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FLOW ON SWEEPING NETWORKS∗

PIERRE DEGOND† , MICHAEL HERTY‡ , AND JIAN-GUO LIU§

Abstract. We introduce a cellular automaton model coupled with a transport equation for flows
on graphs. The direction of the flow is described by a switching process where the switching probabil-
ity dynamically changes according to the value of the transported quantity in the neighboring cells.
A motivation is pedestrian dynamics during panic situations in a small corridor where the propa-
gation of people in a part of the corridor can be either left- or right-going. Under the assumptions
of propagation of chaos and mean-field limit, we derive a master equation and the corresponding
mean-field kinetic and macroscopic models. Steady-states are computed and analyzed and exhibit
the possibility of multiple metastable states and hysteresis.
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1. Introduction. We are interested in the prediction of qualitative properties
and large time behavior of cellular automata (CA) as appearing, for example, in
research on traffic and pedestrian flow [41, 42]. A typical CA is described by a finite
set of states lying on a regular lattice and some rules on how to change those within a
given time step. In contrast to existing approaches [1, 20, 41, 42], we investigate more
general graph geometries, and we couple this dynamic to a deterministic flow equation
for an additional quantity, for example, a density. The flow rates in the additional
equation depend on the states of the CA and vice versa. Specifically, we assume that
the density sweeps from one cell to one of the neighboring cells according to the state
of the CA, hence the term “sweeping network.” On the other hand, the cell-states
can switch from one state to another, according to a probability which depends on an
average of the sweeping quantity over the neighboring cells.

Several examples of applications of such sweeping networks can be envisioned.
Our first motivation is the modeling of pedestrian flows in corridors in a situation
of escape panic. There, the sweeping quantity is the density of pedestrians in a cell,
whereas the CA is the ensemble of the cell-states describing in which direction (left
or right) pedestrians can move. In a situation of escape panic, pedestrians may not
know which is the correct way to go (right or left) to escape the danger. Then, the
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Université Toulouse Paul Sabatier.

http://www.siam.org/journals/mms/12-2/92706.html
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FLOW ON SWEEPING NETWORKS 539

choice of the direction of motion may be constrained by the flow direction of the
majority. But the direction of the majority flow may change from one location to the
next. Here, we will assume that the local direction of the flow (i.e., the cell-state) has
a higher probability of changing if, in the neighboring location, the direction of the
flow is opposite. We will see that this rule may lead to a fast synchronization of the
flow direction in the entire corridor.

Another example consists of traffic or information networks whose characteristics
change with load or occupation. In this case, the sweeping quantity is the load or
occupation of the network: it obeys a flow equation whose flow direction is given by
the state of the CA at each node. Here, the state of the CA at one node is the index
of the neighboring nodes towards which the outgoing flow from the considered node is
directed. Hence, the state of the CA does not belong to the set {−1, 1}, but it is still a
finite set (which may differ from one node to the next). Therefore, the corresponding
dynamical system is not a CA in the restricted sense but shares similar features with
CA, such as the discreteness of the cell-states. For simplicity, we will still refer to it
as a CA.

One more example is that of supply networks. Such networks are used to describe
the flow of parts along a production line. In some instances, there may exist several
suppliers or several clients, and the procedure by which the supplier or the client
is chosen corresponds to the state of the network. This state may be influenced by
variables attached to the nodes of the network (such as loads, delays, and financial
reliability). The choice of the flow direction may in turn determine the flow of products
or money along the network.

Further applications include molecular transport in cell biology or bacterial mo-
tion [21].

In this paper we present a unified approach to such coupled problems. We con-
sider a CA coupled to a transport equation for a density attached to each cell of
the CA, where the flux function in the transport is dictated by the CA cell-states
locally. Further, the CA cell-states may switch randomly from one value to another
according to a switching rate which depends on an average of the density over the
neighboring cells. We first investigate a simple one-dimensional system, where the
cells are arranged along a line and have a periodic structure. Then, the cell-states are
just the variable zj ∈ {−1, 1}, where j is the cell index and zj = +1 (resp., zj = −1)
corresponds to sweeping the density towards the neighboring node to the right (resp.,
to the left), while the jth cell density is denoted by ρj ∈ R+.

From the discrete dynamics, we derive a master equation using a presentation
similar to that in [13]. The master equation provides the deterministic time evolution
of the joint N -cell probability distribution function (pdf) F(z1, . . . zN , ρ1, . . . ρN , t),
where N is the total number of cells of the CA. One distinctive feature of the dynami-
cal systems investigated here lies in the coupling of a stochastic system (the dynamics
of the states zj of the CA) with that of a deterministic system (the transport equation
for the cell-densities ρj). However, the stochasticity of the CA makes the dynamics of
the cell-densities random as well. This is why the resulting master equation is posed
on the high dimensional space (z1, . . . zN , ρ1, . . . ρN ) ∈ {−1, 1}N × RN

+ which encom-
passes both the cell-state random variables zj and the cell-densities ρj . This master
equation takes the form of a transport equation in the continuous density variables
(ρ1, . . . ρN ) and rate equations for the discrete CA cell-state variables (z1, . . . zN ). To
our knowledge, this form of a master equation has not been found elsewhere.

The master equation is posed on a huge dimensional space when N is large and
leads to overwhelming numerical complexity for practical use. Additionally, it is
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540 PIERRE DEGOND, MICHAEL HERTY, AND JIAN-GUO LIU

difficult to retrieve direct qualitative information, such as analytical solutions and
asymptotic behavior of the system, from this complex equation. This is the reason
why lower dimensional reductions of this equation are desirable. The goal of this paper
is to derive a hierarchy of lower dimensional descriptions of the system. This requires
some simplifying assumptions, which, in model cases, can be rigorously proved, but
which, for the present complex problem, can only be assumed at this stage.

The first model reduction consists of averaging the N -cell pdf over N − 1 vari-
ables, keeping only information on the state of a single cell j by means of the 1-cell
pdf f j(zj , ρj, t). We do not assume cell indistinguishability so that the 1-cell pdf of
different cells may be different. An equation for fj is easily deduced from the master
equation by integrating it over all cell variables (zk, ρk) for k = 1, . . . , N except k = j.
However, this operation does not lead to a closed equation for fj unless a suitable
ansatz is made for the N -cell pdf. This ansatz is the so-called propagation of chaos
which assumes that the cell-states have probability distributions independent from
each other, i.e.,

F(z1, . . . , zN , ρ1, . . . , ρN , t) ≈
N∏
j=1

fj(zj , ρj , t).

The resulting equation for fj has a form similar to that of the master equation:
it comprises a transport equation in ρj and a rate equation for the zj-dependence.
But, in contrast to the master equation, it is posed on the low dimensional space
(zj , ρj) ∈ {−1, 1} × R+. Propagation of chaos can be proved in model cases, such
as the Boltzmann equation [23, 29, 33, 34], its caricature proposed by Kac̆ [28], and
models of swarming behavior [13, 12] (see also [44]).

The second model reduction is to take the limit of an infinite number of cells,
i.e., taking the cell-spacing h to zero, while looking at large time scales, of order
h−1. This has several consequences. The first is to legitimize the use of a mean-field
formula for the switching probabilities for the cell-states. Indeed, as the cell-spacing
goes to zero, more and more neighboring cells are included in the computation of
the switching probability, leading, through a law of large numbers, to a mean-field
evaluation. The second consequence, related to the change of time scale, is to make
the dynamics in ρ-space instantaneously convergent to a deterministic dynamics; i.e.,
the pdf f becomes a Dirac delta in ρ at its mean value ρ̄(x, t) which evolves at the
macroscopic time scale according to a classical continuity equation. The flux in this
density equation can be expressed in terms of a mean velocity, whose evolution is
dictated by an ordinary differential equation derived from the mean-field equation for
the switching probabilities. To our knowledge, this is the first demonstration of the
fact that a sweeping dynamics on a network converges to a monokinetic distribution.
This directly provides a hydrodynamic closure.

The resulting model is a deterministic system of partial differential equations
from which all the stochasticity of the original model has disappeared. It bears sim-
ilarities to the Euler equations of compressible fluid dynamics in that it comprises a
continuity equation for the cell-density and an evolution equation for the mean ve-
locity. However, there is an important difference in that the velocity equation is a
pure ordinary differential equation expressing a relaxation towards a local velocity
obtained through some nonlocal density average. The fact that there is no transport
in the velocity equation originates from the fact that the direction of the flux in the
sweeping process is determined purely from local quantities at the considered time.
Again, we have not found a similar model elsewhere. It is likely, though, that adding
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a time delay in the evaluation of the switching probabilities would restore the spatial
transport in the velocity equation. This point will be investigated in future work.

These general results are then applied to a model of a pedestrian flow under
panic. The steady-states of the corresponding fluid model are analyzed. According
to the strength of the coupling between the density and the cell-states, we may get
multiple steady-states and various kinds of phase transitions (either continuous or
discontinuous) between them leading to a hysteresis phenomenon. Metastable states
and hysteresis are well-documented phenomena in car traffic [6] and in pedestrian
traffic [26]. This allows one to establish some qualitative properties analytically. In
particular, the occurrence of phase transitions is reminiscent of similar phenomena
arising in consensus formation models [18]. The model also bears analogies to the
locust model of [20], but the consideration of cell-states in the present paper is original.

Finally, the presented technique is further refined to treat the case of connected
nodes and flows on graphs. Under the propagation of chaos assumption, a similar
equation for the 1-cell pdf is obtained. However, the large N limit is not considered
because this would necessitate the passage from a discrete network to a continuous
space. This limit is outside the scope of the present paper. Still, the equation for the
discrete 1-cell pdf is interesting, as it couples the pdf of the neighboring nodes within
the flux of the transport term in density space, a feature which we have not observed
before.

CA are widely used models in car traffic [14, 36, 40, 41, 42, 43] and pedestrian
traffic [9, 10, 11, 37]. Standard supply chain models are discrete event simulators [5],
which bear strong analogies to CA.

