−1
2 , there exist constants δ >

0 and C > 0 such that for any f0 with mass ρ satisfying ‖ f0 − ρMκ�‖Hs < δ for
some � ∈ S, there exists �∞ ∈ S such that

‖ f − ρMκ�∞‖Hs � C‖ f0 − ρMκ�‖Hs e−λt ,

where the rate is given by

λ = cτ( j)

j ′
�κ

(
j

c

)′
. (3.25)

The constant�κ is the best constant for the following weighted Poincaré inequality
(see the appendix of [10] for more details on this constant, which does not depend
on �):

〈

|∇ωg|2〉M � �κ 〈(g − 〈g〉M )
2
〉

M
. (3.26)

We first outline the key steps. Firstly, we want to get a lower bound for the dissipation
term D( f ) in terms of F( f ) − Fκ , in order to get a Grönwall inequality coming
from the conservation relation (2.12). After a few computations, we get

D( f ) � 2λ(F( f )− Fκ)+ O
(

(F( f )− Fκ)1+ε) .

With this lower bound, we obtain exponential decay of F( f )− Fκ (with rate 2λ),
which also gives exponential decay of ‖ f − Mκ� f ‖L2 (with rate λ) in virtue

of (3.24). We also prove that we can control the displacement �̇ f by
√

〈g2
2〉M .

Hence we get that� f is also converging exponentially fast towards some�∞ ∈ S

(with the same rate λ). After linearizing the kinetic equation (2.7) around this equi-
librium ρMκ�∞ , an energy estimate for a norm equivalent to the Hs norm gives
then the exponential convergence for ‖ f − Mκ�∞‖Hs with the same rate λ.
We now give the detailed proof.

Proof of Theorem 2. We fix s > n−1
2 and we suppose ( j

c )
′(κ) > 0. We recall the

notations of the proof of Proposition 3.5:

f = Mκ� f (ρ + g1) = Mκ� f (ρ + α(cos θ − c)+ g2),

where cos θ = ω ·� f and α, defined in (3.19), is such that

|J f | = ρc + α〈(cos θ − c)2〉M = j + α c′, (3.27)

thanks to (3.20). We have that 〈g1〉M = 〈g2〉M = 0, and 〈ω g2〉M = 0.
The proof will be divided in three propositions. �

Proposition 3.6. There exist constants δ > 0, ε > 0 and C such that, if initially,
we have 〈g2

1〉M < δ and ‖ f0 − Mκ� f0
‖Hs � 1, then for all time, we have

F( f ) � Fκ ,
D( f ) � 2λ(F( f )− Fκ)− C(F( f )− Fκ)1+ε,

where the rate is given by (3.25): λ = cτ( j)
j ′ �κ(

j
c )

′.



Phase Transitions, Hysteresis, and Hyperbolicity 85

Proof. We apply the stability results of the second part of Proposition 3.5, with the
constant K being 1 + ‖ρMκ� f0

‖Hs (this does not depend on � f0 ). This gives us

constants δ1 > 0, ε > 0, C1, C2 such that if we have initially 〈g2
1〉M < δ1, then

[see Equations (3.23)–(3.24)]

F( f ) � Fκ ,
‖g1‖∞ � C1〈g2

1〉εM , (3.28)
∣
∣
∣
∣

1

2ρ

[
cc′

j ′

(
j

c

)′
α2+

〈

g2
2

〉

M

]

−(F( f )−Fκ )
∣
∣
∣
∣
�C2(F( f )−Fκ)1+ε, (3.29)

〈g2
1〉M � C3(F( f )− Fκ). (3.30)

We get, using the definition (2.11):

D( f ) = τ(|J f |)〈(ρ + g1)|∇ω[ln(ρ + g1)− (k(|J f |)− κ)ω ·� f ]|2〉M

= τ(|J f |)〈 1

ρ + g1
|∇ωg1|2 + (ρ + g1)(k(|J f |)− κ)2|∇ω(ω ·� f )|2〉M

− 2τ(|J f |)〈∇ωg1 · (k(|J f |)− κ)∇ω(ω ·� f )〉M .

Using the fact that 1
ρ+g1

� 1
ρ2 (ρ − ‖g1‖∞), we obtain

D( f ) � τ(|J f |)(ρ − ‖g1‖∞)
〈

1

ρ2 |∇ωg1|2 + (k(|J f |)− κ)2|∇ω(ω ·� f )|2
〉

M

− 2τ(|J f |)〈∇ωg1 · (k(|J f |)− κ)∇ω(ω ·� f )〉M

D( f ) � τ(|J f |)(ρ − ‖g1‖∞)
〈∣
∣
∣
∣
∇ω
[

g1

ρ
− (k(|J f |)− κ)ω ·� f

]∣
∣
∣
∣

2
〉

M

+ τ(|J f |) 2

ρ
‖g1‖∞(k(|J f |)−κ)〈g1(κ|∇ω(ω ·� f )|2 − (n−1)ω ·� f )〉M .

where we used Green’s formula to evaluate 〈∇ωg1 · ∇ω(ω ·� f )〉M .

First of all, using the definition (3.27) we can get that |k(|J f |) − κ − α c′
j ′ | �

C4α
2, for a constant C4. Then we use the Poincaré inequality (3.26):

〈|∇ωg|2〉M � �κ 〈(g − 〈g〉M )
2〉M .

Hence, since |α| is controlled by
√

〈g2
1〉M (we recall that 〈g2

1〉M = c′α2 + 〈g2
2〉M ),

and since we also have ||J f | − j | � C5|α| for a constant C5, we get
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D( f ) � �κτ(|J f |)(ρ − ‖g1‖∞)
〈∣
∣
∣
∣

g1

ρ
− (k(|J f |)− κ)(cos θ − c)

∣
∣
∣
∣

2
〉

M

− C6‖g1‖∞
〈

g2
1

〉

M

� �κτ( j)ρ

〈∣
∣
∣
∣

g2

ρ
+ α

(
1

ρ
− c′

j ′

)

(cos θ − c)

∣
∣
∣
∣

2
〉

M

− C7‖g1‖∞
〈

g2
1

〉

M

= �κτ( j)

ρ

[

c2c′

( j ′)2

((
j

c

)′)2

α2 +
〈

g2
2

〉

M

]

− C7‖g1‖∞
〈

g2
1

〉

M
,

where C6 and C7 are constants. Together with the fact that c
j ′ (

j
c )

′ � 1 (this is
equivalent to jc′ � 0), and with equations (3.28)–(3.30), this ends the proof. �
Proposition 3.7. There exist positive constants C, C̃ and δ such that if initially, we
have 〈g2

1〉M < δ and ‖ f0 − ρMκ� f0
‖Hs � 1, then for all time, we have

‖ f − ρMκ� f ‖L2 � C‖ f0 − ρMκ� f0
‖L2 e−λt ,

and furthermore, there exists �∞ ∈ S such that for all time, we have

|� f −�∞| � C̃‖ f0 − ρMκ� f0
‖L2 e−λt . (3.31)

Proof. By Proposition 3.6, using the expression 〈g2
1〉M = c′α2 + 〈g2

2〉M and
inequalities (3.29) and (3.30), we get that there exist constants δ1 > 0 and C1, C2,
and C̃2 > 0 such that if 〈g2

1〉M < δ1, then F( f ) � Fκ , and for all time,

d

dt
(F( f )−Fκ )=−D( f )�−2λ(F( f )−Fκ)+C1(F( f )−Fκ )1+ε, (3.32)

C̃2(F( f )− Fκ) � 〈g2
1〉M � C2(F( f )− Fκ). (3.33)

Solving the differential inequality (3.32) for F( f )− Fκ sufficiently small, we get
that, up to taking δ2 < δ1, if 〈g2

1〉M < δ2, we get a constant C3 such that

F( f )− Fκ � C3(F( f0)− Fκ)e−2λt .

This gives the first part of the proposition, with (3.33), and the fact that there exists
constants C4, and C̃4 such that

C̃4‖ f − ρMκ� f ‖L2 �
√

〈g2
1〉M � C4‖ f − ρMκ� f ‖L2 .

Now we compute the time derivative of� f , using d
dt� f = 1

|J f | P�⊥
f

d
dt J f and (3.8):

d

dt
� f = ν(|J f |)

|J f | P�⊥
f
〈Pω⊥� f (ρ + α(cos θ − c)+ g2)〉M

= −ν(|J f |)
|J f | P�⊥

f
〈cos θ ωg2〉.
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So there exist constants C5 and C6 such that

|�̇ f | � C5

√

〈g2
2〉M � C5

√

〈g2
1〉M � C6‖ f0 − ρMκ� f0

‖L2 e−λt ,

which, after integration in time, gives the second part of the proposition. �
We can now prove the last step which leads to Theorem 2.

Proposition 3.8. There exist constants δ > 0 and C > 0, such that for any initial
condition f0 with mass ρ satisfying ‖ f0 − ρMκ� f0

‖Hs < δ, there exists �∞ ∈ S

such that

‖ f − ρMκ�∞‖Hs � C‖ f0 − ρMκ� f0
‖Hs e−λt .

Proof. All along this proof we will use the symbol � to denote quantities of the
same order: for a and b two nonnegative quantities, a � b means that there exist
two positive constants C1,C2 such that C1a � b � C2a.

By the estimation 〈g2
1〉M � ‖ f −ρMκ� f ‖2

L2 (since the weight Mκ� is bounded

above and below), and by a simple Sobolev embedding (L2 ⊂ Hs), there exists a
constant δ1 > 0 such that if ‖ f0 − ρMκ� f0

‖Hs < δ1, then we are in the hypotheses
of Proposition 3.7. We suppose we are in that case and we can then go back to
the original equation and perform a linear analysis around ρMκ�∞ . We will now
write 〈g〉M for

∫

S
gMκ�∞dω.