Among individual-based models, i.e., models which follow each agent in the course
of time, alternatives to CA are particle models such as follow-the-leader models in car
traffic [22] and pedestrian traffic [30], or more complex models based on behavioral
heuristics [35]. CA provide an Eulerian description of the system where volume exclu-
sion can be easily enforced, while particle models provide a Lagrangian description.
CA have been widely used in traffic because it is easier to monitor a stretch of the
road or corridor than to follow the agents themselves. However, within the Mobile
Millenium project,1 data from individual car drivers (agents) also have been collected
and used to model traffic flow [7]. Further, flocking field studies tend to follow the
motion of the agents, using GPS devices, for instance.

Kinetic models provide a statistical (and consequently coarser) description of the
ensemble of agents. They have been proposed for car traffic in [39] and for pedestrian
traffic in, e.g., [27]. Finally, fluid models provide the coarsest—and consequently least
computationally intensive—description of traffic systems and have been developed for
car traffic in [4, 32, 38]. They have been recently adapted to pedestrian traffic in [1].
We refer the reader to [25] and [15] for reviews on traffic and pedestrian dynamics
and on supply chain modeling, respectively.

The question of proving a rigorous connection between individual-based, kinetic,
and fluid models has been treated in, e.g., [3, 25] for car traffic, [17, 24] for pedestrian
traffic, and [2, 19] for supply chain modeling. In connection with CA of traffic, it has
been investigated in particular in [14, 20]. But, to the best of our knowledge, the
present paper provides the first derivation of a fluid model for a CA coupled with the
deterministic evolution of a sweeping variable.

The paper is organized as follows. In section 2, we present our sweeping model in
one dimension and derive its master equation. In section 3, we use the propagation

1See http://traffic.berkeley.edu.
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542 PIERRE DEGOND, MICHAEL HERTY, AND JIAN-GUO LIU

of chaos and mean-field assumptions to derive a single-particle closure of the kinetic
equation and the hydrodynamic model in the limit of a large number of particles and
cells. Section 4 is devoted to an application to pedestrian traffic where metastable
multiple equilibria and phase transitions are exemplified. Section 5 is concerned with
the extension of the model to a general graph topology. Finally, section 6 provides a
conclusion and some perspectives.

2. A one-dimensional sweeping model and its master equation.

2.1. The one-dimensional sweeping model. We are interested in a one-
dimensional network consisting of connected cells j = 1, . . . , N . Each cell contains a
certain density ρj ≥ 0 of a given number of people, animals, data, goods, particles,
etc., which are able to move or sweep from one cell to the next. For the simplicity of
the presentation, we assume a periodic domain of size equal to 1, each cell being of
size 1/N . Each cell has a state zj ∈ {−1, 1} describing the possible direction of the
flow (from left to right (zj = 1) or from right to left (zj = −1)). For simplicity we
assume that all particles in cell j move according to the state of the cell j at discrete
times tn = nΔt, with a time step Δt and for n ∈ N. Hence, the flow of particles Ψj+ 1

2

across the cell boundary with the (j + 1)th cell is given by

(2.1) Ψn
j+ 1

2
= ρnj max{znj , 0}+ ρnj+1 min{znj+1, 0},

where the superscript n indicates that the associated quantities are evaluated at
time tn. In order to simplify the following discussion, we consider a periodic set-
ting ρnj+N = ρnj .

We assume the cell j changes state according to a Poisson process with rate γn
j

where γn
j depends on all the cell-states (zni )i=1,...,N and cell-densities (ρni )i=1,...,N . To

be more precise, within a given time interval Δt the probability of changing the state
of cell j is 1− exp

(− γn
j Δt

)
, i.e.,

zn+1
j = znj ζ

n
j ,

where ζnj is a random variable taking values in {−1, 1} with probability

P (ζnj = 1) = e−γn
j Δt and P (ζnj = −1) = 1− e−γn

j Δt.

Given some initial data z0j and ρ0j for j = 1, . . . , N , the microscopic model for n ∈ N

is given by

(2.2) ρn+1
j = ρnj +NΔt(Ψn

j− 1
2
−Ψn

j+ 1
2
), ρnj+N = ρnj .

The factor N in front highlights the fact that the densities change over one time step
by an O(NΔt) quantity. This choice is consistent with the choice of the kinetic time
scale for the evolution of the cell-states zn which will be made below. We note the
analogy of (2.2) with standard upwind schemes for conservation laws [31].

We note that the total number of particles is conserved:

N∑
j=1

ρnj =

N∑
j=1

ρ0j .

The particle density ρnj is nonnegative as soon as the initial density ρ0j is so, provided
that the time step satisfies the Courant–Friedrichs–Lewy (CFL) stability condition
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NΔt ≤ 1/2. We refer the reader to [31] for stability conditions of upwind schemes for
conservation laws.

Remark 2.1. Many practical networks have finite capacity. This means that
the magnitude of the flux is bounded by a maximal value Ψ∗ > 0 and that the
expression (2.1) must be cut off by this maximal value when it exceeds this value.
The modifications of the present theory induced by such a cut-off will be discussed in
future work.

We now derive a master equation for this process using the weak formulation as
in [13]. Here, the number N of cells will be kept fixed. Later on, we will make N → ∞
in the resulting master equation. In a first section, we derive the master equation for
the cell-states, ignoring the dependencies of the rates upon the cell-densities.

2.2. A simple CA for the cell-states and corresponding master equa-
tion. In this section, we first restrict ourselves to the case where the rates γn

j are inde-
pendent of the cell-densities (ρni )i=1,...,N . In this case, the dynamics of the cell-states
is independent of the cell-densities, and the latter can be ignored in the derivation
of the master equation for the former. Therefore, the random variables are only the
states of the cells znj at time tn, and the framework is that of a CA. The discrete

state-space at any time for N cells is therefore ΣN with Σ := {−1, 1}. We denote by
�z = (zi)

N
i=1 an element of ΣN . A measure φ on ΣN is defined by the discrete duality

with a test function ϕ as

〈φ, ϕ〉ΣN :=

N∑
i=1

∑
zi∈{−1,1}

φ(�z)ϕ(�z).

The model is a Markov process. We adapt the classical Markov transition operator
formalism to derive the master equation (see, e.g., [13]). The pdf of �z at time tn is
denoted by Fn(�z). Let ϕ be any smooth test function on ΣN with values in R, and
let E be the expected value of a random variable. By definition the expectation of
the random variable ϕ(�zn) for all realizations of �zn with distribution Fn is therefore

E {ϕ(�zn)} = 〈Fn, ϕ〉ΣN .(2.3)

We denote the Markov transition operator from state �zn to �zn+1 by Q. By definition,
it is a bounded nonnegativity preserving linear operator on �2(ΣN ) with the function
ϕ(�z) ≡ 1 as a fixed point. The operator Q applied on the test function ϕ from tn to
tn+1 and evaluated at state �z is given by

(2.4) Qϕ(�z) = E
{
ϕ(�zn+1)

∣∣ �zn = �z
}
,

where the expectation is to be taken over all random processes leading from the known
state �zn to �zn+1. Hence, Qϕ(�zn) is a random variable for all realizations of �zn with
distribution Fn. Therefore, its expectation is

E {Qϕ(�zn)} = 〈Fn, Qϕ〉ΣN = 〈Q∗Fn, ϕ〉ΣN ,

where Q∗ is the �2 adjoint operator to Q. Due to the property of the conditional
expectation, we also have

E {Qϕ(�zn)} = E
{
E
{
ϕ(�zn+1)

∣∣ �zn}} = E
{
ϕ(�zn+1)

}
= 〈Fn+1, ϕ〉ΣN .

Noting that the previous equations hold for all functions ϕ, we have

Fn+1(�z) = Q∗Fn(�z).(2.5)
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We will show that (Q∗ − Id)F = O(NΔt). Therefore, the rate of change of the pdf
over one time step is

Fn+1 −Fn

NΔt
(�z) =

1

NΔt
(Q∗ − Id)Fn(�z) = O(1).

In the limit NΔt → 0, with nNΔt → t, we have Fn(�z) → F(�z, t) with

∂F
∂t

(�z, t) = lim
NΔt→0

1

NΔt
(Q∗ − Id)F(�z, t) = L∗F(�z, t).(2.6)

This is the so-called time-continuous master equation of the process, and the operator
L (the adjoint operator to L∗) is called the Markov generator. This choice of time
scale is called the kinetic time scale. It corresponds to each particle colliding on
average once during one time step Δt.

Proposition 2.1 (formal). The master equation for the time-continuous version
of the CA described in section 2.1 when the rates γj are independent of the cell-
densities (ρi)i=1,...,N is given, at the kinetic time scale, by

(2.7)
∂

∂t
F(�z, t) =

1

N

N∑
j=1

(γj(−zj, ẑj)F(−zj , ẑj, t)− γj(zj , ẑj)F(zj , ẑj , t)),

where F(�z, t) is the time-continuous joint pdf of the cell-states and where we de-
note ẑj = (z1, . . . , zj−1, zj+1, . . . , zN) and, for a function φ(�z), φ(zj , ẑj) = φ(�z) and
φ(−zj , ẑj) = φ(z1, . . . , zj−1,−zj, zj+1, . . . , zN ).

The operator on the right-hand side of (2.7) contains two terms. The first term is
positive and describes the increase of the pdf due to cells which reach the state �z after
switching from a different state (namely from the jth cell-state −zj). The increase
occurs at rate γj(−zj, ẑj). The second term is negative and describes the decrease
of the pdf due to cells which leave the state �z for a different one (namely the jth
cell-state zj). The decrease occurs with rate γj(zj , ẑj). The resulting expression has
to be summed up over all possible cells j ∈ [1, N ]. The weighting factor 1

N is there
to ensure that the proper time scale has been chosen to ensure the finiteness of the
right-hand side in the limit N → ∞. This is the so-called kinetic time scale, where,
on average, a given cell changes state only a finite number of times over a finite time
interval.

Proof of Proposition 2.1. Let ϕ be a smooth test function. We have

〈(Q∗ − Id)Fn, ϕ〉ΣN = E
{
E
{
ϕ(�zn+1)− ϕ(�zn)

∣∣�zn} �zn}(2.8)

=

〈
Fn(�z),

N∑
j=1

(ϕ(−zj , ẑj)− ϕ(zj , ẑj))(1− e−γj(�z)Δt)
∏
i�=j

e−γi(�z)Δt

〉
ΣN

+O((NΔt)2)

= Δt
N∑
j=1

〈 Fn(zj , ẑj), (ϕ(−zj , ẑj)− ϕ(zj , ẑj)) γj(zj , ẑj) 〉ΣN +O((NΔt)2)

= Δt

〈
N∑
j=1

{γj(−zj , ẑj)Fn(−zj , ẑj)− γj(zj , ẑj)Fn(zj , ẑj)}, ϕ(�z)
〉

ΣN

+O((NΔt)2).

To derive (2.8), we note that the probability that a given k-tuple of cells switches states
is O

(
Δtk

)
, but there are O(Nk) possible k-tuples of cells. Hence, the total probability
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that k cells change is O((NΔt)k). Therefore, the probability that there are strictly
more than one change is O((NΔt)2), while that of only one change is O(NΔt). We
note that the probability of no change is dropped out by the subtraction. Then, we
have

Fn+1(�z)−Fn(�z)

NΔt
=

1

N

N∑
j=1

(γj(−zj, ẑj)Fn(−zj, ẑj)− γj(zj, ẑj)Fn(zj , ẑj))

+O(NΔt),

and, in the limit NΔt → 0, we get (2.7).
In the next section, we consider the full process where the rates γn

j depend on the
cell-densities (ρni )i=1,...,N .

2.3. The master equation for the sweeping process. We now consider the
full sweeping process as described in section 2. The random variables are now the
states of the cells zi ∈ {−1, 1} and the number of particles within each cell ρi ∈ R+.
The discrete state-space for N cells is therefore AN with A := {−1, 1}×R+. We still
denote �z = (zi)

N
i=1 and similarly �ρ = (ρi)

N
i=1. A measure φ on AN is defined by its

action on a continuous function ϕ on AN by

〈φ, ϕ〉AN =
∑

�z∈{−1,1}N

∫
�ρ∈RN

+

φ(�z, �ρ)ϕ(�z, �ρ) dρ1 . . . dρN .

We also denote γi = γi(zi, ẑi, �ρ), �Ψ+ = (Ψ1+ 1
2
, . . . ,Ψi+ 1

2
, . . . ,ΨN+ 1

2
), �Ψ− = (Ψ1− 1

2
, . . . ,

Ψi− 1
2
, . . . ,ΨN− 1

2
). Then, the vector version of the density update is

(2.9) �ρn+1 − �ρn +NΔt (�Ψn
+ − �Ψn

−) = 0.

Proposition 2.2 (formal). The master equation for the time-continuous version
of the sweeping process described in section 2.1 when the rates γj depend on both the
cell-states (zi)i=1,...,N and the cell-densities (ρi)i=1,...,N is given, at the kinetic time-
scale, by(

∂

∂t
F −∇�ρ ·

((
�Ψ+ − �Ψ−

)F)) (�z, �ρ, t)(2.10)

=
1

N

N∑
j=1

(γj(−zj , ẑj, �ρ, t)F(−zj, ẑj , �ρ, t)− γj(zj , ẑj , �ρ, t)F(zj, ẑj , �ρ, t))

in strong form or〈
∂F
∂t

, ϕ

〉
AN

= −〈F ,∇�ρϕ · (�Ψ+ − �Ψ−
)〉

AN(2.11)

+
1

N

N∑
j=1

〈F(zj , ẑj , �ρ), γj(zj , ẑj, �ρ) {ϕ(−zj, ẑj , �ρ)− ϕ(�z, �ρ)}〉
AN

for any smooth test function ϕ on AN with values in R in weak form. We have noted
∇�ρϕ · �g =

∑N
j=1 gj∂ρjϕ and ∇�ρ · �g ϕ = ϕ

∑N
j=1 ∂ρjgj for any functions ϕ(�ρ) and

�g(�ρ) = (gj(�ρ))j=1,...,N .
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The right-hand side of (2.10) has the same structure as that of (2.7). We refer the
reader to the paragraph following Proposition 2.1 for its interpretation. The time-
derivative on the left-hand side is now supplemented with a first order differential
term in �ρ space (the second term). Due to (2.1), the coefficient

(
�Ψ+− �Ψ−

)
inside this

derivative couples the neighboring nodes of each cell j. It expresses how the density
evolves as a consequence of the density in cell j sweeping to one of its neighboring
cells and the density in the neighboring cells sweeping into the jth cell. Because the
stochasticity of the dynamics of the cell-states zj is propagated to the densities ρj ,
the description of the densities is through the pdf F . Therefore, the density evolution
translates into a transport equation in density space for the pdf.

Proof. Let ϕ be any smooth test function on AN with values in R. We write

〈Fn+1 −Fn, ϕ〉AN = E
{
E
{
ϕ(�zn+1, �ρn+1)− ϕ(�zn, �ρn)

∣∣ (�zn, �ρn)} (�zn, �ρn)}(2.12)

= E
{
E
{
ϕ(�zn+1, �ρn+1)− ϕ(�zn+1, �ρn)

∣∣ (�zn, �ρn)} (�zn, �ρn)}
+E

{
E
{
ϕ(�zn+1, �ρn)− ϕ(�zn, �ρn)

∣∣ (�zn, �ρn)} (�zn, �ρn)}
= I + II,

together with (2.9). Then, we have

I = E

{
E
{∇�ρϕ(�z

n+1, �ρn)(�ρn+1 − �ρn)
∣∣ (�zn, �ρn)} (�zn, �ρn)

}
+O((NΔt)2)(2.13)

= −NΔtE
{
E
{∇�ρϕ(�z

n+1, �ρn)(�Ψn
+ − �Ψn

−)
∣∣ (�zn, �ρn)} (�zn, �ρn)

}
+O((NΔt)2)

= −NΔtE
{
E
{∇�ρϕ(�z

n, �ρn)(�Ψn
+ − �Ψn

−)
∣∣ (�zn, �ρn)} (�zn, �ρn)

}
+O((NΔt)2),

where for the second equality, we have used (2.9). For the third, we note that the

probability of no state change is given by
∏N

j=1 exp(−γn
j Δt) = 1 − O(NΔt), and

therefore, the probability of at least one change is O(NΔt). Then we can remove the
inner expectation in (2.13) because there is no change involved. Using the definition
of the outer expectation, we can recast (2.13) as follows:

I = −NΔt 〈Fn,∇�ρϕ · (�Ψ+ − �Ψ−) 〉AN +O((NΔt)2)(2.14)

= NΔt
〈∇�ρ ·

(
(�Ψ+ − �Ψ−)Fn

)
, ϕ
〉
AN +O((NΔt)2).(2.15)

For the second term, the algebra proceeds exactly as in section 2.2. Details are
omitted. As an outcome we get

(2.16)

II = Δt

N∑
j=1

〈Fn(zj , ẑj, �ρ), γj(zj , ẑj , �ρ) {ϕ(−zj , ẑj, �ρ)− ϕ(�z, �ρ)} 〉
AN

+ O((NΔt)2)

(2.17)

= Δt

〈
N∑
j=1

{γj(−zj , ẑj, �ρ)Fn(−zj , ẑj, �ρ)− γj(zj , ẑj, �ρ)Fn(zj , ẑj , �ρ)}, ϕ(�z, �ρ)
〉

AN

+ O((NΔt)2).
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Inserting (2.15) and (2.17) into (2.12) leads to〈
Fn+1 −Fn

NΔt
, ϕ

〉
AN

= −〈Fn,∇�ρϕ · (�Ψ+ − �Ψ−) 〉AN(2.18)

+
1

N

N∑
j=1

〈Fn(zj , ẑj, �ρ), γj(zj , ẑj, �ρ) {ϕ(−zj , ẑj, �ρ)− ϕ(�z, �ρ)} 〉
AN +O(NΔt).

Now, letting NΔt → 0 in (2.18) and nNΔt → t, we find the weak form (2.11) of the
master equation. Then, since the test function ϕ is arbitrary, using (2.14) and (2.16),
we get the strong form (2.10) of the master equation.

3. Single-particle closure and macroscopic model.

3.1. Goal. The description of the system by means of the N -cell pdf is too
complicated and cannot be practically used, neither numerically nor analytically. The
goal of this section is to propose a reduction of the system to a 1-cell pdf (i.e., the 1-cell
marginal of the pdf F(�z, �ρ, t)) and to compute its time evolution. A straightforward
integration of the master equation does not lead to a closed equation for the 1-cell
pdf. The goal of this section is to propose a closure of this equation by assuming that
propagation of chaos holds. Then we investigate the limit of N → ∞ and postulate
that the rates can be approximated by mean-field approximation. In this limit, we
find a system of hydrodynamic equations.

We first define the marginals of the pdf as follows.
Definition 3.1. For any j ∈ {1, 2 . . . , N}, we define the marginal density fj

on A by

(3.1) fj(zj , ρj , t) = 〈F(zj , ẑj, ρj , ρ̂j , t), 1〉Âj
,

where 〈·, ·〉
Âj

denotes the duality between measures and functions of the variables

(ẑj , ρ̂j) in AN−1 (and AN−1 is denoted by Âj when such a duality is considered).
We note that (3.1) is equivalent to saying that for any smooth function ϕj(zj , ρj)

of the single variables (zj , ρj) ∈ A, we have

〈F(zj , ẑj, ρj , ρ̂j , t), ϕj(zj , ρj)〉AN = 〈fj(zj , ρj , t), ϕj(zj , ρj)〉A.
To get an equation for fj at the kinetic time scale, we use the master equation in
weak form (2.11) with a test function ϕj(zj , ρj) of the single variables (zj , ρj) ∈ A.
The resulting equation is given in section 3.2. It is not a closed equation because its
coefficients depend on the full joint pdf F .

In order to obtain a closed system of equations, we make the assumption of
propagation of chaos. Here, in the perspective of letting N → ∞, we introduce a
spatial variable xj = j/N and the cell-size h = 1

N . We write fj(z, ρ, t) = fh(xj , z, ρ, t),
where (z, ρ) ∈ A. With this notation, the assumption of propagation of chaos reads
as follows.

Assumption 3.1. We assume that the joint pdf F(�z, �ρ, t) is written as

F(�z, �ρ, t) =

N∏
j=1

fh(xj , zj , ρj, t).