If we write f = (ρ + g)Mκ�∞ , then the equation becomes

∂t g = −τ(|J f |)Lg − A(t) · ∇ωg + B(ω) · A(t)(ρ + g), (3.34)

where

Lg = − 1

Mκ�∞
∇ω · (Mκ�∞∇ωg) = −(ωg + κ�∞ · ∇ωg),

A(t) = ν(|J f |)� f − τ(|J f |)κ�∞,
B(ω) = (n − 1)ω − κPω⊥�∞.

Let us remark that the linear operator L is a coercive selfadjoint operator for the
inner product (g1, g2) �→ 〈g1g2〉M [also denoted 〈g1, g2〉M in the following], on
the space L̇2

M ⊂ L2 of functions g such that 〈g〉M = 0 [thanks to the Poincaré
inequality (3.26)]. Indeed we have

〈g1, Lg2〉M = 〈∇ωg1 · ∇ωg2〉M .

It is classical to prove that the inverse of L is a positive selfadjoint compact operator
of L̇2

M . Hence, by spectral decomposition, we can define the operator Ls , and use
it to define a new Sobolev norm by

‖g‖2
Ḣ s

M
= 〈g, Ls g〉M .

We will use a lemma (the proof of which is postponed at the end of this section)
about estimations for this norm, and about a commutator estimate:
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Lemma 2. For s � 0, we have ‖g‖Ḣ s
M

� ‖g‖Hs , for functions g in Ḣ s
M = Hs∩L̇2

M .

Furthermore, for g ∈ Ḣ s
M , the (vector valued) quantity 〈Ls g∇ωg〉M is well

defined and there is a constant C such we have:

|〈Ls g∇ωg〉M | � C‖g‖2
Ḣ s

M
. (3.35)

We will also use the following Poincaré estimate, for g ∈ Ḣ s
M , with the same

constant �κ as in (3.26):

〈g, Ls+1g〉M = 〈|∇(L s
2 g)|2〉M � �κ 〈(L s

2 g)2〉M = �κ‖g‖2
Ḣ s

M
.

We now multiply the equation (3.34) by Ls g and integrate with respect to the
measure Mκ�∞dω. We get

1

2

d

dt
‖g‖2

Ḣ s
M

� −τ(|J f |)�κ‖g‖2
Ḣ s

M
+ |A(t)|(C1 ‖g‖2

Ḣ s
M

+‖g‖Ḣ s
M
‖B(ω)(ρ + g)‖Ḣ s

M
),

where ‖B(ω)(ρ+ g)‖Ḣ s
M

denotes the maximum of ‖e · B(ω)(ρ+ g)‖Ḣ s
M

for e ∈ S.
Since ω �→ e · B(ω) is smooth, the multiplication by e · B(ω) is a continuous
operator from Ḣ s

M to Hs when s is an integer, so by interpolation this is true for
all s. Therefore, we get a constant C2 such that for all g ∈ Ḣ s

M , we have

‖B(ω)g‖Ḣ s
M

� C2 ‖g‖Ḣ s
M
. (3.36)

We finally get

d

dt
‖g‖Ḣ s

M
� −τ(|J f |)�κ‖g‖Ḣ s

M
+ |A(t)|

(

(C1 + C2) ‖g‖Ḣ s
M

+ ‖B(ω)ρ‖Ḣ s
M

)

.

Now, applying Proposition 3.7, there exist constants C3,C4,C5 such that

|A(t)| � ν(|J f |)|� f −�∞| + [ν(|J f |)− τ(|J f |)κ]|�∞|
� ν(|J f |)|� f −�∞| + τ(|J f |)[k(|J f |)− k( j (κ))]
� C3|� f −�∞| + C4||J f | − j (κ)|
� C5‖ f0 − ρMκ� f0

‖L2 e−λt � C5‖ f0 − ρMκ� f0
‖Ḣ s

M
e−λt ,

by virtue of (3.6). By the same argument, we get, for a constant C6, that

|τ(|J f |)− τ( j)| � C6‖ f0 − ρMκ� f0
‖Ḣ s

M
e−λt ,

so we finally obtain, together with a uniform bound on ‖g‖Ḣ s
M

coming from The-
orem 1 (and independent of f0 since ‖ f0 − ρMκ� f0

‖Hs < δ1), a constant C7 such
that

d

dt
‖g‖Ḣ s

M
� −τ( j)�κ‖g‖Ḣ s

M
+ C7‖ f0 − ρMκ� f0

‖Ḣ s
M

e−λt .
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We solve this inequality and we get

‖g‖Ḣ s
M

� ‖g0‖Ḣ s
M

exp(−τ( j)�κ t)+ C7‖ f0 − ρMκ� f0
‖Ḣ s

M

e−λt − e−τ( j)�κ t

τ( j)�κ − λ
,

and this gives the final estimation, using the fact that λ < τ( j)�κ (this is equivalent,
by definition (3.25) of λ, to ( j

c )
′ < j ′

c , and we indeed have j c′ > 0), and that

‖g0‖Ḣ s
M

� ‖ f0 − ρMκ�∞‖Ḣ s
M

� ‖ f0 − ρMκ� f0
‖Ḣ s

M
+ C8|� f0 −�∞|

� C9‖ f0 − ρMκ� f0
‖Hs ,

by virtue of (3.6), Lemma 2 and (3.31) (we have s > n−1
2 so L2 ⊂ Hs is a

continuous embedding). �
Finally, Proposition 3.8 can be refined since, thanks to the estimation (3.6),

we only need to control ‖ f0 − ρMκ�‖Ḣ s
M

for a given � ∈ S in order to ensure
that ‖ f0 − ρMκ� f0

‖Ḣ s
M

is sufficiently small, and this ends the proof of Theorem 2.
�
Proof of Theorem 2. We first define the space Ḣ s

M as the completion of C∞(S)∩
L̇2

M for ‖ · ‖Ḣ s
M

. The first estimate (which amounts to prove that ‖g‖Ḣ s
M

� ‖g‖Hs

for smooth functions g ∈ C∞(S) ∩ L̇2
M ) is true when s is an integer: indeed Ls

and (−ω)s are simple differential operators (of degree 2s), and these estimates
can be done by induction on s: when s = 2p is even, we write

⎧

⎨

⎩

〈g, Ls g〉M = ‖L pg‖2
L2

M
� ‖L pg‖2

2

‖g‖2
Hs = ‖(−)pg‖2

2 � ‖(−)pg‖2
L2

M
.

In the first case, L is decomposed as (−ω) − κ�∞ · ∇ω to estimate ‖L pg‖2
2 in

terms of ‖g‖2
Hs , and in the second case −ω is decomposed as L + κ�∞ · ∇ω to

estimate ‖(−)pg‖2
L2

M
in terms of 〈g, Ls g〉. When s = 2p + 1 is odd, the same

argument applies, writing
⎧

⎨

⎩

〈g, Ls g〉M = ∥∥|∇ω(L pg)|∥∥2
L2

M
� ∥∥|∇ω(L pg)|∥∥2

2

‖g‖2
Hs = ∥∥|∇ω(−)pg|∥∥2

2 � ∥∥|∇ω(−)pg|∥∥2
L2

M
.

Finally, the general case is done by interpolation, for s = n + θ , with θ ∈ (0, 1).
We refer the reader to [26] for an introduction to interpolation spaces, and we
will denote (F1, F2)(θ,p) the interpolation space between F1 and F2 using the
real interpolation method. Using the so-called K -method (see [26, Lecture 22]), it
consists in the space of elements u ∈ F1 + F2 such that ‖u‖θ,p < +∞, together
with the norm ‖ · ‖θ,p, where

‖u‖θ,p =
(∫ ∞

0
[t−θK (t, u)]q dt

t

) 1
q

, with K (t, u)= inf
u=u1+u2,

u1∈F1,u2∈F2

‖u1‖F1 +t‖u2‖F2 .
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We will use the following result (see [26, Lemma 23.1]): if (X, μ) is a measured
space and w0, w1 are two weight functions, we have

(L2(w0dμ), L2(w1dμ))(θ,2) = L2(w1−θ
0 wθ1dμ), (3.37)

where, for a weight function w � 0, the weighted space L2(wdμ) denotes the
functions h such that ‖h‖2

L2(wdμ)
= ∫

X h2(x)w(x)dμ(x) is finite. Now if (gi )i∈N

is an orthonormal basis (for the dot product 〈·, ·〉M ) of eigenvectors of L [associ-
ated to the eigenvalues (λi )], it is easy to see that the map h �→ (〈h, gi 〉M )i∈N is
an isometry between Ḣ s

M and the weighted 	2 space with weight (λi )i∈N [it cor-
responds to L2(wdμ) where X = N, μ is the counting measure, and w(i) = λi ].
Therefore, we obtain with (3.37) that Ḣ s

M = (Ḣn
M , Ḣn+1

M )(θ,2), and by the same
argument Hs = (Hn, Hn+1)(θ,2). So we finally get, with equivalence of norms:

Hs ∩ L̇2
M =

(

Hn ∩ L̇2
M , Hn+1 ∩ L̇2

M

)

(θ,2)
=
(

Ḣn
M , Ḣn+1

M

)

(θ,2)
= Ḣ s

M .

To get the estimation (3.35), we first observe that it is a commutator estimate.
Indeed, by integration by parts for a given e ∈ S, we get that the adjoint operator
of e · ∇ω (for 〈·, ·〉M ) is −e · ∇ω + e · B(ω), where B(ω) = (n − 1)ω− κPω⊥�∞
(the same expression as in the proof of Proposition 3.8). So, splitting the left part
of (3.35) in two halves, we are led to show that for g ∈ Ḣ s

M , we have

1

2

∣
∣
〈

g[Ls,∇ω]g〉M + 〈B(ω)gLs g〉M
∣
∣ � C〈g, Ls g〉M .

Using (3.36), it is equivalent to find a constant C̃ such that for all g ∈ Ḣ s
M , we have

|〈g[Ls,∇ω]g〉M | � C〈g, Ls g〉M . (3.38)

In the case s = 1, by using Schwartz theorem, we see that [L ,∇ω] = [−ω,∇ω]. It
is proven in Lemma 2.1 of [17] that (3.35) is true in the limit case where κ = 0. This
means that [(−ω)s,∇ω] is an operator of degree 2s. In particular [−ω,∇ω] is a
differential operator of degree 2. Actually, using Lemma A.5 of [17], it is possible
to get that

[−ω,∇ω] = 2ωω − (n − 3)∇ω.
This directly gives the estimate (3.38) when s = 1. We obtain the estimate when s
is an integer with the formula [L p+1,∇ω] =∑p

q=0 L p−q [L ,∇ω]Lq .

The proof in the general case relies on a resolvent formula for the operator Aθ ,
when θ belongs to (0, 1), and A : D(A) ⊂ H → H is a strictly positive operator of
a Hilbert space H with a complete basis of eigenvectors (see [22, Remark V-3.50]):

Aθ = sin πθ

π

∫ ∞

0
tθ (t−1 − (t + A)−1) dt.

This formula can be checked on an orthonormal basis of eigenvectors of A, and
relies on the fact that, for λ > 0, we have

∫ ∞

0
tθ
(1

t
− 1

t + λ

)

dt = λθ
∫ ∞

0

tθ−1 dt

1 + t
.
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The fact that this last integral is equal to π
sin πθ for 0 < θ < 1 is classical, and can

be done by the method of residues.
We then have, for another operator B [with dense domain for (t + A)−1 B

and B(t + A)−1 for t > 0]

[Aθ , B] = sin πθ

π

∫ ∞

0
tθ [B, (t + A)−1] dt

= sin πθ

π

∫ ∞

0
tθ (t + A)−1[A, B](t + A)−1 dt.

We can apply this result to A = Lm with H = L̇2
M , B = e · ∇ω for a fixed e ∈ S,

and θ = s
m for 0 < s < m and we get, using the fact that (t + Lm)−1 is self-adjoint

in H [and bounded, so all smooth functions are in the domain of (t + A)−1 B
and B(t + A)−1],

∣
∣
〈

g
[

Ls, e · ∇ω
]

g
〉

M

∣
∣�

sin πθ

π

∫ ∞

0
tθ
∣
∣
〈

g (t+Lm)−1 [Lm, e · ∇ω
]

(t+Lm)−1g
〉

M

∣
∣ dt

�
sin πθ

π

∫ ∞

0
tθ
∣
∣
〈

(t+Lm)−1g
[

Lm, e · ∇ω
]

(t+Lm)−1g
〉

M

∣
∣ dt

� Cm
sin πθ

π

∫ ∞

0
tθ 〈(t + Lm)−1g, Lm(t + Lm)−1g〉M dt

� Cm
sin πθ

π

∫ ∞

0
tθ 〈g, (t + Lm)−1Lm(t + Lm)−1g〉M dt.

But as before, it is easy to see that
∫ ∞

0
tθ

λ

(t + λ)2
dt = λθ

∫ ∞

0

tθ dt

(1 + t)2
= θλθ

π

sin πθ
,

and then

θ Aθ = sin πθ

π

∫ ∞

0
tθ (t + A)−1 A(t + A)−1 dt.

Finally, we get

∣
∣
〈

g
[

Ls, e · ∇ω
]

g
〉

M

∣
∣ � Cm

s

m
〈g, Ls g〉M ,

which ends the proof of Lemma 2. �

4. Phase Transitions

4.1. Application of the Previous Theory to Two Special Cases

In the previous section, we have stated results which are valid for all possible
behaviors of the function κ �→ j (κ)

c(κ) . In particular, the number of branches of
equilibria can be arbitrary.

In this section, we apply the previous theory to two typical examples:
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(i) The function κ �→ j (κ)
c(κ) is increasing. In this case, there exists only one

branch of stable von Mises–Fisher equilibria. The uniform equilibria are sta-
ble for ρ < ρc, where ρc = limκ→0

j (κ)
c(κ) , and become unstable for ρ > ρc.

The von Mises–Fisher equilibria only exist for ρ > ρc and are stable. This
corresponds to a second-order phase transition. We will provide details and a
determination of the critical exponent of this phase transition in Section 4.2.

(ii) The function κ �→ j (κ)
c(κ) is unimodal, that is there exists κ∗ such that this

function is decreasing on [0, κ∗] and increasing on [κ∗,∞). Then, another
critical density is defined by ρ∗ = j (κ∗)

c(κ∗) . Then we have the following situation:
(a) If ρ ∈ (ρ∗, ρc), there exist two branches of von Mises–Fisher equilibria,

and therefore, three types of equilibria if we include the uniform distribu-
tion. Both the uniform distribution and the von Mises–Fisher distribution
with the largest κ are stable while the von Mises–Fisher distribution with
intermediate κ is unstable.

(b) If ρ < ρ∗, there exists only one equilibrium, the uniform one, which is
stable.

(c) If ρ > ρc, there exist two types of equilibria, the uniform equilibrium which
is unstable and the von Mises–Fisher equilibria which are stable.

This situation corresponds to a first-order phase transition and is depicted in
Section 4.3, where phase diagrams for both the two-dimensional and three-
dimensional cases are given. The major feature of first-order phase transitions
is the phenomenon of hysteresis, which will be illustrated by numerical simu-
lations in Section 4.3.

For references to phase transitions, we refer the reader to [19].

4.2. Second Order Phase Transition

Let us now focus on the case where we always have ( j
c )

′ > 0 for all κ > 0
(this corresponds for example to the upper two curves of Fig. 1). In this case, the
compatibility equation (2.22) has a unique positive solution for ρ > ρc. With the
results of the previous subsection about stability and rates of convergence, we obtain
the behavior of the solution.

Proposition 4.1. Let f0 be an initial condition with mass ρ, and f the correspond-
ing solution of (2.7). We suppose that ( j

c )
′ > 0 for all κ > 0. Then:

(i) If ρ < ρc, then f converges exponentially fast towards the uniform distribu-
tion f∞ = ρ.

(ii) If ρ = ρc, then f converges to the uniform distribution f∞ = ρ.
(iii) If ρ > ρc and J f0 �= 0, then there exists �∞ such that f converges exponen-

tially fast to the von Mises–Fisher distribution f∞ = ρMκ�∞ , where κ > 0 is
the unique positive solution to the equation ρc(κ) = j (κ).

Proof. This is a direct application of Propositions 3.2–3.4 and Theorem 2. �
Remark 4.1. (i) When ρ > ρc, the special case where J f0 = 0 leads to the study

of heat equation ∂t f = τ0ω f . Its solution converges exponentially fast to the
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uniform distribution, but this solution is not stable under small perturbation of
the initial condition.

(ii) For some particular choice of the coefficients, as in [17], it is also possible to
get a polynomial rate of convergence in the second case ρ = ρc. For example

when j (κ) = κ , we have ‖ f − ρ‖ � Ct− 1
2 for t sufficiently large.

We now describe the phase transition phenomena by studying the order parameter
of the asymptotic equilibrium α = |J f∞|

ρ
, as a function of the initial density ρ.

We have α(ρ) = 0 if ρ � ρc, and α(ρ) = c(κ) for ρ > ρc, where κ > 0 is the
unique positive solution to the equation ρc(κ) = j (κ). This is a positive continuous
increasing function for ρ > ρc. This is usually described as a continuous phase
transition, also called second order phase transition.

Definition 4.1. We say that β is the critical exponent of the phase transition if there
exists α0 > 0 such that

α(ρ) ∼ α0(ρ − ρc)
β, as ρ

>→ ρc.

This critical exponent β can take arbitrary values in (0, 1], as can be seen by

taking k such that j (κ) = c(κ)(1 + κ
1
β ) (we recall that k is the inverse function

of j , see Hypothesis 2.2). Indeed in this case, the function k is well defined (its
inverse j is increasing), and satisfies Hypothesis 3.1 (ifβ � 1). We then have ( j

c )
′ =

1
β
κ

1
β
−1
> 0, and the conclusions of Proposition 4.1 apply, with ρc = 1. Finally, the

compatibility equation ρc(κ) = j (κ) becomes ρ = (1+κ 1
β ), that is κ = (ρ − 1)β .

And since c(κ) ∼ 1
n κ when κ → 0, we get:

α(ρ) = c
(

(ρ − 1)β
) ∼ 1

n
(ρ − 1)β as ρ

>→ 1.

More generally, we can give the expression of the critical exponent in terms of the
expansion of k in the neighborhood of 0.

Proposition 4.2. We suppose, as in Proposition 4.1, that ( j
c )

′ > 0 for all κ > 0.
We assume an expansion of k is given under the following form:

k(|J |)
|J | = n

ρc
− a|J |q + o(|J |q) as |J | → 0, (4.1)

with q � 1 (see Hypothesis 3.1) and a ∈ R.