This assumption states that the cell-states and cell-densities at different points
are statistically independent. As a result, we obtain a closed kinetic equation for
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the one-particle marginal fh(xj , zj , ρj , t) for a fixed number of cells N in section 3.3.
The next step is to make the number of cells N → ∞ or, equivalently, the cell-
spacing h = 1

N → 0. For this purpose, we make the following mean-field assumption
for the rates.

Assumption 3.2. We assume that as h → 0 (or N → ∞), and for any fixed x
and any subsequence xj =

j
N such that xj → x, the limit γ̄h(xj , z, ρ, t) → γ̄(x, z, ρ, t)

exists, where

γ̄h(xj , zj, ρj , t) :=

〈 ∏
i∈{1,...,N},i�=j

fh(xi, zi, ρi, t), γj

〉
Âj

.(3.2)

With these assumptions, we can first derive equations for the moments of the one-
particle marginal in section 3.4 and then prove the convergence of the one-particle
marginal distribution to a Dirac delta modeling a monokinetic distribution function
in section 3.5. The final result is stated below.

Theorem 3.2 (formal). We consider the one-particle marginal distribution

f̃h(x, z, ρ, t) = fh
(
x, z, ρ,

t

h

)

and let h → 0. We assume that f̃h → f̃ , where f̃ is a measure of (x, z, ρ, t), and
that the convergence is as smooth as needed. We also assume the propagation of
chaos assumption (Assumption 3.1) and the mean-field limit assumption for the rates
(Assumption 3.2). Then, formally, we have

f̃(x,±1, ρ, t) = p±(x, t) δ(ρ − ρ̄(x, t)),

where ρ̄(x, t) and p±(x, t) satisfy the following system:

∂tρ̄+ ∂x(ρ̄ u) = 0,(3.3)

∂tu = γt(ucoll − u),(3.4)

with

γt = γ̃− + γ̃+, ucoll =
γ̃− − γ̃+
γ̃− + γ̃+

,(3.5)

γ̃±(x, t) = γ̄(x,±1, ρ̄(x, t), t),

and with γ̄ given by Assumption 3.2, i.e.,

γ̄h(xj , z, ρ, t) → γ̄(x, z, ρ, t) as h → 0,

γ̄h(xj , zj , ρj , t) :=

〈 ∏
i∈{1,...,N},i�=j

pzi(xi, t) δ(ρi − ρ̄(xi, t)), γj

〉
Âj

.

Additionally, we have

p+ =
1 + u

2
, p− =

1− u

2
.(3.6)

The time rescaling (i.e., t replaced by t/h in the 1-cell pdf) is needed to find
the correct time scale over which the pdf relaxes to an equilibrium. This time scale
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is called the hydrodynamic time scale, because it gives rise to the hydrodynamic
model (3.3), (3.4) (see comment below). It is a longer time scale than the kinetic time
scale considered so far. This is because this relaxation is very slow and requires much
longer time units to be observable. This hydrodynamic rescaling is classical in kinetic
theory (see, e.g., the review [16]).

Theorem 3.2 states that in the limit h → 0, the 1-cell pdf f̃h(x, z, ρ, t) observed
at the hydrodynamic time scale converges to a deterministic pdf in the density vari-
able ρ, i.e., a Dirac delta located at the mean density ρ̄. Both values of the pdf for
the cell-states +1 and −1 are proportional to the same Dirac delta, with propor-
tionality coefficients p± meaning that among the ρ̄(x, t) dx particles located in the
neighborhood dx of position x at time t, a proportion p+(x, t) (resp., p−(x, t)) cor-
responds to right-going (resp., left-going) pedestrians (with p+(x, t) + p−(x, t) = 1).
Both the mean density ρ̄ and the proportions p± depend on (x, t). Their evolution is
described by system (3.3), (3.4). The mean velocity u is given by (3.6), which shows
that it is proportional to the imbalance between the right- and left-going pedestri-
ans u = p+ − p−.

Equation (3.3) is a classical continuity equation. It expresses that the total
mass M[a,b](t) contained in the interval [a, b] at time (t) and given by M[a,b](t) =∫ b

a
ρ(x, t) dx evolves due to particles leaving or entering [a, b] through its boundaries.

Indeed, integrating (3.3) with respect to x ∈ [a, b], we get that

d

dt
M[a,b](t) = (ρu)(a, t)− (ρu)(b, t).

The quantities (ρu)(a, t) and (ρu)(b, t) are the particle fluxes through a and b, respec-
tively. These particle fluxes (counted as positive if they are directed in the positive x
direction) contribute to an increase of the mass at a and a decrease of the mass at b.
Therefore, (3.3) describes a simple particle budget.

By contrast, (3.4) is a simple ordinary differential equation describing the re-
laxation of the local velocity u(x, t) to a velocity ucoll(x, t) expressing a collective
consensus. We will refer to this velocity as the collective consensus velocity. It de-
pends on the state of the CA in a possibly large neighborhood of x at time t. It is
computed through (3.5) in terms of the switching rates of the cell corresponding to
point x. More precisely, ucoll(x, t) depends on the normalized difference between the
switching rates for switching from state −1 to state +1 and for switching from state
+1 to state −1. Indeed, this difference is the phenomenon producing a nonzero collec-
tive consensus velocity. There might be multiple solutions of the equation u = ucoll.
These multiple solutions are associated to collective decision making about the direc-
tion of the motion which can be, according to the state of the CA, either left-going or
right-going. In general, the actual velocity u is different from the collective consensus
velocity ucoll and (3.4) states that u relaxes to ucoll at rate γt equal to the sum of
the switching rates. We will provide examples of these features in the next section.
The fact that there is no spatial transport in (3.4) results from the instantaneous
evaluation of the switching rates within the original CA. More sophisticated CA may
result in the restoration of spatial transport in (3.4). Such dynamics will be studied
in future work.

Sections 3.2–3.5 are devoted to the proof of Theorem 3.2.

3.2. Equation for the single-particle marginal distribution. We remind
the reader that, in order to get an equation for fj at the kinetic time scale, we use
the master equation in weak form (2.11) with a test function ϕj(zj , ρj) of the single
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variables (zj , ρj) ∈ A. We have the following proposition, the proof of which is
immediate and left to the reader.

Proposition 3.3. Define

ΔΨj(t) fj(t) := 〈F(t),Ψj+ 1
2
−Ψj− 1

2
〉
Âj
,(3.7)

γ̄h
j (t) fj(t) := 〈F(t), γj〉Âj

.

The functions ΔΨj(t) and γ̄h
j (t) are functions of (zj , ρj) only. Then the equation for

the marginal fj is written in weak form as〈
∂fj
∂t

, ϕj

〉
A

= −〈fj ,ΔΨj ∂ρjϕj 〉A +
1

N

〈
fj , γ̄

h
j {ϕj(−zj, ρj)− ϕj(zj , ρj)}

〉
A

and in strong form as(
∂

∂t
fj − ∂ρj

(
ΔΨj fj

))
(xj , zj, ρj , t)(3.8)

=
1

N

(
γ̄h
j (xj ,−zj , ρj, t)fj(xj ,−zj, ρj , t)− γ̄h

j (xj , zj , ρj, t)fj(xj , zj, ρj , t)
)
.

We introduce the following definition of moments and velocity.
Definition 3.4. The probability of having right-going (resp., left-going) particles

at (x, t) is denoted by p+(x, t) (resp., p−(x, t)). The average right-going (resp., left-
going) particle density at (x, t) is denoted by ρ̄+(x, t) (resp., ρ̄−(x, t)). They are
defined by

p±(x, t) =
∫ ∞

0

f(x,±1, ρ, t) dρ, ρ̄±(x, t) =
∫ ∞

0

f(x,±1, ρ, t) ρ dρ.(3.9)

The average velocity of the particles at (x, t) is defined by

u(x, t) = (p+ − p−)(x, t).(3.10)

We note that p± and ρ̄± are nonnegative quantities and that p+ + p− = 1. We
define ρ̄ = ρ̄+ + ρ̄−, the total particle density at (x, t).

In the following section, we use the propagation of chaos assumption to close the
kinetic equation (3.8) for the one-particle marginal distribution.

3.3. Propagation of chaos assumption and closed kinetic equation for
the one-particle marginal distribution. We now make the propagation of chaos
assumption (Assumption 3.1). With this assumption we can simplify the expressions
of the flux (3.7). We have the following.

Lemma 3.5. Under the chaos assumption (Assumption 3.1), the flux (3.7) is
given by

ΔΨj(t) = ΔΨj(ρj , t) = ρj − ρ̄−(xj + h, t)− ρ̄+(xj − h, t).(3.11)

Proof. By direct computation from (2.1), we have

Ψj+ 1
2
−Ψj− 1

2
= ρj + ρj+1 min{zj+1, 0} − ρj−1 max{zj−1, 0}.

So, now,〈F(t),Ψj+ 1
2
−Ψj− 1

2

〉
Âj

(3.12)

= f(xj , zj, ρj , t)
〈
f(xj−1, zj−1, ρj−1, t)f(xj+1, zj+1, ρj+1, t),

ρj + ρj+1 min{zj+1, 0} − ρj−1 max{zj−1, 0}
〉
Aj−1⊗Aj+1

,
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where 〈·, ·〉Aj−1⊗Aj+1 denotes the duality between measures and functions on A2 with
respect to the variables (zj−1, ρj−1, zj+1, ρj+1). Then, using the definitions of the
moments (3.9), the evaluation of the right-hand side of (3.12) leads to (3.11).

As in the previous section we index the one-particle marginal distribution by h =
1
N and denote it by fh, and, similarly, we denote ΔΨ

h
(xj , z, ρ, t) = ΔΨj(ρ, t). With

Lemma 3.5, we can get a closed equation for fh. More precisely, we have the following.
Proposition 3.6. Under the propagation of chaos assumption (Assumption 3.1),

the single-particle marginal distribution function fh satisfies the closed kinetic equation(
∂

∂t
fh − ∂ρ

(
ΔΨh fh

))
(xj , z, ρ, t)(3.13)

= h
(
γ̄h(xj ,−z, ρ, t)fh(xj ,−z, ρ, t)− γ̄h(xj , z, ρ, t)f

h(xj , z, ρ, t)
)
,

with rates given by (3.2).
Now we make a change of time scale to the macroscopic time scale. We let t′ = ht.