(i) If q < 2 and a �= 0, then a > 0 and we have a critical exponent given
by β = 1

q .

(ii) If q > 2, the critical exponent is given by β = 1
2 .

(iii) If q = 2 and a �= − n2

ρ3
c (n+2)

, then a > − n2

ρ3
c (n+2)

and the critical exponent is

given by β = 1
2 . In the special case where

k(|J |)
|J | = n

ρc
+ n2

ρ3
c (n + 2)

|J |2 − a2|J |p + o(|J |p) as |J | → 0,

with 2 < p < 4 and a2 �= 0, then a2 > 0 and we have a critical exponent
given by β = 1

p .
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It is also possible to give more precise conditions for a higher order expansion of k
in order to have a critical exponent less than 1

4 , the point (iii) of this proposition
is just an example of how to get an exponent less than 1

2 . We will only detail the
proofs of the first two points, the last one can be done in the same way, with more
computations, which are left to the reader.

Proof. We only detail the first two points, the last one is done in the same way,
with more complicate computations. We recall that k( j (κ)) = κ by definition of j .
So we get that κ ∼ nj (κ)

ρc
as κ → 0. And using (4.1), we obtain

κ

j (κ)
= k( j (κ))

j (κ)
= n

ρc
− a
(κρc

n

)q + o(κq).

Furthermore, we have c(κ)
κ

= 1
n − 1

n2(n+2)
κ2 + O(κ4) (see [17], Remark 3.5)

as κ → 0. So we get, as κ → 0:

1

ρ
= c(κ)

j (κ)
= κ

j (κ)

c(κ)

κ
= 1

ρc

(

1 − a( ρc
n )

q+1 κq − 1
n(n+2) κ

2
)

+ o(κmin(q,3)).

So since κ �→ c(κ)
j (κ) is decreasing, if q < 2 and a �= 0 we have a > 0. In this case,

we get that ρ = ρc(1 + a( ρc
n )

q+1 κq) + o(κq) as κ → 0. Hence, as ρ
>→ ρc, we

have κ ∼ n
1+ 1

q

a
1
q (ρc)

1+ 2
q
(ρ − ρc)

1
q . Since c(κ) ∼ κ

n as κ → 0, we obtain (i).

For the same reason, if q > 2, we get ρ = ρc(1 + 1
n(n+2) κ

2) + o(κmin(q,3))

as κ → 0, and then κ ∼
√

n(n+2)
ρc

(ρ − ρc) as κ → 0, which proves point (ii). �
The hypothesis in Proposition 4.1 is not explicit in terms of the alignment and

diffusion rates ν and τ . We have a more direct criterion in terms of k which is given
below (but which is more restricted in terms of the critical exponents that can be
attained).

Lemma 3. If k(|J |)
|J | is a non-increasing function of |J |, then we have ( j

c )
′ > 0

for all κ > 0. In this case, the critical exponent, if it exists, can only take values
in [ 1

2 , 1].
Proof. We have that d

dκ (
c(κ)
κ
) < 0 for κ > 0 (see [17]). Then

( j

c

)′ =
(κ

c

j

k( j)

)′ = κ

c

( j

k( j)

)′ +
(κ

c

)′ j

k( j)
< 0,

since ( j
k( j) )

′ � 0 ( j is an increasing function of κ and k(|J |)
|J | is a non-increasing

function of |J |). Now if we suppose that there is a critical exponent β according
to Definition 4.1, we get, using the fact that α(ρ) = c(κ) ∼ κ

n as κ → 0, that
1
ρ

= 1
ρc

− aκ
1
β + o(κ

1
β ) as κ → 0, with a = (ρc)

−2(nα0)
− 1
β . We then have

k( j)

j
= κ

c

c

j
=
(

n + 1

n + 2
κ2 + O(κ4)

)(
1

ρc
− aκ

1
β + o

(

κ
1
β

))

= n

ρc
+ 1

(n + 2)ρc
κ2 − naκ

1
β + o

(

κ
min
(

2, 1
β

))

.
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Then β cannot be less than 1
2 , otherwise the function k( j (κ))

j (κ) could not be a nonin-
creasing function of κ in the neighborhood of 0. �
Remark 4.2. When this criterion is satisfied, we can also use the result of
Remark 3.1. Indeed, in that case we get easily that ρ̂ = ρc, and we obtain that

for any ρ < ρc, there is a global rate of decay for the modified H− n−1
2 norm: for

all f0 ∈ H− n−1
2 (S), we have the estimation (3.18).

4.3. First Order Phase Transition and Hysteresis

We now turn to a specific example, where all the features presented in the
stability study can be seen. We focus on the case where ν(|J |) = |J |, as in [17], but
we now take τ(|J |) = 1/(1 + |J |). From the modeling point of view, this can be
related to the Vicsek model with vectorial noise (also called extrinsic noise) [1,5],
since in that case the intensity of the effective noise is decreasing when the neighbors
are well aligned.

In this case, we have k(|J |) = |J | + |J |2, so the assumptions of Lemma 3 are
not fulfilled, and the function j is given by j (κ) = 1

2 (
√

1 + 4κ − 1).

Expanding j
c when κ is large or κ is close to 0, we get

j

c
=
{

n (1 − κ)+ O(κ2) as κ → 0,√
κ + O(1) as κ → ∞.

Consequently, there exist more than one family of non-isotropic equilibria when ρ
is close to ρc = n (and ρ < ρc).

The function κ �→ j (κ)
c(κ) can be computed numerically. The results are displayed

in Fig. 2 in dimensions n = 2 and n = 3.
We observe the following features:

Fig. 2. The function κ �→ j (κ)
c(κ) , in dimensions 2 and 3
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• There exists a unique critical point κ∗ for the function j
c , corresponding to its

global minimum ρ∗ (we obtain numerically ρ∗ ≈ 1.3726 and κ∗ ≈ 1.2619
if n = 2, and ρ∗ ≈ 1.8602 and κ∗ ≈ 1.9014 if n = 3).

• The function j
c is strictly decreasing in [0, κ∗) and strictly increasing in (κ∗,∞).

We conjecture that this is the exact behavior of the function j
c , called unimodality.

From these properties, it follows that the solution associated to an initial condition f0
with massρ can exhibit different types of behavior, depending on the three following
regimes for ρ.

Proposition 4.3. We assume that the function j
c is unimodal, as described above.

Then we have the following hysteresis phenomenon:

(i) If ρ < ρ∗, then the solution converges exponentially fast to the uniform equi-
librium f∞ = ρ.

(ii) If ρ∗ < ρ < n, there are two families of stable solutions: either the uniform
equilibrium f = ρ or the von Mises–Fisher distributions of the form ρMκ�

where κ is the unique solution with κ > κ∗ of the compatibility equation (2.18)
and � ∈ S. If f0 is sufficiently close to one of these equilibria, there is expo-
nential convergence to an equilibrium of the same family.
The von Mises–Fisher distributions of the other family [corresponding to solu-
tion of (2.18) such that 0 < κ < κ∗] are unstable in the sense given in
Proposition 3.5.

(iii) If ρ > n and J f0 �= 0, then there exists �∞ ∈ S such that f converges
exponentially fast to the von Mises–Fisher distribution ρMκ�∞ , where κ is
the unique positive solution to the compatibility equation ρc(κ) = j (κ).

Proof. Again, it is a direct application of Propositions 3.2–3.4 and Theorem 2. �
Remark 4.3. (i) At the critical point ρ = ρ∗, the uniform equilibrium is stable

(and for any initial condition sufficiently close to it, the solution converges
exponentially fast to it), but the stability of the family of von Mises–Fisher
distributions ρ∗Mκ∗�, for � ∈ S, is unknown.

(ii) At the critical point ρ = n, the family of von Mises–Fisher distributions of
the form nMκc�, for � ∈ S and where κc is the unique positive solution
of (2.18), is stable. For any initial condition sufficiently close to nMκc� for
some � ∈ S, there exists �∞ such that the solution converges exponentially
fast to nMκc�∞ . However, in this case, the stability of the uniform distribu-
tion f = n is unknown.

(iii) As previously, in the special case J f0 = 0, the equation reduces to the heat
equation and the solution converges to the uniform equilibrium.

The order parameter c1 as a function of ρ [that is c1(ρ) = c(κ) with ρ = j (κ)
c(κ) ]

is depicted in Fig. 3 for dimension 2 or 3. The dashed lines corresponds to branches
of equilibria which are unstable.

The hysteresis phenomenon can be described by the hysteresis loop. If the
parameter ρ starts from a value less than ρ∗, and increases slowly, the only stable
distribution is initially the uniform distribution and it remains stable, until ρ reaches
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Fig. 3. Phase diagram of the model with hysteresis, in dimensions 2 and 3

Fig. 4. Hysteresis loop for the order parameter c1 in a numerical simulation of the homoge-
neous kinetic equation with time varying ρ [see (A.1)], in dimension 2. The red curve is the
theoretical curve, the blue one corresponds to the simulation (color figure online)

the critical value ρc. For ρ > ρc, the only stable equilibria are the von Mises–
Fisher distributions. The order parameter then jumps from 0 to c1(ρc). If then the
density ρ is further decreased slowly, the von Mises–Fisher distributions are stable
until ρ reaches ρ∗ back. For ρ < ρ∗, the only stable equilibrium is the uniform
distribution, and the order parameter jumps from c1(ρ∗) to 0. The order parameter
spans an oriented loop called hysteresis loop.