The rationale for this change is that both ΔΨ
h
and the right-hand side of (3.13)

formally tend to zero as h → 0. In order to recover a meaningful dynamics for
the one-particle marginal, we have to observe it on a time interval of length 1/h.
Performing this change of variables in (3.13) and dropping the primes for simplicity,
we are led to the following problem:(

∂

∂t
fh − ∂ρ

(
1

h
ΔΨ

h
fh
))

(xj , z, ρ, t)

= γ̄h(xj ,−z, ρ, t)fh(xj ,−z, ρ, t)− γ̄h(xj , z, ρ, t)f
h(xj , z, ρ, t).

In the next section, we investigate the h → 0 limit. A key assumption will be
that the rates converge to their mean-field limit, as stated in Assumption 3.2.

3.4. Large cell-number mean-field limit and macroscopic moments. In
this section, we make the formal limit of a large number of cells N → ∞ or h → 0.
We assume that fh → f , where f is a measure of (x, z, ρ, t), and that the convergence
is as smooth as needed. The goal of this section is to compute the dynamics of f .
For this purpose, we need Assumption 3.2, which assumes that the rates converge to
their mean-field limit. This assumption will be shown for some example in section 4.
We first consider the equations for the total density ρ̄ given by (3.9) and the mean
velocity u(x, t) given by (3.10). We have the following lemma.

Lemma 3.7 (formal). When h → 0, we formally have ρ̄h → ρ̄ and uh → u, where
ρ̄ and u satisfy

∂tρ̄+ ∂x(ρ̄ u) = 0,(3.14)

∂tu = γt(ucoll − u),(3.15)

with

γt = γ
(0)
− + γ

(0)
+ , ucoll =

γ
(0)
− − γ

(0)
+

γ
(0)
− + γ

(0)
+

defining

γ
(k)
± (x, t) =

∫∞
0 γ̄(x,±1, ρ, t)f(x,±1, ρ, t) ρk dρ∫∞

0
f(x,±1, ρ, t) ρk dρ

.(3.16)
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We note that the denominator of the expression (3.16) with k = 0 of γ
(0)
± is p± and

that

p+ =
1 + u

2
, p− =

1− u

2
.(3.17)

Remark 3.1. The model (3.14), (3.16) possesses analogies to the locust model
(4.27)–(4.29) of [20], but with some differences. The major one is that our equation
(3.15) does not involve any spatial transport, while the corresponding equation (4.28)
of [20] involves such a transport. The reason for this difference is that in the model of
[20], the state of motion is carried by the agents themselves and is transported along
with their motion, while in the present model, the states of motion are carried by the
underlying network and are immobile.

Proof. By Taylor expansion and since ρ̄ = ρ̄+ + ρ̄−, we have

1

h
ΔΨh

j (ρj , t) =
1

h

(
ρj − ρ̄(xj , t)

)
+ ∂x(ρ̄+ − ρ̄−)(xj , t) + o(h).

Inserting this expansion into (3.8) and using the mean-field assumption for rates
(Assumption 3.2), we have(

∂

∂t
fh − ∂ρ

(
∂x(ρ̄+ − ρ̄−) fh

))
(x, z, ρ, t) =

1

h
∂ρ

((
ρ− ρ̄(x, t)

)
fh
)
(x, z, ρ, t)(3.18)

+ γ̄(x,−z, ρ, t)fh(x,−z, ρ, t)− γ̄(x, z, ρ, t)fh(x, z, ρ, t) + o(h).

This equation shares some features of standard kinetic equation such as the appear-
ance of some “collision operator” (the term in factor of h) which will determine the
leading order behavior of the solution as h → 0. However, there is a significant dif-
ference, namely the fact that the transport operator on the left-hand side describes
a transport in ρ-space, the same ρ-space on which the collision operator acts. In
standard kinetic models, the collision operator and the transport operator generally
operate on different variables, such as space and velocity.

Now, multiplying (3.18) by ρ and integrating with respect to ρ ∈ R+ fixing z to
the values z = +1 and z = −1 successively, we get(

∂

∂t
ρ̄h+ + ph+

(
∂x(ρ̄+ − ρ̄−)

))
(x, t) = − 1

h

(
ρ̄h+ − ph+ρ̄

)
(x, t)

+
(
γ
(1)
− ρ̄h− − γ

(1)
+ ρ̄h+

)
(x, t) + o(h),(

∂

∂t
ρ̄h− + ph−

(
∂x(ρ̄+ − ρ̄−)

))
(x, t) = − 1

h

(
ρ̄h− − ph−ρ̄

)
(x, t)

+
(
γ
(1)
+ ρ̄h+ − γ

(1)
− ρ̄h−

)
(x, t) + o(h).

Adding and subtracting these two equations, we get(
∂

∂t
ρ̄h + ∂x(ρ̄+ − ρ̄−)

)
(x, t) = o(h),(3.19) (

∂

∂t
(ρ̄h+ − ρ̄h−) + (ph+ − ph−)

(
∂x(ρ̄+ − ρ̄−)

))
(x, t)(3.20)

= − 1

h

(
ρ̄h+ − ρ̄h− − (ph+ − ph−)ρ̄

)
(x, t) + 2

(
γ
(1)
− ρ̄h− − γ̄

(1)
+ ρ̄h+

)
(x, t) + o(h).
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Now, letting h → 0 in (3.20) leads to

ρ̄+ − ρ̄− = (p+ − p−)ρ̄ = uρ̄,

and inserting it into (3.19) leads to the conservation equation (3.14).
Now, multiplying (3.18) by 1, integrating with respect to ρ ∈ R+, fixing z to the

value z = 1, and letting h → 0, we get

∂

∂t
p+(x, t) =

(
γ
(0)
− p− − γ

(0)
+ p+

)
(x, t) + o(h).

Now, using that p− = 1− p+, simple algebraic manipulations lead to (3.15). Finally,
equations (3.17) are obvious from what precedes. This ends the proof.

So far, system (3.14), (3.15) is not closed because we are lacking a simple expres-

sion of γ
(0)
± in terms of ρ̄ and u. In the next subsection, we provide such a closure

relation by taking the limit h → 0 in the kinetic equation (3.18).

3.5. Local equilibrium closure and macroscopic model. We now con-
sider (3.18) and let h → 0 in it. We have the following.

Lemma 3.8 (formal). Let f = limh→0 f
h. Then, f is written as

f(x, 1, ρ, t) = p+(x, t) δ(ρ − ρ̄(x, t)), f(x,−1, ρ, t) = p−(x, t) δ(ρ− ρ̄(x, t)),(3.21)

where p± and ρ̄ are the moments defined in Definition 3.4. This leads to the following

expression of γ
(0)
± :

γ
(0)
± (x, t) =

1

p±(x, t)
γ̄(x,±1, ρ̄(x, t), t).(3.22)

Proof. Taking h → 0 in (3.18), we are led to the fact that f satisfies

∂ρ

((
ρ− ρ̄

)
f
)
= 0,

which implies, since f must be a positive measure, that

(3.23) f(x, z, ρ, t) = p(x, z, t)δ(ρ− ρ̄(x, t)),

with a convenient p(x, z, t). Additionally, if we focus on the leading order term, we
can consider the simplified problem

∂

∂t
fh − 1

h
∂ρ

((
ρ− ρ̄

)
fh
)
= 0.

This is a first order partial differential equation which can be solved by characteristics.
We denote by ρ(t) an arbitrary characteristic. It is obtained by solving the equation

ρ̇(t) = − 1

h

(
ρ− ρ̄

)
.

Its solution converges in exponential time with time scale O(h) towards the fixed point
ρ̄. Therefore, fh itself converges in exponential time towards a distribution of the form
(3.23). Now, by taking the moments of (3.23), we realize that the local equilibrium
necessarily has the form (3.21). Inserting this expression into (3.16) (with k = 0)
leads to (3.22).

This lemma completes the proof of Theorem 3.2.
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4. Example: A model for pedestrian escape in corridors. Here, we are
interested in pedestrian dynamics within a corridor in panic escape. We assume that
the corridor is artificially decomposed into small stretches (the cells) and that within
a given cell, the flow of pedestrians is either left- or right-going. Indeed, in a panic
situation, pedestrians may push in both directions, but only one of the directions wins.
The pedestrians moving in the “successful” direction drag the opposing pedestrians
with them. The orientation of the flow in this cell is described by the variable znj
(znj = +1 if the flow is right-going, and znj = −1 if the flow is left-going). It is
controlled by the flow orientation in the neighboring cells. If, in these neighboring
cells, the right-going flux is larger than the left-going one, then the probability that
the state of the considered cell will be given by z = +1 increases; i.e., if the state
is already z = +1, it will have a larger probability of staying at this value, while if
the state is originally z = −1, the probability of a state change to the value z = +1
increases. This corresponds to a herding behavior where pedestrians in panic, ignoring
which direction will allow them to escape danger, will decide to go in the direction
where the largest number of people go. The main characteristic of this dynamics is
that the result is unpredictable, due to the possible outcome of phase transitions and
hysteresis, as shown in the present example.

To model this rule, we assume that the rate of change for cell j at time tn can be
given by

(4.1) γn
j := γj(z

n
j , ẑ

n
j , ρ

n) = γ0 + b|znj − 〈z〉nj |α,

where

(4.2) 〈z〉nj =
1
N

∑N
i=1 z

n
i w
(
i−j
N

)
π(ρni )

1
N

∑N
i=1 w

(
i−j
N

)
π(ρni )

.

The coefficients γ0 and b are supposed to be nonnegative (and might as well depend on
j and n). We assume that α ≥ 0 and that the density-sensing function π is supposed
to be monotone increasing with π(0) = 0. The weight w : [0, 1] → R+ is a smooth
function. We note that, because znj = ±1, −1 ≤ 〈z〉nj ≤ 1. For simplicity, we still

consider a periodic domain and consider i−j
N in (4.2) as a real number modulo 1.