This hysteresis loop can be observed numerically at the kinetic level or at the
particle level. The plots of the order parameter for such numerical simulations
are given by Figs. 4 and 5. The details of the numerical simulations are provided
in Appendix A. The key point to be able to perform these numerical simulations
while varying the parameter ρ in time is to rescale the equation in order to see the
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Fig. 5. Hysteresis loop for the order parameter c1 in a numerical simulation of the homoge-
neous particle model with varying ρ [see (A.2)–(A.3)], in dimension 2

parameter ρ as a coefficient of this new equation, and not anymore as the mass of
the initial condition (normalized to be a probability measure).

We can also obtain the theoretical diagrams for the free energy and the rates
of convergences. For this particular example, the free energies F(ρ) and Fκ [cor-
responding respectively to the uniform distribution and to the von Mises–Fisher
distribution ρMκ� for a positive solution κ of the compatibility equation (2.18)]
are given by

F(ρ) = ρ ln ρ,

Fκ = ρ ln ρ + 〈ρ ln Mκ�〉M − 1

2
j2 − 1

3
j3

= ρ ln ρ − ρ ln
∫

eκ cos θdω − 1

6
(κ − j)+ 2

3
jκ.

The plots of these functions are depicted in dimensions 2 and 3 in the left plot of
Fig. 6. Since the functions are very close in some range, we magnify the differ-
ence Fκ −F(ρ) in the right plot of Fig. 6. The dashed lines correspond to unstable
branches of equilibria.

We observe that the free energy of the unstable non-isotropic equilibria (in
dashed line) is always greater than the one of the uniform distribution. There
exist ρ1 ∈ (ρ∗, ρc) and a corresponding solution κ1 of the compatibility solu-
tion (2.18) (with κ1 > κ∗, corresponding to a stable family of non-isotropic equi-
libria) such that Fκ1 = F(ρ1). If ρ < ρ1, the global minimizer of the free energy
is the uniform distribution, while if ρ > ρ1, then the global minimum is reached
for the family of stable von Mises–Fisher equilibria. However, there is no easy way
to assess the value of ρ1 numerically. We observe that the stable von Mises–Fisher
distribution has larger free energy than the uniform distribution if ρ < ρ1 and
therefore consists of a metastable state. On the contrary, the uniform distribution
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Fig. 6. Free energy levels of the different equilibria (left), and difference of free energies of
anisotropic and uniform equilibria (right), as functions of the density, in dimensions 2 and 3.
The dashed lines in the right picture corresponds to unstable equilibria. At the density ρ1,
the free energies of the stable anisotropic and the uniform equilibria are the same

has larger free energy than the stable von Mises–Fisher distributions if ρ > ρ1 and
now, consists of a metastable state.

The rates of convergence to the stable equilibria, following Proposition 3.4 and
Theorem 2, are given by

λ0 = (n − 1)
(

1 − ρ

n

)

, for ρ < ρc = n,

λκ = 1

1 + j
�κ

(

1 −
(1

c
− c − n − 1

κ

)

j (1 + 2 j)
)

, for ρ > ρ∗,

whereλ0 is the rate of convergence to the uniform distributionρ, andλκ is the rate of
convergence to the stable family of von Mises–Fisher distributions ρMκ�, where κ
is the unique solution of the compatibility condition (2.18) such that κ > κ∗.
Details for the numerical computation of the Poincaré constant�κ are given in the
appendix of [10]. The computations in dimensions 2 and 3 are depicted in Fig. 7.
We observe that the rate of convergence to a given equilibrium is close to zero
when ρ is close to the corresponding threshold for the stability of this equilibrium,
and large when ρ is far from this threshold. Moreover, the rate λκ of convergence
to a von Mises–Fisher distribution is unbounded as ρ → ∞, while the rate λ0 of
convergence to the uniform distribution is bounded by n − 1.

5. Macroscopic Models, Hyperbolicity, and Diffusivity

We now go back to the spatially inhomogeneous system. We want to investigate
the hydrodynamic models that we can derive from the kinetic equation (2.5).

5.1. Scalings

In order to understand the roles of the various terms, it is useful to introduce
dimensionless quantities. We set t0 the time unit and x0 = a t0 the space unit.
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Fig. 7. Rates of convergence to both types of stable equilibria, as functions of the density ρ,
in dimensions 2 and 3

We assume that the range of the interaction kernel K is R, meaning that we
can write K (|x |) = 1

Rn K̃ ( |x |
R ) (we recall that K is normalized to 1, so we still

have
∫

K̃ (|ξ |) dξ = 1). We also assume that K̃ has second moment of order 1, that
is K̃2 = O(1), where

K̃2 = 1

2n

∫

Rn
K̃ (|ξ |)|ξ |2 dξ. (5.1)

We now introduce dimensionless variables x̃ = x/x0, t̃ = t/t0, and we make the
change of variables f̃ (̃x, ω, t̃) = xn

0 f (x0 x̃, ω, t0̃t), J̃ f̃ (̃x, t̃) = xn
0 J f (x0 x̃, t0̃t)/a.

Finally, we introduce the dimensionless quantities:

η = R

x0
, ν̂(|J̃ f̃ |) = ν(|J f |) t0, τ̂ (|J̃ f̃ |) = τ(|J f |) t0.

In this new system of coordinates, the system (2.5) is written as follows [we still
use the notation J f (x, t) = ∫

S
f (x, ω, t) ω dω]:

{

∂t f + ω · ∇x f + ν̂(|J f |)∇ω · (Pω⊥ ω̄ f f ) = τ̂ (|J f |)ω f

J f (x, t) = (Kη ∗ J f )(x, t) dy, ω̄ f = J f
|J f | ,

(5.2)

where we have dropped the tildes for the sake of clarity, and where Kη is the
rescaling of K given by

Kη(x) = 1

ηn
K
( x

η

)

. (5.3)

Now, by fixing the relations between the three dimensionless quantities (5.1), we
define the regime we are interested in. We suppose that the diffusion and social
forces are simultaneously large, while the range of the social interaction η tends
to zero. More specifically, we let ε � 1 be a small parameter and we assume
that τ̂ = O(1/ε) (large diffusion), ν̂ = O(1/ε) (large social force). In order to
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highlight these scaling assumptions, we define τ �, ν�, which are all O(1) and such
that

τ̂ = 1

ε
τ �, ν̂ = 1

ε
ν�. (5.4)

Since η is supposed to be small, using the fact that K is isotropic, we can first get
the Taylor expansion of J f with respect to η, using (5.3) and (5.1), when J f is
sufficiently smooth with respect to the space variable x :

J f = J f + η2 K2x J f + O(η4). (5.5)

Inserting this expansion into (5.2), and dropping all “hats” and “sharps”, we are
lead to:

ε(∂t f + ω · ∇x f )+ K2η
2[∇ω · (Pω⊥	 f f )− m fω f

] = Q( f )+ O(η4), (5.6)

with

Q( f ) = −ν(|J f |)∇ω · (Pω⊥� f f )+ τ(|J f |)ω f,

J f (x, t) =
∫

S

f (x, ω, t) ω dω, � f = J f

|J f |
	 f = ν(|J f |)

|J f | P�⊥
f
x J f + (� f ·x J f ) ν

′(|J f |)� f ,

m f = (� f ·x J f ) τ
′(|J f |),

where the primes denote derivatives with respect to |J |. We recover the same defin-
ition of Q as in the spatially homogeneous setting (2.8), and the additional terms 	 f

and m f do not depend on the velocity variable ω (they only depend on J f and its
Laplacian x J f ).

Our plan is now to investigate the hydrodynamic limit ε → 0 in this model,
within two different regimes for the range of the social interaction η: firstly, η =
O(ε), and secondly,η = O(√ε). We have seen in [11] that the second scaling allows
us to retain some of the nonlocality of the social force in the macroscopic model,
while the first one does not. Indeed, ε corresponds to the characteristic distance
needed by an individual to react to the social force, while η is the typical distance at
which agents are able to detect their congeners. The first scaling assumes that these
two distances are of the same order of magnitude. The second one corresponds
to a large detection region compared to the reaction distance. Which one of these
two regimes is biologically relevant depends on the situation. For instance, we can
imagine that the first scaling will be more relevant in denser swarms because in
such systems, far agents are concealed by closer ones.

In both cases, we will write f as f ε to insist on the dependence on ε. The limiting
behavior of the function f ε as ε → 0 is supposed to be a local equilibrium for the
operator Q, as can be seen in (5.6). Keeping in mind the results of the previous
section on the spatial homogeneous version, we will assume that f ε converges
to a stable equilibrium of a given type in a given region. Depending on the type
of equilibrium (uniform distribution or von Mises–Fisher distribution), we will
observe different behaviors.
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5.2. Disordered Region: Diffusion Model

We consider a region where f ε converges as ε → 0 to a uniform equilib-
rium ρ(x, t) which is stable. Therefore we must have ρ < ρc.

We first remark that we can integrate (5.2) on the sphere to get the following
conservation law (conservation of mass):

∂tρ f ε + ∇x · J f ε = 0. (5.7)

Therefore, if we suppose that the convergence is sufficiently strong, J f ε converges
to 0, and we get ∂tρ = 0.

To obtain more precise information, we are then looking at the next order in ε
in the Chapman–Enskog expansion method, in the same spirit as in the case of
rarefied gas dynamics (see [9] for a review). We obtain exactly the same model as
in [10]. We prove the following theorem:

Theorem 3. With both scalings η = O(√ε) and η = O(ε), when ε tends to zero,
the (formal) first order approximation to the solution of the rescaled mean-field
model (5.6) in a “disordered region” (where the solution locally converges to a
stable uniform distribution) is given by

f ε(x, ω, t) = ρε(x, t)− ε
n ω · ∇xρ

ε(x, t)

(n − 1)nτ0
(

1 − ρε(x,t)
ρc

) , (5.8)

where the density ρε satisfies the following diffusion equation

∂tρ
ε = ε

(n − 1)nτ0
∇x ·

(
1

1 − ρε

ρc

∇xρ
ε

)

. (5.9)

Proof. We let ρε = ρ f ε and write f ε = ρε+ε f ε1 (x, ω, t) (so we have
∫

S
f ε1 dω =

0). The assumption is that f ε1 is a O(1) quantity as ε → 0. We then get

J f ε = εJ f ε1
, (5.10)

and the model (5.6) becomes:

ε
(

∂tρ
ε + ω · ∇xρ

ε
) = −εν′(0)∇ω ·

(

Pω⊥ J f ε1
ρε
)

+ ετ0ω f ε1 +O(ε2)+O(η2ε).

(5.11)
Additionally, using (5.7) and (5.10), we get that ∂tρ

ε = O(ε). Therefore we can
put ε∂tρ

ε into the O(ε2) terms of (5.11) and get, in both scalings,

ω f ε1 = 1

τ0

(

∇xρ
ε − ν′(0)(n − 1)ρε J f ε1

)

· ω + O(ε).

We can solve this equation for f ε1 and, together with the fact that ν′(0) = τ0n
ρc

[thanks to the definition (2.20) of ρc], we get

f ε1 =
(

− 1

τ0(n − 1)
∇xρ

ε + nρε

ρc
J f ε1

)

· ω + O(ε).
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This gives us, using (3.3), that

J f ε1
= − 1

τ0n(n − 1)
∇xρ

ε + ρε

ρc
J f ε1

+ O(ε),

which implies that f ε1 = n J f ε1
· ω + O(ε) and that we have

J f ε1
= −1

(n − 1)nτ0
(

1 − ρε

ρc

)∇xρ
ε + O(ε).

Therefore we obtain the expression (5.8) of f ε1 . Moreover, inserting this expression
of J f ε1

into the conservation of mass (5.7) gives the diffusion model (5.9). �

Remark 5.1. The same remark was made in [10] (see Remark 3.1 therein): the
expression of f ε1 , which is given by the O(ε) term of (5.8) confirms that the approx-
imation is only valid in the region where ρc − ρε � ε. The diffusion coefficient
is only positive in the case where the uniform distribution is stable for the homo-
geneous model (ρε < ρc) and it blows up as ρε tends to ρc, showing that the
Chapman-Enskog expansion loses its validity.

5.3. Ordered Region: Hydrodynamic Model and Hyperbolicity

We now turn to the derivation of a macroscopic model in a region where the local
equilibria follow a given branch of stable von Mises–Fisher equilibria. More pre-
cisely, we suppose that the function f ε converges towards ρ(x, t)Mκ(ρ(x,t))�(x,t)

in a given region, where κ(ρ) is a branch of solutions of the compatibility equa-
tion (2.22) defined for a given range of positive values of ρ, and which correspond
to stable equilibria (in the sense of Theorem 2). This implies that κ is an increasing
function of ρ. The goal is to prove the following theorem, which gives the evolution
equations for ρ(x, t) and�(x, t), assuming that the convergence of f ε is as smooth
as needed.

Theorem 4. We suppose that f ε converges as ε→0 towardsρ(x, t)Mκ(ρ(x,t))�(x,t),
for a positive density ρ(x, t) and an orientation�(x, t) ∈ S, and where ρ �→ κ(ρ)

is a branch of solutions of the compatibility equation (2.22). We also suppose that
the convergence of f ε and of all its needed derivatives is sufficiently strong. Then ρ
and � satisfy the following system of partial differential equations:

∂tρ + ∇x · (ρc1�) = 0, (5.12)

ρ (∂t�+ c2 (� · ∇x )�)+� P�⊥∇xρ = K2 δ P�⊥x (ρc1�), (5.13)

where K2 is the scaling parameter corresponding to the limit of K2
η2

ε
as ε → 0,

and where the coefficients c1, c2, � and δ are the following functions of ρ(x, t)
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(where the dependence on ρ for κ or on κ(ρ) for c, c̃ or j is omitted when no
confusion is possible):

c1(ρ) = c(κ) (5.14)

c2(ρ) = c̃(κ) =
〈

cos θ hκ(cos θ) sin2 θ
〉

M
〈

hκ(cos θ) sin2 θ
〉

M

=
∫ π

0 cos θ hκ(cos θ) eκ cos θ sinn θ dθ
∫ π

0 hκ(cos θ) eκ cos θ sinn θ dθ
,

(5.15)

�(ρ) = 1

κ
+ (̃c − c)

ρ

κ

dκ

dρ
= n − κ

c + κ c̃ − 1 + κ
j

d j
dκ

κ
(

n − κ
c + κc − 1 + κ

j
d j
dκ

) , (5.16)

δ(ρ) = ν( j)

c

(n − 1

κ
+ c̃
)

. (5.17)

The function hκ is defined below at Proposition 5.3.

Proof. The first equation (5.12) (for the time evolution of ρ) can easily be derived
from the conservation of mass (5.7), since the hypotheses imply that J f ε converges
to ρc(κ(ρ))�, and thanks to (5.5), we obtain:

∂tρ + ∇x · (ρc(κ(ρ))�) = 0.

The main difficulty is the derivation of an equation of evolution for �, since we
do not have any conservation relation related to this quantity. To this end, the main
tool consists in the determination of the so-called generalized collisional invari-
ants, introduced by Degond and Motsch [12] to study the model corresponding
to the case ν = τ = 1 and the scaling η = O(ε) in our setting. These gener-
alized collisional invariants were then used successfully to derive the same kind
of evolution equation for some variants of the model we are studying (see [10]
when ν(|J |) = |J | and τ = 1, [16] for the case where ν is a function of ρ, and
where the interaction is anisotropic, [13] for another type of alignment, based on the
curvature of the trajectories, and [11] in the case of the second scaling η = O(√ε)
when ν = τ = 1).

The idea is to introduce, for a given κ > 0 and � ∈ S, the operator Lκ�
(linearized operator of Q):

Lκ�( f ) = ω f − κ∇ω · ( f Pω⊥�) = ∇ω ·
[

Mκ�∇ω
(

f

Mκ�

)]

,

so that we have Q( f ) = τ(|J f |)Lk(|J f |)� f ( f ). And we define the set of generalized
collisional invariants Cκ�:

Definition 5.1. The setCκ� of generalized collisional invariants associated toκ ∈ R

and � ∈ S, is the following vector space:

Cκ� =
{

ψ

∣
∣
∣
∣

∫

ω∈S

Lκ�( f ) ψ dω = 0, ∀ f such that P�⊥ J f = 0

}

.
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Hence, if ψ is a collisional invariant in Cκ�, we have
∫

ω∈S
Q( f ) ψ dω = 0 for any

function f such that k(|J f |) = κ and � f = �.
The determination of Cκ� has been done in [16]. We recall the result here:

Proposition 5.1. There exists a positive function hκ : [−1, 1] → R such that

Cκ� = {ω �→ hκ(ω ·�)A · ω + C, C ∈ R, A ∈ R
n, with A ·� = 0}.

More precisely, hκ(cos θ) = gκ (θ)
sin θ , where gκ is the unique solution in the space V

of the elliptic problem L̃∗
κg(θ) = sin θ , where

L̃∗
κg(θ) = − sin2−n θe−κ cos θ d

dθ (sinn−2 θeκ cos θg′(θ))+ n−2
sin2 θ

g(θ),

V =
{

g | (n − 2)(sin θ)
n
2 −2g ∈ L2(0, π), (sin θ)

n
2 −1g ∈ H1

0 (0, π)
}

.

We now define the vector-valued generalized collisional invariant associated to κ
and � as

�ψκ�(ω) = hκ(ω ·�)P�⊥ω,

and we have the following useful property:

∀ f such that k(|J f |) = κ and � f = �,

∫

ω∈S

Q( f ) �ψκ� dω = 0.

The next step consists in multiplying the rescaled kinetic model (5.6) by 1
ε

�ψκε� f ε ,
with κε = k(|J f ε |), and to integrate it on the sphere. We get,

P(�ε)⊥

(

Xε + K2
η2

ε
[Y ε + Z ε]

)

= O
(
η4

ε

)

,

where

Xε =
∫

ω∈S

(

∂t f ε + ω · ∇x f ε
)

hκε (ω ·�ε)ω dω ,

Y ε =
∫

ω∈S

∇ω · (Pω⊥	 f ε f ε
)

hκε (ω ·�ε)ω dω,

Z ε =
∫

ω∈S

m f εω f ε hκε (ω ·�ε)ω dω.

Now we can pass to the limit ε → 0. We denote by K2 the limit of K2
η2

ε
, which

makes sense in both scalings [either η = O(ε), and K2 = 0, or η = O(√ε) and
we suppose that K2 is a positive quantity], and we obtain

P�⊥ (X + K2[Y + Z ]) = 0, (5.18)
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where, since we suppose that f ε → ρ(x, t)Mκ(ρ(x,t))�(x,t)), we have

X =
∫

ω∈S

(∂t (ρMκ�)+ ω · ∇x (ρMκ�)) hκ(ω ·�)ω dω ,

Y =
∫

ω∈S

∇ω · (Pω⊥	ρMκ�ρMκ�) hκ(ω ·�)ω dω ,

Z =
∫

ω∈S

mρMκ�ω(ρMκ�) hκ(ω ·�)ω dω.