The rationale for (4.1), (4.2) is as follows. The quantity 〈z〉nj describes the state of
the given cell and the neighboring ones, defined by those which are in the support of
the function w. This average weights the cells with a large density more strongly than
it weights those with a low density thanks to the density-sensing function π. Now, the
probability for a cell-state change decreases if the actual state variable znj is close to
the average 〈z〉nj , while it increases if the distance to the average 〈z〉nj increases. This
increase is linear if α = 1 and superlinear if α > 1. A superlinear increase triggers
self-organization, as we will see below, while a linear increase does not. In addition
to cell-state changes due to pedestrian interaction as just described, we add a certain
level of fluctuations described by a constant rate of cell-state changes equal to γ0.
Many modeling choices for the kernel w can be envisioned. For instance, a symmetric
weighting function w parameterized by a sensing radius r > 0 of the form

w(x) = wr(x) =
1√
π r

exp

(
−x2

r2

)

can be chosen. Here, r is kept fixed and O(1).
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In this example, we verify the mean-field assumption for the rates (Assump-
tion 3.2), as shown in the following.

Lemma 4.1 (formal). In the limit h → 0, we formally have γ̄h(xj , z, ρ, t) →
γ̄(xj , z, t) with

γ̄(x, z, t)(4.3)

= γ0 + b

∣∣∣∣∣ z −
∑

ζ=±1

∫
(y,ξ)∈[0,1]×R+

ζ w(y − x)π(ξ) f(y, ζ, ξ, t) dξ dy∑
ζ=±1

∫
(y,ξ)∈[0,1]×R+

w(y − x)π(ξ) f(y, ζ, ξ, t) dξ dy

∣∣∣∣∣
α

.

In particular, γ̄(x, z, t) does not depend on ρ.
Proof. Formula (3.2) can be written as

γ̄h(xj , zj , ρj , t)

=
∑

ẑj∈{−1,1}N−1

∫
(x̂j,ρ̂j)∈([0,1]×R+)N−1

(
γ0 + b

∣∣∣∣∣ zj −
1
N

∑N
i=1 ziw

(
xi − xj

)
π(ρi)

1
N

∑N
i=1 w

(
xi − xj

)
π(ρi)

∣∣∣∣∣
α)

×
N∏

k=1,k �=j

fh(xk, zk, ρk, t) dx̂j dρ̂j .

The numerator and denominator of the fraction inside the integral are mean val-
ues of the functions (y, ζ, ξ) ∈ [0, 1]× {−1, 1}×R+ → ζ w(y − x)π(ξ) and (y, ζ, ξ) →
w(y−x)π(ξ), respectively, over N−1 independent and identically distributed random
variables (xi, zi, ρi) drawn according to the probability distribution f = limh→0 f

h.
Therefore, for large N , they converge to the average value of these functions, re-
spectively, which make the numerator and denominator of (4.3). Then by formal
manipulation, we deduce (4.3). The proof of this result, which requires the central
limit theorem, is beyond the scope of this paper. We refer the reader to the appendix
of [20], where a similar result is proved in a slightly simpler situation.

Within this example, Theorem 3.2 holds true with u = p+ − p− and

γ̃+(x, t) = γ0 + b
∣∣ 1− 〈u〉(x, t) ∣∣α, γ̃−(x, t) = γ0 + b

∣∣ − 1− 〈u〉(x, t) ∣∣α,(4.4)

〈u〉(x, t) =
∫
y∈[0,1]w(y − x)π(ρ̄(y, t))u(y, t) dy∫

y∈[0,1]w(y − x)π(ρ̄(y, t)) dy
.

In the case α = 2, we note that γt = 2(γ0 + b(1 + 〈u〉2)) and ucoll =
2b〈u〉

γ0+b(1+〈u〉2) .
If we restrict ourselves to spatially homogeneous solutions, then ρ̄ is uniform and
constant, and 〈u〉 = u depends only on time. Furthermore, 〈u〉 is independent of π.
Then, inserting this into (4.4) leads to the first order differential equation with cubic
nonlinearity:

∂tu = 2bu
[
1− γ0

b
− u2

]
.(4.5)

The parameter γ0/b, which describes the ratio of the noise to consensus force, can be
seen as a bifurcation parameter for this ordinary differential equation, which has a
pitchfork bifurcation with critical point γ0/b = 1. Indeed, the equilibrium solution of
this equation when t → ∞ is u∞ = 0 or u2∞ = b−γ0

b . Therefore, if γ0 > b, u∞ = 0
is the only stationary equilibrium, and it can be seen that it is a stable one (the
right-hand side of (4.5) has opposite sign to u). By contrast, if γ0 < b, two other
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u∞ = −(
1− γ0

b

)1/2

1

u∞ =
(
1− γ0

b

)1/2

u∞

γ0
b

−1

+1

( γ0
b

)
c

γ0
b

−1

+1

(γ0
b

)
s

u∞

Fig. 1. Left: Pitchfork bifurcation diagram for the stationary equilibrium solution u∞ for
α = 2. Right: Subcritical pitchfork bifurcation diagram for the stationary equilibrium solution u∞
for α > 6. The arrows highlight the hysteresis loop.

stationary equilibria exist: u∞ = ±
√
b−γ0√

b
. Then, it is readily seen by inspection of

(4.5) that the equilibrium u∞ = 0 is unstable, while the two equilibria u∞ = ±
√
b−γ0√

b
are stable. In this case, the stable equilibrium describes the formation of a consensus
about one direction of motion. This consensus is obeyed by more people if the random
state change frequency γ0 is close to 0. This analysis shows that there exists a phase
transition from disordered to ordered motion when b (which describes the consensus
force) crosses γ0. The bifurcation diagram is shown in Figure 1 (left). The upper half
of the curve (which provides the order parameter |u∞| versus the noise level γ0/b)
can be regarded as the standard phase transition diagram. In this case, this diagram
indicates a second order (or continuous) phase transition with critical exponent 1/2.

By contrast, in the case α = 1, we find γ̄t = 2(γ0 + b) and ucoll =
b〈u〉
γ0+b . If a

spatially homogeneous solution is sought, it is given by

∂tu = −2γ0u.(4.6)

Then, the stationary equilibrium solution u∞ = 0 is the only solution. There is no
possibility of ordered motion. The motion stays disordered whatever the value of the
consensus force b is. Therefore, an exponent strictly larger than 1 is necessary for the
appearance of consensus.

In the case α ≥ 1 and for spatially homogeneous problems, a general formulation
of the equation for u is available as follows:

∂tu = 2bu

[
− γ0

b
+ (1 − u2)

(1 + u)α−1 − (1− u)α−1

2u

]
.

We recover (4.6) and (4.5) in the cases α = 1 and α = 2, respectively. For integers
α = 3 to α = 5, the behavior is the same as for α = 2 with the critical point becoming
(γ0/b)c = α−1. For integers α > 6, there is another critical point (γ0/b)s > (γ0/b)c =
α−1, and the bifurcation diagram shows a subcritical pitchfork bifurcation as depicted
in Figure 1 (right). Arrows in Figure 1 (right) indicate the existence of a hysteresis
loop. As before, the upper half of this diagram provides the phase transition diagram
giving the order parameter |u∞| as a function of the noise level γ0/b. In this case,
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this diagram indicates a first order (or discontinuous) phase transition as shown by
the occurrence of a jump at the value (γ0/b)s.

Remark 4.1. In the context of a spatially homogeneous situation as analyzed
here, the present model and that of [20] coincide. However, their analysis is restricted
to the case α = 2, and they only get a second phase transition (or, equivalently, a
pitchfork bifurcation diagram). We show that for α > 6, the phase transition becomes
first order (or, equivalently, a subcritical pitchfork bifurcation arises) with a hysteresis
loop.

5. Networks.

5.1. Graph framework. The goal of this section is to extend the previous
CA and its associated mean-field and hydrodynamic limits to more general network
topologies. We consider a network as a graph (J ,A), where A is the set of graph
edges and J = {1, . . . , J} is the set of graph nodes. We denote J = CardJ . We
define the adjacency matrix (ajk)j,k∈J , i.e., the matrix such that ajk = akj = 1 when
node j is connected to node k and 0 otherwise. We assume that each node j is not
connected to itself: ajj = 0. We consider only undirected graphs. This is because we
want to allow the particles to flow equally well in both directions.

We denote by dj the degree of node j, i.e., dj =
∑

k∈J ajk. We assume that the
graph is connected; i.e., for any pair of nodes (j, k) with k 
= j, there exists a path
within the graph which connects j and k. For each node j, we define the set Nj of
nodes connected to it, i.e.,

Nj = {k ∈ J | ajk = 1},

with CardNj = dj .
Each node j ∈ J contains the density ρj ≥ 0 of the sweeping quantity. Indeed,

this quantity is able to sweep from node j to any other (directly) connected node k
(i.e., such that ajk = 1). We assume that the whole quantity ρj sweeps entirely to
one of the neighboring nodes. Of course, a more complex model can be envisioned,
but we wish to keep the setting as simple as possible for this presentation. We denote
by Ψn

jk the outgoing flux from j to k at time tn. Each node carries the index of
the neighboring node to which it sweeps zj ∈ Nj . Then, the outgoing flow (counted
algebraically) from j to k, denoted by Ψn

jk, is given by

(5.1) Ψn
jk = ρnj δzj k − ρnkδzk j ,

where δij is the Kronecker index: δij = 1 if i = j and 0 otherwise. The convention
is that the flux between j and k is positive when it is outgoing from j and negative
when it is incoming. With this convention, we have Ψn

kj = −Ψn
jk.

Now, node j changes state according to a Poisson process with rate γn
j depending

on the states and densities of the nodes in the vicinity of j. Within a given time
interval Δt the probability of changing the state of node j is 1 − exp

( − γn
j Δt

)
,

and the change from state zj to any other state z′j ∈ Nj \ {zj} occurs with uniform
probability. This means that

zn+1
j =

{
znj with probability e−γn

j Δt,

z′j ∈ Nj \ {zj} uniformly in Nj \ {znj } each with probability 1−e
−γn

j Δt

dj−1 .

Given some initial data z0j and ρ0j for j ∈ J , the discrete time update algorithm for ρnj
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558 PIERRE DEGOND, MICHAEL HERTY, AND JIAN-GUO LIU

is given at any discrete time index n ∈ N by

ρn+1
j = ρnj − JΔt

∑
k∈Nj

Ψn
jk.