The computation of P�⊥ X has been done in [16]: we get

P�⊥ X =
〈

hκ(cos θ) sin2 θ
〉

M
ρ

κ

n − 1
(∂t�+ c̃ (� · ∇x )�)+� P�⊥∇xρ,

(5.19)
where c̃ and � are given by (5.15) and the first expression of (5.16). We now
compute P�⊥Y and P�⊥ Z . Since ∇ω · (Pω⊥ A) = −(n −1)A ·ω for any vector A ∈
R

n , we get

Y = ρ

∫

ω∈S

[−(n − 1 + κ ω ·�) 	ρMκ� · ω + κ 	ρMκ� ·�] hκ(ω ·�)ω Mκ� dω.

Writing ω = cos θ � + sin θ v (orthogonal decomposition with v ∈ Sn−2), and
using the fact that

∫

Sn−2
v dv = 0 and

∫

Sn−2
v ⊗ v dv = 1

n−1 P�⊥ , we obtain

P�⊥ Y = −
〈

hκ(cos θ) sin2 θ
〉

M
ρ

n − 1 + κ c̃

n − 1
P�⊥	ρMκ�

= −
〈

hκ(cos θ) sin2 θ
〉

M
ν(ρ c)

n − 1 + κ c̃

(n − 1)c
P�⊥x (ρc�). (5.20)

Finally, since ω(Mκ�) is a function of cos θ , the same decomposition and argu-
ment shows that we have P�⊥ Z = 0. Inserting (5.19) and (5.20) into (5.18) and
dividing by κ

n−1 〈hκ(cos θ) sin2 θ〉M ends the derivation of (5.13), with δ given
by (5.17).

We finally derive the expression of � given by the right-hand side of (5.16).
We differentiate the compatibility condition ρc = j with respect to κ (in a given
local branch of solutions), and we get c dρ

dκ + ρ dc
dκ = d j

dκ . As was shown in [10], we
have dc

dκ = 1 − (n − 1) c
κ

− c2, therefore we get

κ

ρ

dρ

dκ
= c

κ

j

dρ

dκ
= κ

j

d j

dκ
− ρ

κ

j

(

1 − (n − 1)
c

κ
− c2

)

=
(

n − 1 + κ

j

d j

dκ
− κ

c
+ κc

)

,

and finally, thanks to the first expression of (5.16), we have

� = 1

κ
+ c̃ − c

n − 1 + κ
j

d j
dκ − κ

c + κc
= n − κ

c + κ c̃ − 1 + κ
j

d j
dκ

κ
(

n − κ
c + κc − 1 + κ

j
d j
dκ

) , (5.21)

which gives an expression of� in terms of κ and the functions c, c̃ and j only. �
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5.4. Hyperbolicity

As shown in [11,12,16], and more precisely in [10] when the coefficients c1, c2
and � depend on ρ, we have the following:

Proposition 5.2. The SOH model (5.12)–(5.13) is hyperbolic if and only if� > 0.

In that case it has been proved in [11] that the SOH model is locally well-posed in
dimension 2 (provided δ � 0) and in dimension 3 (for the scaling where K2 = 0,
with an additional condition for the orientation of the initial data). Therefore, in
this section, we study the sign of these coefficients in some generic situations.

Conjecture 5.1. For all κ > 0, we have 0 < c̃(κ) < c(κ). Consequently, in the
SOH model, we have δ > 0, and the SOH model is well-posed if it is hyperbolic.

Numerically, this conjecture is clear, at least in dimensions 2 and 3, as can be seen
in Figure 3 of [10]. We know it is true when κ is small or large, thanks to the
asymptotics of c and c̃ given in [16]:

c =
{

1
n κ − 1

n2(n+2)
κ3 + O(κ5) as κ → 0,

1 − n−1
2κ + (n−1)(n−3)

8κ2 + O(κ−3) as κ → ∞,
(5.22)

c̃ =
{

2n−1
2n(n+2) κ + O(κ2) as κ → 0,

1 − n+1
2κ + (n+1)(3n−7)

24κ2 + O(κ−3) as κ → ∞.
(5.23)

These asymptotics can also help us to know if the system is hyperbolic in vari-
ous regimes. In the next four propositions, we provide different cases where we
can determine the hyperbolicity of the SOH model with simple assumptions on
the behavior of the function k. The first result is about non-hyperbolicity in the
neighborhood of the critical threshold ρ∗ for a first order phase transition.

Proposition 5.3. Suppose that there is a first order phase transition with hysteresis
as described by Proposition 4.3. If Conjecture 5.1 is true, then the SOH model
associated to the branch of stable von Mises–Fisher equilibria (for ρ > ρ∗) satis-
fies �(ρ) < 0 if ρ is sufficiently close to ρ∗. The SOH model is not hyperbolic.

Proof. We have ( j
c )

′(κ∗) = 0 and ( j
c )

′(κ) > 0 for κ > κ∗. This gives that dκ
dρ →

+∞ as κ → κ∗, and then we use (5.16) and Conjecture 5.1 to get that � → −∞
as κ → κ∗ (for κ > κ∗). �

We now provide the same type of proposition in the neighborhood of the critical
thresholdρc in the case of a second order phase transition. The following proposition
gives a strong link between hyperbolicity and the critical exponent of a second order
phase transition: it is hyperbolic when the critical exponent β is greater than 1

2 , and
not hyperbolic when β < 1

2 (this threshold value 1
2 also corresponds to the lowest

possible critical exponent which can appear in the case of the simple criterion given
by Lemma 3).
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Proposition 5.4. We suppose that there is a second order phase transition as
described by Proposition 4.1, and we consider the SOH model associated to the
von Mises–Fisher equilibria (for ρ > ρc). We suppose furthermore that there is a
critical exponent β as stated in Definition 4.1, and we assume that this estimation
is also true at the level of the derivative:

dκ

dρ
∼ nα0β(ρ − ρc)

β−1, as ρ
>→ ρc.

Then

(i) If β < 1
2 , then �(ρ) < 0 if ρ is sufficiently close to ρc. The SOH model is not

hyperbolic.
(ii) If β > 1

2 , then �(ρ) > 0 if ρ is sufficiently close to ρc. The SOH model is
hyperbolic.

(iii) If β = 1
2 and α0 �=

√
4(n+2)
5n ρc

, then when ρ is sufficiently close to ρc, �(ρ) is

of the sign of
√

4(n+2)
5n ρc

− α0.

Proof. We have κ(ρ) ∼ nα0(ρ − ρc)
β , as ρ

>→ ρc. So we get ρ
κ

dκ
dρ ∼ β

ρc
ρ−ρc

.

Finally, using (5.22)–(5.23), we get c̃ − c ∼ − 5
2n(n+2) κ as κ → 0. We can then

obtain an equivalent of � as ρ
>→ ρc, with (5.16):

�(ρ) ∼

⎧

⎪⎪⎨

⎪⎪⎩

1
n α0

(ρ − ρc)
−β if β > 1

2

− 5 ρc α0 β
2(n+2) (ρ − ρc)

β−1 if β < 1
2(

1
n α0

− 5 ρc α0
4(n+2)

)
1√
ρ−ρc

if β = 1
2 ,

where the last expression is valid only if 1
nα0

�= 5ρcα0
4(n+2) . The sign of � is then

directly given by these equivalents, and this ends the proof. �
It is possible to refine Proposition 4.2 in order to have the critical exponent esti-
mation on the level of the derivative, and then express the hyperbolicity of the
system with the help of the expansion of k only. In summary, we get the following
proposition, the proof of which is left to the reader:

Proposition 5.5. If k satisfies:

k′(|J |) = n

ρc
− a(q + 1)|J |q + o(|J |q) as |J | → ∞,

then we have

(i) if q < 2 and a > 0, the critical exponent is given by β = 1
q and the SOH

model is hyperbolic when ρ is sufficiently close to ρc.

(ii) if q = 2 and a > n2

4 ρ3
c (n+2)

, then β = 1
2 and the SOH model is hyperbolic

when ρ is sufficiently close to ρc.

(iii) if q = 2 and − n2

ρ3
c (n+2)

< a < n2

4 ρ3
c (n+2)

, then β = 1
2 and the SOH model is

not hyperbolic for ρ close to ρc.
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We finally give a result about hyperbolicity when ρ is large, depending on the
behavior of k as |J | → ∞.

Proposition 5.6. We suppose that k(|J |) ∼ a |J |b as |J | → ∞ (with a, b > 0), and
that this equivalent is also true at the level of the derivative: k ′(|J |) ∼ a b |J |b−1.
We consider the SOH model associated to a branch of stable von Mises–Fisher
equilibria.

(i) If 0 < b < 1, then for ρ sufficiently large, �(ρ) < 0 and the SOH model is
not hyperbolic.

(ii) If b > 1, then for ρ sufficiently large, �(ρ) > 0 and the SOH model is
hyperbolic.

(iii) If b = 1, we have to make stronger hypotheses on k. For example, if we suppose
that, as |J | → ∞, we have k(|J |) = a|J |+r+o(1) and k′(|J |) = a+o(|J |−1)

with r �= n+1
6 , then for ρ sufficiently large, �(ρ) is of the sign of r − n+1

6 .