Remark 5.1. In the one-dimensional case of section 2, the vertices of the graph
are the centers of the cells.

Now, we have the following proposition, which shows that the total number of
particles is conserved.

Proposition 5.1. (i) The total number of particles is conserved, i.e.,∑
j∈J

ρnj =
∑
j∈J

ρ0j .

(ii) (Positivity preservation.) Introduce d = maxj∈J dj, the maximal degree of
the nodes. Suppose that the CFL condition JΔt ≤ 1

d is satisfied. Then, we have

ρnj ≥ 0 ∀j ∈ J =⇒ ρn+1
j ≥ 0 ∀j ∈ J .

Proof. The proof of (i) follows immediately from the antisymmetry of the flux
Ψn

jk. To prove (ii), we notice that when Ψn
jk > 0, it takes the value ρnj , and when

Ψn
jk < 0, it takes the value −ρnk . Then, we have

ρn+1
j = ρnj − JΔt

( ∑
k∈Nj ,Ψn

jk>0

ρnj −
∑

k∈Nj ,Ψn
jk<0

ρnk

)

= ρnj

(
1− JΔt

∑
k∈Nj ,Ψn

jk>0

1

)
+ JΔt

∑
k∈Nj ,Ψn

jk<0

ρnk .

Now, since
∑

k∈Nj ,Ψn
jk>0 1 ≤ dj , the first term is nonnegative under the CFL condi-

tion. The second term is nonnegative by assumption. This ends the proof.

5.2. A simple CA on networks. Again, as in section 2.2, we first consider
the case where the rates γn

j are independent of the node-densities (ρnj )j∈J . Then the
node-densities can be ignored. The random variables consist of the node-states zj
for j ∈ J , and the discrete state-space is given by ΣJ =

∏
j∈J Nj . We denote by

�z = (zj)j∈J an element of ΣJ . A measure φ on ΣJ is defined as in section 2.2 by

〈φ, ϕ〉ΣJ :=
∑
�z∈ΣJ

φ(�z)ϕ(�z).(5.2)

The pdf of �z at time tn is still denoted by Fn(�z). Let ϕ be a smooth test function on
ΣJ with values in R. As before, the expectation of the random variable ϕ(�zn) for all
realizations of �zn with distribution Fn is given by (2.3) (with N replaced by J). We
define the Markov transition operator Q from state �zn to �zn+1 by (2.4), and we get
(2.5) (again with N replaced by J). In the limit JΔt → 0, with nJΔt → t, we have
Fn(�z) → F(�z, t), where F(�z, t) satisfies the time-continuous master equation (2.6)
associated to the adjoint operator Q∗ to Q. It is written as

∂F
∂t

(�z, t) = L∗F(�z, t),
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FLOW ON SWEEPING NETWORKS 559

with

L∗ = lim
JΔt→0

1

JΔt
(Q∗ − Id) and Qϕ(�z) = E

{
ϕ(�zn+1)

∣∣�zn = �z
}
.

We write the master equation explicitly in the next proposition.
Proposition 5.2 (formal). The master equation for the time-continuous version

of the CA described above when the rates γj are independent of the node-densities
(ρj)j∈J is given by

∂

∂t
F(�z, t)(5.3)

=
1

J

∑
j∈J

1

dj − 1

∑
z′
j∈Nj\{zj}

(
γj(z

′
j , ẑj)F(z′j , ẑj , t)− γj(zj, ẑj)F(zj , ẑj, t)

)
,

where we denote by ẑj the vector of length J − 1 collecting all node-states except that
corresponding to node j, and by (z′j , ẑj) a state vector where the state of the jth node
is z′j ∈ Nj \ {zj} and the states of the other nodes are given by ẑj.

This equation has a form and meaning similar to that of (2.7) (except that now
more than two nodes may be connected to a given node), and we refer to the paragraph
following Proposition 2.1 for its interpretation.

Proof. The proof follows the same strategy as that of Proposition 2.1. Let ϕ be
a smooth test function. Again the probability that a given k-tuple of cells switches
states is O((JΔt)k

)
. Therefore, the probability that there are strictly more than one

change is O((JΔt)2
)
, while that of only one change is O(JΔt). This leads to

〈(Q∗ − Id)Fn, ϕ〉ΣJ = E
{
E
{
ϕ(�zn+1)− ϕ(�zn)

∣∣�zn} �zn}
=

〈
Fn(�z) ,

∑
j∈J

1

dj − 1

∑
z′
j∈Nj\{zj}

(
ϕ(z′j , ẑj) − ϕ(zj , ẑj)

)

×(1− e−γj(zj,ẑj)Δt)
∏
i�=j

e−γi(zj ,ẑj)Δt

〉
ΣJ

+ O((JΔt)2
)
.

Using (5.2), Taylor expansion when JΔt � 1, and the fact that the restriction to
Nj \ {zj} in the second sum can be removed since the added term is simply zero, we
get

〈(Q∗ − Id)Fn, ϕ〉ΣJ = Δt
∑
�z∈ΣJ

∑
j∈J

1

dj − 1

∑
z′
j∈Nj

(
ϕ(z′j , ẑj) − ϕ(zj , ẑj)

)
×γj(zj, ẑj) Fn(zj , ẑj) + O((JΔt2)

)
.

Now, pulling the summation over j out and decomposing the summation over �z into
a summation over ẑj and a summation over zj , we get

〈(Q∗ − Id)Fn, ϕ〉ΣJ = Δt
∑
j∈J

1

dj − 1

∑
ẑj∈ΣJ\{j}

∑
zj∈Nj

∑
z′
j∈Nj

(
ϕ(z′j , ẑj) − ϕ(zj , ẑj)

)
×γj(zj , ẑj) Fn(zj , ẑj) + O((JΔt2)

)
.
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We can now exchange zj and z′j in the first term and obtain

〈(Q∗ − Id)Fn, ϕ〉ΣJ = Δt
∑
j∈J

1

dj − 1

∑
ẑj∈ΣJ\{j}

∑
zj∈Nj

∑
z′
j∈Nj

ϕ(zj , ẑj)

×( γj(z′j , ẑj) Fn(z′j , ẑj) − γj(zj , ẑj) Fn(zj , ẑj)
)
+ O((JΔt2)

)
.

Collecting the summation over ẑj and over zj into a summation over �z, pulling this
summation out, and using again (5.2), we finally find

〈(Q∗ − Id)Fn, ϕ〉ΣJ

= Δt

〈∑
j∈J

1

dj − 1

∑
z′
j∈Nj

(
γj(z

′
j , ẑj) Fn(z′j , ẑj) − γj(zj , ẑj) Fn(zj , ẑj)

)
, ϕ(�z)

〉
ΣJ

+O((JΔt2)
)
.

This ends the proof.
In the next section, we consider the case where the rates γn

j depend on the node-
densities (ρnj )j∈J .

5.3. The master equation for the sweeping process on networks. We now
consider the full sweeping process on the network as described above. The random
variables are now the node-states �z ∈ ΣJ and the node-densities �ρ = (ρj)j∈J with
ρj ∈ R+. The discrete state-space for J nodes is therefore AJ = ΣJ×RJ

+. A measure φ
on AJ is defined by its action on a continuous function ϕ on AJ by

〈φ, ϕ〉AJ =
∑
�z∈ΣJ

∫
RJ

+

φ(�z, �ρ)ϕ(�z, �ρ) d�ρ.

We also denote γj = γj(�z, �ρ) and �Ξn = (ξnj )j∈J , with

ξnj =
∑
k∈Nj

Ψn
jk.

Then, the vector version of the density update is

�ρn+1 − �ρn + JΔt �Ξn = 0.

In the limit JΔt → 0, we have the following proposition, whose proof is identical to
that of Proposition 2.2 and is left to the reader.

Proposition 5.3 (formal). The master equation for the time-continuous version
of the sweeping process described above when the rates γj depend on both the node-
states �z and node-densities �ρ is given by(

∂

∂t
F −∇�ρ ·

(
�ΞF))(�z, �ρ, t)(5.4)

=
1

J

∑
j∈J

1

dj − 1

∑
z′
j∈Nj\{zj}

(
γj(z

′
j , ẑj , �ρ)F(z′j , ẑj , �ρ, t)− γj(zj , ẑj , �ρ)F(zj , ẑj, �ρ, t)

)

in strong form or〈
∂F
∂t

, ϕ

〉
AJ

= −〈F ,∇�ρϕ · �Ξ 〉AJ(5.5)

+

〈
F(�z) ,

1

J

∑
j∈J

1

dj − 1
γj(zj , ẑj , �ρ)

∑
z′
j∈Nj

(
ϕ(z′j , ẑj , �ρ) − ϕ(zj , ẑj , �ρ)

)〉
AJ
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FLOW ON SWEEPING NETWORKS 561

for any smooth test function ϕ on AJ with values in R in weak form, where we recall
that

�Ξ = (ξj)j∈J , with ξj =
∑
k∈Nj

Ψjk,(5.6)

Ψjk = ρjδzj k − ρkδzk j .(5.7)

We have noted that ∇�ρϕ · �g =
∑

j∈J gj∂ρjϕ and ∇�ρ · �g ϕ = ϕ
∑

j∈J ∂ρjgj for any
functions ϕ(�ρ) and �g(�ρ) = (gj(�ρ))j∈J .

Again, the form and meaning of (5.4) are the same as those of (2.10), and we refer
to the paragraph following Proposition 2.2 for its interpretation. The only remark
worth being made is that now, the total flux ξj at node j does not take the form
of a simple difference of neighboring fluxes, as in (2.10), but has the more complex

expression (5.6). However, it is readily seen that this expression reduces to �Ψ+ − �Ψ−
in the one-dimensional case.

5.4. Single-particle closure for networks. The goal of this section is again
to compute a closed system of equations for the one-particle marginals of F(�z, �ρ, t).
We define the marginals according to the following definition.