Proof. We first use the expansion (5.22) to get that n − 1 − κ
c + κc ∼ −n+1

2κ
as κ → ∞, and that c̃ − c = − 1

κ
+ n−2

3κ2 + o(κ−2). Using Hypothesis 2.2, the

assumptions become j (κ) ∼ ( κa )
1
b and d j

dκ = [k′( j (κ))]−1 ∼ (a b)−1( κa )
1
b −1

as κ → ∞. This gives ρ = j (κ)
c(κ) ∼ ( κa )

1
b as κ → ∞, which can be inverted to

get κ ∼ a ρb as ρ → ∞.
Finally, for b �= 1, we get, with the left part of (5.21):

�(ρ) ∼
(

1 − 1

b

) 1

a ρb
as ρ → +∞.

This proves the first two points. In the case where b = 1, we suppose that we have
the expansions k(|J |) = a|J | + r + o(1) and k′(|J |) = a + o(|J |−1) as |J | → ∞.
Then j (κ) = 1

a (κ − r)+ o(1) and d j
dκ = 1

a + o(κ−1). And we finally get, using the
left part of (5.21), as κ → +∞:

� = 1

κ
+ −κ−1 + n−2

3 κ−2 + o(κ−2)

1 + (r − n−1
2

)

κ−1 + o(κ−1)

= (r − n+1
6

)

κ−2 + o(κ−2),

Since κ ∼ a ρ as ρ → ∞, we have �(ρ) ∼ 1
a2 (r − n+1

6 )ρ−2 as ρ → ∞ and this
proves point (iii). �
Remark 5.2. The case b = 0 can also be treated if we assume Conjecture 5.1.
This corresponds to the case where k takes values on [0, κmax) with κmax < ∞. If
furthermore we assume that its derivative satisfies k′ ∼ a|J |−b (with b > 1 and a >
0) as |J | → ∞, then after the same kind of computations we get that�(ρ) → +∞
as ρ → +∞, and the system is hyperbolic.

Let us now comment upon these results in the case of specific examples. The case
where ν(|J |) = |J | and τ(|J |) = 1 corresponds to the model studied in [10]. It was
shown to be non hyperbolic (numerically for all ρ > ρc = n, and theoretically for ρ
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large or close toρc). We now see that it corresponds to points (iii) of Propositions 5.6
and 5.5, which are the special cases separating hyperbolicity to non-hyperbolicity. A
really slight change in the function k in this model could easily lead to hyperbolicity,
while nearly keeping the same phase transition phenomena, from the point of view
of equilibria.

The case studied in Section 4.3 and leading to a first order phase transition
corresponds to the function k(|J |) = |J | + |J |2. Thanks to Propositions 5.3 and
5.6, we get that the corresponding SOH model is not hyperbolic in both regimes:
when ρ is close to ρ∗ and when ρ is sufficiently large. Numerical computations of
the coefficient � suggest that this is the case for all the values of ρ > ρ∗ (at least
in dimensions 2 and 3).

Finally, we are interested in the original model presented in [12], where ν and τ
are constant. We remark that Hypotheses 2.1 and 2.2 do not cover this model,
but we can see it as a limiting case of a regularized ν satisfying such hypotheses,
such as νε(|J |) = |J |

ε+|J | . In that case, we have ρεc = n ε τ0, and by Lemma 3 and
Proposition 4.2, we get that there is a second order phase transition with critical
exponent 1. Furthermore, with Remark 5.2 and Proposition 5.4, we get that the
corresponding SOH model is hyperbolic when ρ is large or close to ρc. Figs. 8
and 9 correspond to the plots of the phase diagram (the order parameter c) and of
the function � for three different values of ε, with τ0 = 1

3 and n = 2. We observe
that the system is always hyperbolic.

We get the same conclusion for a regularization given by νε(|J |) = |J |√
ε2+|J |2 ,

with a critical exponent β = 1
2 this time, and k satisfies the condition (ii) of

Proposition (5.5) if τ0 >
1√

2n(n+2)
. This gives a practical example of a second

order phase transition with the minimal critical exponent such that the associated
SOH model is hyperbolic in the neighborhood of the threshold ρc [indeed, in that
case, thanks to Proposition (5.4), we must have β � 1

2 ].

Fig. 8. Order parameter c1, as function of the density ρ, in dimension 2, for the regularized
model
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Fig. 9. Coefficient�, as function of the density ρ, in dimension 2, for the regularized model

6. Conclusion

In this work, we have provided a comprehensive and rigorous description of
phase transitions for kinetic models describing self-propelled particles interacting
through alignment. We have highlighted how their behavior results from the com-
petition between alignment and noise. We have considered a general framework,
where both the alignment frequency and noise intensity depend on a measure of
the local alignment. We have shown that, in the spatially homogeneous case, the
phase transition features (number and nature of equilibria, stability, convergence
rate, phase diagram, hysteresis) are totally encoded in the function obtained by
taking the quotient of the alignment and noise intensities as functions of the local
alignment. The phase transitions dealt with in this paper belong to the class of spon-
taneous symmetry-breaking phase transitions that also appear in many physics sys-
tems such as ferromagnetism, liquid crystals, polymers, etc. We have also provided
the derivation of the macroscopic models (of hydrodynamic or diffusion types) that
can be obtained from the knowledge of the stable equilibria and classified their
hyperbolicity. In particular, we have provided a strong link between the critical
exponent in the second order phase transition and the hyperbolicity of the hydrody-
namic model. In the future, we will investigate how the hydrodynamic and diffusion
regimes can be spatially connected through domain walls and find the dynamic of
these domain walls.
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Appendix A. Numerical Methodology for the Hysteresis Simulation

In this appendix, we give more details on the computation of the hysteresis loop
provided in Section 4.3. In order to highlight the role of the density ρ as the key
parameter for the phase transition, we introduce the probability measure f̃ = f

ρ

and we rewrite the homogeneous kinetic equation (2.7) in terms of f̃ . We get

∂t f̃ = τ(ρ|J f̃ |)ω f̃ − ν(ρ|J f̃ |)∇ω · (Pω⊥� f̃ f̃ ). (A.1)

When ρ is constant, this equation is equivalent to (2.7). We will now consider ρ
as a parameter of the equation (and not anymore a parameter for the mass of
initial condition, since f̃ is now a probability measure), but the long time behavior
(equilibria, stability, convergence) is still given by this parameter ρ. Finally, we let ρ
vary slowly with time (compared to the time scale of convergence to equilibrium,
given by Fig. 7), as we expect it would be the case in the spatial inhomogeneous
framework given by the kinetic equation (2.5).

Appendix A.1. Simulation at the Kinetic Level

Let us now present how the numerical simulations of the system (A.1) in dimen-
sion n = 2, depicted in Fig. 4, have been obtained. We start with an initial condition
which is a small perturbation of the uniform distribution, and we take a varying
parameter of the form ρ = 1.75 − 0.75 cos( πT t), with T = 500. We use a stan-
dard central finite different scheme (with 100 discretization points), implicit in time
(with a time step of 0.01). The only problem with this approach is that the solution
converges strongly to the uniform distribution for ρ < ρc. So after passing ρc, the
linear rate of increase for J f̃ is given by ρ

ρc
− 1, by virtue of (3.9), and is very

slow when ρ is close to ρc. So since J f̃ is initially very small when passing the
threshold ρ = ρc, the convergence to the stable von Mises–Fisher distribution is
very slow. Two ideas can be used to overcome this problem: either injecting noise
in the system, or more efficiently, adding a threshold ε and strengthening |J f̃ |
when ‖ f̃ − 1‖∞ � ε, replacing f̃ at the end of such a step by

f̃ + max(0, ε − ‖ f̃ − 1‖∞)� f̃ · ω.

We note that after this transformation, we still have ‖ f̃ − 1‖∞ � ε if it was the
case before applying the transformation.
Fig. 4 depicts the result of a numerical simulation with a threshold ε = 0.02.
We clearly see this hysteresis cycle, which agrees very well with the theoretical
diagram. The jumps at ρ = ρ∗ and ρ = ρc are closer to the theoretical jumps
when T is very large.
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Appendix A.2. Simulations at the Particle Level

Now, since the kinetic equation (2.5) comes from a limit of a particle system, we
are interested in observing this hysteresis phenomenon numerically at the level of
the particle system, where noise is already present in the model, since it is a system
of stochastic differential equations.
As for (2.5), it is easy to derive the mean-field equation (A.1), in the spirit of
Proposition 2.1, from the following system:

dωi = ν(ρ|J |)Pω⊥
i
� dt +√2τ(ρ|J |)Pω⊥

i
◦ dBi

t , (A.2)

� = J

|J | , J = 1

N

N
∑

i=1

ωi . (A.3)

Here, once again, the parameter ρ is a parameter of the equation, which can be
variable in time. We perform numerical simulations of this system for a large number
of particles, with ρ varying as in the numerical simulation of the kinetic model.
As before, we start with a initial condition which consists of N = 10,000 particles
uniformly distributed on S1, and we take ρ = 1.75 − 0.75 cos( πT t), with T = 500.
We use a splitting method for the random and the deterministic parts of this equation
(with a time step of 0.01). We then plot the order parameter c, given by |J |. The
result is given in Fig. 5.
Let us remark that, thanks to the central limit theorem, the mean J of N vectors
uniformly distributed on the circle has a law equivalent to a multivariate normal
distribution in R

2 centered at 0, and with covariance matrix 1
2N I2. Therefore |J | is

equivalent to a Rayleigh distribution of parameter 1√
2N

, and so the mean of |J | is

equivalent to
√
π

2
√

N
. In our case, that gives a mean of |J | of approximately 0.009, of

the same order as in the previous section, since the threshold ε ensures that, when f̃
is close to the uniform distribution |J f̃ | ≈ ε

2 with ε = 0.02.
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