Definition 5.4. For any j ∈ J , we define the marginal density fj on A by
duality by

〈fj(zj , ρj , t), ϕj(zj, ρj)〉AJ = 〈F(zj , ẑj, ρj , ρ̂j , t), ϕj(zj , ρj)〉AJ ,

where ρ̂j is a (J − 1)-dimensional vector collecting all ρm for m ∈ J , with m 
= j,
and with any test function ϕj(zj , ρj) of the single variables (zj, ρj). Equivalently, we
have

fj(zj , ρj , t) = 〈F(zj , ẑj, ρj , ρ̂j , t), 1〉Âj
,

where 〈·, ·〉
Âj

denotes the duality between measures and functions of the variables

(ẑj , ρ̂j) in AJ−1 (and AJ−1 is denoted by Âj when such a duality is considered).
To get an equation for fj , we use the master equation in weak form (5.5) with a

test function ϕj(zj , ρj) of the single variables (zj , ρj). The resulting equation is given
by the following proposition.

Proposition 5.5. Define

ξj(t) fj(t) := 〈F(t), ξj〉Âj
,(5.8)

γ̄j(t) fj(t) := 〈F(t), γj〉Âj
.

The functions ξj(t) and γ̄j(t) are functions of (zj , ρj) only. Then, the equation for
the marginal fj is written in weak form as

〈
∂fj
∂t

, ϕj

〉
Aj

= −〈fj , ξj(t) ∂ρjϕj 〉Aj

+
1

J

1

dj − 1

〈
fj , γ̄j(zj , ρj, t)

∑
z′
j∈Nj

(
ϕj(z

′
j , ρj)− ϕj(zj , ρj)

)〉
Aj

,
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where Aj = Nj × R+, and in strong form as(
∂

∂t
fj − ∂ρj

(
ξj(t) fj

))
(zj , ρj , t)

=
1

J

1

dj − 1

∑
z′
j∈Nj

(
γ̄j(z

′
j , ρj , t)fj(z

′
j , ρj , t)− γ̄j(zj , ρj , t)fj(zj , ρj , t)

)
.

We now make the propagation of chaos assumption, which in the network frame-
work reads as follows.

Assumption 5.1. We assume that the joint pdf F(�z, �ρ, t) is written as

F(�z, �ρ, t) =
∏
j∈J

fj(zj , ρj , t).(5.9)

With this assumption, we can simplify the expressions of the flux (5.8). We have
the following.

Lemma 5.6. Under the chaos assumption (Assumption 5.1), the flux (5.8) is
given by

ξj(zj , ρj , t) = ρj −
∑
k∈Nj

∫ ∞

0

ρk fk(j, ρk, t) dρk.(5.10)

Proof. From (5.8), we have

ξj(zj , ρj , t) fj(zj , ρj , t) =

〈∏
�∈J

f�(z�, ρ�, t), ξj

〉
Âj

.

Inserting (5.6), (5.7) into this equation leads to

ξj(zj , ρj, t) =

〈 ∏
�∈J , � �=j

f�(z�, ρ�, t),
∑
k∈Nj

(ρjδzj k − ρkδzk j)

〉
Âj

.

Interchanging the summation over k and over Âj , we get

ξj(zj , ρj , t) =
∑
k∈Nj

〈 ∏
�∈J , � �=j

f�(z�, ρ�, t), (ρjδzj k − ρkδzk j)

〉
Âj

.(5.11)

The term ρjδzj k depends only on the state of the jth node. Therefore, it can

be taken out of the bracket over Âj . There remains 〈∏�∈J , f�(z�, ρ�, t), 1〉Âj
which

is equal to 1 because each f� is a probability density. Therefore, the positive term
on the right-hand side of (5.11) reduces to ρj

∑
k∈Nj

δzj k. Since there is only one

node k ∈ Nj such that the state zj of node j is equal to k, we have
∑

k∈Nj
δzj k = 1.

Finally, the production term reduces to ρj .
The expression of the negative term on the right-hand side of (5.11) follows from

the fact that

∑
k∈Nj

〈 ∏
�∈J , � �=j

f�(z�, ρ�, t), ρkδzk j

〉
Âj

=
∑
k∈Nj

∑
ẑj∈ΣJ−1

∫
ρ̂j∈R

J−1
+

ρkδzkj
∏

� �=j,�∈J
f�(z�, ρ�, t) dρ̂j .
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In the previous formula, only the sum over zk and the integral over ρk are different
from 1 because again, each f� is a probability on the state-space (z�, ρ�). Now, because
of the multiplication by δzkj , the sum over zk has only one nonzero contribution, that
corresponding to zk = j. The resulting value of the sink term is therefore equal to

∑
k∈Nj

〈 ∏
�∈J , � �=j

f�(z�, ρ�, t), ρkδzk j

〉
Âj

=
∑
k∈Nj

∫
ρk∈R+

ρk fk(j, ρk, t) dρk.

Collecting the calculations of the production and sink terms, we are led to (5.10),
which ends the proof.

Now collecting the results of Proposition 5.5 and Lemma 5.6, we can state the
following theorem.

Theorem 5.7 (formal). Under the closure assumption (5.9), the equation for
the marginal fj is written in weak form as

〈
∂fj
∂t

, ϕj

〉
Aj

= −
〈
fj ,

(
ρj −

∑
k∈Nj

∫ ∞

0

ρk fk(j, ρk, t) dρk

)
∂ρjϕj

〉
Aj

+
1

J

1

dj − 1

〈
fj , γ̄j(zj , ρj, t)

∑
z′
j∈Nj

(
ϕj(z

′
j , ρj)− ϕj(zj , ρj)

)〉
Aj

,

where Aj = Nj × R+, and in strong form as(
∂

∂t
fj − ∂ρj

((
ρj −

∑
k∈Nj

∫ ∞

0

ρk fk(j, ρk, t) dρk

)
fj

))
(zj , ρj, t)(5.12)

=
1

J

1

dj − 1

∑
z′
j∈Nj

(
γ̄j(z

′
j , ρj , t)fj(z

′
j , ρj , t)− γ̄j(zj , ρj , t)fj(zj , ρj , t)

)
.

Here, γ̄j(zj , ρj , t) is given by

γ̄j(zj , ρj , t) =

〈 ∏
�∈J , � �=j

f�(z�, ρ�, t), γj

〉
Âj

.(5.13)

Equation (5.12) provides the evolution of the 1-node pdf in the phase-space con-
sisting of the jth cell-state space Nj for zj and the density space R+ for ρj . It takes
the form of a transport equation in the ρj variable (the left-hand side), with a collision
term describing the rate of change of the jth cell-states zj (the right-hand side). The
collision operator has a form and meaning similar to that of the right-hand side of
(2.7) or (5.3) (but for the passage from the J-node pdf to the 1-node pdf), and we
refer to the paragraph following Proposition 2.1 for its interpretation. The interest-
ing feature in (5.12) is the transport operator. Indeed, the flux term (inside the ∂ρj

derivative) in the jth cell pdf is given in terms of the average density in neighboring
cells. This average density is obtained through integrating the neighboring cell pdf fk
over the density variable ρk. Therefore, the various pdf’s are coupled together by this
flux term in an integral fashion. To some extent, this coupling resembles a mean-field
coupling as in Vlasov-type models. Another source of coupling of the various 1-cell
pdf’s is through the evaluation of the switching rates γ̄j , which depend on the pdf’s
of some of the neighboring cells through the mean-field evaluation (5.13).
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6. Summary and perspectives. We present a derivation of macroscopic equa-
tions for the large time behavior of microscopic sweeping processes coupled to density
evolutions. Within the derivation a general master equation is considered, and under
a mean-field assumption kinetic equations are derived. We applied the general calcu-
lus to an example of pedestrian flow in small corridors. An extension of the ideas to
flows on networks has also been presented.

In future work we discuss equations arising from a Chapman–Enskog-like expan-
sion for the cell-width going to zero. Further, it would be interesting to analyze a
Taylor expansion of the rate equation (4.3) for strongly confined kernels w. Another
open problem is the combination of the mean-field assumption and kernel localized
within a finite number of cells (such as, e.g., a nearest neighbor interaction) lead-
ing to possibly correlated particle distributions. Physically more sophisticated CA
may be envisioned. For instance, we could introduce different particle densities for
left- and right-going particles and, according to the state of the cell, move one of the
populations while the other population stays immobile. Other improvements would
consist of taking into account finite network capacity or, more generally, more com-
plex rules for the computation of the switching rates. For instance, time delays could
be introduced to model the finiteness of the information propagation speed. Finally,
the hypotheses made here, i.e., propagation of chaos and mean-field limit, need to be
validated by intensive numerical simulations.
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[35] M. Moussäıd, D. Helbing, and G. Theraulaz, How simple rules determine pedestrian be-
havior and crowd disasters, Proc. Natl. Acad. Sci. USA, 108 (2011), pp. 6884–6888.

[36] K. Nagel and M. Schreckenberg, A cellular automaton model for freeway traffic, J. Phys.
I France, 2 (1992), pp. 2221–2229.

[37] K. Nishinari, A. Kirchner, A. Namazi, and A. Schadschneider, Extended floor field CA
model for evacuation dynamics, IEICE Trans. Inform. Syst., E87-D (2004), pp. 726–732.

[38] H. J. Payne, Models of freeway traffic and control, in Mathematical Models of Public Systems,
Simulation Councils Proc. Ser. 1, Society for Computer Simulation, La Jolla, CA, 1971,
pp. 51–61.

[39] I. Prigogine and R. Herman, Kinetic Theory of Vehicular Traffic, Elsevier, New York, 1971.
[40] M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour, Two lane traffic simulations

using cellular automata, Phys. A, 231 (1996), pp. 534–550.
[41] A. Schadschneider and A. Seyfried, Empirical results for pedestrian dynamics and their

implications for modeling, Netw. Heterog. Media, 6 (2011), pp. 545–560.
[42] A. Sopasakis, Formal asymptotic models of vehicular traffic. Model closures, SIAM J. Appl.

Math., 63 (2003), pp. 1561–1584.
[43] A. Sopasakis and M. A. Katsoulakis, Stochastic modeling and simulation of traffic flow:

Asymmetric single exclusion process with Arrhenius look-ahead dynamics, SIAM J. Appl.
Math., 66 (2006), pp. 921–944.

[44] A.-S. Sznitman, Topics in propagation of chaos, in Ecole d’Été de Probabilités de Saint-Flour
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